1
|
Naydov I, Kozuleva M, Ivanov B, Borisova-Mubarakshina M, Vilyanen D. Pathways of Oxygen-Dependent Oxidation of the Plastoquinone Pool in the Dark After Illumination. PLANTS (BASEL, SWITZERLAND) 2024; 13:3479. [PMID: 39771178 PMCID: PMC11678207 DOI: 10.3390/plants13243479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
The redox state of the plastoquinone (PQ) pool in thylakoids plays an important role in the regulation of chloroplast metabolism. In the light, the PQ pool is mostly reduced, followed by oxidation after light cessation. It has been believed for a long time that dark oxidation depends on oxygen, although the precise mechanisms of the process are still unknown and debated. In this work, we analyzed PQ pool oxidation kinetics in isolated pea (Pisum sativum) thylakoids by tracking the changes in the area above the OJIP fluorescence curve (Afl) over time intervals from 0.1 s to 10 min in the dark following illumination. Afl served as an indirect measure of the redox state of the PQ pool that enabled quantification of the rate of PQ pool oxidation. The results showed a two-phase increase in Afl. The "fast" phase appeared to be linked to electron flow from the PQ pool to downstream acceptors of the photosynthetic electron transport chain. The "slow" phase involved oxidation of PQH2 through oxygen-dependent mechanisms. Adding octyl gallate, an inhibitor of plastid terminal oxidase (PTOX), to isolated thylakoid suspensions decreased the rate of the "slow" phase of PQ pool oxidation in the dark after illumination. The addition of either H2O2 or catalase, an enzyme that decomposes H2O2, revealed that H2O2 accelerates oxidation of the PQ pool. This indicates that under conditions that favor H2O2 accumulation, H2O2 can contribute substantially to PQ pool oxidation in the dark after illumination. The contribution of PTOX and H2O2 to the modulation of the PQ pool redox state in plants in the dark after illumination is discussed.
Collapse
Affiliation(s)
| | - Marina Kozuleva
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (I.N.); (B.I.); (M.B.-M.)
| | | | | | - Daria Vilyanen
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (I.N.); (B.I.); (M.B.-M.)
| |
Collapse
|
2
|
McKenzie SD, Puthiyaveetil S. Protein phosphorylation and oxidative protein modification promote plant photosystem II disassembly for repair. PLANT COMMUNICATIONS 2024:101202. [PMID: 39639769 DOI: 10.1016/j.xplc.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
The light-driven water-splitting reaction of photosystem II exposes its key reaction center core protein subunits to irreversible oxidative photodamage. A rapid repair cycle replaces the photodamaged core subunits in plants, but how the large antenna-core supercomplex structures of plant photosystem II disassemble for repair is not currently understood. Here, we report the specific involvement of phosphorylation in removal of the peripheral antenna from the core and monomerization of the dimeric cores. However, monomeric cores disassemble further into smaller subcomplexes, even in the absence of phosphorylation, suggesting that there are other unknown mechanisms of disassembly. In this regard, we show that oxidative modifications of amino acids in core protein subunits of photosystem II are active mediators of monomeric core disassembly. Oxidative modifications thus likely disassemble only the damaged monomeric cores, ensuring an economical photosystem disassembly process. Taken together, our results suggest that phosphorylation and oxidative modification play distinct roles in photosystem II disassembly and repair.
Collapse
Affiliation(s)
- Steven D McKenzie
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Bel'ko N, Mal'tanova A, Bahdanava A, Lugovski A, Fatykhava S, Shabunya P, Smaliakou A, Poznyak S, Kulahava T, Samtsov M. A near-infrared superoxide generator based on a biocompatible indene-bearing heptamethine cyanine dye. J Mater Chem B 2024; 12:11202-11209. [PMID: 39364565 DOI: 10.1039/d4tb01663g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
One of the most significant limitations of photodynamic therapy is its reduced efficacy in hypoxic microenvironments, which are typical of the majority of tumors. This work demonstrates that indolenine heptamethine cyanines with different substituents in the polymethine chain and at the terminal heterocycles are effective superoxide generators that can be activated in the near-infrared range. The introduction of an indene moiety into the polymethine chain results in a significant enhancement in photostability compared to dyes with a cyclohexene moiety or an unsubstituted polymethine chain. A hydrophilic indene-bearing heptamethine cyanine dye is shown to be efficiently internalized by Vero E6 cells and to give bright intracellular fluorescence in the 700-850 nm range. Furthermore, the dye generates superoxide anion radicals and induces severe oxidative stress in cells upon activation in the near-infrared range (∼750 nm), ultimately resulting in cell death. The capacity of heptamethine cyanines to generate a superoxide anion radical may prove advantageous for enhancing the efficacy of photodynamic therapy under hypoxic conditions.
Collapse
Affiliation(s)
- Nikita Bel'ko
- A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurchatova str. 7, Minsk 220045, Belarus.
| | - Anna Mal'tanova
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk 220006, Belarus
| | - Anastasiya Bahdanava
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, Minsk 220006, Belarus
| | - Anatol Lugovski
- A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurchatova str. 7, Minsk 220045, Belarus.
| | - Sviatlana Fatykhava
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akademika Kuprevicha str. 5-2, Minsk 220141, Belarus
| | - Polina Shabunya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akademika Kuprevicha str. 5-2, Minsk 220141, Belarus
| | - Adam Smaliakou
- Department of Physics, Belarusian State University, Bobruiskaya str. 5, Minsk 220006, Belarus
| | - Sergey Poznyak
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk 220006, Belarus
| | - Tatsiana Kulahava
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, Minsk 220006, Belarus
| | - Michael Samtsov
- A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurchatova str. 7, Minsk 220045, Belarus.
| |
Collapse
|
4
|
Lee KP, Kim C. Photosynthetic ROS and retrograde signaling pathways. THE NEW PHYTOLOGIST 2024; 244:1183-1198. [PMID: 39286853 DOI: 10.1111/nph.20134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Sessile plants harness mitochondria and chloroplasts to sense and adapt to diverse environmental stimuli. These complex processes involve the generation of pivotal signaling molecules, including reactive oxygen species (ROS), phytohormones, volatiles, and diverse metabolites. Furthermore, the specific modulation of chloroplast proteins, through activation or deactivation, significantly enhances the plant's capacity to engage with its dynamic surroundings. While existing reviews have extensively covered the role of plastidial retrograde modules in developmental and light signaling, our focus lies in investigating how chloroplasts leverage photosynthetic ROS to navigate environmental fluctuations and counteract oxidative stress, thereby sustaining primary metabolism. Unraveling the nuanced interplay between photosynthetic ROS and plant stress responses holds promise for uncovering new insights that could reinforce stress resistance and optimize net photosynthesis rates. This exploration aspires to pave the way for innovative strategies to enhance plant resilience and agricultural productivity amidst changing environmental conditions.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
5
|
Bulychev AA, Cherkashin AA, Krupenina NA. Instant rerouting of photosynthetic electron transport to O 2 reduction after the plasma membrane excitation of Chara in the presence of methyl viologen. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109078. [PMID: 39226762 DOI: 10.1016/j.plaphy.2024.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
-Action potential (AP) of excitable plant cells is an important signaling event that can differentially alter physicochemical and physiological processes in various parts of the same cell. In giant cells of characean algae, the AP propagation has minor effect on photosynthetic electron transport in areas with high activity of plasmalemmal H+-pump but inhibits linear electron flow in regions featuring high passive H+/OH- conductance of the plasma membrane (PM). Uneven spatial distributions of local periplasmic and cytoplasmic pH facilitate the operation of distinct (CO2-dependent and O2-mediated) pathways of photoinduced electron flow, which presumably accounts for differential influence of AP on photosynthesis. The excitation of Chara australis cell in the presence of methyl viologen (MV), a redox mediator with the prooxidant action, provides a convenient model system to clarify the influence of voltage-dependent ion fluxes across PM on photosynthetic activity of chloroplasts. This study shows that permeation of MV to their target sites in chloroplasts is restricted by PM in resting cells, but MV easily passes through ionic channels opened during the PM depolarization. This gated permeation of MV gives rise to strong non-photochemical quenching, decrease in the effective quantum yield of linear electron flow, apparent O2 uptake, and, finally, the enhanced ROS production, as detected by the fluorescent probe dichlorofluorescein. Taken together, the results indicate that the AP generation in the presence of MV acts as trigger for instant redirection of photosynthetic linear electron flow from CO2-dependent route to the path of O2 reduction with the eventual formation of H2O2 as a dominant and most stable ROS form.
Collapse
|
6
|
Zhao G, Liu W, Zhu H, Duan H, Nie J, Hong S, Wen J. The influence of prolonged but low intensity blue light on the physiological properties of root tubers and the accumulation of flavonoids in Tetrastigma hemsleyanum Diels et Gilg. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108824. [PMID: 38936072 DOI: 10.1016/j.plaphy.2024.108824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/05/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Tetrastigma hemsleyanum Diel et Gilg is a perennial herbaceous plant native to subtropical China with multiple medicinal applications. Supplementing with low-density blue light (BL) for 45 days (3 h/day) can not only significantly increase the yields of root tubers but also significantly increase the flavonoid content and its antioxidant activity. The chlorophyll content in the leaves of T. hemsleyanum significantly decreased, but the photosynthetic efficiency significantly increased after reaching the light saturation point. The production rate of superoxide anion radical in the leaves reached the highest peak after 1.5 h in BL and decreased at 3 h. The H2O2 content in the leaves decreased significantly, while the H2O2 content in the root tubers increased significantly at 3 h in BL. The objective of this research was to determine how the scavenging system, including antioxidant enzymes, antioxidants, and flavonoids respond to the oxidative stress induced by BL in root tubers. After exposure to BL, significant differences in the activity of APX and SOD were observed in the leaves and tubers within 3 h. By analyzing the upregulated flavonoids metabolites and key genes in metabolic pathways through the combined analysis of the flavonoid metabolic group and transcriptome in the root tubers, the upregulated accumulation of flavanols was found to be the main reason for the improvement in the antioxidant properties of flavonoids.
Collapse
Affiliation(s)
- Gang Zhao
- College of Life Science, Shangrao Normal University, China
| | - Wenling Liu
- College of Life Science, Shangrao Normal University, China
| | - Hai Zhu
- College of Life Science, Shangrao Normal University, China
| | - Huanping Duan
- College of Life Science, Shangrao Normal University, China
| | - Junnan Nie
- College of Life Science, Shangrao Normal University, China
| | - Senrong Hong
- College of Life Science, Shangrao Normal University, China; Shangrao Innovation Institute of Agricultural Technology, China
| | - Jing Wen
- College of Life Science, Shangrao Normal University, China; Shangrao Innovation Institute of Agricultural Technology, China.
| |
Collapse
|
7
|
Bulychev AA, Strelets TS. Oscillations of chlorophyll fluorescence after plasma membrane excitation in Chara originate from nonuniform composition of signaling metabolites in the streaming cytoplasm. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149019. [PMID: 37924923 DOI: 10.1016/j.bbabio.2023.149019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Excitable cells of higher plants and characean algae respond to stressful stimuli by generating action potentials (AP) whose regulatory influence on chlorophyll (Chl) fluorescence and photosynthesis extends over tens of minutes. Unlike plant leaves where the efficiency of photosystem II reaction (YII) undergoes a separate reversible depression after an individual AP, characean algae exhibit long-lasting oscillations of YII after firing AP, provided that Chl fluorescence is measured on microscopic cell regions. Internodal cells of charophytes feature an extremely fast cytoplasmic streaming that stops immediately during the spike and recovers within ~10 min after AP. In this study a possibility was examined that multiple oscillations of YII and Chl fluorescence parameters (F', Fm') result from the combined influence of metabolic rearrangements in chloroplasts and the cyclosis cessation-recovery cycle induced by the Ca2+ influx during AP. It is shown that the AP-induced Fm' and YII oscillations disappear when the fluidic communications between the analyzed area (AOI) and surrounding cell regions are restricted or eliminated. The microfluidic signaling was manipulated in two ways: by narrowing the illuminated cell area and by arresting the cytoplasmic streaming with cytochalasin D (CD). The inhibition of Fm' and YII oscillations was not caused by the loss of cell excitability, since CD-treated cells retained the capacity of AP generation. The mechanism of AP-induced oscillations of YII and Chl fluorescence seems to involve the lateral microfluidic transport of signaling substances in combination with the distribution pattern of these substances that was enhanced during the period of streaming cessation.
Collapse
|
8
|
Leverne L, Roach T, Perreau F, Maignan F, Krieger-Liszkay A. Increased drought resistance in state transition mutants is linked to modified plastoquinone pool redox state. PLANT, CELL & ENVIRONMENT 2023; 46:3737-3747. [PMID: 37614199 DOI: 10.1111/pce.14695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Identifying traits that exhibit improved drought resistance is highly important to cope with the challenges of predicted climate change. We investigated the response of state transition mutants to drought. Compared with the wild type, state transition mutants were less affected by drought. Photosynthetic parameters in leaves probed by chlorophyll fluorescence confirmed that mutants possess a more reduced plastoquinone (PQ) pool, as expected due to the absence of state transitions. Seedlings of the mutants showed an enhanced growth of the primary root and more lateral root formation. The photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, leading to an oxidised PQ pool, inhibited primary root growth in wild type and mutants, while the cytochrome b6 f complex inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone, leading to a reduced PQ pool, stimulated root growth. A more reduced state of the PQ pool was associated with a slight but significant increase in singlet oxygen production. Singlet oxygen may trigger a, yet unknown, signalling cascade promoting root growth. We propose that photosynthetic mutants with a deregulated ratio of photosystem II to photosystem I activity can provide a novel path for improving crop drought resistance.
Collapse
Affiliation(s)
- Lucas Leverne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - François Perreau
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| | - Fabienne Maignan
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Rudenko NN, Vetoshkina DV, Marenkova TV, Borisova-Mubarakshina MM. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants (Basel) 2023; 12:2014. [PMID: 38001867 PMCID: PMC10669185 DOI: 10.3390/antiox12112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Daria V. Vetoshkina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Tatiana V. Marenkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| |
Collapse
|
10
|
Lee J, Han M, Shin Y, Lee JM, Heo G, Lee Y. How Extracellular Reactive Oxygen Species Reach Their Intracellular Targets in Plants. Mol Cells 2023; 46:329-336. [PMID: 36799103 PMCID: PMC10258463 DOI: 10.14348/molcells.2023.2158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023] Open
Abstract
Reactive oxygen species (ROS) serve as secondary messengers that regulate various developmental and signal transduction processes, with ROS primarily generated by NADPH OXIDASEs (referred to as RESPIRATORY BURST OXIDASE HOMOLOGs [RBOHs] in plants). However, the types and locations of ROS produced by RBOHs are different from those expected to mediate intracellular signaling. RBOHs produce O2•- rather than H2O2 which is relatively long-lived and able to diffuse through membranes, and this production occurs outside the cell instead of in the cytoplasm, where signaling cascades occur. A widely accepted model explaining this discrepancy proposes that RBOH-produced extracellular O2•- is converted to H2O2 by superoxide dismutase and then imported by aquaporins to reach its cytoplasmic targets. However, this model does not explain how the specificity of ROS targeting is ensured while minimizing unnecessary damage during the bulk translocation of extracellular ROS (eROS). An increasing number of studies have provided clues about eROS action mechanisms, revealing various mechanisms for eROS perception in the apoplast, crosstalk between eROS and reactive nitrogen species, and the contribution of intracellular organelles to cytoplasmic ROS bursts. In this review, we summarize these recent advances, highlight the mechanisms underlying eROS action, and provide an overview of the routes by which eROS-induced changes reach the intracellular space.
Collapse
Affiliation(s)
- Jinsu Lee
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Minsoo Han
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yesol Shin
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jung-Min Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Geon Heo
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
11
|
Wei G, Wang C, Lei X, Gao X, Li J, Zhang S, Guo J. IodoTMT-labeled redox proteomics reveals the involvement of oxidative post-translational modification in response to para-hydroxybenzoic acid and hydrogen peroxide stresses in poplar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115033. [PMID: 37224778 DOI: 10.1016/j.ecoenv.2023.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Poplar is widely planted as an economic and ecological tree species. However, accumulation of the phenolic acid allelochemical para-hydroxybenzoic acid (pHBA) in soil is a severe threat to the growth and productivity of poplar. pHBA stress leads to excessive production of reactive oxygen species (ROS). However, it is unclear which redox-sensitive proteins are involved in the pHBA-induced cellular homeostasis regulatory mechanism. We here identified reversible redox-modified proteins and modified cysteine (Cys) sites in exogenous pHBA- and hydrogen peroxide (H2O2)-treated poplar seedling leaves by using the iodoacetyl tandem mass tag-labeled redox proteomics method. In total, 4786 redox modification sites were identified in 3176 proteins, with 104 and 91 proteins being differentially modified at 118 and 101 Cys sites in response to pHBA and H2O2 stresses, respectively. The differentially modified proteins (DMPs) were predicted to be mainly localized in the chloroplast and cytoplasm, with most proteins being enzymes with catalytic activities. The KEGG enrichment analysis of these DMPs revealed that proteins related to the MAPK signaling pathway, soluble sugar metabolism, amino acid metabolism, photosynthesis, and phagosome pathways were extensively regulated by redox modifications. Moreover, combined with our previous quantitative proteomics data, 8 proteins were upregulated and oxidized under both pHBA and H2O2 stresses. Reversible oxidation of Cys sites in these proteins might be actively responsible for the regulation of tolerance to pHBA-induced oxidative stress. Based on the aforementioned results, a redox regulatory model activated by pHBA- and H2O2-induced oxidative stress was proposed. This study conducts the first redox proteomics analysis of poplar in response to pHBA stress and provides a new insight into the mechanistic framework of reversible oxidative post-translational modifications to gain a better understanding of pHBA-induced chemosensory effects on poplar.
Collapse
Affiliation(s)
- Guoqing Wei
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Changxi Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoyan Lei
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Xue Gao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Junru Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuyong Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jing Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
12
|
Mallén-Ponce MJ, Gámez-Arcas S, Pérez-Pérez ME. Redox partner interactions in the ATG8 lipidation system in microalgae. Free Radic Biol Med 2023; 203:58-68. [PMID: 37028463 DOI: 10.1016/j.freeradbiomed.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
Autophagy is a catabolic pathway that functions as a degradative and recycling process to maintain cellular homeostasis in most eukaryotic cells, including photosynthetic organisms such as microalgae. This process involves the formation of double-membrane vesicles called autophagosomes, which engulf the material to be degraded and recycled in lytic compartments. Autophagy is mediated by a set of highly conserved autophagy-related (ATG) proteins that play a fundamental role in the formation of the autophagosome. The ATG8 ubiquitin-like system catalyzes the conjugation of ATG8 to the lipid phosphatidylethanolamine, an essential reaction in the autophagy process. Several studies identified the ATG8 system and other core ATG proteins in photosynthetic eukaryotes. However, how ATG8 lipidation is driven and regulated in these organisms is not fully understood yet. A detailed analysis of representative genomes from the entire microalgal lineage revealed a high conservation of ATG proteins in these organisms with the remarkable exception of red algae, which likely lost ATG genes before diversification. Here, we examine in silico the mechanisms and dynamic interactions between different components of the ATG8 lipidation system in plants and algae. Moreover, we also discuss the role of redox post-translational modifications in the regulation of ATG proteins and the activation of autophagy in these organisms by reactive oxygen species.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005, Paris, France
| | - Samuel Gámez-Arcas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092, Sevilla, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092, Sevilla, Spain.
| |
Collapse
|
13
|
Garmash EV. Suppression of mitochondrial alternative oxidase can result in upregulation of the ROS scavenging network: some possible mechanisms underlying the compensation effect. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:43-53. [PMID: 36245276 DOI: 10.1111/plb.13477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Mitochondrial alternative oxidase is an important protein involved in maintaining cellular metabolic and energy balance, especially under stress conditions. AOX genes knockout is aimed at revealing the functions of AOX genes. Under unfavourable conditions, AOX-suppressed plants (mainly based on Arabidopsis AOX1a-knockout lines) usually experience strong oxidative stress. However, a compensation effect, which consists of the absence of AOX1a leading to an increase in defence response mechanisms, concomitant with a decrease in ROS content, has also been demonstrated. This review briefly describes the possible mechanisms underlying the compensation effect upon the suppression of AOX1a. Information about mitochondrial retrograde regulation of AOX is given. The importance of ROS and mitochondrial membrane potential in triggering the signal transmission from mitochondria in the absence of AOX or disturbance of mitochondrial electron transport chain functions is indicated. The few available data on the response of the cell to the absence of AOX at the level of changes in the hormonal balance and the reactions of chloroplasts are presented. The decrease in the relative amount of reduced ascorbate at stable ROS levels as a result of compensation in AOX1a-suppressed plants is proposed as a sign of stress development. Obtaining direct evidence on the mechanisms and signalling pathways involved in AOX modulation in the genome should facilitate a deeper understanding of the role of AOX in the integration of cellular signalling pathways.
Collapse
Affiliation(s)
- E V Garmash
- Institute of Biology, Komi Scientific Centre, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| |
Collapse
|
14
|
Griffin JHC, Toledo-Ortiz G. Plant photoreceptors and their signalling components in chloroplastic anterograde and retrograde communication. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7126-7138. [PMID: 35640572 PMCID: PMC9675593 DOI: 10.1093/jxb/erac220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/18/2022] [Indexed: 05/27/2023]
Abstract
The red phytochrome and blue cryptochrome plant photoreceptors play essential roles in promoting genome-wide changes in nuclear and chloroplastic gene expression for photomorphogenesis, plastid development, and greening. While their importance in anterograde signalling has been long recognized, the molecular mechanisms involved remain under active investigation. More recently, the intertwining of the light signalling cascades with the retrograde signals for the optimization of chloroplast functions has been acknowledged. Advances in the field support the participation of phytochromes, cryptochromes, and key light-modulated transcription factors, including HY5 and the PIFs, in the regulation of chloroplastic biochemical pathways that produce retrograde signals, including the tetrapyrroles and the chloroplastic MEP-isoprenoids. Interestingly, in a feedback loop, the photoreceptors and their signalling components are targets themselves of these retrograde signals, aimed at optimizing photomorphogenesis to the status of the chloroplasts, with GUN proteins functioning at the convergence points. High light and shade are also conditions where the photoreceptors tune growth responses to chloroplast functions. Interestingly, photoreceptors and retrograde signals also converge in the modulation of dual-localized proteins (chloroplastic/nuclear) including WHIRLY and HEMERA/pTAC12, whose functions are required for the optimization of photosynthetic activities in changing environments and are proposed to act themselves as retrograde signals.
Collapse
|
15
|
Goncharuk EA, Zubova MY, Nechaeva TL, Kazantseva VV, Gulevich AA, Baranova EN, Lapshin PV, Katanskaya VM, Aksenova MA, Zagoskina NV. Effects of Hydrogen Peroxide on In Vitro Cultures of Tea ( Camellia sinensis L.) Grown in the Dark and in the Light: Morphology, Content of Malondialdehyde, and Accumulation of Various Polyphenols. Molecules 2022; 27:molecules27196674. [PMID: 36235213 PMCID: PMC9572957 DOI: 10.3390/molecules27196674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Tea plants (Camellia sinensis L.) are phenol-accumulating crops that are widely used for public health. The healing effect of tea leaf products is due to the biosynthesis of such phenolic compounds (PCs) as flavans, which have P-vitamin capillary-strengthening activity. Due to their limited habitat and the value of their specialized metabolites of a phenolic nature, a promising approach is to establish in vitro cultures from them that retain the ability to form PCs, which is characteristic of ex vivo tea plants. The aim of this study was to investigate the effect of exogenic H2O2 (0.01 mM; 0.1 mM; 1 mM) on the growth, morphology, degree of stress response, and accumulation of various phenolic compounds in tea plant callus cultures of different ages (24 or 36 days) grown under different cultivation conditions (darkness or light). According to the results obtained, the H2O2 effect on tea callus cultures of different ages did not cause changes in their morphophysiological characteristics, both after 2 h of exposure (rapid response of callus culture, RRCC) and after 48 h (delayed response of callus culture, DRCC). The determination of the malondialdehyde (MDA) content, which serves as an indicator of changes in the level of lipid peroxidation (LPO) and the presence of stress responses in plant cells, indicated either its maintenance at the control level, a decrease, or an increase. All these effects depended on the growth conditions of the tea callus cultures (darkness or light), their age, the duration of exposure (rapid or delayed response), and the H2O2 concentration. Similar trends were noted for the total content of PCs as well as the amount of flavans, proanthocyanidins (soluble and insoluble forms), and lignin. The plant cell responses reflected changes in its adaptation programs, when specialized metabolites act as a target for the action of H2O2, thereby contributing to an increase in their resistance.
Collapse
Affiliation(s)
- Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
- Correspondence: (E.A.G.); (A.A.G.); (N.V.Z.)
| | - Maria Yu. Zubova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Alexander A. Gulevich
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
- Correspondence: (E.A.G.); (A.A.G.); (N.V.Z.)
| | - Ekaterina N. Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia
| | - Petr V. Lapshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Vera M. Katanskaya
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
- Correspondence: (E.A.G.); (A.A.G.); (N.V.Z.)
| |
Collapse
|
16
|
Ivanov B, Borisova-Mubarakshina M, Vilyanen D, Vetoshkina D, Kozuleva M. Cooperative pathway of O 2 reduction to H 2O 2 in chloroplast thylakoid membrane: new insight into the Mehler reaction. Biophys Rev 2022; 14:857-869. [PMID: 36124268 PMCID: PMC9481754 DOI: 10.1007/s12551-022-00980-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/03/2022] [Indexed: 11/30/2022] Open
Abstract
Oxygen reduction in chloroplasts in the light was discovered by (Mehler Arch Biochem Biophys 33:65-77, 1951) as production of hydrogen peroxide. Later, it was shown that the primary product of the oxygen reduction is superoxide radical produced in thylakoids by one-electron transfer from reduced components of photosynthetic electron transport chain to O2 molecule. For a long time, the formation of hydrogen peroxide was considered to be a result of disproportionation of superoxide radicals in chloroplast stroma. Here, we overview a growing number of evidence indicating on another one, additional to disproportionation, pathway of hydrogen peroxide formation in chloroplasts, namely its formation in thylakoid membrane due to reaction of superoxide radical generated in the membrane with the reduced plastoquinone molecule, plastohydroquinone. Since various components of photosynthetic electron transport chain (primarily photosystem I) can supply superoxide radicals to this reaction, we refer this two-step O2 photoreduction to H2O2 as a cooperative process. The significance of hydrogen peroxide production via this pathway for redox signaling and scavenging of reactive oxygen species is discussed.
Collapse
Affiliation(s)
- Boris Ivanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Maria Borisova-Mubarakshina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Daria Vilyanen
- Institute of Basic Biological Problems, Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Daria Vetoshkina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Marina Kozuleva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
17
|
RNA-Seq Analysis Demonstrates Different Strategies Employed by Tiger Nuts ( Cyperus esculentus L.) in Response to Drought Stress. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071051. [PMID: 35888139 PMCID: PMC9322875 DOI: 10.3390/life12071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Drought stress, an important abiotic stress, has affected global agricultural production by limiting the yield and the quality of crops. Tiger nuts (Cyperus esculentus L.) are C4 crops in the Cyperaceae family, which have high-quality wholesome ingredients. However, data on mechanisms underlying the response of tiger nuts to drought stress are few. Here, the variety of Jisha 1 and 15% polyethylene glycol (PEG; a drought stress simulator) were used to study the mechanisms of stress response in tiger nuts. Our evaluation of the changes in physiological indicators such as electrolyte leakage (El), malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide anion (O2−) and activities of reactive oxygen species (ROS) showed that 12 h was the most suitable time point to harvest and analyze the response to drought stress. Thereafter, we performed transcriptome (RNA-Seq) analysis in the control (CK) and stress treatment groups and showed that there was a total of 1760 differentially expressed genes (DEGs). Gene Ontology (GO) analysis showed that the DEGs were enriched in abscisic acid (ABA) terms, and pathways such as starch and sucrose metabolism (ko00500), phenylpropanoid biosynthesis (ko00940) and plant hormone signal transduction (ko04075) were significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In addition, quantitative real-time PCR (qRT-PCR) analysis of the DEGs demonstrated an upregulation of ABA and lignin content, as well as enzyme activities in enriched pathways, which validated the RNA-Seq data. These results revealed the pathways and mechanisms adopted by the tiger nuts in response to drought stress.
Collapse
|
18
|
Pospíšil P, Kumar A, Prasad A. Reactive oxygen species in photosystem II: relevance for oxidative signaling. PHOTOSYNTHESIS RESEARCH 2022; 152:245-260. [PMID: 35644020 DOI: 10.1007/s11120-022-00922-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) are formed in photosystem II (PSII) under various types of abiotic and biotic stresses. It is considered that ROS play a role in chloroplast-to-nucleus retrograde signaling, which changes the nuclear gene expression. However, as ROS lifetime and diffusion are restricted due to the high reactivity towards biomolecules (lipids, pigments, and proteins) and the spatial specificity of signal transduction is low, it is not entirely clear how ROS might transduce signal from the chloroplasts to the nucleus. Biomolecule oxidation was formerly connected solely with damage; nevertheless, the evidence appears that oxidatively modified lipids and pigments are be involved in chloroplast-to-nucleus retrograde signaling due to their long diffusion distance. Moreover, oxidatively modified proteins show high spatial specificity; however, their role in signal transduction from chloroplasts to the nucleus has not been proven yet. The review attempts to summarize and evaluate the evidence for the involvement of ROS in oxidative signaling in PSII.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Aditya Kumar
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
19
|
Dao O, Kuhnert F, Weber APM, Peltier G, Li-Beisson Y. Physiological functions of malate shuttles in plants and algae. TRENDS IN PLANT SCIENCE 2022; 27:488-501. [PMID: 34848143 DOI: 10.1016/j.tplants.2021.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Subcellular compartmentalization confers evolutionary advantage to eukaryotic cells but entails the need for efficient interorganelle communication. Malate functions as redox carrier and metabolic intermediate. It can be shuttled across membranes through translocators. The interconversion of malate and oxaloacetate mediated by malate dehydrogenases requires oxidation/reduction of NAD(P)H/NAD(P)+; therefore, malate trafficking serves to transport reducing equivalents and this is termed the 'malate shuttle'. Although the term 'malate shuttle' was coined more than 50 years ago, novel functions are still emerging. This review highlights recent findings on the functions of malate shuttles in photorespiration, fatty acid β-oxidation, interorganelle signaling and its putative role in CO2-concentrating mechanisms. We compare and contrast knowledge in plants and algae, thereby providing an evolutionary perspective on redox trafficking in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Ousmane Dao
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Franziska Kuhnert
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France.
| |
Collapse
|
20
|
Breeze E, Mullineaux PM. The Passage of H 2O 2 from Chloroplasts to Their Associated Nucleus during Retrograde Signalling: Reflections on the Role of the Nuclear Envelope. PLANTS (BASEL, SWITZERLAND) 2022; 11:552. [PMID: 35214888 PMCID: PMC8876790 DOI: 10.3390/plants11040552] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 05/05/2023]
Abstract
The response of chloroplasts to adverse environmental cues, principally increases in light intensity, stimulates chloroplast-to-nucleus retrograde signalling, which leads to the induction of immediate protective responses and longer-term acclimation. Hydrogen peroxide (H2O2), generated during photosynthesis, is proposed to both initiate and transduce a retrograde signal in response to photoinhibitory light intensities. Signalling specificity achieved by chloroplast-sourced H2O2 for signal transduction may be dependent upon the oft-observed close association of a proportion of these organelles with the nucleus. In this review, we consider more precisely the nature of the close association between a chloroplast appressed to the nucleus and the requirement for H2O2 to cross both the double membranes of the chloroplast and nuclear envelopes. Of particular relevance is that the endoplasmic reticulum (ER) has close physical contact with chloroplasts and is contiguous with the nuclear envelope. Therefore, the perinuclear space, which transducing H2O2 molecules would have to cross, may have an oxidising environment the same as the ER lumen. Based on studies in animal cells, the ER lumen may be a significant source of H2O2 in plant cells arising from the oxidative folding of proteins. If this is the case, then there is potential for the ER lumen/perinuclear space to be an important location to modify chloroplast-to-nucleus H2O2 signal transduction and thereby introduce modulation of it by additional different environmental cues. These would include for example, heat stress and pathogen infection, which induce the unfolded protein response characterised by an increased H2O2 level in the ER lumen.
Collapse
Affiliation(s)
- Emily Breeze
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK;
| | - Philip M. Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
21
|
Cao Y, Shan T, Fang H, Sun K, Shi W, Tang B, Wu J, Wang K, Li P, Wang B. Genome-wide analysis reveals the spatiotemporal expression patterns of SOS3 genes in the maize B73 genome in response to salt stress. BMC Genomics 2022; 23:60. [PMID: 35034642 PMCID: PMC8761280 DOI: 10.1186/s12864-021-08287-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/29/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Salt damage is an important abiotic stress that affects the growth and yield of maize worldwide. As an important member of the salt overly sensitive (SOS) signal transduction pathway, the SOS3 gene family participates in the transmission of stress signals and plays a vital role in improving the salt tolerance of plants. RESULTS In this study, we identified 59 SOS3 genes in the maize B73 genome using bioinformatics methods and genome-wide analyses. SOS3 proteins were divided into 5 different subfamilies according to the phylogenetic relationships. A close relationship between the phylogenetic classification and intron mode was observed, with most SOS3 genes in the same group sharing common motifs and similar exon-intron structures in the corresponding genes. These genes were unequally distributed on five chromosomes of B73. A total of six SOS3 genes were identified as repeated genes, and 12 pairs of genes were proven to be segmentally duplicated genes, indicating that gene duplication may play an important role in the expansion of the SOS3 gene family. The expression analysis of 10 genes that were randomly selected from different subgroups suggested that all 10 genes were significantly differentially expressed within 48 h after salt treatment, of which eight SOS3 genes showed a significant decline while Zm00001d025938 and Zm00001d049665 did not. By observing the subcellular localization results, we found that most genes were expressed in chloroplasts while some genes were expressed in the cell membrane and nucleus. CONCLUSIONS Our study provides valuable information for elucidating the evolutionary relationship and functional characteristics of the SOS3 gene family and lays the foundation for further study of the SOS3 gene family in the maize B73 genome.
Collapse
Affiliation(s)
- Yunying Cao
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Tingyu Shan
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Hui Fang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Kangtai Sun
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Wen Shi
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Bei Tang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Junping Wu
- Nantong Changjiang Seed Co., Ltd, Nantong, 226368, Jiangsu, China
| | - Kai Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
| | - Ping Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
| | - Baohua Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
22
|
Aleem M, Riaz A, Raza Q, Aleem M, Aslam M, Kong K, Atif RM, Kashif M, Bhat JA, Zhao T. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics 2022; 114:45-60. [PMID: 34813918 DOI: 10.1016/j.ygeno.2021.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
Class III peroxidases (PODs) are plant-specific glycoproteins, that play essential roles in various plant physiological processes and defence responses. To date, scarce information is available about the POD gene family in soybean. Hence, the present study is the first comprehensive report about the genome-wide characterization of GmPOD gene family in soybean (Glycine max L.). Here, we identified a total of 124 GmPOD genes in soybean, that are unevenly distributed across the genome. Phylogenetic analysis classified them into six distinct sub-groups (A-F), with one soybean specific subgroup. Exon-intron and motif analysis suggested the existence of structural and functional diversity among the sub-groups. Duplication analysis identified 58 paralogous gene pairs; segmental duplication and positive/Darwinian selection were observed as the major factors involved in the evolution of GmPODs. Furthermore, RNA-seq analysis revealed that 23 out of a total 124 GmPODs showed differential expression between drought-tolerant and drought-sensitive genotypes under stress conditions; however, two of them (GmPOD40 and GmPOD42) revealed the maximum deregulation in all contrasting genotypes. Overexpression (OE) lines of GsPOD40 showed considerably higher drought tolerance compared to wild type (WT) plants under stress treatment. Moreover, the OE lines showed enhanced photosynthesis and enzymatic antioxidant activities under drought stress, resulting in alleviation of ROS induced oxidative damage. Hence, the GsPOD40 enhanced drought tolerance in soybean by regulating the key physiological and biochemical pathways involved in the defence response. Lastly, the results of our study will greatly assist in further functional characterization of GsPODs in plant growth and stress tolerance in soybean.
Collapse
Affiliation(s)
- Muqadas Aleem
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Awais Riaz
- Molecular Breeding Laboratory, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Punjab, Pakistan
| | - Qasim Raza
- Molecular Breeding Laboratory, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Punjab, Pakistan
| | - Maida Aleem
- Government Post Graduate College Samanabad, Faisalabad, Pakistan
| | - Muhammad Aslam
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Javaid Akhtar Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Zhao YW, Wang CK, Huang XY, Hu DG. Anthocyanin stability and degradation in plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1987767. [PMID: 34686106 PMCID: PMC9208790 DOI: 10.1080/15592324.2021.1987767] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Anthocyanins, a flavonoid group of polyphenolic compounds, have evolved in plants since the land was colonized by plants. These bioactive compounds play critical roles in diverse physiological processes. They are synthesized in the cytosol and transported into the vacuole for storage or to other destinations, where they function as bioactive molecules. The mechanisms of anthocyanin synthesis and transport have been well studied. However, the precise regulation of the mechanisms of anthocyanin degradation remains to be elucidated. In this review, we highlight recent progress in the understanding of the characteristics and functions of anthocyanins and class III peroxidases, as well as of the existing evidence of the effects of class III peroxidases on the degradation of anthocyanins and the possible regulatory mechanisms involved.
Collapse
Affiliation(s)
- Yu-Wen Zhao
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiao-Yu Huang
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
24
|
Sabater B. On the Edge of Dispensability, the Chloroplast ndh Genes. Int J Mol Sci 2021; 22:12505. [PMID: 34830386 PMCID: PMC8621559 DOI: 10.3390/ijms222212505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
The polypeptides encoded by the chloroplast ndh genes and some nuclear genes form the thylakoid NADH dehydrogenase (Ndh) complex, homologous to the mitochondrial complex I. Except for Charophyceae (algae related to higher plants) and a few Prasinophyceae, all eukaryotic algae lack ndh genes. Among vascular plants, the ndh genes are absent in epiphytic and in some species scattered among different genera, families, and orders. The recent identification of many plants lacking plastid ndh genes allows comparison on phylogenetic trees and functional investigations of the ndh genes. The ndh genes protect Angiosperms under various terrestrial stresses, maintaining efficient photosynthesis. On the edge of dispensability, ndh genes provide a test for the natural selection of photosynthesis-related genes in evolution. Variable evolutionary environments place Angiosperms without ndh genes at risk of extinction and, probably, most extant ones may have lost ndh genes recently. Therefore, they are evolutionary endpoints in phylogenetic trees. The low number of sequenced plastid DNA and the long lifespan of some Gymnosperms lacking ndh genes challenge models about the role of ndh genes protecting against stress and promoting leaf senescence. Additional DNA sequencing in Gymnosperms and investigations into the molecular mechanisms of their response to stress will provide a unified model of the evolutionary and functional consequences of the lack of ndh genes.
Collapse
Affiliation(s)
- Bartolomé Sabater
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
25
|
Niemeyer J, Scheuring D, Oestreicher J, Morgan B, Schroda M. Real-time monitoring of subcellular H2O2 distribution in Chlamydomonas reinhardtii. THE PLANT CELL 2021; 33:2935-2949. [PMID: 34196712 PMCID: PMC8462822 DOI: 10.1093/plcell/koab176] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/28/2021] [Indexed: 05/03/2023]
Abstract
Hydrogen peroxide (H2O2) is recognized as an important signaling molecule in plants. We sought to establish a genetically encoded, fluorescent H2O2 sensor that allows H2O2 monitoring in all major subcompartments of a Chlamydomonas cell. To this end, we used the Chlamydomonas Modular Cloning toolbox to target the hypersensitive H2O2 sensor reduction-oxidation sensitive green fluorescent protein2-Tsa2ΔCR to the cytosol, nucleus, mitochondrial matrix, chloroplast stroma, thylakoid lumen, and endoplasmic reticulum (ER). The sensor was functional in all compartments, except for the ER where it was fully oxidized. Employing our novel sensors, we show that H2O2 produced by photosynthetic linear electron transport (PET) in the stroma leaks into the cytosol but only reaches other subcellular compartments if produced under nonphysiological conditions. Furthermore, in heat-stressed cells, we show that cytosolic H2O2 levels closely mirror temperature up- and downshifts and are independent from PET. Heat stress led to similar up- and downshifts of H2O2 levels in the nucleus and, more mildly, in mitochondria but not in the chloroplast. Our results thus suggest the establishment of steep intracellular H2O2 gradients under normal physiological conditions with limited diffusion into other compartments. We anticipate that these sensors will greatly facilitate future investigations of H2O2 biology in plant cells.
Collapse
Affiliation(s)
- Justus Niemeyer
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - David Scheuring
- Phytopathologie, TU Kaiserslautern, Paul-Ehrlich Straße 22, D-67663 Kaiserslautern, Germany
| | - Julian Oestreicher
- Institute of Biochemistry, Zentrum für Human und Molekularbiologie (ZHMB), Saarland University, D-66123 Saarbrücken, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Zentrum für Human und Molekularbiologie (ZHMB), Saarland University, D-66123 Saarbrücken, Germany
- Author for correspondence: (M.S.), (B.M.)
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
- Author for correspondence: (M.S.), (B.M.)
| |
Collapse
|
26
|
Kachroo P, Burch-Smith TM, Grant M. An Emerging Role for Chloroplasts in Disease and Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:423-445. [PMID: 34432508 DOI: 10.1146/annurev-phyto-020620-115813] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chloroplasts are key players in plant immune signaling, contributing to not only de novo synthesis of defensive phytohormones but also the generation of reactive oxygen and nitrogen species following activation of pattern recognition receptors or resistance (R) proteins. The local hypersensitive response (HR) elicited by R proteins is underpinned by chloroplast-generated reactive oxygen species. HR-induced lipid peroxidation generates important chloroplast-derived signaling lipids essential to the establishment of systemic immunity. As a consequence of this pivotal role in immunity, pathogens deploy effector complements that directly or indirectly target chloroplasts to attenuate chloroplast immunity (CI). Our review summarizes the current knowledge of CI signaling and highlights common pathogen chloroplast targets and virulence strategies. We address emerging insights into chloroplast retrograde signaling in immune responses and gaps in our knowledge, including the importance of understanding chloroplast heterogeneity and chloroplast involvement in intraorganellular interactions in host immunity.
Collapse
Affiliation(s)
- Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK;
| |
Collapse
|
27
|
Ugalde JM, Fuchs P, Nietzel T, Cutolo EA, Homagk M, Vothknecht UC, Holuigue L, Schwarzländer M, Müller-Schüssele SJ, Meyer AJ. Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments. PLANT PHYSIOLOGY 2021; 186:125-141. [PMID: 33793922 PMCID: PMC8154069 DOI: 10.1093/plphys/kiaa095] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/03/2020] [Indexed: 05/19/2023]
Abstract
Metabolic fluctuations in chloroplasts and mitochondria can trigger retrograde signals to modify nuclear gene expression. Mobile signals likely to be involved are reactive oxygen species (ROS), which can operate protein redox switches by oxidation of specific cysteine residues. Redox buffers, such as the highly reduced glutathione pool, serve as reservoirs of reducing power for several ROS-scavenging and ROS-induced damage repair pathways. Formation of glutathione disulfide and a shift of the glutathione redox potential (EGSH) toward less negative values is considered as hallmark of several stress conditions. Here we used the herbicide methyl viologen (MV) to generate ROS locally in chloroplasts of intact Arabidopsis (Arabidopsis thaliana) seedlings and recorded dynamic changes in EGSH and H2O2 levels with the genetically encoded biosensors Grx1-roGFP2 (for EGSH) and roGFP2-Orp1 (for H2O2) targeted to chloroplasts, the cytosol, or mitochondria. Treatment of seedlings with MV caused rapid oxidation in chloroplasts and, subsequently, in the cytosol and mitochondria. MV-induced oxidation was significantly boosted by illumination with actinic light, and largely abolished by inhibitors of photosynthetic electron transport. MV also induced autonomous oxidation in the mitochondrial matrix in an electron transport chain activity-dependent manner that was milder than the oxidation triggered in chloroplasts by the combination of MV and light. In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provides a basis for understanding how compartment-specific redox dynamics might operate in retrograde signaling and stress acclimation in plants.
Collapse
Affiliation(s)
- José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Philippe Fuchs
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | - Edoardo A Cutolo
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, D-53115 Bonn, Germany
| | - Maria Homagk
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Ute C Vothknecht
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, D-53115 Bonn, Germany
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | | | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| |
Collapse
|
28
|
Hunt L, Klem K, Lhotáková Z, Vosolsobě S, Oravec M, Urban O, Špunda V, Albrechtová J. Light and CO 2 Modulate the Accumulation and Localization of Phenolic Compounds in Barley Leaves. Antioxidants (Basel) 2021; 10:385. [PMID: 33807526 PMCID: PMC7999350 DOI: 10.3390/antiox10030385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Barley (Hordeum vulgare) accumulates phenolic compounds (PhCs), which play a key role in plant defense against environmental stressors as antioxidants or UV screening compounds. The influence of light and atmospheric CO2 concentration ([CO2]) on the accumulation and localization of PhCs in barley leaves was examined for two varieties with different tolerances to oxidative stress. PhC localization was visualized in vivo using fluorescence microscopy. Close relationships were found between fluorescence-determined localization of PhCs in barley leaves and PhC content estimated using liquid chromatography coupled with mass spectroscopy detection. Light intensity had the strongest effect on the accumulation of PhCs, but the total PhC content was similar at elevated [CO2], minimizing the differences between high and low light. PhCs localized preferentially near the surfaces of leaves, but under low light, an increasing allocation of PhCs in deeper mesophyll layers was observed. The PhC profile was significantly different between barley varieties. The relatively tolerant variety accumulated significantly more hydroxycinnamic acids, indicating that these PhCs may play a more prominent role in oxidative stress prevention. Our research presents novel evidence that [CO2] modulates the accumulation of PhCs in barley leaves. Mesophyll cells, rather than epidermal cells, were most responsive to environmental stimuli in terms of PhC accumulation.
Collapse
Affiliation(s)
- Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
| | - Zuzana Lhotáková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
| | - Vladimír Špunda
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
- Department of Physics, Faculty of Science, University of Ostrava, Dvořákova 7, 70103 Ostrava, Czech Republic
| | - Jana Albrechtová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| |
Collapse
|
29
|
Rudenko NN, Ignatova LK, Nadeeva-Zhurikova EM, Fedorchuk TP, Ivanov BN, Borisova-Mubarakshina MM. Advances in understanding the physiological role and locations of carbonic anhydrases in C3 plant cells. PROTOPLASMA 2021; 258:249-262. [PMID: 33118061 DOI: 10.1007/s00709-020-01566-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 05/09/2023]
Abstract
The review describes the structures of plant carbonic anhydrases (CAs), enzymes catalyzing the interconversion of inorganic carbon forms and belonging to different families, as well as the interaction of inhibitors and activators of CA activity with the active sites of CAs in representatives of these families. We outline the data that shed light on the location of CAs in green cells of C3 plants, algae and angiosperms, with the emphasis on the recently obtained data. The proven and proposed functions of CAs in these organisms are listed. The possibility of the involvement of several chloroplast CAs in acceleration of the conversion of bicarbonate to CO2 and in supply of CO2 for fixation by Rubisco is particularly considered. Special attention is paid to CAs in various parts of thylakoids and to discussion about current knowledge of their possible physiological roles. The review states that, despite the significant progress in application of the mutants with suppressed CAs synthesis, the approach based on the use of the inhibitors of CA activity in some cases remains quite effective. Combination of these two approaches, namely determining the effect of CA activity inhibitors in plants with certain knocked-out CA genes, turns out to be very useful for understanding the functions of other CAs.
Collapse
Affiliation(s)
- Natalia N Rudenko
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
| | - Lyudmila K Ignatova
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Elena M Nadeeva-Zhurikova
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Tatiana P Fedorchuk
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Boris N Ivanov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Maria M Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| |
Collapse
|
30
|
Littlejohn GR, Breen S, Smirnoff N, Grant M. Chloroplast immunity illuminated. THE NEW PHYTOLOGIST 2021; 229:3088-3107. [PMID: 33206379 DOI: 10.1111/nph.17076] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/12/2020] [Indexed: 05/04/2023]
Abstract
The chloroplast has recently emerged as pivotal to co-ordinating plant defence responses and as a target of plant pathogens. Beyond its central position in oxygenic photosynthesis and primary metabolism - key targets in the complex virulence strategies of diverse pathogens - the chloroplast integrates, decodes and responds to environmental signals. The capacity of chloroplasts to synthesize phytohormones and a diverse range of secondary metabolites, combined with retrograde and reactive oxygen signalling, provides exquisite flexibility to both perceive and respond to biotic stresses. These processes also represent a plethora of opportunities for pathogens to evolve strategies to directly or indirectly target 'chloroplast immunity'. This review covers the contribution of the chloroplast to pathogen associated molecular pattern and effector triggered immunity as well as systemic acquired immunity. We address phytohormone modulation of immunity and surmise how chloroplast-derived reactive oxygen species underpin chloroplast immunity through indirect evidence inferred from genetic modification of core chloroplast components and direct pathogen targeting of the chloroplast. We assess the impact of transcriptional reprogramming of nuclear-encoded chloroplast genes during disease and defence and look at future research challenges.
Collapse
Affiliation(s)
- George R Littlejohn
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Susan Breen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
31
|
Cheng Y, Liu H, Tong X, Liu Z, Zhang X, Chen Y, Wu F, Jiang X, Yu X. Effects of shading on triterpene saponin accumulation and related gene expression of Aralia elata (Miq.) Seem. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:166-174. [PMID: 33497847 DOI: 10.1016/j.plaphy.2021.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/07/2021] [Indexed: 05/12/2023]
Abstract
Aralia elata (Miq.) Seem is widely used as a medicinal plant and functional food in China. In this study, A. elata plants were exposed to full sunlight (CK), 40% shading (LS), 60% shading (MS), and >80% shading (ES) condition to investigate the effects of shading treatments on growth, stress levels, antioxidant enzymes activity, araloside content and related gene expression. The greatest growth and leaf biomass were achieved in 40% shading, and leaf biomass per plant increased by 16.09% compared to the non-shading treatment. Furthermore, the lowest reactive oxide species (ROS) production and lipid peroxidation resulting from increasing antioxidant enzyme activity were also observed in LS treatment. Overall, shading percentage negatively regulated the expression of key enzymes (squalene synthase, SS; squalene epoxidase, SE and β-amyrin synthase, bAS) involved in the saponin biosynthesis, resulting in the greatest yields of total and four selected aralosides in A. elata leaves were achieved in sunlight group. However, the greatest yield of total saponin in the leaves was observed in the 40% shading group due to higher leaf biomass. The results suggest that optimizing the field growing conditions would be important for obtaining the greatest yield of bioactive components. Total saponin and selected aralosides also have a significant correlation with ROS production and antioxidant enzyme activity, these indicated the increased yield of these saponins may be part of a defense response. The study concludes that the production of saponin was the interaction of oxidative stress and photosynthesis.
Collapse
Affiliation(s)
- Yao Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, 150030, China
| | - Hanbing Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, 150030, China
| | - Xuejiao Tong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, 150030, China
| | - Zaimin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, 150030, China
| | - Xin Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, 150030, China
| | - Yingtong Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, 150030, China
| | - Fengzhi Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, 150030, China
| | - Xinmei Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, 150030, China.
| | - Xihong Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, 150030, China.
| |
Collapse
|
32
|
Barba-Espín G, Chen ST, Agnolet S, Hegelund JN, Stanstrup J, Christensen JH, Müller R, Lütken H. Ethephon-induced changes in antioxidants and phenolic compounds in anthocyanin-producing black carrot hairy root cultures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7030-7045. [PMID: 32803264 DOI: 10.1093/jxb/eraa376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Hairy root (HR) cultures are quickly evolving as a fundamental research tool and as a bio-based production system for secondary metabolites. In this study, an efficient protocol for establishment and elicitation of anthocyanin-producing HR cultures from black carrot was established. Taproot and hypocotyl explants of four carrot cultivars were transformed using wild-type Rhizobium rhizogenes. HR growth performance on plates was monitored to identify three fast-growing HR lines, two originating from root explants (lines NB-R and 43-R) and one from a hypocotyl explant (line 43-H). The HR biomass accumulated 25- to 30-fold in liquid media over a 4 week period. Nine anthocyanins and 24 hydroxycinnamic acid derivatives were identified and monitored using UPLC-PDA-TOF during HR growth. Adding ethephon, an ethylene-releasing compound, to the HR culture substantially increased the anthocyanin content by up to 82% in line 43-R and hydroxycinnamic acid concentrations by >20% in line NB-R. Moreover, the activities of superoxide dismutase and glutathione S-transferase increased in the HRs in response to ethephon, which could be related to the functionality and compartmentalization of anthocyanins. These findings present black carrot HR cultures as a platform for the in vitro production of anthocyanins and antioxidants, and provide new insight into the regulation of secondary metabolism in black carrot.
Collapse
Affiliation(s)
- Gregorio Barba-Espín
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
- Department of Fruit Breeding, CEBAS-CSIC, Campus de Espinardo, Murcia, Spain
| | - Shih-Ti Chen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Sara Agnolet
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Josefine Nymark Hegelund
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Jan Stanstrup
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Renate Müller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Henrik Lütken
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
33
|
Agati G, Brunetti C, Fini A, Gori A, Guidi L, Landi M, Sebastiani F, Tattini M. Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants (Basel) 2020; 9:E1098. [PMID: 33182252 PMCID: PMC7695271 DOI: 10.3390/antiox9111098] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Whether flavonoids play significant antioxidant roles in plants challenged by photooxidative stress of different origin has been largely debated over the last few decades. A critical review of the pertinent literature and our experimentation as well, based on a free-of-scale approach, support an important antioxidant function served by flavonoids in plants exposed to a wide range of environmental stressors, the significance of which increases with the severity of stress. On the other side, some questions need conclusive answers when the putative antioxidant functions of plant flavonoids are examined at the level of both the whole-cell and cellular organelles. This partly depends upon a conclusive, robust, and unbiased definition of "a plant antioxidant", which is still missing, and the need of considering the subcellular re-organization that occurs in plant cells in response to severe stress conditions. This likely makes our deterministic-based approach unsuitable to unveil the relevance of flavonoids as antioxidants in extremely complex biological systems, such as a plant cell exposed to an ever-changing stressful environment. This still poses open questions about how to measure the occurred antioxidant action of flavonoids. Our reasoning also evidences the need of contemporarily evaluating the changes in key primary and secondary components of the antioxidant defense network imposed by stress events of increasing severity to properly estimate the relevance of the antioxidant functions of flavonoids in an in planta situation. In turn, this calls for an in-depth analysis of the sub-cellular distribution of primary and secondary antioxidants to solve this still intricate matter.
Collapse
Affiliation(s)
- Giovanni Agati
- Institute of Applied Physics ‘Carrara’, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy;
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019, Sesto F.no, Florence, Italy; (C.B.); (F.S.)
| | - Alessio Fini
- Department of Agriculural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, I-20133 Milan, Italy;
| | - Antonella Gori
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy;
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy; (L.G.); (M.L.)
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy; (L.G.); (M.L.)
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019, Sesto F.no, Florence, Italy; (C.B.); (F.S.)
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019, Sesto F.no, Florence, Italy; (C.B.); (F.S.)
| |
Collapse
|
34
|
Mielecki J, Gawroński P, Karpiński S. Retrograde Signaling: Understanding the Communication between Organelles. Int J Mol Sci 2020; 21:E6173. [PMID: 32859110 PMCID: PMC7503960 DOI: 10.3390/ijms21176173] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding how cell organelles and compartments communicate with each other has always been an important field of knowledge widely explored by many researchers. However, despite years of investigations, one point-and perhaps the only point that many agree on-is that our knowledge about cellular-signaling pathways still requires expanding. Chloroplasts and mitochondria (because of their primary functions in energy conversion) are important cellular sensors of environmental fluctuations and feedback they provide back to the nucleus is important for acclimatory responses. Under stressful conditions, it is important to manage cellular resources more efficiently in order to maintain a proper balance between development, growth and stress responses. For example, it can be achieved through regulation of nuclear and organellar gene expression. If plants are unable to adapt to stressful conditions, they will be unable to efficiently produce energy for growth and development-and ultimately die. In this review, we show the importance of retrograde signaling in stress responses, including the induction of cell death and in organelle biogenesis. The complexity of these pathways demonstrates how challenging it is to expand the existing knowledge. However, understanding this sophisticated communication may be important to develop new strategies of how to improve adaptability of plants in rapidly changing environments.
Collapse
Affiliation(s)
| | | | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.M.); (P.G.)
| |
Collapse
|
35
|
Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N, Park E. Spatial chloroplast-to-nucleus signalling involving plastid-nuclear complexes and stromules. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190405. [PMID: 32362250 PMCID: PMC7209948 DOI: 10.1098/rstb.2019.0405] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Communication between chloroplasts and the nucleus in response to various environmental cues may be mediated by various small molecules. Signalling specificity could be enhanced if the physical contact between these organelles facilitates direct transfer and prevents interference from other subcellular sources of the same molecules. Plant cells have plastid-nuclear complexes, which provide close physical contact between these organelles. Plastid-nuclear complexes have been proposed to facilitate transfer of photosynthesis-derived H2O2 to the nucleus in high light. Stromules (stroma filled tubular plastid extensions) may provide an additional conduit for transfer of a wider range of signalling molecules, including proteins. However, plastid-nuclear complexes and stromules have been hitherto treated as distinct phenomena. We suggest that plastid-nuclear complexes and stromules work in a coordinated manner so that, according to environmental conditions or developmental state, the two modes of connection contribute to varying extents. We hypothesize that this association is dynamic and that there may be a link between plastid-nuclear complexes and the development of stromules. Furthermore, the changes in contact could alter signalling specificity by allowing an extended or different range of signalling molecules to be delivered to the nucleus. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | | | | - Nicholas Smirnoff
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Eunsook Park
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie WY 82071, USA
| |
Collapse
|
36
|
Morales A, Kaiser E. Photosynthetic Acclimation to Fluctuating Irradiance in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:268. [PMID: 32265952 PMCID: PMC7105707 DOI: 10.3389/fpls.2020.00268] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 05/07/2023]
Abstract
Unlike the short-term responses of photosynthesis to fluctuating irradiance, the long-term response (i.e., acclimation) at the chloroplast, leaf, and plant level has received less attention so far. The ability of plants to acclimate to irradiance fluctuations and the speed at which this acclimation occurs are potential limitations to plant growth under field conditions, and therefore this process deserves closer study. In the first section of this review, we look at the sources of natural irradiance fluctuations, their effects on short-term photosynthesis, and the interaction of these effects with circadian rhythms. This is followed by an overview of the mechanisms that are involved in acclimation to fluctuating (or changes of) irradiance. We highlight the chain of events leading to acclimation: retrograde signaling, systemic acquired acclimation (SAA), gene transcription, and changes in protein abundance. We also review how fluctuating irradiance is applied in experiments and highlight the fact that they are significantly slower than natural fluctuations in the field, although the technology to achieve realistic fluctuations exists. Finally, we review published data on the effects of growing plants under fluctuating irradiance on different plant traits, across studies, spatial scales, and species. We show that, when plants are grown under fluctuating irradiance, the chlorophyll a/b ratio and plant biomass decrease, specific leaf area increases, and photosynthetic capacity as well as root/shoot ratio are, on average, unaffected.
Collapse
Affiliation(s)
- Alejandro Morales
- Centre for Crop Systems Analysis, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
37
|
Decou R, Delmail D, Labrousse P. Myriophyllum alterniflorum biochemical changes during in vitro Cu/Cd metal stress: Focusing on cell detoxifying enzymes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 219:105361. [PMID: 31862548 DOI: 10.1016/j.aquatox.2019.105361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Given the toxicity of trace metals, their concentration, speciation and bioavailability serve to induce various plant detoxification processes, which themselves are specific to several parameters like plant species, tissue type and developmental stage. In this study, Myriophyllum alterniflorum (or alternate watermilfoil) enzyme activities (ascorbate peroxidase, catalase, glutathione peroxidase and superoxide dismutase) from in vitro cultures was measured over 27 days in response to copper (Cu) or cadmium (Cd) stress. These enzymes are unique to reactive oxygen species (ROS) scavenging (mainly hydrogen peroxide H2O2 and superoxide anion O2-) and moreover showed specific or unspecific activity profiles, depending on the metal concentrations used. Our results suggest a higher-priority protection of chloroplasts during the initial days of exposure to both metals. At the same time, the increased catalase activity could indicate an H2O2 diffusion in peroxisome in order to protect other organelles from ROS accumulation. However, as opposed to the Cd effects, high Cu concentrations appear to induce a "limited oxidative threshold" for some antioxidant enzymes, which could suggest an ion absorption competition between Cu2+ and Fe2+. In spite of an overall analysis conducted of the scavenging processes occurring in plant cells, biochemical analyses still yielded relevant indications regarding the watermilfoil strategies used for ROS management.
Collapse
Affiliation(s)
- Raphaël Decou
- University of Limoges, PEIRENE, EA 7500, F-87000 Limoges, France.
| | - David Delmail
- University of Limoges, PEIRENE, EA 7500, F-87000 Limoges, France; University of Rennes 1, UMR 6118 Géosciences, F-35043 Rennes, France
| | - Pascal Labrousse
- University of Limoges, PEIRENE, EA 7500, F-87000 Limoges, France
| |
Collapse
|
38
|
Adamakis IDS, Sperdouli I, Eleftheriou EP, Moustakas M. Hydrogen Peroxide Production by the Spot-Like Mode Action of Bisphenol A. FRONTIERS IN PLANT SCIENCE 2020; 11:1196. [PMID: 32849741 PMCID: PMC7419983 DOI: 10.3389/fpls.2020.01196] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/23/2020] [Indexed: 05/11/2023]
Abstract
Bisphenol A (BPA), an intermediate chemical used for synthesizing polycarbonate plastics, has now become a wide spread organic pollutant. It percolates from a variety of sources, and plants are among the first organisms to encounter, absorb, and metabolize it, while its toxic effects are not yet fully known. Therefore, we experimentally studied the effects of aqueous BPA solutions (50 and 100 mg L-1, for 6, 12, and 24 h) on photosystem II (PSII) functionality and evaluated the role of reactive oxygen species (ROS) on detached leaves of the model plant Arabidopsis thaliana. Chlorophyll fluorescence imaging analysis revealed a spatiotemporal heterogeneity in the quantum yields of light energy partitioning at PSII in Arabidopsis leaves exposed to BPA. Under low light PSII function was negatively influenced only at the spot-affected BPA zone in a dose- and time-dependent manner, while at the whole leaf only the maximum photochemical efficiency (Fv/Fm) was negatively affected. However, under high light all PSII photosynthetic parameters measured were negatively affected by BPA application, in a time-dependent manner. The affected leaf areas by the spot-like mode of BPA action showed reduced chlorophyll autofluorescence and increased accumulation of hydrogen peroxide (H2O2). When H2O2 was scavenged via N-acetylcysteine under BPA exposure, PSII functionality was suspended, while H2O2 scavenging under non-stress had more detrimental effects on PSII function than BPA alone. It can be concluded that the necrotic death-like spots under BPA exposure could be due to ROS accumulation, but also H2O2 generation seems to play a role in the leaf response against BPA-related stress conditions.
Collapse
Affiliation(s)
- Ioannis-Dimosthenis S. Adamakis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Ioannis-Dimosthenis S. Adamakis, ; Michael Moustakas,
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Ioannis-Dimosthenis S. Adamakis, ; Michael Moustakas,
| |
Collapse
|
39
|
Farooq MA, Niazi AK, Akhtar J, Farooq M, Souri Z, Karimi N, Rengel Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:353-369. [PMID: 31207496 DOI: 10.1016/j.plaphy.2019.04.039] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) - the byproducts of aerobic metabolism - influence numerous aspects of the plant life cycle and environmental response mechanisms. In plants, ROS act like a double-edged sword; they play multiple beneficial roles at low concentrations, whereas at high concentrations ROS and related redox-active compounds cause cellular damage through oxidative stress. To examine the dual role of ROS as harmful oxidants and/or crucial cellular signals, this review elaborates that (i) how plants sense and respond to ROS in various subcellular organelles and (ii) the dynamics of subsequent ROS-induced signaling processes. The recent understanding of crosstalk between various cellular compartments in mediating their redox state spatially and temporally is discussed. Emphasis on the beneficial effects of ROS in maintaining cellular energy homeostasis, regulating diverse cellular functions, and activating acclimation responses in plants exposed to abiotic and biotic stresses are described. The comprehensive view of cellular ROS dynamics covering the breadth and versatility of ROS will contribute to understanding the complexity of apparently contradictory ROS roles in plant physiological responses in less than optimum environments.
Collapse
Affiliation(s)
- Muhammad Ansar Farooq
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Adnan Khan Niazi
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Javaid Akhtar
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Oman
| | - Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Zed Rengel
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
40
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Vigani G, Solti ÏDM, Thomine SB, Philippar K. Essential and Detrimental - an Update on Intracellular Iron Trafficking and Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1420-1439. [PMID: 31093670 DOI: 10.1093/pcp/pcz091] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 05/22/2023]
Abstract
Chloroplasts, mitochondria and vacuoles represent characteristic organelles of the plant cell, with a predominant function in cellular metabolism. Chloroplasts are the site of photosynthesis and therefore basic and essential for photoautotrophic growth of plants. Mitochondria produce energy during respiration and vacuoles act as internal waste and storage compartments. Moreover, chloroplasts and mitochondria are sites for the biosynthesis of various compounds of primary and secondary metabolism. For photosynthesis and energy generation, the internal membranes of chloroplasts and mitochondria are equipped with electron transport chains. To perform proper electron transfer and several biosynthetic functions, both organelles contain transition metals and here iron is by far the most abundant. Although iron is thus essential for plant growth and development, it becomes toxic when present in excess and/or in its free, ionic form. The harmful effect of the latter is caused by the generation of oxidative stress. As a consequence, iron transport and homeostasis have to be tightly controlled during plant growth and development. In addition to the corresponding transport and homeostasis proteins, the vacuole plays an important role as an intracellular iron storage and release compartment at certain developmental stages. In this review, we will summarize current knowledge on iron transport and homeostasis in chloroplasts, mitochondria and vacuoles. In addition, we aim to integrate the physiological impact of intracellular iron homeostasis on cellular and developmental processes.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, via Quarello 15/A, Turin I, Italy
| | - Ï Dï M Solti
- Department of Plant Physiology and Molecular Plant Biology, E�tv�s Lor�nd University, Budapest H, Hungary
| | - Sï Bastien Thomine
- Institut de Biologie Int�grative de la Cellule, CNRS, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Katrin Philippar
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Campus A2.4, Saarbr�cken D, Germany
| |
Collapse
|
42
|
Sewelam N, Kazan K, Hüdig M, Maurino VG, Schenk PM. The AtHSP17.4C1 Gene Expression Is Mediated by Diverse Signals that Link Biotic and Abiotic Stress Factors with ROS and Can Be a Useful Molecular Marker for Oxidative Stress. Int J Mol Sci 2019; 20:E3201. [PMID: 31261879 PMCID: PMC6650836 DOI: 10.3390/ijms20133201] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/23/2022] Open
Abstract
Reactive oxygen species (ROS) are highly controlled signaling species that are involved in regulating gene expression in response to different environmental cues. The production of heat shock proteins (HSPs) is a key strategy that plants use to defend themselves against diverse stresses, including oxidative stress. In this study, expression patterns of the Arabidopsis HSP17.4CI gene, a cytosolic class I small HSP, were systematically profiled under different abiotic, biotic and oxidative stresses. Our data show that HSP17.4CI was early and highly induced by heat, cold, salt, drought and high-light. HSP17.4CI also showed high expression levels in Arabidopsis plants infected with the biotrophic pathogen Pseudomonas syringae, but not in response to the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum. Oxidative stress treatments including H2O2 and the herbicide methyl viologen led to induction of HSP17.4CI. The plant hormones abscisic acid (ABA) and salicylic acid (SA) induced the expression of HSP17.4CI, whereas methyl jasmonate (MJ) did not affect the expression level of this gene. Furthermore, we found enhanced expression of HSP17.4CI in catalase mutant plants, which are deficient in catalase 2 activity and accumulate intracellular H2O2. Taken together, data presented here suggest that HSP17.4CI expression is regulated by various signals that connect biotic and abiotic stresses with ROS and can be used as a molecular marker for oxidative stress.
Collapse
Affiliation(s)
- Nasser Sewelam
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf 40225, Germany.
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture, Queensland Bioscience Precinct, St Lucia, Queensland 4067, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Meike Hüdig
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf 40225, Germany
| | - Veronica G Maurino
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf 40225, Germany
| | - Peer M Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
43
|
Thioredoxin-like2/2-Cys peroxiredoxin redox cascade acts as oxidative activator of glucose-6-phosphate dehydrogenase in chloroplasts. Biochem J 2019; 476:1781-1790. [DOI: 10.1042/bcj20190336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Thiol-based redox regulation is crucial for adjusting chloroplast functions under fluctuating light environments. We recently discovered that the thioredoxin-like2 (TrxL2)/2-Cys peroxiredoxin (2CP) redox cascade supports oxidative thiol modulation by using hydrogen peroxide (H2O2) as an oxidizing force. This system plays a key role in switching chloroplast metabolism (e.g. Calvin–Benson cycle) during light to dark transitions; however, information on its function is still limited. In this study, we report a novel protein-activation mechanism based on the TrxL2/2CP redox cascade. Glucose-6-phosphate dehydrogenase (G6PDH) catalyzes the first step of the oxidative pentose phosphate pathway (OPPP). Biochemical studies, including redox state determination and measurement of enzyme activity, suggested that the TrxL2/2CP pathway is involved in the oxidative activation of G6PDH. It is thus likely that the TrxL2/2CP redox cascade shifts chloroplast metabolism to night mode by playing a dual role, namely, down-regulation of the Calvin–Benson cycle and up-regulation of OPPP. G6PDH was also directly oxidized and activated by H2O2, particularly when H2O2 concentration was elevated. Therefore, G6PDH is thought to be finely tuned by H2O2 levels in both direct and indirect manners.
Collapse
|
44
|
Borisova-Mubarakshina MM, Vetoshkina DV, Ivanov BN. Antioxidant and signaling functions of the plastoquinone pool in higher plants. PHYSIOLOGIA PLANTARUM 2019; 166:181-198. [PMID: 30706486 DOI: 10.1111/ppl.12936] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 05/25/2023]
Abstract
The review covers data representing the plastoquinone pool as the component integrated in plant antioxidant defense and plant signaling. The main goal of the review is to discuss the evidence describing the plastoquinone-involved biochemical reactions, which are incorporated in maintaining the sustainability of higher plants to stress conditions. In this context, the analysis of the reactions of various redox forms of plastoquinone with oxygen species is presented. The review describes how these reactions can constitute both the antioxidant and signaling functions of the pool. Special attention is paid to the reaction of superoxide anion radicals with plastohydroquinone molecules, producing hydrogen peroxide as signal molecules. Attention is also given to the processes affecting the redox state of the plastoquinone pool because the redox state of the pool is of special importance for antioxidant defense and signaling.
Collapse
Affiliation(s)
| | - Daria V Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino, Russia
| | - Boris N Ivanov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
45
|
Leister D. Piecing the Puzzle Together: The Central Role of Reactive Oxygen Species and Redox Hubs in Chloroplast Retrograde Signaling. Antioxid Redox Signal 2019; 30:1206-1219. [PMID: 29092621 DOI: 10.1089/ars.2017.7392] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) and redox regulation are established components of chloroplast-nucleus retrograde signaling. Recent Advances: In recent years, a complex array of putative retrograde signaling molecules and novel signaling pathways have emerged, including various metabolites, chloroplast translation, mobile transcription factors, calcium, and links to the unfolded protein response. This critical mass of information now permits us to fit individual pieces into a larger picture and outline a few important stimuli and pathways. CRITICAL ISSUES In this review, we summarize how ROS and redox hubs directly (e.g., via hydrogen peroxide [H2O2]) and indirectly (e.g., by triggering the production of signaling metabolites) regulate chloroplast retrograde signaling. Indeed, evidence is accumulating that most of the presumptive signaling metabolites so far identified are produced directly by ROS (such as β-cyclocitral) or indirectly by redox- or ROS-mediated regulation of key enzymes in metabolic pathways, ultimately leading to the accumulation of certain precursors (e.g., methylerythritol cyclodiphosphate and 3'-phosphoadenosine 5'-phosphate) with signal function. Of the ROS generated in the chloroplast, only H2O2 is likely to leave the organelle, and recent results suggest that efficient and specific transfer of information via H2O2 occurs through physical association of chloroplasts with the nucleus. FUTURE DIRECTIONS The impact of ROS and redox regulation on chloroplast-nucleus communication is even greater than previously thought, and it can be expected that further instances of control of retrograde signaling by ROS/redox regulation will be revealed in future, perhaps including the basis for the enigmatic GUN response and translation-dependent signals.
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich (LMU), Planegg-Martinsried, Germany
| |
Collapse
|
46
|
Shimakawa G, Murakami A, Niwa K, Matsuda Y, Wada A, Miyake C. Comparative analysis of strategies to prepare electron sinks in aquatic photoautotrophs. PHOTOSYNTHESIS RESEARCH 2019; 139:401-411. [PMID: 29845382 DOI: 10.1007/s11120-018-0522-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/18/2018] [Indexed: 05/24/2023]
Abstract
While subject to illumination, photosystem I (PSI) has the potential to produce reactive oxygen species (ROS) that can cause photo-oxidative damage in oxygenic photoautotrophs. The reaction center chlorophyll in PSI (P700) is kept oxidized in excess light conditions to limit over-excitation of PSI and alleviate the production of ROS. Oxidation of P700 requires a sufficient electron sink for PSI, which is responsible for flavodiiron proteins (FLV) safely dissipating electrons to O2 in cyanobacteria, green algae, and land plants except for angiosperms during short-pulse light (SP) illumination under which photosynthesis and photorespiration do not occur. This fact implies that O2 usage is essential for P700 oxidation but also raises the question why angiosperms lost FLV. Here, we first found that aquatic photoautotrophs in red plastid lineage, in which no gene for FLV has been found, could keep P700 oxidized during SP illumination alleviating the photo-oxidative damage in PSI even without O2 usage. We comprehensively assessed P700 oxidation during SP illumination in the presence and absence of O2 in cyanobacteria (Cyanophyta), green algae (Chlorophyta), angiosperms (Streptophyta), red algae (Rhodophyta), and secondary algae (Cryptophyta, Haptophyta, and Heterokontophyta). A variety of dependencies of P700 oxidation on O2 among these photoautotrophs clearly suggest that O2 usage and FLV are not universally required to oxidize P700 for protecting PSI against ROS damage. Our results expand the understanding of the diverse strategies taken by oxygenic photoautotrophs to oxidize P700 and mitigate the risks of ROS.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Akio Murakami
- Kobe University Research Center for Inland Seas, 2746 Iwaya, Awaji, Hyogo, 656-2401, Japan
| | - Kyosuke Niwa
- Fisheries Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Akashi, Hyogo, 674-0093, Japan
- Department of Marine Biosciences, Faculty of Marine Life Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Yusuke Matsuda
- Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, Department of Bioscience, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Ayumi Wada
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, 7 Goban, Chiyoda, Tokyo, 102-0076, Japan.
| |
Collapse
|
47
|
Li J, Tietz S, Cruz JA, Strand DD, Xu Y, Chen J, Kramer DM, Hu J. Photometric screens identified Arabidopsis peroxisome proteins that impact photosynthesis under dynamic light conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:460-474. [PMID: 30350901 DOI: 10.1111/tpj.14134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 05/02/2023]
Abstract
Plant peroxisomes function collaboratively with other subcellular organelles, such as chloroplasts and mitochondria, in several metabolic processes. To comprehensively investigate the impact of peroxisomal function on photosynthesis, especially under conditions that are more relevant to natural environments, a systematic screen of over 150 Arabidopsis mutants of genes encoding peroxisomal proteins was conducted using the automated Dynamic Environment Photosynthesis Imager (DEPI). Dynamic and high-light (HL) conditions triggered significant photosynthetic defects in a subset of the mutants, including those of photorespiration (PR) and other peroxisomal processes, some of which may also be related to PR. Further analysis of the PR mutants revealed activation of cyclic electron flow (CEF) around photosystem I and higher accumulation of hydrogen peroxide (H2 O2 ) under HL conditions. We hypothesize that impaired PR disturbs the balance of ATP and NADPH, leading to the accumulation of H2 O2 that activates CEF to produce ATP to compensate for the imbalance of reducing equivalents. The identification of peroxisomal mutants involved in PR and other peroxisomal functions in the photometric screen will enable further investigation of regulatory links between photosynthesis and PR and interorganellar interaction at the mechanistic level.
Collapse
Affiliation(s)
- Jiying Li
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Stefanie Tietz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeffrey A Cruz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Deserah D Strand
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Ye Xu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jin Chen
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - David M Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianping Hu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
48
|
Liu Y, Qi Y, Chen X, He H, Liu Z, Zhang Z, Ren Y, Ren X. Phenolic compounds and antioxidant activity in red- and in green-fleshed kiwifruits. Food Res Int 2019; 116:291-301. [PMID: 30716948 DOI: 10.1016/j.foodres.2018.08.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/22/2018] [Accepted: 08/17/2018] [Indexed: 11/25/2022]
Abstract
Red-fleshed kiwifruits are receiving increasing attention because of their high phenolic contents. However, detailed information on their phenolic compounds and antioxidant capacities remains scarce. Here, six red-fleshed and six green-fleshed kiwifruits were investigated to determine their contents of phenolic compounds and their antioxidant capacities. The results showed chlorogenic acid, p-coumaric acid and ferulic acid were the main phenolic compounds found in kiwifruit. Most of red-fleshed kiwifruits contain higher amounts of total phenolics and anthocyanins, as well as higher activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). Moreover, they exhibited stronger antioxidant capacities than green-fleshed kiwifruits in ABTS, DPPH and FRAP assays. Furthermore, the reactive oxygen species (ROS) inhibition assay showed the phenolics extracted from red-fleshed kiwifruit can better protect tobacco leaves against hydrogen peroxide (H2O2)-induced oxidative damage. This is because of their abundant anthocyanins which in vitro contribute more to H2O2 scavenging than the other phenolic compounds. Based on these findings, it is fair to conclude the red-fleshed kiwifruits are promising sources of antioxidants in human nutrition.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingwei Qi
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Chen
- Shaanxi Fruit Industry Group, Xian, 710000, Shaanxi, China
| | - Haohao He
- Meixian Fruit Industry Technology Extension service center, Meixian, Shannxi, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuo Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
49
|
Sousa RHV, Carvalho FEL, Lima-Melo Y, Alencar VTCB, Daloso DM, Margis-Pinheiro M, Komatsu S, Silveira JAG. Impairment of peroxisomal APX and CAT activities increases protection of photosynthesis under oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:627-639. [PMID: 30312463 PMCID: PMC6322566 DOI: 10.1093/jxb/ery354] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 05/21/2023]
Abstract
Retrograde signalling pathways that are triggered by changes in cellular redox homeostasis remain poorly understood. Transformed rice plants that are deficient in peroxisomal ascorbate peroxidase APX4 (OsAPX4-RNAi) are known to exhibit more effective protection of photosynthesis against oxidative stress than controls when catalase (CAT) is inhibited, but the mechanisms involved have not been characterized. An in-depth physiological and proteomics analysis was therefore performed on OsAPX4-RNAi CAT-inhibited rice plants. Loss of APX4 function led to an increased abundance of several proteins that are involved in essential metabolic pathways, possibly as a result of increased tissue H2O2 levels. Higher photosynthetic activities observed in the OsAPX4-RNAi plants under CAT inhibition were accompanied by higher levels of Rubisco, higher maximum rates of Rubisco carboxylation, and increased photochemical efficiencies, together with large increases in photosynthesis-related proteins. Large increases were also observed in the levels of proteins involved in the ascorbate/glutathione cycle and in other antioxidant-related pathways, and these changes may be important in the protection of photosynthesis in the OsAPX4-RNAi plants. Large increases in the abundance of proteins localized in the nuclei and mitochondria were also observed, together with increased levels of proteins involved in important cellular pathways, particularly protein translation. Taken together, the results show that OsAPX4-RNAi plants exhibit significant metabolic reprogramming, which incorporates a more effective antioxidant response to protect photosynthesis under conditions of impaired CAT activity.
Collapse
Affiliation(s)
- Rachel H V Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Yugo Lima-Melo
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Vicente T C B Alencar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Danilo M Daloso
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcia Margis-Pinheiro
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Joaquim A G Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Correspondence:
| |
Collapse
|
50
|
Voith von Voithenberg L, Park J, Stübe R, Lux C, Lee Y, Philippar K. A Novel Prokaryote-Type ECF/ABC Transporter Module in Chloroplast Metal Homeostasis. FRONTIERS IN PLANT SCIENCE 2019; 10:1264. [PMID: 31736987 PMCID: PMC6828968 DOI: 10.3389/fpls.2019.01264] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/11/2019] [Indexed: 05/18/2023]
Abstract
During evolution, chloroplasts, which originated by endosymbiosis of a prokaryotic ancestor of today's cyanobacteria with a eukaryotic host cell, were established as the site for photosynthesis. Therefore, chloroplast organelles are loaded with transition metals including iron, copper, and manganese, which are essential for photosynthetic electron transport due to their redox capacity. Although transport, storage, and cofactor-assembly of metal ions in chloroplasts are tightly controlled and crucial throughout plant growth and development, knowledge on the molecular nature of chloroplast metal-transport proteins is still fragmentary. Here, we characterized the soluble, ATP-binding ABC-transporter subunits ABCI10 and ABCI11 in Arabidopsis thaliana, which show similarities to components of prokaryotic, multisubunit ABC transporters. Both ABCI10 and ABCI11 proteins appear to be strongly attached to chloroplast-intrinsic membranes, most likely inner envelopes for ABCI10 and possibly plastoglobuli for ABCI11. Loss of ABCI10 and ABCI11 gene products in Arabidopsis leads to extremely dwarfed, albino plants showing impaired chloroplast biogenesis and deregulated metal homeostasis. Further, we identified the membrane-intrinsic protein ABCI12 as potential interaction partner for ABCI10 in the inner envelope. Our results suggest that ABCI12 inserts into the chloroplast inner envelope membrane most likely with five predicted α-helical transmembrane domains and represents the membrane-intrinsic subunit of a prokaryotic-type, energy-coupling factor (ECF) ABC-transporter complex. In bacteria, these multisubunit ECF importers are widely distributed for the uptake of nickel and cobalt metal ions as well as for import of vitamins and several other metabolites. Therefore, we propose that ABCI10 (as the ATPase A-subunit) and ABCI12 (as the membrane-intrinsic, energy-coupling T-subunit) are part of a novel, chloroplast envelope-localized, AAT energy-coupling module of a prokaryotic-type ECF transporter, most likely involved in metal ion uptake.
Collapse
Affiliation(s)
| | - Jiyoung Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | - Roland Stübe
- Plant Biochemistry and Physiology, Department of Biology I, LMU München, Planegg-Martinsried, Germany
| | - Christopher Lux
- Plant Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | - Katrin Philippar
- Plant Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
- *Correspondence: Katrin Philippar,
| |
Collapse
|