1
|
Rashid A, Achary VMM, Abdin MZ, Karippadakam S, Parmar H, Panditi V, Prakash G, Bhatnagar-Mathur P, Reddy MK. Cytokinin oxidase2-deficient mutants improve panicle and grain architecture through cytokinin accumulation and enhance drought tolerance in indica rice. PLANT CELL REPORTS 2024; 43:207. [PMID: 39096362 DOI: 10.1007/s00299-024-03289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 08/05/2024]
Abstract
KEY MESSAGE The Osckx2 mutant accumulates cytokinin thereby enhancing panicle branching, grain yield, and drought tolerance, marked by improved survival rate, membrane integrity, and photosynthetic function. Cytokinins (CKs) are multifaceted hormones that regulate growth, development, and stress responses in plants. Cytokinins have been implicated in improved panicle architecture and grain yield; however, they are inactivated by the enzyme cytokinin oxidase (CKX). In this study, we developed a cytokinin oxidase 2 (Osckx2)-deficient mutant using CRISPR/Cas9 gene editing in indica rice and assessed its function under water-deficit and salinity conditions. Loss of OsCKX2 function increased grain number, secondary panicle branching, and overall grain yield through improved cytokinin content in the panicle tissue. Under drought conditions, the Osckx2 mutant conserved more water and demonstrated improved water-saving traits. Through reduced transpiration, Osckx2 mutants showed an improved survival response than the wild type to unset dehydration stress. Further, Osckx2 maintained chloroplast and membrane integrity and showed significantly improved photosynthetic function under drought conditions through enhanced antioxidant protection systems. The OsCKX2 function negatively affects panicle grain number and drought tolerance, with no discernible impact in response to salinity. The finding suggests the utility of the beneficial Osckx2 allele in breeding to develop climate-resilient, high-yielding cultivars for future food security.
Collapse
Affiliation(s)
- Afreen Rashid
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, Delhi, India, 110067
- Department of Biotechnology, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi, India, 110062
| | - V Mohan M Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, Delhi, India, 110067.
| | - M Z Abdin
- Department of Biotechnology, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi, India, 110062
| | - Sangeetha Karippadakam
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, Delhi, India, 110067
| | - Hemangini Parmar
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, Delhi, India, 110067
| | - Varakumar Panditi
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, Delhi, India, 110067
| | - Ganesan Prakash
- Plant Pathology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India, 110012
| | - Pooja Bhatnagar-Mathur
- Plant Breeding and Genetics, International Atomic Energy Agency (IAEA), PO-1001400, Vienna, Austria
| | - Malireddy K Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, Delhi, India, 110067
| |
Collapse
|
2
|
Xu H, Bartley L, Libault M, Sundaresan V, Fu H, Russell S. The roles of a novel CDKB/KRP/FB3 cell cycle core complex in rice gametes and initiation of embryogenesis. PLANT REPRODUCTION 2023; 36:301-320. [PMID: 37491485 DOI: 10.1007/s00497-023-00474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
The cell cycle controls division and proliferation of all eukaryotic cells and is tightly regulated at multiple checkpoints by complexes of core cell cycle proteins. Due to the difficulty in accessing female gametes and zygotes of flowering plants, little is known about the molecular mechanisms underlying embryogenesis initiation despite the crucial importance of this process for seed crops. In this study, we reveal three levels of factors involved in rice zygotic cell cycle control and characterize their functions and regulation. Protein-protein interaction studies, including within zygote cells, and in vitro biochemical analyses delineate a model of the zygotic cell cycle core complex for rice. In this model, CDKB1, a major regulator of plant mitosis, is a cyclin (CYCD5)-dependent kinase; its activity is coordinately inhibited by two cell cycle inhibitors, KRP4 and KRP5; and both KRPs are regulated via F-box protein 3 (FB3)-mediated proteolysis. Supporting their critical roles in controlling the rice zygotic cell cycle, mutations in KRP4, KRP5 and FB3 result in the compromised function of sperm cells and abnormal organization of female germ units, embryo and endosperm, thus significantly reducing seed-set rate. This work helps reveal regulatory mechanisms controlling the zygotic cell cycle toward seed formation in angiosperms.
Collapse
Affiliation(s)
- Hengping Xu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA.
| | - Laura Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA
| | | | - Hong Fu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Scott Russell
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
3
|
Jameson PE. Cytokinin Translocation to, and Biosynthesis and Metabolism within, Cereal and Legume Seeds: Looking Back to Inform the Future. Metabolites 2023; 13:1076. [PMID: 37887400 PMCID: PMC10609209 DOI: 10.3390/metabo13101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Early in the history of cytokinins, it was clear that Zea mays seeds contained not just trans-zeatin, but its nucleosides and nucleotides. Subsequently, both pods and seeds of legumes and cereal grains have been shown to contain a complex of cytokinin forms. Relative to the very high quantities of cytokinin detected in developing seeds, only a limited amount appears to have been translocated from the parent plant. Translocation experiments, and the detection of high levels of endogenous cytokinin in the maternal seed coat tissues of legumes, indicates that cytokinin does not readily cross the maternal/filial boundary, indicating that the filial tissues are autonomous for cytokinin biosynthesis. Within the seed, trans-zeatin plays a key role in sink establishment and it may also contribute to sink strength. The roles, if any, of the other biologically active forms of cytokinin (cis-zeatin, dihydrozeatin and isopentenyladenine) remain to be elucidated. The recent identification of genes coding for the enzyme that leads to the biosynthesis of trans-zeatin in rice (OsCYP735A3 and 4), and the identification of a gene coding for an enzyme (CPN1) that converts trans-zeatin riboside to trans-zeatin in the apoplast, further cements the key role played by trans-zeatin in plants.
Collapse
Affiliation(s)
- Paula E Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
4
|
Romero-Sánchez DI, Vázquez-Santana S, Alonso-Alvarez RA, Vázquez-Ramos JM, Lara-Núñez A. Tissue and subcellular localization of CycD2 and KRPs are dissimilarly distributed by glucose and sucrose during early maize germination. Acta Histochem 2023; 125:152092. [PMID: 37717384 DOI: 10.1016/j.acthis.2023.152092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
In maize, immunoprecipitation assays have shown that CycD2;2 interacts with KRPs. However, evidence on CycD2;2 or KRPs localization and their possible interaction in specific tissues is lacking and its physiological consequence is still unknown. This work explores the spatiotemporal presence of CyclinD2s and KRPs, cell cycle regulators, during maize seed germination (18 and 36 h) after soaking on glucose or sucrose (120 mM). CyclinD2s are positive actors driving proliferation; KRPs are inhibitors of the main kinase controlling proliferation (a negative signal that slows down the cell cycle). Cell cycle proteins were analyzed by immunolocalization on longitudinal sections of maize embryo axis in seven different tissues or zones (with different proliferation or differentiation potential) and in the nucleus of their cells. Results showed a prevalence of these cell cycle proteins on embryo axes from dry seeds, particularly, their accumulation in nuclei of radicle cells. The absence of sugar caused the accumulation of these regulators in different proliferating zones. CyclinD2 abundance was reduced during germination in the presence of sucrose along the embryo axis, while there was an increase at 36 h on glucose. KRP proteins showed a slight increase at 18 h and a decrease at 36 h on both sugars. There was no correlation between cell cycle regulators/DNA co-localization on both sugars. Results suggest glucose induced a specific accumulation of each cell cycle regulator depending on the proliferation zone as well as nuclear localization which may reflect the differential morphogenetic program regarding the proliferation potential in each zone, while sucrose has a mild influence on both cell cycle proteins accumulation during germination. Whenever CycD2s were present in the nucleus, KRPs were absent after treatment with either sugar and at the two imbibition times analyzed, along the different embryo axe zones.
Collapse
Affiliation(s)
- Diana I Romero-Sánchez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sonia Vázquez-Santana
- Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rafael A Alonso-Alvarez
- Dirección General de Orientación y Atención Educativa, Universidad, Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Parida AK, Sekhar S, Panda BB, Sahu G, Shaw BP. Effect of Panicle Morphology on Grain Filling and Rice Yield: Genetic Control and Molecular Regulation. Front Genet 2022; 13:876198. [PMID: 35620460 PMCID: PMC9127237 DOI: 10.3389/fgene.2022.876198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
The demand for rice is likely to increase approximately 1.5 times by the year 2050. In contrast, the rice production is stagnant since the past decade as the ongoing rice breeding program is unable to increase the production further, primarily because of the problem in grain filling. Investigations have revealed several reasons for poor filling of the grains in the inferior spikelets of the compact panicle, which are otherwise genetically competent to develop into well-filled grains. Among these, the important reasons are 1) poor activities of the starch biosynthesizing enzymes, 2) high ethylene production leading to inhibition in expressions of the starch biosynthesizing enzymes, 3) insufficient division of the endosperm cells and endoreduplication of their nuclei, 4) low accumulation of cytokinins and indole-3-acetic acid (IAA) that promote grain filling, and 5) altered expressions of the miRNAs unfavorable for grain filling. At the genetic level, several genes/QTLs linked to the yield traits have been identified, but the information so far has not been put into perspective toward increasing the rice production. Keeping in view the genetic competency of the inferior spikelets to develop into well-filled grains and based on the findings from the recent research studies, improving grain filling in these spikelets seems plausible through the following biotechnological interventions: 1) spikelet-specific knockdown of the genes involved in ethylene synthesis and overexpression of β-CAS (β-cyanoalanine) for enhanced scavenging of CN− formed as a byproduct of ethylene biosynthesis; 2) designing molecular means for increased accumulation of cytokinins, abscisic acid (ABA), and IAA in the caryopses; 3) manipulation of expression of the transcription factors like MYC and OsbZIP58 to drive the expression of the starch biosynthesizing enzymes; 4) spikelet-specific overexpression of the cyclins like CycB;1 and CycH;1 for promoting endosperm cell division; and 5) the targeted increase in accumulation of ABA in the straw during the grain filling stage for increased carbon resource remobilization to the grains. Identification of genes determining panicle compactness could also lead to an increase in rice yield through conversion of a compact-panicle into a lax/open one. These efforts have the ability to increase rice production by as much as 30%, which could be more than the set production target by the year 2050.
Collapse
Affiliation(s)
- Ajay Kumar Parida
- Crop Improvement Group, Institute of Life Sciences, Bhubaneswar, India
| | - Sudhanshu Sekhar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Binay Bhushan Panda
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Gyanasri Sahu
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, India
| | | |
Collapse
|
6
|
Liu J, Wu MW, Liu CM. Cereal Endosperms: Development and Storage Product Accumulation. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:255-291. [PMID: 35226815 DOI: 10.1146/annurev-arplant-070221-024405] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The persistent triploid endosperms of cereal crops are the most important source of human food and animal feed. The development of cereal endosperms progresses through coenocytic nuclear division, cellularization, aleurone and starchy endosperm differentiation, and storage product accumulation. In the past few decades, the cell biological processes involved in endosperm formation in most cereals have been described. Molecular genetic studies performed in recent years led to the identification of the genes underlying endosperm differentiation, regulatory network governing storage product accumulation, and epigenetic mechanism underlying imprinted gene expression. In this article, we outline recent progress in this area and propose hypothetical models to illustrate machineries that control aleurone and starchy endosperm differentiation, sugar loading, and storage product accumulations. A future challenge in this area is to decipher the molecular mechanisms underlying coenocytic nuclear division, endosperm cellularization, and programmed cell death.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Shaw BP, Sekhar S, Panda BB, Sahu G, Chandra T, Parida AK. Biochemical and molecular processes contributing to grain filling and yield in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:120-133. [PMID: 35338943 DOI: 10.1016/j.plaphy.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 05/02/2023]
Abstract
The increase in much required rice production through breeding programmes is on decline. The primary reason being poor filling of grains in the basal spikelets of the heavy and compact panicle rice developed. These spikelets are genetically competent to develop into well filled grains, but fail to do so because the carbohydrate assimilates available to them remain unutilized, reportedly due to poor activities of the starch biosynthesizing enzymes, high production of ethylene leading to enhanced synthesis of the downstream signaling component RSR1 protein that inhibits GBSS1 activity, poor endosperm cell division and endoreduplication of the endosperm nuclei, altered expression of the transcription factors influencing grain filling, enhanced expression and phosphorylation of 14-3-3 proteins, poor expression of the seed storage proteins, reduced synthesis of the hormones like cytokinins and IAA that promote grain filling, and altered expression of miRNAs preventing their normal role in grain filling. Since the basal spikelets are genetically competent to develop into well filled mature grains, biotechnological interventions in terms of spikelet-specific overexpression of the genes encoding enzymes involved in grain filling and/or knockdown/overexpression of the genes influencing the activities of the starch biosynthesizing enzymes, various cell cycle events and hormone biosynthesis could increase rice production by as much as 30%, much more than the set production target of 800 mmt. Application of these biotechnological interventions in the heavy and compact panicle cultivars producing grains of desired quality would also maintain the quality of the grains having demand in market besides increasing the rice production per se.
Collapse
Affiliation(s)
- Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Sudhanshu Sekhar
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Binay Bhushan Panda
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Gyanasri Sahu
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Tilak Chandra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Ajay Kumar Parida
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
8
|
Basunia MA, Nonhebel HM, Backhouse D, McMillan M. Localised expression of OsIAA29 suggests a key role for auxin in regulating development of the dorsal aleurone of early rice grains. PLANTA 2021; 254:40. [PMID: 34324072 DOI: 10.1007/s00425-021-03688-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Non-canonical AUX/IAA protein, OsIAA29, and ZmMPR-1 homologues, OsMRPLs, are part of an auxin-related signalling cascade operating in the dorsal aleurone during early rice grain development. Endosperm of rice and other cereals accumulates high concentrations of the predominant in planta auxin, indole-3-acetic acid (IAA) during early grain development. However, IAA signalling and function during endosperm development are poorly understood. Here, we report that OsYUC12 (an auxin biosynthesis gene) and OsIAA29 (encoding a non-canonical AUX/IAA) are both expressed exclusively in grains, reaching a maximum 5-6 days after pollination. OsYUC12 expression is localised in the aleurone, sub-aleurone and embryo, whereas OsIAA29 expression is restricted to a narrow strip in the dorsal aleurone, directly under the vascular bundle. Although rice has been reported to lack endosperm transfer cells (ETCs), this region of the aleurone is enriched with sugar transporters and is likely to play a key role in apoplastic nutrient transfer, analogous to ETCs in other cereals. OsIAA29 has orthologues only in grass species; expression of which is also specific to early grain development. OsYUC12 and OsIAA29 are temporally co-expressed with two genes (AL1 and OsPR602) previously linked to the development of dorsal aleurone or ETCs. Also up-regulated at the same time is a cluster of MYB-related genes (designated OsMRPLs) homologous to ZmMRP-1, which regulates maize ETC development. Wheat homologues of ZmMRP-1 are similarly expressed in ETCs. Although previous work has suggested that other cereals do not have orthologues of ZmMRP-1, our work suggests OsIAA29 and OsMRPLs and their homologues in other grasses are part of an auxin-regulated, conserved signalling network involved in the differentiation of cells with ETC-like function in developing cereal grains.
Collapse
Affiliation(s)
- Mafroz A Basunia
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Heather M Nonhebel
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia.
| | - David Backhouse
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Mary McMillan
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
9
|
Zhang P, Zhu C, Geng Y, Wang Y, Yang Y, Liu Q, Guo W, Chachar S, Riaz A, Yan S, Yang L, Yi K, Wu C, Gu X. Rice and Arabidopsis homologs of yeast CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4 commonly interact with Polycomb complexes but exert divergent regulatory functions. THE PLANT CELL 2021; 33:1417-1429. [PMID: 33647940 PMCID: PMC8254485 DOI: 10.1093/plcell/koab047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/29/2021] [Indexed: 05/02/2023]
Abstract
Both genetic and epigenetic information must be transferred from mother to daughter cells during cell division. The mechanisms through which information about chromatin states and epigenetic marks like histone 3 lysine 27 trimethylation (H3K27me3) are transferred have been characterized in animals; these processes are less well understood in plants. Here, based on characterization of a dwarf rice (Oryza sativa) mutant (dwarf-related wd40 protein 1, drw1) deficient for yeast CTF4 (CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4), we discovered that CTF4 orthologs in plants use common cellular machinery yet accomplish divergent functional outcomes. Specifically, drw1 exhibited no flowering-related phenotypes (as in the putatively orthologous Arabidopsis thaliana eol1 mutant), but displayed cell cycle arrest and DNA damage responses. Mechanistically, we demonstrate that DRW1 sustains normal cell cycle progression by modulating the expression of cell cycle inhibitors KIP-RELATED PROTEIN 1 (KRP1) and KRP5, and show that these effects are mediated by DRW1 binding their promoters and increasing H3K27me3 levels. Thus, although CTF4 orthologs ENHANCER OF LHP1 1 (EOL1) in Arabidopsis and DRW1 in rice are both expressed uniquely in dividing cells, commonly interact with several Polycomb complex subunits, and promote H3K27me3 deposition, we now know that their regulatory functions diverged substantially during plant evolution. Moreover, our work experimentally illustrates specific targets of CTF4/EOL1/DRW1, their protein-proteininteraction partners, and their chromatin/epigenetic effects in plants.
Collapse
Affiliation(s)
- Pingxian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunmei Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuke Geng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yifan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sadaruddin Chachar
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Liwen Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for correspondence: (K.Y.), (C.W.), (X.G.)
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Author for correspondence: (K.Y.), (C.W.), (X.G.)
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for correspondence: (K.Y.), (C.W.), (X.G.)
| |
Collapse
|
10
|
Sahu G, Panda BB, Dash SK, Chandra T, Shaw BP. Cell cycle events and expression of cell cycle regulators are determining factors in differential grain filling in rice spikelets based on their spatial location on compact panicles. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:268-285. [PMID: 33120000 DOI: 10.1071/fp20196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Rice being a staple crop for human, its production is required to be increased significantly, particularly keeping in view the expected world's population of 9.6 billion by the year 2050. In this context, although the rice breeding programs have been successful in increasing the number of spikelets per panicle, the basal spikelets remain poorly filled, undermining the yield potential. The present study also found the grain filling to bear negative correlation with the panicle grain density. The poorly filled basal spikelets of the compact-panicle cultivars showed a lower endosperm cell division rate and ploidy status of the endosperm nuclei coupled with no significant greater expression of CYCB;1 and CYCH;1 compared with the apical spikelets, unlike that observed in the lax-panicle cultivars, which might have prevented them from overcoming apical dominance. Significantly greater expression of CYCB2;2 in the basal spikelets than in the apical spikelets might also have prevented the former to enter into endoreduplication. Furthermore, expression studies of KRPs in the caryopses revealed that a higher expression of KRP;1 and KRP;4 in the basal spikelets than in the apical spikelets of the compact-panicle cultivars could also be detrimental to grain filling in the former, as KRPs form complex primarily with CDKA-CYCD that promotes S-phase activity and G1/S transition, and thus inhibits endosperm cell division. The study indicates that targeted manipulation of expression of CYCB1;1, CYCB2;2, CYCH1;1, KRP;1 and KRP4 in the basal spikelets of the compact-panicle cultivars may significantly improve their yield performance.
Collapse
Affiliation(s)
- Gyanasri Sahu
- Abiotic Stress and Agro-Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Binay B Panda
- Abiotic Stress and Agro-Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Sushanta K Dash
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Tilak Chandra
- Abiotic Stress and Agro-Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Birendra P Shaw
- Abiotic Stress and Agro-Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India; and Corresponding author.
| |
Collapse
|
11
|
Banerjee G, Singh D, Sinha AK. Plant cell cycle regulators: Mitogen-activated protein kinase, a new regulating switch? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110660. [PMID: 33218628 DOI: 10.1016/j.plantsci.2020.110660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Cell cycle is essential for the maintenance of genetic material and continuity of a species. Its regulation involves a complex interplay between multiple proteins with diverse molecular functions such as the kinases, transcription factors, proteases and phosphatases. Every step of this cycle requires a certain combination of these protein regulators which paves the way for the next stage. It is now evident that plants have their own unique features in the context of cell cycle regulation. Cell cycle in plants is not only necessary for maintenance of its physio-morphological parameter but it also regulates traits important for mankind like grain or fruit size. This makes it even more important to understand how plants regulate its cell cycle amidst various a/biotic stresses it is subjected to during its lifetime. The association of MAPK signaling pathways with every major developmental and stress response pathways in plants raises the question of its potential role in cell cycle regulation. There are number of cell cycle regulating proteins with putative sites for MAPK phosphorylation. The MAPK signaling pathway may directly or in a parallel pathway regulate the plant cell cycle. Unraveling the role of MAPK in cell cycle will open up new arenas to explore.
Collapse
Affiliation(s)
- Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India.
| |
Collapse
|
12
|
Paul P, Dhatt BK, Sandhu J, Hussain W, Irvin L, Morota G, Staswick P, Walia H. Divergent phenotypic response of rice accessions to transient heat stress during early seed development. PLANT DIRECT 2020; 4:e00196. [PMID: 31956854 PMCID: PMC6955394 DOI: 10.1002/pld3.196] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/05/2019] [Accepted: 12/19/2019] [Indexed: 05/03/2023]
Abstract
Increasing global surface temperatures is posing a major food security challenge. Part of the solution to address this problem is to improve crop heat resilience, especially during grain development, along with agronomic decisions such as shift in planting time and increasing crop diversification. Rice is a major food crop consumed by more than 3 billion people. For rice, thermal sensitivity of reproductive development and grain filling is well-documented, while knowledge concerning the impact of heat stress (HS) on early seed development is limited. Here, we aim to study the phenotypic variation in a set of diverse rice accessions for elucidating the HS response during early seed development. To explore the variation in HS sensitivity, we investigated aus (1), indica (2), temperate japonica (2), and tropical japonica (4) accessions for their HS (39/35°C) response during early seed development that accounts for transition of endosperm from syncytial to cellularization, which broadly corresponds to 24 and 96 hr after fertilization (HAF), respectively, in rice. The two indica and one of the tropical japonica accessions exhibited severe heat sensitivity with increased seed abortion; three tropical japonicas and an aus accession showed moderate heat tolerance, while temperate japonicas exhibited strong heat tolerance. The accessions exhibiting extreme heat sensitivity maintain seed size at the expense of number of fully developed mature seeds, while the accessions showing relative resilience to the transient HS maintained number of fully developed seeds but compromised on seed size, especially seed length. Further, histochemical analysis revealed that all the tested accessions have delayed endosperm cellularization upon exposure to the transient HS by 96 HAF; however, the rate of cellularization was different among the accessions. These findings were further corroborated by upregulation of cellularization-associated marker genes in the developing seeds from the heat-stressed samples.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Balpreet K. Dhatt
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Jaspreet Sandhu
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Waseem Hussain
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- International Rice Research InstituteLos BanosPhilippines
| | - Larissa Irvin
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Gota Morota
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Paul Staswick
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Harkamal Walia
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| |
Collapse
|
13
|
Ajadi AA, Tong X, Wang H, Zhao J, Tang L, Li Z, Liu X, Shu Y, Li S, Wang S, Liu W, Tajo SM, Zhang J, Wang Y. Cyclin-Dependent Kinase Inhibitors KRP1 and KRP2 Are Involved in Grain Filling and Seed Germination in Rice ( Oryza sativa L.). Int J Mol Sci 2019; 21:ijms21010245. [PMID: 31905829 PMCID: PMC6981537 DOI: 10.3390/ijms21010245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent kinase inhibitors known as KRPs (kip-related proteins) control the progression of plant cell cycles and modulate various plant developmental processes. However, the function of KRPs in rice remains largely unknown. In this study, two rice KRPs members, KRP1 and KRP2, were found to be predominantly expressed in developing seeds and were significantly induced by exogenous abscisic acid (ABA) and Brassinosteroid (BR) applications. Sub-cellular localization experiments showed that KRP1 was mainly localized in the nucleus of rice protoplasts. KRP1 overexpression transgenic lines (OxKRP1), krp2 single mutant (crkrp2), and krp1/krp2 double mutant (crkrp1/krp2) all exhibited significantly smaller seed width, seed length, and reduced grain weight, with impaired seed germination and retarded early seedling growth, suggesting that disturbing the normal steady state of KRP1 or KRP2 blocks seed development partly through inhibiting cell proliferation and enlargement during grain filling and seed germination. Furthermore, two cyclin-dependent protein kinases, CDKC;2 and CDKF;3, could interact with KRP1 in a yeast-two-hybrid system, indicating that KRP1 might regulate the mitosis cell cycle and endoreduplication through the two targets. In a word, this study shed novel insights into the regulatory roles of KRPs in rice seed maturation and germination.
Collapse
Affiliation(s)
- Abolore Adijat Ajadi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- Biotechnology Unit, National Cereals Research Institute, Badeggi, Bida 912101, Nigeria
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Huimei Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Liqun Tang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Xixi Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Yazhou Shu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Shufan Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Shuang Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Wanning Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Sani Muhammad Tajo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- Correspondence: (J.Z.); (Y.W.); Tel./Fax: +86-571-6337-0277 (J.Z.); +86-571-6337-0206 (Y.W.)
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- Correspondence: (J.Z.); (Y.W.); Tel./Fax: +86-571-6337-0277 (J.Z.); +86-571-6337-0206 (Y.W.)
| |
Collapse
|
14
|
Liu M, Wang X, Sun W, Ma Z, Zheng T, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide investigation of the ZF-HD gene family in Tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2019; 19:248. [PMID: 31185913 PMCID: PMC6558689 DOI: 10.1186/s12870-019-1834-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/15/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND ZF-HD is a family of genes that play an important role in plant growth, development, some studies have found that after overexpression AtZHD1 in Arabidopsis thaliana, florescence advance, the seeds get bigger and the life span of seeds is prolonged, moreover, ZF-HD genes are also participate in responding to adversity stress. The whole genome of the ZF-HD gene family has been studied in several model plants, such as Arabidopsis thaliana and rice. However, there has been little research on the ZF-HD genes in Tartary buckwheat (Fagopyrum tataricum), which is an important edible and medicinal crop. The recently published whole genome sequence of Tartary buckwheat allows us to study the tissue and expression profiles of the ZF-HD gene family in Tartary buckwheat on a genome-wide basis. RESULTS In this study, the whole genome and expression profile of the ZF-HD gene family were analyzed for the first time in Tartary buckwheat. We identified 20 FtZF-HD genes and divided them into MIF and ZHD subfamilies according to phylogeny. The ZHD genes were divided into 5 subfamilies. Twenty FtZF-HD genes were distributed on 7 chromosomes, and almost all the genes had no introns. We detected seven pairs of chromosomes with fragment repeats, but no tandem repeats were detected. In different tissues and at different fruit development stages, the FtZF-HD genes obtained by a real-time quantitative PCR analysis showed obvious expression patterns. CONCLUSIONS In this study, 20 FtZF-HD genes were identified in Tartary buckwheat, and the structures, evolution and expression patterns of the proteins were studied. Our findings provide a valuable basis for further analysis of the biological function of the ZF-HD gene family. Our study also laid a foundation for the improvement of Tartary buckwheat crops.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
- School of Agriculture and Biolog, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiang Wang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tianrun Zheng
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Li Huang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
15
|
Panigrahi R, Kariali E, Panda BB, Lafarge T, Mohapatra PK. Controlling the trade-off between spikelet number and grain filling: the hierarchy of starch synthesis in spikelets of rice panicle in relation to hormone dynamics. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:507-523. [PMID: 30961785 DOI: 10.1071/fp18153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
The advent of dwarf statured rice varieties enabled a major breakthrough in yield and production, but raising the ceiling of genetically determined yield potential even further has been the breeding priority. Grain filling is asynchronous in the rice panicle; the inferior spikelets particularly on secondary branches of the basal part do not produce grains of a quality suitable for human consumption. Of the various strategies being considered, the control of ethylene production at anthesis has been a valuable route to potentially enhance genetic yield level of rice. The physiology underlying spikelet development has revealed spikelet position-specific ethylene levels determine the extent of grain filling, with higher levels resulting in ill-developed spikelet embodying poor endosperm starch content. To break the yield barrier, breeders have increased spikelet number per panicle in new large-panicle rice plants. However, the advantage of panicles with numerous spikelets has not resulted in enhanced yield because of poor filling of inferior spikelets. High spikelet number stimulates ethylene production and downgrading of starch synthesis, suggesting a trade-off between spikelet number and grain filling. High ethylene production in inferior spikelets suppresses expression of genes encoding endosperm starch synthesising enzymes. Hence, ethylene could be a retrograde signal that dictates the transcriptome dynamics for the cross talk between spikelet number and grain filling in the rice panicle, so attenuation of its activity may provide a solution to the problem of poor grain filling in large-panicle rice. This physiological linkage that reduces starch biosynthesis of inferior kernels is not genetically constitutive and amenable for modification through chemical, biotechnological, surgical and allelic manipulations. Studies on plant genotypes with different panicle architecture have opened up possibilities of selectively improving starch biosynthesis of inferior spikelets and thereby increasing grain yield through a physiological route.
Collapse
Affiliation(s)
- Rashmi Panigrahi
- School of Life Sciences, Sambalpur University, Jyoti vihar, Sambalpur, 768019, India
| | - Ekamber Kariali
- School of Life Sciences, Sambalpur University, Jyoti vihar, Sambalpur, 768019, India
| | - Binay Bhusan Panda
- Environmental Biotechnology Laboratory, Institute of Life Science, Bhubaneswar, 751023, India
| | - Tanguy Lafarge
- CIRAD, UMR AGAP, F-34398 Montpellier, France; and AGAP, University of Montpellier, CIRAD, INRA, INRIA, Montpellier SupAgro, Montpellier, France
| | - Pravat Kumar Mohapatra
- School of Life Sciences, Sambalpur University, Jyoti vihar, Sambalpur, 768019, India; and Corresponding author. Emails:
| |
Collapse
|
16
|
The Potential Role of Auxin and Abscisic Acid Balance and FtARF2 in the Final Size Determination of Tartary Buckwheat Fruit. Int J Mol Sci 2018; 19:ijms19092755. [PMID: 30217096 PMCID: PMC6163771 DOI: 10.3390/ijms19092755] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 01/23/2023] Open
Abstract
Tartary buckwheat is a type of cultivated medicinal and edible crop with good economic and nutritional value. Knowledge of the final fruit size of buckwheat is critical to its yield increase. In this study, the fruit development of two species of Tartary buckwheat in the Polygonaceae was analyzed. During fruit development, the size/weight, the contents of auxin (AUX)/abscisic acid (ABA), the number of cells, and the changes of embryo were measured and observed; and the two fruit materials were compared to determine the related mechanisms that affected fruit size and the potential factors that regulated the final fruit size. The early events during embryogenesis greatly influenced the final fruit size, and the difference in fruit growth was primarily due to the difference in the number of cells, implicating the effect of cell division rate. Based on our observations and recent reports, the balance of AUX and ABA might be the key factor that regulated the cell division rate. They induced the response of auxin response factor 2 (FtARF2) and downstream small auxin upstream RNA (FtSAURs) through hormone signaling pathway to regulate the fruit size of Tartary buckwheat. Further, through the induction of fruit expansion by exogenous auxin, FtARF2b was significantly downregulated. The FtARF2b is a potential target for molecular breeding or gene editing.
Collapse
|
17
|
Panda BB, Sekhar S, Dash SK, Behera L, Shaw BP. Biochemical and molecular characterisation of exogenous cytokinin application on grain filling in rice. BMC PLANT BIOLOGY 2018; 18:89. [PMID: 29783938 PMCID: PMC5963110 DOI: 10.1186/s12870-018-1279-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/03/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Poor filling of grains in the basal spikelets of large size panicles bearing numerous spikelets has been a major limitation in attempts to increase the rice production to feed the world's increasing population. Considering that biotechnological intervention could play important role in overcoming this limitation, the role of cytokinin in grain filling was investigated based on the information on cell proliferating potential of the hormone and reports of its high accumulation in immature seeds. RESULTS A comparative study considering two rice varieties differing in panicle compactness, lax-panicle Upahar and compact-panicle OR-1918, revealed significant difference in grain filling, cytokinin oxidase (CKX) activity and expression, and expression of cell cycle regulators and cytokinin signaling components between the basal and apical spikelets of OR-1918, but not of Upahar. Exogenous application of cytokinin (6-Benzylaminopurine, BAP) to OR-1918 improved grain filling significantly, and this was accompanied by a significant decrease in expression and activity of CKX, particularly in the basal spikelets where the activity of CKX was significantly higher than that in the apical spikelets. Cytokinin application also resulted in significant increase in expression of cell cycle regulators like cyclin dependent kinases and cyclins in the basal spikelets that might be facilitating cell division in the endosperm cells by promoting G1/S phase and G2/M phase transition leading to improvement in grain filling. Expression studies of type-A response regulator (RR) component of cytokinin signaling indicated possible role of OsRR3, OsRR4 and OsRR6 as repressors of CKX expression, much needed for an increased accumulation of CK in cells. Furthermore, the observed effect of BAP might not be solely because of it, but also because of induced synthesis of trans-zeatin (tZ) and N6-(Δ2-isopentenyl)adenine (iP), as reflected from accumulation of tZR (tZ riboside) and iPR (iP riboside), and significantly enhanced expression of an isopentenyl transferase (IPT) isoform. CONCLUSION The results suggested that seed-specific overexpression of OsRR4 and OsRR6, and more importantly of IPT9 could be an effective biotechnological intervention towards improving the CK level of the developing caryopses leading to enhanced grain filling in rice cultivars bearing large panicles with numerous spikelets, and thereby increasing their yield potential.
Collapse
|
18
|
Huang X, Peng X, Sun MX. OsGCD1 is essential for rice fertility and required for embryo dorsal-ventral pattern formation and endosperm development. THE NEW PHYTOLOGIST 2017; 215:1039-1058. [PMID: 28585692 DOI: 10.1111/nph.14625] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/25/2017] [Indexed: 05/20/2023]
Abstract
Rice fertility is critical for rice reproduction and is thus a focus of interest. Most studies have addressed male sterility and its relation to rice production. The mechanisms of regulation of embryogenesis and endosperm development are essential for rice reproduction, but remain largely unknown. Here, we report a functional analysis of the rice gene OsGCD1, which encodes a highly conserved homolog of Arabidopsis GCD1 (GAMETE CELLS DEFECTIVE1). OsGCD1 mutants were generated using the CRISPR/Cas9 system and subjected to functional analysis. The homozygote mutants cannot be obtained, whereas heterozygotes showed altered phenotypes. In the majority of aborted seeds, the endosperm nucleus divided a limited number of times. The free nuclei were distributed only at the micropylar end of embryo sacs, and their oriented positioning was blocked. In addition, aleurone differentiation was interrupted. The embryo developed slowly, and pattern formation, particularly the dorsal-ventral pattern and symmetry establishment, of embryos was disturbed. Thus, the embryos showed various morphological and structural dysplasias. Our findings reveal that OsGCD1 is essential for rice fertility and is required for dorsal-ventral pattern formation and endosperm free nucleus positioning, suggesting a critical role in sexual reproduction of both monocotyledon and dicotyledon plants.
Collapse
Affiliation(s)
- Xiaorong Huang
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Xiongbo Peng
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
19
|
Identification and functional analysis of the ICK gene family in maize. Sci Rep 2017; 7:43818. [PMID: 28262730 PMCID: PMC5338338 DOI: 10.1038/srep43818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/31/2017] [Indexed: 11/29/2022] Open
Abstract
Inhibitors of cyclin-dependent kinases (ICKs) are key regulators of cyclin-dependent kinase activities and cell division. Herein, we identified eight ICKs in maize, which we named Zeama;ICKs (ZmICKs). Primary sequencing and phylogenetic analyses were used to divide the ZmICK family into two classes: group B and group C. Subcellular localization analysis of ZmICK:enhanced green fluorescent protein (eGFP) fusion constructs in tobacco leaf cells indicated that ZmICKs are principally nuclear. Co-localization analysis of the ZmICKs and maize A-type cyclin-dependent kinase (ZmCDKA) was also performed using enhanced green fluorescent protein (eGFP) and red fluorescent protein (RFP) fusion constructs. The ZmICKs and ZmCDKA co-localized in the nucleus. Semi-quantitative RT-PCR analysis of the ZmICKs showed that they were expressed at different levels in all tissues examined and shared similar expression patterns with cell cycle-related genes. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that ZmICK1, ZmICK2, ZmICK3, and ZmICK4 interact with ZmCDKA1 and ZmCDKA3. Interestingly, ZmICK7 interacts with D-type cyclins. Transformed and expressed ZmCDKA1 and ZmICKs together in fission yeast revealed that ZmICK1, ZmICK3, and ZmICK4 can affect ZmCDKA1 function. Moreover, the C-group of ZmICKs could interact with ZmCDKA1 directly and affect ZmCDKA1 function, suggesting that C-group ZmICKs are important for cell division regulation.
Collapse
|
20
|
Smitha Ninan A, Shah A, Song J, Jameson PE. Differential Gene Expression in the Meristem and during Early Fruit Growth of Pisum sativum L. Identifies Potential Targets for Breeding. Int J Mol Sci 2017; 18:E428. [PMID: 28212324 PMCID: PMC5343962 DOI: 10.3390/ijms18020428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/15/2016] [Accepted: 02/08/2017] [Indexed: 01/03/2023] Open
Abstract
For successful molecular breeding it is important to identify targets to the gene family level, and in the specific species of interest, in this case Pisum sativum L. The cytokinins have been identified as a key breeding target due to their influence on plant architecture, and on seed size and sink activity. We focused on the cytokinin biosynthetic gene family (the IPTs) and the gene family key to the destruction of cytokinins (the CKXs), as well as other gene families potentially affected by changing cytokinin levels. These included key meristem genes (WUS and BAM1) and the transporter gene families, sucrose transporters (SUTs) and amino acid permeases (AAPs). We used reverse transcription quantitative PCR (RT-qPCR) to monitor gene expression in the vegetative meristem and in pre- and post-fertilisation young pea fruits. PsWUS expression was specific to the shoot apical meristem while PsBAM1 was highly expressed in the shoot apical meristem (SAM) but was also expressed at a low level in the young fruit. Differential expression was shown between genes and within gene families for IPT, CKX, SUT, and AAP. PsCKX7 showed strong gene family member-specific expression in the SAM, and was also expressed in young pea fruits. We suggest that PsCKX7 is a potential target for downregulation via molecular breeding or gene editing.
Collapse
Affiliation(s)
- Annu Smitha Ninan
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Anish Shah
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
- School of Life Sciences, Yantai University, Yantai 264005, China.
| | - Paula E Jameson
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| |
Collapse
|
21
|
Hands P, Rabiger DS, Koltunow A. Mechanisms of endosperm initiation. PLANT REPRODUCTION 2016; 29:215-25. [PMID: 27450467 PMCID: PMC4978757 DOI: 10.1007/s00497-016-0290-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/14/2016] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Overview of developmental events and signalling during central cell maturation and early endosperm development with a focus on mechanisms of sexual and autonomous endosperm initiation. Endosperm is important for seed viability and global food supply. The mechanisms regulating the developmental transition between Female Gametophyte (FG) maturation and early endosperm development in angiosperms are difficult to study as they occur buried deep within the ovule. Knowledge of the molecular events underlying this developmental window of events has significantly increased with the combined use of mutants, cell specific markers, and plant hormone sensing reporters. Here, we review recent discoveries concerning the developmental events and signalling of FG maturation, fertilization, and endosperm development. We focus on the regulation of the initiation of endosperm development with and without fertilization in Arabidopsis and the apomict Hieracium, comparing this to what is known in monocots where distinct differences in developmental patterning may underlie alternative mechanisms of suppression and initiation. The Polycomb Repressive Complex 2 (PRC2), plant hormones, and transcription factors are iteratively involved in early fertilization-induced endosperm formation in Arabidopsis. Auxin increases and PRC2 complex inactivation can also induce fertilization-independent endosperm proliferation in Arabidopsis. Function of the PRC2 complex member FERTILIZATION-INDEPENDENT ENDOSPERM and two loci AutE and LOP are required for autonomous endosperm development in apomictic Hieracium. A comparative understanding of cues required for early endosperm development will facilitate genetic engineering approaches for the development of resilient seed crops, especially if an option for fertilization-independent endosperm formation was possible to combat stress-induced crop failure.
Collapse
Affiliation(s)
- Philip Hands
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - David S Rabiger
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Anna Koltunow
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
22
|
Chen C, Begcy K, Liu K, Folsom JJ, Wang Z, Zhang C, Walia H. Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity. PLANT PHYSIOLOGY 2016; 171:606-22. [PMID: 26936896 PMCID: PMC4854699 DOI: 10.1104/pp.15.01992] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/02/2016] [Indexed: 05/19/2023]
Abstract
Early seed development events are highly sensitive to increased temperature. This high sensitivity to a short-duration temperature spike reduces seed viability and seed size at maturity. The molecular basis of heat stress sensitivity during early seed development is not known. We selected rice (Oryza sativa), a highly heat-sensitive species, to explore this phenomenon. Here, we elucidate the molecular pathways that contribute to the heat sensitivity of a critical developmental window during which the endosperm transitions from syncytium to the cellularization stage in young seeds. A transcriptomic comparison of seeds exposed to moderate (35°C) and severe (39°C) heat stress with control (28°C) seeds identified a set of putative imprinted genes, which were down-regulated under severe heat stress. Several type I MADS box genes specifically expressed during the syncytial stage were differentially regulated under moderate and severe heat stress. The suppression and overaccumulation of these genes are associated with precocious and delayed cellularization under moderate and severe stress, respectively. We show that modulating the expression of OsMADS87, one of the heat-sensitive, imprinted genes associated with syncytial stage endosperm, regulates rice seed size. Transgenic seeds deficient in OsMADS87 exhibit accelerated endosperm cellularization. These seeds also have lower sensitivity to a moderate heat stress in terms of seed size reduction compared with seeds from wild-type plants and plants overexpressing OsMADS87 Our findings suggest that OsMADS87 and several other genes identified in this study could be potential targets for improving the thermal resilience of rice during reproductive development.
Collapse
Affiliation(s)
- Chen Chen
- Department of Agronomy and Horticulture (C.C., K.B., J.J.F., Z.W., H.W.) and School of Biological Sciences (K.L., C.Z.), University of Nebraska, Lincoln, Nebraska 68583; andKey Laboratory of Crop Genetics and Physiology of Jiangsu Province and Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China (C.C.)
| | - Kevin Begcy
- Department of Agronomy and Horticulture (C.C., K.B., J.J.F., Z.W., H.W.) and School of Biological Sciences (K.L., C.Z.), University of Nebraska, Lincoln, Nebraska 68583; andKey Laboratory of Crop Genetics and Physiology of Jiangsu Province and Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China (C.C.)
| | - Kan Liu
- Department of Agronomy and Horticulture (C.C., K.B., J.J.F., Z.W., H.W.) and School of Biological Sciences (K.L., C.Z.), University of Nebraska, Lincoln, Nebraska 68583; andKey Laboratory of Crop Genetics and Physiology of Jiangsu Province and Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China (C.C.)
| | - Jing J Folsom
- Department of Agronomy and Horticulture (C.C., K.B., J.J.F., Z.W., H.W.) and School of Biological Sciences (K.L., C.Z.), University of Nebraska, Lincoln, Nebraska 68583; andKey Laboratory of Crop Genetics and Physiology of Jiangsu Province and Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China (C.C.)
| | - Zhen Wang
- Department of Agronomy and Horticulture (C.C., K.B., J.J.F., Z.W., H.W.) and School of Biological Sciences (K.L., C.Z.), University of Nebraska, Lincoln, Nebraska 68583; andKey Laboratory of Crop Genetics and Physiology of Jiangsu Province and Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China (C.C.)
| | - Chi Zhang
- Department of Agronomy and Horticulture (C.C., K.B., J.J.F., Z.W., H.W.) and School of Biological Sciences (K.L., C.Z.), University of Nebraska, Lincoln, Nebraska 68583; andKey Laboratory of Crop Genetics and Physiology of Jiangsu Province and Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China (C.C.)
| | - Harkamal Walia
- Department of Agronomy and Horticulture (C.C., K.B., J.J.F., Z.W., H.W.) and School of Biological Sciences (K.L., C.Z.), University of Nebraska, Lincoln, Nebraska 68583; andKey Laboratory of Crop Genetics and Physiology of Jiangsu Province and Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China (C.C.)
| |
Collapse
|
23
|
Panda BB, Badoghar AK, Sekhar S, Shaw BP, Mohapatra PK. 1-MCP treatment enhanced expression of genes controlling endosperm cell division and starch biosynthesis for improvement of grain filling in a dense-panicle rice cultivar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:11-25. [PMID: 26993232 DOI: 10.1016/j.plantsci.2016.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/29/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
High ethylene production in dense-panicle rice cultivars impacts grain filling. 1-MCP (ethylene action inhibitor) treatment increased assimilates partitioning, cell number and size and expression of starch synthesizing enzyme genes of developing caryopses mostly in the basal spikelets of panicle at early post-anthesis stage. The gain in cell number was less compared to the increase of size. High ethylene production in spikelets matched with greater expression of ethylene receptor and signal transducer genes. Genes encoding cell cycle regulators CDK, CYC and CKI expressed poorly on 9 DAA. 1-MCP treatment enhanced their expression; the increase of expression was higher for CDKs and lower for CKIs in basal compared to apical spikelets. Greater expression of CDKB2:1 might have lifted cytokinesis of nascent peripheral cells of endosperm, while promotion of CDKAs, CYCD2:2 and inhibition of CYCB2:2 expression contributed to endoreduplication of central cells increasing cell size and DNA ploidy level. It is concluded that the process of endoreduplication, which begins at mid-grain filling stage, is crucially linked with the final caryopsis size of rice grain. The enhanced endosperm growth brought about by repressed ethylene action during the first few days after anthesis seems to be associated with the overall increased cell cycle activity and sink strength.
Collapse
Affiliation(s)
- B B Panda
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar 751023, India
| | - A K Badoghar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar 751023, India
| | - S Sekhar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar 751023, India
| | - B P Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar 751023, India
| | - P K Mohapatra
- School of Life Science, Sambalpur University, Jyoti Vihar, Sambalpur 768019, India.
| |
Collapse
|
24
|
Panda BB, Badoghar AK, Sekhar S, Kariali E, Mohapatra PK, Shaw BP. Biochemical and molecular characterisation of salt-induced poor grain filling in a rice cultivar. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:266-277. [PMID: 32480459 DOI: 10.1071/fp15229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/06/2015] [Indexed: 06/11/2023]
Abstract
Despite the prevalence of poor grain filling in rice (Oryza sativa L.) under abiotic stress, the reason for this is largely unexplored. Application of 0.75% NaCl to a salt-sensitive rice cultivar at late booting resulted in a >20% yield loss. Spikelets per panicle and the percentage of filled grain decreased significantly in response to NaCl application. The inhibitory effect of NaCl on grain filling was greater in basal than in apical spikelets. Sucrose synthase (SUS) activity was positively correlated with grain weight. The transcript levels of the SUS isoforms differed greatly: the levels of SUS2 increased significantly in response to salt; those of SUS4 decreased drastically. Gene expression studies of starch synthase and ADP-glucose pyrophosphorylase showed that the decreased transcript levels of one isoform was compensated by an increase in those of the other. Salt application also significantly increased the gene expression of the ethylene receptors and the ethylene signalling proteins. The increase in their transcript levels was comparatively greater in basal than in apical spikelets. Significant enhancement in the transcript levels of the ethylene receptors and the increase in the production of ethylene indicated that the salt-induced inhibition of grain filling might be mediated by ethylene. Additionally, the inhibition of chromosomal endoreduplication mediated by decreased transcript levels of B-type cyclin could explain poor grain filling under salt stress. A significant increase in the transcript levels of the ethylene-responsive factors in the spikelets during grain filling in response to salt indicated their possible protective role in grain filling under stress.
Collapse
Affiliation(s)
- Binay B Panda
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, Odisha, India
| | - Alok K Badoghar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, Odisha, India
| | - Sudhanshu Sekhar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, Odisha, India
| | - Ekamber Kariali
- School of Life Sciences, Sambalpur University, Sambalpur, 768019, Odisha, India
| | - Pravat K Mohapatra
- School of Life Sciences, Sambalpur University, Sambalpur, 768019, Odisha, India
| | - Birendra P Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, Odisha, India
| |
Collapse
|
25
|
Yang H, Liu X, Xin M, Du J, Hu Z, Peng H, Rossi V, Sun Q, Ni Z, Yao Y. Genome-Wide Mapping of Targets of Maize Histone Deacetylase HDA101 Reveals Its Function and Regulatory Mechanism during Seed Development. THE PLANT CELL 2016; 28:629-45. [PMID: 26908760 PMCID: PMC4826005 DOI: 10.1105/tpc.15.00691] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/21/2016] [Indexed: 05/03/2023]
Abstract
Histone deacetylases (HDACs) regulate histone acetylation levels by removing the acetyl group from lysine residues. The maize (Zea mays) HDACHDA101 influences several aspects of development, including kernel size; however, the molecular mechanism by which HDA101 affects kernel development remains unknown. In this study, we find that HDA101 regulates the expression of transfer cell-specific genes, suggesting that their misregulation may be associated with the defects in differentiation of endosperm transfer cells and smaller kernels observed in hda101 mutants. To investigate HDA101 function during the early stages of seed development, we performed genome-wide mapping of HDA101 binding sites. We observed that, like mammalian HDACs, HDA101 mainly targets highly and intermediately expressed genes. Although loss of HDA101 can induce histone hyperacetylation of its direct targets, this often does not involve variation in transcript levels. A small subset of inactive genes that must be negatively regulated during kernel development is also targeted by HDA101 and its loss leads to hyperacetylation and increased expression of these inactive genes. Finally, we report that HDA101 interacts with members of different chromatin remodeling complexes, such as NFC103/MSI1 and SNL1/SIN3-like protein corepressors. Taken together, our results reveal a complex genetic network regulated by HDA101 during seed development and provide insight into the different mechanisms of HDA101-mediated regulation of transcriptionally active and inactive genes.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Jinkun Du
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - HuiRu Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Vincenzo Rossi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
26
|
Abstract
The cytokinins have been implicated in many facets of plant growth and development including cell division and differentiation, shoot and root growth, apical dominance, senescence, fruit and seed development, and the response to biotic and abiotic stressors. Cytokinin levels are regulated by a balance between biosynthesis [isopentenyl transferase (IPT)], activation [Lonely Guy (LOG)], inactivation (O-glucosyl transferase), re-activation (β-glucosidase), and degradation [cytokinin oxidase/dehydrogenase (CKX)]. During senescence, the levels of active cytokinins decrease, with premature senescence leading to a decrease in yield. During the early stages of fruit and seed development, cytokinin levels are transiently elevated, and coincide with nuclear and cell divisions which are a determinant of final seed size. Exogenous application of cytokinin, ectopic expression of IPT, or down-regulation of CKX have, on occasions, led to increased seed yield, leading to the suggestion that cytokinin may be limiting yield. However, manipulation of cytokinins is complex, not only because of their pleiotropic nature but also because the genes coding for biosynthesis and metabolism belong to multigene families, the members of which are themselves spatially and temporally differentiated. Previous research on yield of rice showed that plant breeders could directly target the cytokinins. Modern genome editing tools could be employed to target and manipulate cytokinin levels to increase seed yield with the concurrent aim of maintaining quality. However, how the cytokinin level is modified and whether IPT or CKX is targeted may depend on whether the plant is considered to be in a source-limiting environment or to be sink limited.
Collapse
Affiliation(s)
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand School of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
27
|
Hikage T, Yamagishi N, Takahashi Y, Saitoh Y, Yoshikawa N, Tsutsumi KI. Allelic variants of the esterase gene W14/15 differentially regulate overwinter survival in perennial gentian (Gentiana L.). Mol Genet Genomics 2015; 291:989-97. [PMID: 26701352 DOI: 10.1007/s00438-015-1160-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/14/2015] [Indexed: 11/25/2022]
Abstract
Overwinter survival has to be under critical regulation in the lifecycle of herbaceous perennial plants. Gentians (Gentiana L.) maintain their perennial life style through producing dormant and freezing-tolerant overwinter buds (OWBs) to overcome cold winter. However, the mechanism acting on such an overwinter survival and the genes/proteins contributing to it have been poorly understood. Previously, we identified an OWB-enriched protein W14/15, a member of a group of α/β hydrolase fold superfamily that is implicated in regulation of hormonal action in plants. The W14/15 gene has more than ten variant types in Gentiana species. However, roles of the W14/15 gene in OWB survival and functional difference among those variants have been unclear. In the present study, we examined whether the W14/15 gene variants are involved in the mechanism acting on overwinter survival, by crossing experiments using cultivars carrying different W14/15 variant alleles and virus-induced gene silencing experiments. We found that particular types of the W14/15 variants (W15a types) contributed toward obtaining high ability of overwinter survival, while other types (W14b types) did not, or even interfered with the former type gene. This study demonstrates two findings; first, contribution of esterase genes to winter hardiness, and second, paired set or paired partner among the allelic variants determines the ability of overwinter survival.
Collapse
Affiliation(s)
- Takashi Hikage
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan
- Hachimantai City Floricultural Research and Development Center, Hachimantai, Iwate, 028-7592, Japan
| | - Noriko Yamagishi
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Yui Takahashi
- Cryobiofrontier Research Center, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Yasushi Saitoh
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan
- Cryobiofrontier Research Center, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Nobuyuki Yoshikawa
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Ken-Ichi Tsutsumi
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan.
- Cryobiofrontier Research Center, Iwate University, Morioka, Iwate, 020-8550, Japan.
| |
Collapse
|
28
|
Pettkó-Szandtner A, Cserháti M, Barrôco RM, Hariharan S, Dudits D, Beemster GTS. Core cell cycle regulatory genes in rice and their expression profiles across the growth zone of the leaf. JOURNAL OF PLANT RESEARCH 2015; 128:953-74. [PMID: 26459328 DOI: 10.1007/s10265-015-0754-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/12/2015] [Indexed: 05/22/2023]
Abstract
Rice (Oryza sativa L.) as a model and crop plant with a sequenced genome offers an outstanding experimental system for discovering and functionally analyzing the major cell cycle control elements in a cereal species. In this study, we identified the core cell cycle genes in the rice genome through a hidden Markov model search and multiple alignments supported with the use of short protein sequence probes. In total we present 55 rice putative cell cycle genes with locus identity, chromosomal location, approximate chromosome position and EST accession number. These cell cycle genes include nine cyclin dependent-kinase (CDK) genes, 27 cyclin genes, one CKS gene, two RBR genes, nine E2F/DP/DEL genes, six KRP genes, and one WEE gene. We also provide characteristic protein sequence signatures encoded by CDK and cyclin gene variants. Promoter analysis by the FootPrinter program discovered several motifs in the regulatory region of the core cell cycle genes. As a first step towards functional characterization we performed transcript analysis by RT-PCR to determine gene specific variation in transcript levels along the rice leaves. The meristematic zone of the leaves where cells are actively dividing was identified based on kinematic analysis and flow cytometry. As expected, expression of the majority of cell cycle genes was exclusively associated with the meristematic region. However genes such as different D-type cyclins, DEL1, KRP1/3, and RBR2 were also expressed in leaf segments representing the transition zone in which cells start differentiation.
Collapse
Affiliation(s)
- A Pettkó-Szandtner
- Biological Research Center, HAS, Temesvári krt 62, Szeged, 6726, Hungary.
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium.
| | - M Cserháti
- Biological Research Center, HAS, Temesvári krt 62, Szeged, 6726, Hungary
- Nebraska Medical Center, Omaha, NE, 68198-5145, USA
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium
| | - R M Barrôco
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium
- CropDesign N.V./BASF, Technologiepark 921C, 9052, Ghent, Zwijnaarde, Belgium
| | - S Hariharan
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium
| | - D Dudits
- Biological Research Center, HAS, Temesvári krt 62, Szeged, 6726, Hungary
| | - G T S Beemster
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium
- Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
29
|
Zheng J, Zhang Y, Wang C. Molecular functions of genes related to grain shape in rice. BREEDING SCIENCE 2015; 65:120-6. [PMID: 26069441 PMCID: PMC4430511 DOI: 10.1270/jsbbs.65.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/28/2014] [Indexed: 05/23/2023]
Abstract
Because grain shape is an important component of rice grain yield, the discovery of genes related to rice grain shape has attracted much attention of rice breeding programs. In recent years, some of these genes have been cloned and studied. They have been found not only regulate grain shape by changing the shape of the spikelet hull, but also regulate endosperm development through control of cell division using different molecular mechanisms. In this paper, we review the recent research on genes related to rice grain shape and their possible regulatory mechanisms.
Collapse
Affiliation(s)
- Jia Zheng
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement,
Nanjing 210014,
China
| | - Yadong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement,
Nanjing 210014,
China
| | - Cailin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement,
Nanjing 210014,
China
| |
Collapse
|
30
|
Hara T, Katoh H, Ogawa D, Kagaya Y, Sato Y, Kitano H, Nagato Y, Ishikawa R, Ono A, Kinoshita T, Takeda S, Hattori T. Rice SNF2 family helicase ENL1 is essential for syncytial endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:1-12. [PMID: 25327517 DOI: 10.1111/tpj.12705] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
The endosperm of cereal grains represents the most important source of human nutrition. In addition, the endosperm provides many investigatory opportunities for biologists because of the unique processes that occur during its ontogeny, including syncytial development at early stages. Rice endospermless 1 (enl1) develops seeds lacking an endosperm but carrying a functional embryo. The enl1 endosperm produces strikingly enlarged amoeboid nuclei. These abnormal nuclei result from a malfunction in mitotic chromosomal segregation during syncytial endosperm development. The molecular identification of the causal gene revealed that ENL1 encodes an SNF2 helicase family protein that is orthologous to human Plk1-Interacting Checkpoint Helicase (PICH), which has been implicated in the resolution of persistent DNA catenation during anaphase. ENL1-Venus (enhanced yellow fluorescent protein (YFP)) localizes to the cytoplasm during interphase but moves to the chromosome arms during mitosis. ENL1-Venus is also detected on a thread-like structure that connects separating sister chromosomes. These observations indicate the functional conservation between PICH and ENL1 and confirm the proposed role of PICH. Although ENL1 dysfunction also affects karyokinesis in the root meristem, enl1 plants can grow in a field and set seeds, indicating that its indispensability is tissue-dependent. Notably, despite the wide conservation of ENL1/PICH among eukaryotes, the loss of function of the ENL1 ortholog in Arabidopsis (CHR24) has only marginal effects on endosperm nuclei and results in normal plant development. Our results suggest that ENL1 is endowed with an indispensable role to secure the extremely rapid nuclear cycle during syncytial endosperm development in rice.
Collapse
Affiliation(s)
- Tomomi Hara
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Folsom JJ, Begcy K, Hao X, Wang D, Walia H. Rice fertilization-Independent Endosperm1 regulates seed size under heat stress by controlling early endosperm development. PLANT PHYSIOLOGY 2014; 165:238-48. [PMID: 24590858 PMCID: PMC4012583 DOI: 10.1104/pp.113.232413] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/25/2014] [Indexed: 05/18/2023]
Abstract
Although heat stress reduces seed size in rice (Oryza sativa), little is known about the molecular mechanisms underlying the observed reduction in seed size and yield. To elucidate the mechanistic basis of heat sensitivity and reduced seed size, we imposed a moderate (34°C) and a high (42°C) heat stress treatment on developing rice seeds during the postfertilization stage. Both stress treatments reduced the final seed size. At a cellular level, the moderate heat stress resulted in precocious endosperm cellularization, whereas severe heat-stressed seeds failed to cellularize. Initiation of endosperm cellularization is a critical developmental transition required for normal seed development, and it is controlled by Polycomb Repressive Complex2 (PRC2) in Arabidopsis (Arabidopsis thaliana). We observed that a member of PRC2 called Fertilization-Independent Endosperm1 (OsFIE1) was sensitive to temperature changes, and its expression was negatively correlated with the duration of the syncytial stage during heat stress. Seeds from plants overexpressing OsFIE1 had reduced seed size and exhibited precocious cellularization. The DNA methylation status and a repressive histone modification of OsFIE1 were observed to be temperature sensitive. Our data suggested that the thermal sensitivity of seed enlargement could partly be caused by altered epigenetic regulation of endosperm development during the transition from the syncytial to the cellularized state.
Collapse
|
32
|
Meguro A, Sato Y. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice. Sci Rep 2014; 4:4555. [PMID: 24686568 PMCID: PMC3971400 DOI: 10.1038/srep04555] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/14/2014] [Indexed: 11/23/2022] Open
Abstract
We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.
Collapse
Affiliation(s)
- Ayano Meguro
- Crop Breeding Research Division, NARO Hokkaido Agricultural Research Center, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Yutaka Sato
- Crop Breeding Research Division, NARO Hokkaido Agricultural Research Center, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| |
Collapse
|
33
|
Dante RA, Larkins BA, Sabelli PA. Cell cycle control and seed development. FRONTIERS IN PLANT SCIENCE 2014; 5:493. [PMID: 25295050 PMCID: PMC4171995 DOI: 10.3389/fpls.2014.00493] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/05/2014] [Indexed: 05/18/2023]
Abstract
Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed.
Collapse
Affiliation(s)
- Ricardo A. Dante
- Embrapa Agricultural InformaticsCampinas, Brazil
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| | - Brian A. Larkins
- Department of Agronomy and Horticulture, University of NebraskaLincoln, NE, USA
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| | - Paolo A. Sabelli
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| |
Collapse
|
34
|
Hanumappa M, Preece J, Elser J, Nemeth D, Bono G, Wu K, Jaiswal P. WikiPathways for plants: a community pathway curation portal and a case study in rice and arabidopsis seed development networks. RICE (NEW YORK, N.Y.) 2013; 6:14. [PMID: 24280312 PMCID: PMC4883732 DOI: 10.1186/1939-8433-6-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/22/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND Next-generation sequencing and 'omics' platforms are used extensively in plant biology research to unravel new genomes and study their interactions with abiotic and biotic agents in the growth environment. Despite the availability of a large and growing number of genomic data sets, there are only limited resources providing highly-curated and up-to-date metabolic and regulatory networks for plant pathways. RESULTS Using PathVisio, a pathway editor tool associated with WikiPathways, we created a gene interaction network of 430 rice (Oryza sativa) genes involved in the seed development process by curating interactions reported in the published literature. We then applied an InParanoid-based homology search to these genes and used the resulting gene clusters to identify 351 Arabidopsis thaliana genes. Using this list of homologous genes, we constructed a seed development network in Arabidopsis by processing the gene list and the rice network through a Perl utility software called Pathway GeneSWAPPER developed by us. In order to demonstrate the utility of these networks in generating testable hypotheses and preliminary analysis prior to more in-depth downstream analysis, we used the expression viewer and statistical analysis features of PathVisio to analyze publicly-available and published microarray gene expression data sets on diurnal photoperiod response and the seed development time course to discover patterns of coexpressed genes found in the rice and Arabidopsis seed development networks. These seed development networks described herein, along with other plant pathways and networks, are freely available on the plant pathways portal at WikiPathways (http://plants.wikipathways.org). CONCLUSION In collaboration with the WikiPathways project we present a community curation and analysis platform for plant biologists where registered users can freely create, edit, share and monitor pathways supported by published literature. We describe the curation and annotation of a seed development network in rice, and the projection of a similar, gene homology-based network in Arabidopsis. We also demonstrate the utility of the Pathway GeneSWAPPER (PGS) application in saving valuable time and labor when a reference network in one species compiled in GPML format is used to project a similar network in another species based on gene homology.
Collapse
Affiliation(s)
- Mamatha Hanumappa
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Denise Nemeth
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Gina Bono
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Kenny Wu
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| |
Collapse
|
35
|
Zhou SR, Yin LL, Xue HW. Functional genomics based understanding of rice endosperm development. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:236-46. [PMID: 23582455 DOI: 10.1016/j.pbi.2013.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 05/05/2023]
Abstract
Seed development, especially the relevant regulatory mechanism and genetic network are of fundamental scientific interest. Seed development consists of the development of embryo and endosperm; and endosperm development of rice (model species of monocots) is closely related to grain yield and quality. Recent genetic studies, together with other approaches, including transcriptome and proteomics analysis, high-throughput sequencing (RNA-seq, ChIP-seq), revealed the crucial roles of genetic and epigenetic controls in rice endosperm development. Here we summarize and update the genetic networks involved in the regulation of endosperm initiation, cell cycle regulation, aleurone layer specification, starch synthesis, storage protein accumulation and endosperm size, and the interactions between embryo and endosperm.
Collapse
Affiliation(s)
- Shi-Rong Zhou
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300, Fenglin Road, 200032 Shanghai, China
| | | | | |
Collapse
|
36
|
Deng ZY, Gong CY, Wang T. Use of proteomics to understand seed development in rice. Proteomics 2013; 13:1784-800. [DOI: 10.1002/pmic.201200389] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Zhu Yun Deng
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Haidianqu Beijing China
| | - Chun Yan Gong
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Haidianqu Beijing China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Haidianqu Beijing China
| |
Collapse
|
37
|
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu BI, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 2013; 45:707-11. [PMID: 23583977 DOI: 10.1038/ng.2612] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/21/2013] [Indexed: 01/17/2023]
Abstract
Increases in the yield of rice, a staple crop for more than half of the global population, are imperative to support rapid population growth. Grain weight is a major determining factor of yield. Here, we report the cloning and functional analysis of THOUSAND-GRAIN WEIGHT 6 (TGW6), a gene from the Indian landrace rice Kasalath. TGW6 encodes a novel protein with indole-3-acetic acid (IAA)-glucose hydrolase activity. In sink organs, the Nipponbare tgw6 allele affects the timing of the transition from the syncytial to the cellular phase by controlling IAA supply and limiting cell number and grain length. Most notably, loss of function of the Kasalath allele enhances grain weight through pleiotropic effects on source organs and leads to significant yield increases. Our findings suggest that TGW6 may be useful for further improvements in yield characteristics in most cultivars.
Collapse
Affiliation(s)
- Ken Ishimaru
- National Institute of Agrobiological Sciences, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang R, Tang Q, Wang H, Zhang X, Pan G, Wang H, Tu J. Analyses of two rice (Oryza sativa) cyclin-dependent kinase inhibitors and effects of transgenic expression of OsiICK6 on plant growth and development. ANNALS OF BOTANY 2011; 107:1087-101. [PMID: 21558459 PMCID: PMC3091807 DOI: 10.1093/aob/mcr057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/17/2010] [Accepted: 02/01/2011] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Plants have a family of proteins referred to as ICKs (inhibitors of cyclin-dependent kinase, CDK) or KRPs (Kip-related proteins) that function to regulate the activities of CDK. Knowledge of these plant CDK inhibitors has been gained mostly from studies of selected members in dicotyledonous plants, particularly Arabidopsis. Much remains to be learned regarding the differences among various members of the ICK/KRP family, and regarding the function and regulation of these proteins in monocotyledonous plants. METHODS We analysed ICK-related sequences in the rice (Orysa sativa L. subsp. indica) genome and determined that there are six members with the conserved C-terminal signature region for ICK/KRP proteins. They are referred to as OsiICKs and further analyses were performed. The interactions with CDKs and cyclins were determined by a yeast two-hybrid assay, and cellular localization by fusion with the enhanced green fluorescence protein (EGFP). The expression of OsiICK6 in different tissues and in response to several treatments was analysed by reverse transcriptase-mediated polymerase chain reaction (RT-PCR) and real-time PCR. Furthermore, OsiICK6 was over-expressed in transgenic rice plants and significant phenotypes were observed. KEY RESULTS AND CONCLUSIONS Based on putative protein sequences, the six OsiICKs are grouped into two classes, with OsiICK1 and OsiICK6 in each of the two classes, respectively. Results showed that OsiICK1 and OsiICK6 interacted with OsCYCD, but differed in their interactions with CDKA. Both EGFP:OsiICK1 and EGFP:OsiICK6 were localized in the nucleus. Whereas EGFP:OsiICK6 showed a punctuate subnuclear distribution, OsiICK1 had a homogeneous pattern. Over-expression of OsiICK6 resulted in multiple phenotypic effects on plant growth, morphology, pollen viability and seed setting. In OsiICK6-over-expressing plants, leaves rolled toward the abaxial side, suggesting that cell proliferation is critical in maintaining an even growth along the dorsal-ventral plane of leaf blades.
Collapse
Affiliation(s)
- Ruifang Yang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Qicai Tang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Huimei Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Xiaobo Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Gang Pan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Jumin Tu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| |
Collapse
|