1
|
Zamora-Zaragoza J, Klap K, Sánchez-Pérez J, Vielle-Calzada JP, Willemsen V, Scheres B. Developmental cues are encoded by the combinatorial phosphorylation of Arabidopsis RETINOBLASTOMA-RELATED protein RBR1. EMBO J 2024; 43:6656-6678. [PMID: 39468281 DOI: 10.1038/s44318-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
RETINOBLASTOMA-RELATED (RBR) proteins orchestrate cell division, differentiation, and survival in response to environmental and developmental cues through protein-protein interactions that are governed by multisite phosphorylation. Here we explore, using a large collection of transgenic RBR phosphovariants to complement protein function in Arabidopsis thaliana, whether differences in the number and position of RBR phosphorylation events cause a diversification of the protein's function. While the number of point mutations influence phenotypic strength, phosphosites contribute differentially to distinct phenotypes. RBR pocket domain mutations associate primarily with cell proliferation, while mutations in the C-region are linked to stem cell maintenance. Both phospho-mimetic and a phospho-defective variants promote cell death, suggesting that distinct mechanisms can lead to similar cell fates. We observed combinatorial effects between phosphorylated T406 and phosphosites in different protein domains, suggesting that specific, additive, and combinatorial phosphorylation events fine-tune RBR function. Suppression of dominant phospho-defective RBR phenotypes with a mutation that inhibits RBR interacting with LXCXE motifs, and an exhaustive protein-protein interaction assay, not only revealed the importance of DREAM complex members in phosphorylation-regulated RBR function but also pointed to phosphorylation-independent RBR roles in environmental responses. Thus, combinatorial phosphorylation defined and separated developmental, but not environmental, functions of RBR.
Collapse
Affiliation(s)
- Jorge Zamora-Zaragoza
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Rijk Zwaan Breeding B.V., Department of Biotechnology, Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| | - Katinka Klap
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jaheli Sánchez-Pérez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Jean-Philippe Vielle-Calzada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Viola Willemsen
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Ben Scheres
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Rijk Zwaan Breeding B.V., Department of Biotechnology, Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands.
| |
Collapse
|
2
|
Tasker-Brown W, Koh SWH, Trozzi N, Maio KA, Jamil I, Jiang Y, Majda M, Smith RS, Moubayidin L. An incoherent feed-forward loop involving bHLH transcription factors, Auxin and CYCLIN-Ds regulates style radial symmetry establishment in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2885-2903. [PMID: 39121182 DOI: 10.1111/tpj.16959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024]
Abstract
The bilateral-to-radial symmetry transition occurring during the development of the Arabidopsis thaliana female reproductive organ (gynoecium) is a crucial biological process linked to plant fertilization and seed production. Despite its significance, the cellular mechanisms governing the establishment and breaking of radial symmetry at the gynoecium apex (style) remain unknown. To fill this gap, we employed quantitative confocal imaging coupled with MorphoGraphX analysis, in vivo and in vitro transcriptional experiments, and genetic analysis encompassing mutants in two bHLH transcription factors necessary and sufficient to promote transition to radial symmetry, SPATULA (SPT) and INDEHISCENT (IND). Here, we show that defects in style morphogenesis correlate with defects in cell-division orientation and rate. We showed that the SPT-mediated accumulation of auxin in the medial-apical cells undergoing symmetry transition is required to maintain cell-division-oriented perpendicular to the direction of organ growth (anticlinal, transversal cell division). In addition, SPT and IND promote the expression of specific core cell-cycle regulators, CYCLIN-D1;1 (CYC-D1;1) and CYC-D3;3, to support progression through the G1 phase of the cell cycle. This transcriptional regulation is repressed by auxin, thus forming an incoherent feed-forward loop mechanism. We propose that this mechanism fine-tunes cell division rate and orientation with the morphogenic signal provided by auxin, during patterning of radial symmetry at the style.
Collapse
Affiliation(s)
| | - Samuel W H Koh
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Nicola Trozzi
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Kestrel A Maio
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Iqra Jamil
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Yuxiang Jiang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Laila Moubayidin
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk, UK
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| |
Collapse
|
3
|
Liang S, Duan Z, He X, Yang X, Yuan Y, Liang Q, Pan Y, Zhou G, Zhang M, Liu S, Tian Z. Natural variation in GmSW17 controls seed size in soybean. Nat Commun 2024; 15:7417. [PMID: 39198482 PMCID: PMC11358545 DOI: 10.1038/s41467-024-51798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Seed size/weight plays an important role in determining crop yield, yet only few genes controlling seed size have been characterized in soybean. Here, we perform a genome-wide association study and identify a major quantitative trait locus (QTL), named GmSW17 (Seed Width 17), on chromosome 17 that determine soybean seed width/weight in natural population. GmSW17 encodes a ubiquitin-specific protease, an ortholog to UBP22, belonging to the ubiquitin-specific protease (USPs/UBPs) family. Further functional investigations reveal that GmSW17 interacts with GmSGF11 and GmENY2 to form a deubiquitinase (DUB) module, which influences H2Bub levels and negatively regulates the expression of GmDP-E2F-1, thereby inhibiting the G1-to-S transition. Population analysis demonstrates that GmSW17 undergo artificial selection during soybean domestication but has not been fixed in modern breeding. In summary, our study identifies a predominant gene related to soybean seed weight, providing potential advantages for high-yield breeding in soybean.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Xuemei He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianjin Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Pan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guoan Zhou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Cerbantez-Bueno VE, Serwatowska J, Rodríguez-Ramos C, Cruz-Valderrama JE, de Folter S. The role of D3-type cyclins is related to cytokinin and the bHLH transcription factor SPATULA in Arabidopsis gynoecium development. PLANTA 2024; 260:48. [PMID: 38980389 PMCID: PMC11233295 DOI: 10.1007/s00425-024-04481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
MAIN CONCLUSION We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.
Collapse
Affiliation(s)
- Vincent E Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Joanna Serwatowska
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - Carolina Rodríguez-Ramos
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - J Erik Cruz-Valderrama
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México.
| |
Collapse
|
5
|
Zhang X, Chen K, Lv G, Wang W, Jiang J, Liu G. The association analysis of DNA methylation and transcriptomics identified BpCYCD3;2 as a participant in influencing cell division in autotetraploid birch (Betula pendula) leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112099. [PMID: 38640971 DOI: 10.1016/j.plantsci.2024.112099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Polyploidization plays a crucial role in plant breeding and genetic improvement. Although the phenomenon of polyploidization affecting the area and number of plant epidermal pavement cells is well described, the underlying mechanism behind this phenomenon is still largely unknown. In this study, we found that the leaves of autotetraploid birch (Betula pendula) stopped cell division earlier and had a larger cell area. In addition, compared to diploids, tetraploids have a smaller stomatal density and fewer stomatal numbers. Genome-wide DNA methylation analysis revealed no significant difference in global DNA methylation levels between diploids and tetraploids. A total of 9154 differential methylation regions (DMRs) were identified between diploids and tetraploids, with CHH-type DMRs accounting for 91.73% of all types of DMRs. Further research has found that there are a total of 2105 differentially methylated genes (DMEGs) with CHH-type DMRs in birch. The GO functional enrichment results of DMEGs showed that differentially methylated genes were mainly involved in terms such as cellular process and metabolic process. The analysis of differentially methylated genes and differentially expressed genes suggests that hyper-methylation in the promoter region may inhibit the gene expression level of BpCYCD3;2 in tetraploids. To investigate the function of BpCYCD3;2 in birch, we obtained overexpression and repressed expression lines of BpCYCD3;2 through genetic transformation. The morphogenesis of both BpCYCD3;2-OE and BpCYCD3;2-RE lines was not affected. However, low expression of BpCYCD3;2 can lead to inhibition of cell division in leaves, and this inhibition of cell proliferation can be compensated for by an increase in cell size. Additionally, we found that the number and density of stomata in the BpCYCD3;2-RE lines were significantly reduced, consistent with the tetraploid. These data indicate that changes in cell division ability and stomatal changes in tetraploid birch can be partially attributed to low expression of the BpCYCD3;2 gene, which may be related to hyper-methylation in its promoter region. These results will provide new insights into the mechanism by which polyploidization affects plant development.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Guanbin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Wei Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
6
|
Romero-Sánchez DI, Vázquez-Santana S, Alonso-Alvarez RA, Vázquez-Ramos JM, Lara-Núñez A. Tissue and subcellular localization of CycD2 and KRPs are dissimilarly distributed by glucose and sucrose during early maize germination. Acta Histochem 2023; 125:152092. [PMID: 37717384 DOI: 10.1016/j.acthis.2023.152092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
In maize, immunoprecipitation assays have shown that CycD2;2 interacts with KRPs. However, evidence on CycD2;2 or KRPs localization and their possible interaction in specific tissues is lacking and its physiological consequence is still unknown. This work explores the spatiotemporal presence of CyclinD2s and KRPs, cell cycle regulators, during maize seed germination (18 and 36 h) after soaking on glucose or sucrose (120 mM). CyclinD2s are positive actors driving proliferation; KRPs are inhibitors of the main kinase controlling proliferation (a negative signal that slows down the cell cycle). Cell cycle proteins were analyzed by immunolocalization on longitudinal sections of maize embryo axis in seven different tissues or zones (with different proliferation or differentiation potential) and in the nucleus of their cells. Results showed a prevalence of these cell cycle proteins on embryo axes from dry seeds, particularly, their accumulation in nuclei of radicle cells. The absence of sugar caused the accumulation of these regulators in different proliferating zones. CyclinD2 abundance was reduced during germination in the presence of sucrose along the embryo axis, while there was an increase at 36 h on glucose. KRP proteins showed a slight increase at 18 h and a decrease at 36 h on both sugars. There was no correlation between cell cycle regulators/DNA co-localization on both sugars. Results suggest glucose induced a specific accumulation of each cell cycle regulator depending on the proliferation zone as well as nuclear localization which may reflect the differential morphogenetic program regarding the proliferation potential in each zone, while sucrose has a mild influence on both cell cycle proteins accumulation during germination. Whenever CycD2s were present in the nucleus, KRPs were absent after treatment with either sugar and at the two imbibition times analyzed, along the different embryo axe zones.
Collapse
Affiliation(s)
- Diana I Romero-Sánchez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sonia Vázquez-Santana
- Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rafael A Alonso-Alvarez
- Dirección General de Orientación y Atención Educativa, Universidad, Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Lu L, Yang H, Xu Y, Zhang L, Wu J, Yi H. Laser capture microdissection-based spatiotemporal transcriptomes uncover regulatory networks during seed abortion in seedless Ponkan (Citrus reticulata). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:642-661. [PMID: 37077034 DOI: 10.1111/tpj.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Seed abortion is an important process in the formation of seedless characteristics in citrus fruits. However, the molecular regulatory mechanism underlying citrus seed abortion is poorly understood. Laser capture microdissection-based RNA-seq combined with Pacbio-seq was used to profile seed development in the Ponkan cultivars 'Huagan No. 4' (seedless Ponkan) (Citrus reticulata) and 'E'gan No. 1' (seeded Ponkan) (C. reticulata) in two types of seed tissue across three developmental stages. Through comparative transcriptome and dynamic phytohormone analyses, plant hormone signal, cell division and nutrient metabolism-related processes were revealed to play critical roles in the seed abortion of 'Huagan No. 4'. Moreover, several genes may play indispensable roles in seed abortion of 'Huagan No. 4', such as CrWRKY74, CrWRKY48 and CrMYB3R4. Overexpression of CrWRKY74 in Arabidopsis resulted in severe seed abortion. By analyzing the downstream regulatory network, we further determined that CrWRKY74 participated in seed abortion regulation by inducing abnormal programmed cell death. Of particular importance is that a preliminary model was proposed to depict the regulatory networks underlying seed abortion in citrus. The results of this study provide novel insights into the molecular mechanism across citrus seed development, and reveal the master role of CrWRKY74 in seed abortion of 'Huagan No. 4'.
Collapse
Affiliation(s)
- Liqing Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Haijian Yang
- Fruit Tree Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, P.R. China
| | - Yanhui Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
8
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Zahl B, Niño de Rivera A, Muchero W, Fuxin L, Strauss SH. GWAS identifies candidate genes controlling adventitious rooting in Populus trichocarpa. HORTICULTURE RESEARCH 2023; 10:uhad125. [PMID: 37560019 PMCID: PMC10407606 DOI: 10.1093/hr/uhad125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/05/2023] [Indexed: 08/11/2023]
Abstract
Adventitious rooting (AR) is critical to the propagation, breeding, and genetic engineering of trees. The capacity for plants to undergo this process is highly heritable and of a polygenic nature; however, the basis of its genetic variation is largely uncharacterized. To identify genetic regulators of AR, we performed a genome-wide association study (GWAS) using 1148 genotypes of Populus trichocarpa. GWASs are often limited by the abilities of researchers to collect precise phenotype data on a high-throughput scale; to help overcome this limitation, we developed a computer vision system to measure an array of traits related to adventitious root development in poplar, including temporal measures of lateral and basal root length and area. GWAS was performed using multiple methods and significance thresholds to handle non-normal phenotype statistics and to gain statistical power. These analyses yielded a total of 277 unique associations, suggesting that genes that control rooting include regulators of hormone signaling, cell division and structure, reactive oxygen species signaling, and other processes with known roles in root development. Numerous genes with uncharacterized functions and/or cryptic roles were also identified. These candidates provide targets for functional analysis, including physiological and epistatic analyses, to better characterize the complex polygenic regulation of AR.
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Jialin Yuan
- Department of Electrical Engineering and Computer Science, Oregon State University, 110 SW Park Terrace, Corvallis, OR, 97331, United States
| | - Damanpreet Kaur
- Department of Electrical Engineering and Computer Science, Oregon State University, 110 SW Park Terrace, Corvallis, OR, 97331, United States
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Yuan Jiang
- Statistics Department, Oregon State University, 103 SW Memorial Place, Corvallis, OR, 97331, United States
| | - Bahiya Zahl
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Alexa Niño de Rivera
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, 821 Volunteer Blvd., Knoxville, TN, 37996, United States
| | - Li Fuxin
- Department of Electrical Engineering and Computer Science, Oregon State University, 110 SW Park Terrace, Corvallis, OR, 97331, United States
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| |
Collapse
|
9
|
Xu X, Zhang C, Xu X, Cai R, Guan Q, Chen X, Chen Y, Zhang Z, XuHan X, Lin Y, Lai Z. Riboflavin mediates m6A modification targeted by miR408, promoting early somatic embryogenesis in longan. PLANT PHYSIOLOGY 2023; 192:1799-1820. [PMID: 36930572 PMCID: PMC10315286 DOI: 10.1093/plphys/kiad139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Plant somatic embryogenesis (SE) is an in vitro biological process wherein bipolar structures are induced to form somatic cells and regenerate into whole plants. MicroRNA (miRNA) is an essential player in plant SE. However, the mechanism of microRNA408 (miR408) in SE remains elusive. Here, we used stable transgenic technology in longan (Dimocarpus longan) embryogenic calli to verify the mechanism by which miR408 promotes cell division and differentiation of longan early SE. dlo-miR408-3p regulated riboflavin biosynthesis by targeting nudix hydrolase 23 (DlNUDT23), a previously unidentified gene mediating N6-methyladenosine (m6A) modification and influencing RNA homeostasis and cell cycle gene expression during longan early SE. We showed that DlMIR408 overexpression (DlMIR408-OE) promoted 21-nt miRNA biosynthesis. In DlMIR408-OE cell lines, dlo-miR408-3p targeted and downregulated DlNUDT23, promoted riboflavin biosynthesis, decreased flavin mononucleotide (FMN) accumulation, promoted m6A level, and influenced miRNA homeostasis. DNA replication, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, the pentose phosphate pathway, and taurine and hypotaurine metabolism were also closely associated with riboflavin metabolism. In a riboflavin feeding assay, dlo-miR408-3p and pre-miR408 were upregulated and DlNUDT23 was downregulated, increasing the m6A level and cell division and differentiation in longan globular embryos. When riboflavin biosynthesis was inhibited, dlo-miR408-3p was downregulated and DlNUDT23 was upregulated, which decreased m6A modification and inhibited cell division but did not inhibit cell differentiation. FMN artificial demethylated m6A modification affected the homeostasis of precursor miRNA and miRNA. Our results revealed a mechanism underlying dlo-miR408-3p-activated riboflavin biosynthesis in which DlNUDT23 is targeted, m6A modification is dynamically mediated, and cell division is affected, promoting early SE in plants.
Collapse
Affiliation(s)
- Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Roudi Cai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qingxu Guan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
10
|
Cullen E, Wang Q, Glover BJ. How do you build a nectar spur? A transcriptomic comparison of nectar spur development in Linaria vulgaris and gibba development in Antirrhinum majus. FRONTIERS IN PLANT SCIENCE 2023; 14:1190373. [PMID: 37426957 PMCID: PMC10328749 DOI: 10.3389/fpls.2023.1190373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Nectar spurs (tubular outgrowths of floral organs) have long fascinated biologists. However, given that no model species possess nectar spurs, there is still much to learn about their development. In this study we combined morphological analysis with comparative transcriptomics to gain a global insight into the morphological and molecular basis of spur outgrowth in Linaria. Whole transcriptome sequencing was performed on two related species at three key developmental stages (identified by our morphological analysis), one with a spur (Linaria vulgaris), and one without a spur (Antirrhinum majus). A list of spur-specific genes was selected, on which we performed a gene enrichment analysis. Results from our RNA-seq analysis agreed with our morphological observations. We describe gene activity during spur development and provide a catalogue of spur-specific genes. Our list of spur-specific genes was enriched for genes connected to the plant hormones cytokinin, auxin and gibberellin. We present a global view of the genes involved in spur development in L. vulgaris, and define a suite of genes which are specific to spur development. This work provides candidate genes for spur outgrowth and development in L. vulgaris which can be investigated in future studies.
Collapse
Affiliation(s)
- Erin Cullen
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Qi Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Beverley J. Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Huang Y, Cui J, Li M, Yang R, Hu Y, Yu X, Chen Y, Wu Q, Yao H, Yu G, Guo J, Zhang H, Wu S, Cai Y. Conservation and divergence of flg22, pep1 and nlp20 in activation of immune response and inhibition of root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111686. [PMID: 36963637 DOI: 10.1016/j.plantsci.2023.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Many pattern-recognition receptors (PRRs) and their corresponding ligands have been identified. However, it is largely unknown how similar and different these ligands are in inducing plant innate immunity and affecting plant development. In this study, we examined three well characterized ligands in Arabidopsis thaliana, namely flagellin 22 (flg22), plant elicitor peptide 1 (pep1) and a conserved 20-amino-acid fragment found in most necrosis and ethylene-inducing peptide 1-like proteins (nlp20). Our quantitative analyses detected the differences in amplitude in the early immune responses of these ligands, with nlp20-induced responses typically being slower than those mediated by flg22 and pep1. RNA sequencing showed the shared differentially expressed genes (DEGs) was mostly enriched in defense response, whereas nlp20-regulated genes represent only a fraction of those genes differentially regulated by flg22 and pep1. The three elicitors all inhibited primary root growth, especially pep1, which inhibited both auxin transport and signaling pathway. In addition, pep1 significantly inhibited the cell division and genes involved in cell cycle. Compared with flg22 and nlp20, pep1 induced much stronger expression of its receptor in roots, suggesting a potential positive feedback regulation in the activation of immune response. Despite PRRs and their co-receptor BAK1 were necessary for both PAMP induced immune response and root growth inhibition, bik1 mutant only showed impaired defense response but relatively normal root growth inhibition, suggesting BIK1 acts differently in these two biological processes.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Junmei Cui
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Meng Li
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rongqian Yang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Yang Hu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Ying Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Qiqi Wu
- Lusyno Biotech Ltd., Chengdu, Sichuan, PR China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Guozhi Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Jinya Guo
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Huaiyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China.
| |
Collapse
|
12
|
Song Q, Gong W, Yu X, Ji K, Jiang Y, Chang Y, Yuan D. Transcriptome and Anatomical Comparisons Reveal the Effects of Methyl Jasmonate on the Seed Development of Camellia oleifera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6747-6762. [PMID: 37026572 DOI: 10.1021/acs.jafc.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Seed is a major storage organ that determines the yield and quality of Camellia oleifera (C. oleifera). Methyl jasmonate (MeJA) is a signaling molecule involved in plant growth and development. However, the role of MeJA in the development of C. oleifera seeds remains a mystery. This study demonstrated that the larger seeds induced by MeJA resulted from more cell numbers and a larger cell area in the outer seed coat and embryo at the cellular level. At the molecular level, MeJA could regulate the expression of factors in the known signaling pathways of seed size control as well as cell proliferation and expansion, resulting in larger seeds. Furthermore, the accumulation of oil and unsaturated fatty acids due to MeJA-inducement was attributed to the increased expression of fatty acid biosynthesis-related genes but reduced expression of fatty acid degradation-related genes. CoMYC2, a key regulator in jasmonate signaling, was considered a potential hub regulator which directly interacted with three hub genes (CoCDKB2-3, CoCYCB2-3, and CoXTH9) related to the seed size and two hub genes (CoACC1 and CoFAD2-3) related to oil accumulation and fatty acid biosynthesis by binding to their promoters. These findings provide an excellent target for the improvement of the yield and quality in C. oleifera.
Collapse
Affiliation(s)
- Qiling Song
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wenfang Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xinran Yu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ke Ji
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yi Jiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yihong Chang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
13
|
Tang HB, Wang J, Wang L, Shang GD, Xu ZG, Mai YX, Liu YT, Zhang TQ, Wang JW. Anisotropic cell growth at the leaf base promotes age-related changes in leaf shape in Arabidopsis thaliana. THE PLANT CELL 2023; 35:1386-1407. [PMID: 36748203 PMCID: PMC10118278 DOI: 10.1093/plcell/koad031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 05/17/2023]
Abstract
Plants undergo extended morphogenesis. The shoot apical meristem (SAM) allows for reiterative development and the formation of new structures throughout the life of the plant. Intriguingly, the SAM produces morphologically different leaves in an age-dependent manner, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the SAM produces small orbicular leaves in the juvenile phase, but gives rise to large elliptical leaves in the adult phase. Previous studies have established that a developmental decline of microRNA156 (miR156) is necessary and sufficient to trigger this leaf shape switch, although the underlying mechanism is poorly understood. Here we show that the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors with age promotes cell growth anisotropy in the abaxial epidermis at the base of the leaf blade, evident by the formation of elongated giant cells. Time-lapse imaging and developmental genetics further revealed that the establishment of adult leaf shape is tightly associated with the longitudinal cell expansion of giant cells, accompanied by a prolonged cell proliferation phase in their vicinity. Our results thus provide a plausible cellular mechanism for heteroblasty in Arabidopsis, and contribute to our understanding of anisotropic growth in plants.
Collapse
Affiliation(s)
- Hong-Bo Tang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Juan Wang
- School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhehaote 010070, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Yan-Xia Mai
- Core Facility Center of CEMPS, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Ye-Tong Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai 200234, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
14
|
Zhao P, Zhang C, Song Y, Xu X, Wang J, Wang J, Zheng T, Lin Y, Lai Z. Genome-wide identification, expression and functional analysis of the core cell cycle gene family during the early somatic embryogenesis of Dimocarpus longan Lour. Gene 2022; 821:146286. [PMID: 35176425 DOI: 10.1016/j.gene.2022.146286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/29/2021] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
Core cell cycle genes (CCCs) are essential regulators of cell cycle operation. In this study, a total of 69 CCCs family members, including 37 CYCs, 20 CDKs, five E2F/DPs, three KRPs, two RBs, one CKS and one Wee1, were identified from the longan genome. Phylogenetic and motifs analysis showed the evolutionary conservation of CCCs. Transcriptome dataset showed that CCCs had various expression patterns during longan early somatic embryogenesis (SE). Either CKS or CYCD3;2 silencing increased the expression of RB-E2F pathway genes, and the silencing of CYCD3;2 might induce the process of apoptosis in longan embryogenic callus (EC) cells. In addition, The qRT-PCR results showed that the expression levels of CDKG2, CYCD3;2, CYCT1;2, CKS and KRP1 were elevated by ABA, 2,4-D and PEG4000 treatments, while CDKG2 and CYCT1;2 were inhibited by NaCl treatment. In conclusion, our study provided valuable information for understanding the characterization and biological functions of longan CCCs.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuyang Song
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyi Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinhao Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianyi Zheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
15
|
Prakash S, Rai R, Zamzam M, Ahmad O, Peesapati R, Vijayraghavan U. OsbZIP47 Is an Integrator for Meristem Regulators During Rice Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:865928. [PMID: 35498659 PMCID: PMC9044032 DOI: 10.3389/fpls.2022.865928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Stem cell homeostasis by the WUSCHEL-CLAVATA (WUS-CLV) feedback loop is generally conserved across species; however, its links with other meristem regulators can be species-specific, rice being an example. We characterized the role of rice OsbZIP47 in vegetative and reproductive development. The knockdown (KD) transgenics showed meristem size abnormality and defects in developmental progression. The size of the shoot apical meristem (SAM) in 25-day OsbZIP47KD plants was increased as compared to the wild-type (WT). Inflorescence of KD plants showed reduced rachis length, number of primary branches, and spikelets. Florets had defects in the second and third whorl organs and increased organ number. OsbZIP47KD SAM and panicles had abnormal expression for CLAVATA peptide-like signaling genes, such as FON2-LIKE CLE PROTEIN1 (FCP1), FLORAL ORGAN NUMBER 2 (FON2), and hormone pathway genes, such as cytokinin (CK) ISOPENTEYLTRANSFERASE1 (OsIPT1), ISOPENTEYLTRANSFERASE 8 (OsIPT8), auxin biosynthesis OsYUCCA6, OsYUCCA7 and gibberellic acid (GA) biosynthesis genes, such as GRAIN NUMBER PER PANICLE1 (GNP1/OsGA20OX1) and SHORTENED BASAL INTERNODE (SBI/OsGA2ox4). The effects on ABBERANT PANICLE ORGANIZATION1 (APO1), OsMADS16, and DROOPING LEAF (DL) relate to the second and third whorl floret phenotypes in OsbZIP47KD. Protein interaction assays showed OsbZIP47 partnerships with RICE HOMEOBOX1 (OSH1), RICE FLORICULA/LEAFY (RFL), and OsMADS1 transcription factors. The meta-analysis of KD panicle transcriptomes in OsbZIP47KD, OsMADS1KD, and RFLKD transgenics, combined with global OSH1 binding sites divulge potential targets coregulated by OsbZIP47, OsMADS1, OSH1, and RFL. Further, we demonstrate that OsbZIP47 redox status affects its DNA binding affinity to a cis element in FCP1, a target locus. Taken together, we provide insights on OsbZIP47 roles in SAM development, inflorescence branching, and floret development.
Collapse
|
16
|
Ohyama A, Tominaga R, Toriba T, Tanaka W. D-type cyclin OsCYCD3;1 is involved in the maintenance of meristem activity to regulate branch formation in rice. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153634. [PMID: 35144141 DOI: 10.1016/j.jplph.2022.153634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
D-type cyclins (CYCDs) are involved in a wide range of biological processes, as one of the major regulators of cell cycle activity. In Arabidopsis (Arabidopsis thaliana), three members of CYCD3 subgroup genes play important roles in plant development such as leaf development and branch formation. In rice (Oryza sativa), there is only one gene (OsCYCD3;1) belonging to the CYCD3 subgroup; its function is unknown. In this study, in order to elucidate the function of OsCYCD3;1, we generated knockout mutants of the gene and conducted developmental analysis. The knockout mutants showed a significantly reduced number of branches compared with a wild type, suggesting that OsCYCD3;1 promotes branch formation. Histological analysis showed that the activities of the axillary meristem and the shoot apical meristem (SAM) were compromised in these mutant plants. Our results suggest that OsCYCD3;1 promotes branch formation, probably by regulating cell division to maintain the activities of the axillary meristem and the SAM.
Collapse
Affiliation(s)
- Ami Ohyama
- School of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Rumi Tominaga
- School of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Taiyo Toriba
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, 982-0215, Japan.
| | - Wakana Tanaka
- School of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| |
Collapse
|
17
|
Plant CDKs-Driving the Cell Cycle through Climate Change. PLANTS 2021; 10:plants10091804. [PMID: 34579337 PMCID: PMC8468384 DOI: 10.3390/plants10091804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
In a growing population, producing enough food has become a challenge in the face of the dramatic increase in climate change. Plants, during their evolution as sessile organisms, developed countless mechanisms to better adapt to the environment and its fluctuations. One important way is through the plasticity of their body and their forms, which are modulated during plant growth by accurate control of cell divisions. A family of serine/threonine kinases called cyclin-dependent kinases (CDK) is a key regulator of cell divisions by controlling cell cycle progression. In this review, we compile information on the primary response of plants in the regulation of the cell cycle in response to environmental stresses and show how the cell cycle proteins (mainly the cyclin-dependent kinases) involved in this regulation can act as components of environmental response signaling cascades, triggering adaptive responses to drive the cycle through climate fluctuations. Understanding the roles of CDKs and their regulators in the face of adversity may be crucial to meeting the challenge of increasing agricultural productivity in a new climate.
Collapse
|
18
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
19
|
Shi J, Zhang Q, Yan X, Zhang D, Zhou Q, Shen Y, Anupol N, Wang X, Bao M, Larkin RM, Luo H, Ning G. A conservative pathway for coordination of cell wall biosynthesis and cell cycle progression in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:630-648. [PMID: 33547692 DOI: 10.1111/tpj.15187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The mechanism that coordinates cell growth and cell cycle progression remains poorly understood; in particular, whether the cell cycle and cell wall biosynthesis are coordinated remains unclear. Recently, cell wall biosynthesis and cell cycle progression were reported to respond to wounding. Nonetheless, no genes are reported to synchronize the biosynthesis of the cell wall and the cell cycle. Here, we report that wounding induces the expression of genes associated with cell wall biosynthesis and the cell cycle, and that two genes, AtMYB46 in Arabidopsis thaliana and RrMYB18 in Rosa rugosa, are induced by wounding. We found that AtMYB46 and RrMYB18 promote the biosynthesis of the cell wall by upregulating the expression of cell wall-associated genes, and that both of them also upregulate the expression of a battery of genes associated with cell cycle progression. Ultimately, this response leads to the development of curled leaves of reduced size. We also found that the coordination of cell wall biosynthesis and cell cycle progression by AtMYB46 and RrMYB18 is evolutionarily conservative in multiple species. In accordance with wounding promoting cell regeneration by regulating the cell cycle, these findings also provide novel insight into the coordination between cell growth and cell cycle progression and a method for producing miniature plants.
Collapse
Affiliation(s)
- Jiewei Shi
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qunxia Zhang
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Yan
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Zhou
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuxiao Shen
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nachaisin Anupol
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuqing Wang
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manzhu Bao
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634-0318, USA
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
20
|
Pavan S, Delvento C, Mazzeo R, Ricciardi F, Losciale P, Gaeta L, D'Agostino N, Taranto F, Sánchez-Pérez R, Ricciardi L, Lotti C. Almond diversity and homozygosity define structure, kinship, inbreeding, and linkage disequilibrium in cultivated germplasm, and reveal genomic associations with nut and seed weight. HORTICULTURE RESEARCH 2021; 8:15. [PMID: 33423037 PMCID: PMC7797004 DOI: 10.1038/s41438-020-00447-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 05/04/2023]
Abstract
Almond [Prunus dulcis Miller (D.A. Webb)] is the main tree nut species worldwide. Here, genotyping-by-sequencing (GBS) was applied to 149 almond cultivars from the ex situ collections of the Italian Council for Agricultural Research (CREA) and the Spanish National Research Council (CSIC), leading to the detection of 93,119 single-nucleotide polymorphisms (SNPs). The study of population structure outlined four distinct genetic groups and highlighted diversification between the Mediterranean and Californian gene pools. Data on SNP diversity and runs of homozygosity (ROHs) allowed the definition of kinship, inbreeding, and linkage disequilibrium (LD) decay in almond cultivated germplasm. Four-year phenotypic observations, gathered on 98 cultivars of the CREA collection, were used to perform a genome-wide association study (GWAS) and, for the first time in a crop species, homozygosity mapping (HM), resulting in the identification of genomic associations with nut, shell, and seed weight. Both GWAS and HM suggested that loci controlling nut and seed weight are mostly independent. Overall, this study provides insights on the almond cultivation history and delivers information of major interest for almond genetics and breeding. In a broader perspective, our results encourage the use of ROHs in crop science to estimate inbreeding, choose parental combinations minimizing the risk of inbreeding depression, and identify genomic footprints of selection for specific traits.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy.
- Institute of Biomedical Technologies, National Research Council (CNR), Via Amendola 122/D, Bari, 70126, Italy.
| | - Chiara Delvento
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Rosa Mazzeo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71100, Italy
| | - Francesca Ricciardi
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71100, Italy
| | - Pasquale Losciale
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Liliana Gaeta
- Council for Agricultural Research and Economics-Research Centre for Agriculture and Environment (CREA-AA), Bari, 70125, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources, National Research Council of Italy, Portici, 80055, Italy
| | | | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Concetta Lotti
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71100, Italy.
| |
Collapse
|
21
|
Xu L, Wang F, Li R, Deng M, Fu M, Teng H, Yi K. OsCYCP4s coordinate phosphate starvation signaling with cell cycle progression in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1017-1033. [PMID: 31697021 DOI: 10.1111/jipb.12885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Phosphate starvation leads to a strong reduction in shoot growth and yield in crops. The reduced shoot growth is caused by extensive gene expression reprogramming triggered by phosphate deficiency, which is not itself a direct consequence of low levels of shoot phosphorus. However, how phosphate starvation inhibits shoot growth in rice is still unclear. In this study, we determined the role of OsCYCP4s in the regulation of shoot growth in response to phosphate starvation in rice. We demonstrate that the expression levels of OsCYCP4s, except OsCYCP4;3, were induced by phosphate starvation. Overexpression of the phosphate starvation induced OsCYCP4s could compete with the other cyclins for the binding with cyclin-dependent kinases, therefore suppressing growth by reducing cell proliferation. The phosphate starvation induced growth inhibition in the loss-of-function mutants cycp4;1, cycp4;2, and cycp4;4 is partially compromised. Furthermore, the expression of some phosphate starvation inducible genes is negatively modulated by these cyclins, which indicates that these OsCYCP4s may also be involved in phosphate starvation signaling. We conclude that phosphate starvation induced OsCYCP4s might coordinate phosphate starvation signaling and cell cycle progression under phosphate starvation stress.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ruili Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Minjuan Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Meilan Fu
- The Semi-arid Agriculture Engineering & Technology Research Center of P. R. China, Shijiazhuang, 050000, China
| | - Huiying Teng
- The Semi-arid Agriculture Engineering & Technology Research Center of P. R. China, Shijiazhuang, 050000, China
| | - Keke Yi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
22
|
Zeng L, Tu XL, Dai H, Han FM, Lu BS, Wang MS, Nanaei HA, Tajabadipour A, Mansouri M, Li XL, Ji LL, Irwin DM, Zhou H, Liu M, Zheng HK, Esmailizadeh A, Wu DD. Whole genomes and transcriptomes reveal adaptation and domestication of pistachio. Genome Biol 2019; 20:79. [PMID: 30999938 PMCID: PMC6474056 DOI: 10.1186/s13059-019-1686-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pistachio (Pistacia vera), one of the most important commercial nut crops worldwide, is highly adaptable to abiotic stresses and is tolerant to drought and salt stresses. RESULTS Here, we provide a draft de novo genome of pistachio as well as large-scale genome resequencing. Comparative genomic analyses reveal stress adaptation of pistachio is likely attributable to the expanded cytochrome P450 and chitinase gene families. Particularly, a comparative transcriptomic analysis shows that the jasmonic acid (JA) biosynthetic pathway plays an important role in salt tolerance in pistachio. Moreover, we resequence 93 cultivars and 14 wild P. vera genomes and 35 closely related wild Pistacia genomes, to provide insights into population structure, genetic diversity, and domestication. We find that frequent genetic admixture occurred among the different wild Pistacia species. Comparative population genomic analyses reveal that pistachio was domesticated about 8000 years ago and suggest that key genes for domestication related to tree and seed size experienced artificial selection. CONCLUSIONS Our study provides insight into genetic underpinning of local adaptation and domestication of pistachio. The Pistacia genome sequences should facilitate future studies to understand the genetic basis of agronomically and environmentally related traits of desert crops.
Collapse
Affiliation(s)
- Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Xiao-Long Tu
- Allwegene Technologies Inc., Beijing, 102209, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing, China
| | | | - Bing-She Lu
- College of Landscape Architecture and Tourism, Agricultural University of Hebei, Baoding, 071000, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Ali Tajabadipour
- Pistachio Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rafsanjan, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Xiao-Long Li
- Biomarker Technologies Corporation, Beijing, China
| | - Li-Li Ji
- Allwegene Technologies Inc., Beijing, 102209, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hong Zhou
- Chinese Academy of Forestry Sciences, Beijing, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | | | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
23
|
Genome-Wide Analysis of the D-type Cyclin Gene Family Reveals Differential Expression Patterns and Stem Development in the Woody Plant Prunus mume. FORESTS 2019. [DOI: 10.3390/f10020147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclins, a prominent class of cell division regulators, play an extremely important role in plant growth and development. D-type cyclins (CYCDs) are the rate-limiting components of the G1 phase. In plants, studies of CYCDs are mainly concerned with herbaceous plants, yet little information is available about these genes in perennial woody plants, especially ornamental plants. Here, twelve Prunus mume CYCD (PmCYCDs) genes are identified and characterized. The PmCYCDs were named on the basis of orthologues in Arabidopsis thaliana and Oryza sativa. Gene structure and conserved domains of each subgroup CYCDs was similar to that of their orthologues in A. thaliana and O. sativa. However, PmCYCDs exhibited different tissue-specific expression patterns in root, stem, leaf, bud, and fruit organs. The results of qRT-PCR showed that all PmCYCDs, except PmCYCD5;2 and PmCYCD7;1, were primarily highly expressed in leaf buds, shoots, and stems. In addition, the transcript levels of PmCYCD genes were analyzed in roots under different treatments, including exogenous applications of NAA, 6-BA, GA3, ABA, and sucrose. Interestingly, although PmCYCDs were induced by sucrose, the extent of gene induction among PmCYCD subgroups varied. The induction of PmCYCD1;2 by hormones depended on the presence of sucrose. PmCYCD3;1 was stimulated by NAA, and induction was strengthened when sugar and hormones were applied together. Taken together, our study demonstrates that PmCYCDs are functional in plant stem development and provides a basis for selecting members of the cyclin gene family as candidate genes for ornamental plant breeding.
Collapse
|
24
|
Liu H, Wang R, Mao B, Zhao B, Wang J. Identification of lncRNAs involved in rice ovule development and female gametophyte abortion by genome-wide screening and functional analysis. BMC Genomics 2019; 20:90. [PMID: 30691391 PMCID: PMC6348626 DOI: 10.1186/s12864-019-5442-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/09/2019] [Indexed: 11/15/2022] Open
Abstract
Background As important female reproductive tissues, the rice (Oryza sativa L.) ovule and female gametophyte is significant in terms of their fertility. Long noncoding RNAs (lncRNAs) play important and wide-ranging roles in the growth and development of plants and have become a major research focus in recent years. Therefore, we explored the characterization and expression change of lncRNAs during ovule development and female gametophytic abortion. Results In our study, whole-transcriptome strand-specific RNA sequencing (ssRNA-seq) was performed in the ovules of a high-frequency female-sterile rice line (fsv1) and a wild-type rice line (Gui99) at the megaspore mother cell meiosis stage (stage 1), functional megaspore mitosis stage (stage 2) and female gametophyte mature stage (stage 3). By comparing two rice lines, we identified 152, 233, and 197 differentially expressed lncRNAs at the three ovule developmental stages. Functional analysis of the coherent target genes of these differentially expressed lncRNAs indicated that many lncRNAs participate in multiple pathways such as hormone and cellular metabolism and signal transduction. Moreover, there were many differentially expressed lncRNAs acting as the precursors of some miRNAs that are involved in the development of ovules and female gametophytes. In addition, we have found that lncRNAs can act as decoys, competing with mRNAs for binding to miRNAs to maintain the normal expression of genes related to ovule and female gametophyte development. Conclusion These results provide important clues for elucidating the female gametophyte abortion mechanism in rice. This study also expands our understanding about the biological functions of lncRNAs and the annotation of the rice genome. Electronic supplementary material The online version of this article (10.1186/s12864-019-5442-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helian Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
25
|
Leviczky T, Molnár E, Papdi C, Őszi E, Horváth GV, Vizler C, Nagy V, Pauk J, Bögre L, Magyar Z. E2FA and E2FB transcription factors coordinate cell proliferation with seed maturation. Development 2019; 146:dev.179333. [PMID: 31666236 PMCID: PMC6899031 DOI: 10.1242/dev.179333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/21/2019] [Indexed: 01/31/2023]
Abstract
The E2F transcription factors and the RETINOBLASTOMA-RELATED repressor protein are principal regulators coordinating cell proliferation with differentiation, but their role during seed development is little understood. We show that in fully developed Arabidopsis thaliana embryos, cell number was not affected either in single or double mutants for the activator-type E2FA and E2FB. Accordingly, these E2Fs are only partially required for the expression of cell cycle genes. In contrast, the expression of key seed maturation genes LEAFY COTYLEDON 1/2 (LEC1/2), ABSCISIC ACID INSENSITIVE 3, FUSCA 3 and WRINKLED 1 is upregulated in the e2fab double mutant embryo. In accordance, E2FA directly regulates LEC2, and mutation at the consensus E2F-binding site in the LEC2 promoter de-represses its activity during the proliferative stage of seed development. In addition, the major seed storage reserve proteins, 12S globulin and 2S albumin, became prematurely accumulated at the proliferating phase of seed development in the e2fab double mutant. Our findings reveal a repressor function of the activator E2Fs to restrict the seed maturation programme until the cell proliferation phase is completed. Highlighted Article: During seed and embryo development the E2FA and E2FB transcription factors coordinate cell proliferation with differentiation and accumulation of seed reserves; however, they are not essential for sustaining cell proliferation.
Collapse
Affiliation(s)
- Tünde Leviczky
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Eszter Molnár
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Csaba Papdi
- Royal Holloway University of London, Department of Biological Sciences, Centre for Systems and Synthetic Biology, Egham, UK
| | - Erika Őszi
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor V. Horváth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Csaba Vizler
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Viktór Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - János Pauk
- Department of Biotechnology, Cereal Research Non-Profit Ltd. Co., Alsó kikötő sor 9, 6726 Szeged, Hungary
| | - László Bögre
- Royal Holloway University of London, Department of Biological Sciences, Centre for Systems and Synthetic Biology, Egham, UK
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
26
|
Ren K, Hayat S, Qi X, Liu T, Cheng Z. The garlic allelochemical DADS influences cucumber root growth involved in regulating hormone levels and modulating cell cycling. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:51-60. [PMID: 30170241 DOI: 10.1016/j.jplph.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/12/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Most allelochemicals are phytotoxic to the receiver plants and may influence the cell micro- and ultrastructure, cell division, phytohormone levels, and ultimately growth. In order to understand the allelopathic potential of garlic, the effects of its main bioactive allelochemical diallyl disulfide (DADS), experiments were carried out to observe the seed germination, root growth, and developmental responses in cucumber seedlings treated with various concentrations of DADS. The obtained data suggested active influence of DADS on cucumber root growth and development. Significant responses were observed in early root growth and elongation, mitotic cell division and elongation, and root architecture modulation. The effect, however, was dose dependent, and lower concentrations of DADS proved to be promotional whereas higher concentrations of DADS inhibited cucumber root growth and development. Relative root elongation (RRE) revealed that DADS could increase growth of cucumber roots in the early developmental days. Moreover, DADS application significantly influenced mitosis-related gene expression. Observed genes CYCA and CDKB were initially downregulated in the first 24 h but significantly upregulated after 48 h, while gene CDKA was upregulated in the first 24 h. Similarly, DADS application significantly altered primary plant hormones, such as IAA, ABA, GA3, and ZR, in the cucumber roots. Taken together, low concentrations of DADS treatment could promote cucumber root growth and induce main root elongation by upregulating CDKA and CDKB gene expression and regulating hormone balance in root. The current findings offer insight into the allelopathic potential of garlic allelochemical DADS and can be considered vital for establishing plant allelopathic studies.
Collapse
Affiliation(s)
- Kaili Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Sikandar Hayat
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Xiaofang Qi
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Tao Liu
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Zhihui Cheng
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China.
| |
Collapse
|
27
|
Liu J, Zhai R, Liu F, Zhao Y, Wang H, Liu L, Yang C, Wang Z, Ma F, Xu L. Melatonin Induces Parthenocarpy by Regulating Genes in Gibberellin Pathways of 'Starkrimson' Pear ( Pyrus communis L.). FRONTIERS IN PLANT SCIENCE 2018; 9:946. [PMID: 30022992 PMCID: PMC6040045 DOI: 10.3389/fpls.2018.00946] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/12/2018] [Indexed: 05/23/2023]
Abstract
Parthenocarpy, the production of seedless fruit without fertilization, has a variety of valuable qualities, especially for self-incompatible species, such as pear. To explore whether melatonin (MT) induces parthenocarpy, we used 'Starkrimson' pear as a material for morphological observations. According to our results, exogenous MT promoted the expansion and division of the mesocarp cells in a manner similar to hand pollination. However, the seeds of exogenous MT-treated fruit were undeveloped and aborted later in the fruit-setting stage. To further investigate how MT induced parthenocarpy, we studied changes of related hormones in the ovaries and found that MT significantly increased the contents of the gibberellins (GAs) GA3 and GA4. Thus, paclobutrazol (PAC), a GA-biosynthesis inhibitor, was used to study the relationship between GAs and MT. In addition, spraying MT after treatment with PAC did not increase GA content nor lead to parthenocarpy. Through a transcriptome analysis, we discovered that MT can cause significant upregulation of PbGA20ox and downregulation of PbGA2ox. However, no significant difference was observed in PbGA2ox compared with the control after PAC and MT applications. Thus, MT induces parthenocarpy by promoting GA biosynthesis along with cell division and mesocarp expansion in pear.
Collapse
|
28
|
Parrilla J, Gaillard C, Verbeke J, Maucourt M, Aleksandrov RA, Thibault F, Fleurat-Lessard P, Gibon Y, Rolin D, Atanassova R. Comparative metabolomics and glycolysis enzyme profiling of embryogenic and nonembryogenic grape cells. FEBS Open Bio 2018; 8:784-798. [PMID: 29744293 PMCID: PMC5929931 DOI: 10.1002/2211-5463.12415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 11/06/2022] Open
Abstract
A novel biological model was created for the comparison of grapevine embryogenic cells (EC) and nonembryogenic cells (NEC) sharing a common genetic background but distinct phenotypes, when cultured on their respective most appropriate media. Cytological characterization, 1H-NMR analysis of intracellular metabolites, and glycolytic enzyme activities provided evidence for the marked metabolic differences between EC and NEC. The EC were characterized by a moderate and organized cell proliferation, coupled with a low flux through glycolysis, high capacity of phosphoenolpyruvate carboxylase and glucokinase, and high oxygen consumption. The NEC displayed strong anarchic growth, and their high rate of glycolysis due to the low energetic efficiency of the fermentative metabolism is confirmed by increased enolase capacity and low oxygen consumption.
Collapse
Affiliation(s)
- Jonathan Parrilla
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| | - Cécile Gaillard
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| | - Jérémy Verbeke
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France.,GReD. UMR CNRS 6293 - INSERM U1103 Université Clermont-Auvergne CRBC Faculté de médecine Clermont-Ferrand France
| | - Mickaël Maucourt
- Laboratoire Biologie du Fruit et Pathologie UMR 1332 Institut National de la Recherche Agronomique Université de Bordeaux Villenave d'Ornon France.,Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux MetaboHUB Institut National de la Recherche Agronomique Villenave d'Ornon France
| | - Radoslav A Aleksandrov
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France.,Institute of Molecular Biology Bulgarian Academy of Sciences Acad Sofia Bulgaria
| | - Florence Thibault
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| | - Pierrette Fleurat-Lessard
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| | - Yves Gibon
- Laboratoire Biologie du Fruit et Pathologie UMR 1332 Institut National de la Recherche Agronomique Université de Bordeaux Villenave d'Ornon France.,Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux MetaboHUB Institut National de la Recherche Agronomique Villenave d'Ornon France
| | - Dominique Rolin
- Laboratoire Biologie du Fruit et Pathologie UMR 1332 Institut National de la Recherche Agronomique Université de Bordeaux Villenave d'Ornon France.,Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux MetaboHUB Institut National de la Recherche Agronomique Villenave d'Ornon France
| | - Rossitza Atanassova
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| |
Collapse
|
29
|
Weimer AK, Matos JL, Sharma N, Patell F, Murray JAH, Dewitte W, Bergmann DC. Lineage- and stage-specific expressed CYCD7;1 coordinates the single symmetric division that creates stomatal guard cells. Development 2018; 145:dev.160671. [PMID: 29467245 DOI: 10.1242/dev.160671] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
Abstract
Plants, with cells fixed in place by rigid walls, often utilize spatial and temporally distinct cell division programs to organize and maintain organs. This leads to the question of how developmental regulators interact with the cell cycle machinery to link cell division events with particular developmental trajectories. In Arabidopsis leaves, the development of stomata, two-celled epidermal valves that mediate plant-atmosphere gas exchange, relies on a series of oriented stem cell-like asymmetric divisions followed by a single symmetric division. The stomatal lineage is embedded in a tissue in which other cells transition from proliferation to postmitotic differentiation earlier, necessitating stomatal lineage-specific factors to prolong competence to divide. We show that the D-type cyclin, CYCD7;1, is specifically expressed just prior to the symmetric guard cell-forming division, and that it is limiting for this division. Further, we find that CYCD7;1 is capable of promoting divisions in multiple contexts, likely through RBR1-dependent promotion of the G1/S transition, but that CYCD7;1 is regulated at the transcriptional level by cell type-specific transcription factors that confine its expression to the appropriate developmental window.
Collapse
Affiliation(s)
- Annika K Weimer
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Juliana L Matos
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nidhi Sharma
- Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA
| | - Farah Patell
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - James A H Murray
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walter Dewitte
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA .,Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Chan A, Carianopol C, Tsai AYL, Varatharajah K, Chiu RS, Gazzarrini S. SnRK1 phosphorylation of FUSCA3 positively regulates embryogenesis, seed yield, and plant growth at high temperature in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4219-4231. [PMID: 28922765 PMCID: PMC5853833 DOI: 10.1093/jxb/erx233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/09/2017] [Indexed: 05/19/2023]
Abstract
The transcription factor FUSCA3 (FUS3) acts as a major regulator of seed maturation in Arabidopsis. FUS3 is phosphorylated by the SnRK1 catalytic subunit AKIN10/SnRK1α1, which belongs to a conserved eukaryotic kinase complex involved in energy homeostasis. Here we show that AKIN10 and FUS3 share overlapping expression patterns during embryogenesis, and that FUS3 is phosphorylated by AKIN10 in embryo cell extracts. To understand the role of FUS3 phosphorylation, we generated fus3-3 plants carrying FUS3 phosphorylation-null (FUS3S>A) and phosphorylation-mimic (FUS3S>D) variants. While FUS3S>A and FUS3S>D rescued all the fus3-3 seed maturation defects, FUS3S>A showed reduced transcriptional activity and enhanced fus3-3 previously uncharacterized phenotypes. FUS3S>A embryos displayed increased seed abortion due to maternal FUS3S>A and delayed embryo development, which correlated with a strong decrease in seed yield (~50%). Accordingly, the akin10 and akin11 mutants displayed a frequency of seed abortion similar to fus3-3. When plants were grown at elevated temperature, most phenotypes were exaggerated in FUS3S>A plants, and progeny seedlings overall grew poorly, suggesting that phosphorylation of FUS3 plays an important role during early embryogenesis and under heat stress. Collectively, these results suggest that FUS3 phosphorylation and SnRK1 are required for embryogenesis and integration of environmental cues to ensure the survival of the progeny.
Collapse
Affiliation(s)
- Aaron Chan
- Department of Biological Sciences, University of Toronto Scarborough, Military Trail, Toronto, ON Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
| | - Carina Carianopol
- Department of Biological Sciences, University of Toronto Scarborough, Military Trail, Toronto, ON Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
| | - Allen Yi-Lun Tsai
- Department of Biological Sciences, University of Toronto Scarborough, Military Trail, Toronto, ON Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
| | - Kresanth Varatharajah
- Department of Biological Sciences, University of Toronto Scarborough, Military Trail, Toronto, ON Canada
| | - Rex Shun Chiu
- Department of Biological Sciences, University of Toronto Scarborough, Military Trail, Toronto, ON Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, Military Trail, Toronto, ON Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
- Correspondence:
| |
Collapse
|
31
|
Alonso-Peral MM, Trigueros M, Sherman B, Ying H, Taylor JM, Peacock WJ, Dennis ES. Patterns of gene expression in developing embryos of Arabidopsis hybrids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:927-939. [PMID: 27880012 DOI: 10.1111/tpj.13432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 05/08/2023]
Abstract
Hybrids between the Arabidopsis ecotypes C24 and Ler have high levels of hybrid vigour, or heterosis, in both biomass and seed yield. Heterosis can be detected throughout the development of the plant and in different tissues. We examined developing embryos and seeds of C24/Ler reciprocal hybrids with the aim of detecting the earliest time at which heterotic gene activity occurs. In the transcriptomes of 4-dap (days after pollination; dermatogen to globular) and 6-dap (heart) embryos from both parents and hybrids, 95% of expressed genes were at the mid parent value (MPV) and 95% of the genes with single nucleotide polymorphisms between C24 and Ler retained the same relative allelic expression levels in the hybrids as existed in the parents. This included loci that had equivalent levels of transcription in the two parents, together with loci which had different levels of expression in the parents. Amongst the genes which did not have MPV expression levels in the hybrids (non-additively expressed genes), approximately 40 in the globular embryo stage and 89 in the heart embryo stage had altered levels of transcription in both reciprocal hybrids; these genes could contribute to the heterotic phenotype of the hybrid embryo. Many of the non-additively expressed genes had expression levels that were shifted towards maternal levels of transcription, and these differed in the reciprocal hybrids. Allelic expression analysis indicated that most genes with altered allelic contributions in the hybrids had an increase in the expression level of the hybrid's maternal allele. Consistent with the maternal pattern of gene expression, embryo and seed also show maternally influenced phenotypes.
Collapse
Affiliation(s)
- Maria M Alonso-Peral
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Marina Trigueros
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Bjorg Sherman
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Hua Ying
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Jennifer M Taylor
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, 2601, Australia
| | - William J Peacock
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, 2601, Australia
- University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Elizabeth S Dennis
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, 2601, Australia
- University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
32
|
Kawakatsu T, Stuart T, Valdes M, Breakfield N, Schmitz RJ, Nery JR, Urich MA, Han X, Lister R, Benfey PN, Ecker JR. Unique cell-type-specific patterns of DNA methylation in the root meristem. NATURE PLANTS 2016; 2:16058. [PMID: 27243651 PMCID: PMC4855458 DOI: 10.1038/nplants.2016.58] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
DNA methylation is an epigenetic modification that differs between plant organs and tissues, but the extent of variation between cell types is not known. Here, we report single-base-resolution whole-genome DNA methylomes, mRNA transcriptomes and small RNA transcriptomes for six cell populations covering the major cell types of the Arabidopsis root meristem. We identify widespread cell-type-specific patterns of DNA methylation, especially in the CHH sequence context, where H is A, C or T. The genome of the columella root cap is the most highly methylated Arabidopsis cell characterized so far. It is hypermethylated within transposable elements (TEs), accompanied by increased abundance of transcripts encoding RNA-directed DNA methylation (RdDM) pathway components and 24-nt small RNAs (smRNAs). The absence of the nucleosome remodeller DECREASED DNA METHYLATION 1 (DDM1), required for maintenance of DNA methylation, and low abundance of histone transcripts involved in heterochromatin formation suggests that a loss of heterochromatin may occur in the columella, thus allowing access of RdDM factors to the whole genome, and producing an excess of 24-nt smRNAs in this tissue. Together, these maps provide new insights into the epigenomic diversity that exists between distinct plant somatic cell types.
Collapse
Affiliation(s)
- Taiji Kawakatsu
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Tim Stuart
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Manuel Valdes
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Natalie Breakfield
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Robert J Schmitz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Mark A Urich
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Xinwei Han
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Ryan Lister
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, USA
| | - Joseph R Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
33
|
Sornay E, Forzani C, Forero-Vargas M, Dewitte W, Murray JAH. Activation of CYCD7;1 in the central cell and early endosperm overcomes cell-cycle arrest in the Arabidopsis female gametophyte, and promotes early endosperm and embryo development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:41-55. [PMID: 26261067 PMCID: PMC5102630 DOI: 10.1111/tpj.12957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 05/27/2023]
Abstract
In angiosperms, double fertilization of the egg and central cell of the megagametophyte leads to the development of the embryo and endosperm, respectively. Control of cell cycle progression in the megagametophyte is essential for successful fertilization and development. Central cell-targeted expression of the D-type cyclin CYCD7;1 (end CYCD7;1) using the imprinted FWA promoter overcomes cycle arrest of the central cell in the Arabidopsis female gametophyte in the unfertilized ovule, leading to multinucleate central cells at high frequency. Unlike FERTILIZATION-INDEPENDENT SEED (fis) mutants, but similar to lethal RETINOBLASTOMA-RELATED (rbr) mutants, no seed coat development is triggered. Unlike the case with loss of rbr, post-fertilization end CYCD7;1 in the endosperm enhances the number of nuclei during syncytial endosperm development and induces the partial abortion of developing seeds, associated with the enhanced size of the surviving seeds. The frequency of lethality was less than the frequency of multinucleate central cells, indicating that these aspects are not causally linked. These larger seeds contain larger embryos composed of more cells of wild-type size, surrounded by a seed coat composed of more cells. Seedlings arising from these larger seeds displayed faster seedling establishment and early growth. Similarly, two different embryo-lethal mutants also conferred enlarged seed size in surviving siblings, consistent with seed size increase being a general response to sibling lethality, although the cellular mechanisms were found to be distinct. Our data suggest that tight control of CYCD activity in the central cell and in the developing endosperm is required for optimal seed formation.
Collapse
Affiliation(s)
- Emily Sornay
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - Céline Forzani
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Route de Saint-Cyr, 78026, Versailles, Cedex, France
| | - Manuel Forero-Vargas
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
- Facultad de Ingenieria, Universidad de Ibagué, Calle Barrio Ambalá, Ibagué, 730002, Colombia
| | - Walter Dewitte
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - James A H Murray
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
34
|
Zhang H, Luo M, Day RC, Talbot MJ, Ivanova A, Ashton AR, Chaudhury AM, Macknight RC, Hrmova M, Koltunow AM. Developmentally regulated HEART STOPPER, a mitochondrially targeted L18 ribosomal protein gene, is required for cell division, differentiation, and seed development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5867-80. [PMID: 26105995 PMCID: PMC4566979 DOI: 10.1093/jxb/erv296] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Evidence is presented for the role of a mitochondrial ribosomal (mitoribosomal) L18 protein in cell division, differentiation, and seed development after the characterization of a recessive mutant, heart stopper (hes). The hes mutant produced uncellularized endosperm and embryos arrested at the late globular stage. The mutant embryos differentiated partially on rescue medium with some forming callus. HES (At1g08845) encodes a mitochondrially targeted member of a highly diverged L18 ribosomal protein family. The substitution of a conserved amino residue in the hes mutant potentially perturbs mitoribosomal function via altered binding of 5S rRNA and/or influences the stability of the 50S ribosomal subunit, affecting mRNA binding and translation. Consistent with this, marker genes for mitochondrial dysfunction were up-regulated in the mutant. The slow growth of the endosperm and embryo indicates a defect in cell cycle progression, which is evidenced by the down-regulation of cell cycle genes. The down-regulation of other genes such as EMBRYO DEFECTIVE genes links the mitochondria to the regulation of many aspects of seed development. HES expression is developmentally regulated, being preferentially expressed in tissues with active cell division and differentiation, including developing embryos and the root tips. The divergence of the L18 family, the tissue type restricted expression of HES, and the failure of other L18 members to complement the hes phenotype suggest that the L18 proteins are involved in modulating development. This is likely via heterogeneous mitoribosomes containing different L18 members, which may result in differential mitochondrial functions in response to different physiological situations during development.
Collapse
Affiliation(s)
- Hongyu Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ming Luo
- CSIRO Agriculture Flagship, PO Box 1600, ACT 2601, Australia
| | - Robert C Day
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Mark J Talbot
- CSIRO Agriculture Flagship, PO Box 1600, ACT 2601, Australia
| | - Aneta Ivanova
- CSIRO Agriculture Flagship, PO Box 1600, ACT 2601, Australia Present address: ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, WA 6009, Australia
| | | | - Abed M Chaudhury
- CSIRO Agriculture Flagship, PO Box 1600, ACT 2601, Australia Present address: VitaGrain, 232 Orchard Road, Level 9, Suite 232, Faber House, 238854 Singapore
| | | | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Anna M Koltunow
- CSIRO Agriculture Flagship, PO Box 350, Glen Osmond, SA 5064, Australia
| |
Collapse
|
35
|
Collins C, Maruthi NM, Jahn CE. CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4595-606. [PMID: 26022252 PMCID: PMC4507761 DOI: 10.1093/jxb/erv218] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how cambial cell divisions are regulated and integrated with vascular differentiation. A genetic loss-of-function approach was used here to reveal a rate-limiting role for the Arabidopsis CYCLIN D3 (CYCD3) subgroup of cell-cycle genes in the control of cambial cell proliferation and secondary growth, providing conclusive evidence of a direct link between the cell cycle and vascular development. It is shown that all three CYCD3 genes are specifically expressed in the cambium throughout vascular development. Analysis of a triple loss-of-function CYCD3 mutant revealed a requirement for CYCD3 in promoting the cambial cell cycle since mutant stems and hypocotyls showed a marked reduction in diameter linked to reduced mitotic activity in the cambium. Conversely, loss of CYCD3 provoked an increase in xylem cell size and the expression of differentiation markers, showing that CYCD3 is required to restrain the differentiation of xylem precursor cells. Together, our data show that tight control of cambial cell division through developmental- and cell type-specific regulation of CYCD3 is required for normal vascular development, constituting part of a novel mechanism controlling organ growth in higher plants.
Collapse
Affiliation(s)
- Carl Collins
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK Department of Bioagricultural Sciences and Pest Management, Colorado State University, 1177 Campus Delivery, Fort Collins, CO 80523-1177, USA
| | - N M Maruthi
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Courtney E Jahn
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, 1177 Campus Delivery, Fort Collins, CO 80523-1177, USA
| |
Collapse
|
36
|
Patrick JW, Colyvas K. Crop yield components - photoassimilate supply- or utilisation limited-organ development? FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:893-913. [PMID: 32481043 DOI: 10.1071/fp14048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/18/2014] [Indexed: 06/11/2023]
Abstract
Yield potential is the genome-encoded capacity of a crop species to generate yield in an optimal growth environment. Ninety per cent of plant biomass is derived from the photosynthetic reduction of carbon dioxide to organic carbon (photoassimilates - primarily sucrose). Thus, development of yield components (organ numbers and individual organ masses) can be limited by photoassimilate supply (photosynthesis arranged in series with phloem transport) or by their inherent capacity to utilise imported photoassimilates for growth or storage. To this end, photoassimilate supply/utilisation of crop yield has been quantitatively re-evaluated using published responses of yield components to elevated carbon dioxide concentrations across a selection of key crop species including cereal and pulse grains, fleshy fruits, tubers and sugar storing stems and tap roots. The analysis demonstrates that development of harvested organ numbers is strongly limited by photoassimilate supply. Vegetative branching and, to a lesser extent, flower/pod/fleshy fruit abortion, are the major yield components contributing to sensitivity of organ numbers to photoassimilate supply. In contrast, harvested organ size is partially dependent (eudicots), or completely independent (cereals), of photoassimilate supply. Processes limiting photoassimilate utilisation by harvested organs include membrane transport of soluble sugars and their allocation into polymeric storage products.
Collapse
Affiliation(s)
- John W Patrick
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kim Colyvas
- School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
37
|
Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T, Dewitte W, Murray JAH. WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Curr Biol 2014; 24:1939-44. [PMID: 25127220 PMCID: PMC4148176 DOI: 10.1016/j.cub.2014.07.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/09/2014] [Accepted: 07/08/2014] [Indexed: 11/28/2022]
Abstract
In Arabidopsis, stem cells maintain the provision of new cells for root growth. They surround a group of slowly dividing cells named the quiescent center (QC), and, together, they form the stem cell niche (SCN). The QC acts as the signaling center of the SCN, repressing differentiation of the surrounding stem cells [1] and providing a pool of cells able to replace damaged stem cells [2, 3]. Maintenance of the stem cells depends on the transcription factor WUSCHEL-RELATED HOMEOBOX 5 (WOX5), which is specifically expressed in the QC [4]. However, the molecular mechanisms by which WOX5 promotes stem cell fate and whether WOX5 regulates proliferation of the QC are unknown. Here, we reveal a new role for WOX5 in restraining cell division in the cells of the QC, thereby establishing quiescence. In contrast, WOX5 and CYCD3;3/CYCD1;1 both promote cell proliferation in the nascent columella. The additional QC divisions occurring in wox5 mutants are suppressed in mutant combinations with the D type cyclins CYCD3;3 and CYCD1;1. Moreover, ectopic expression of CYCD3;3 in the QC is sufficient to induce cell division in the QC. WOX5 thus suppresses QC divisions that are otherwise promoted by CYCD3;3 and CYCD1;1, in part by interacting with the CYCD3;3 promoter to repress CYCD3;3 expression in the QC. Therefore, we propose a specific role for WOX5 in initiating and maintaining quiescence of the QC by excluding CYCD activity from the QC. WOX5 prevents divisions at the root stem cell niche center to initiate quiescence WOX5 suppresses CYCD expression in the quiescent center to restrict cell divisions WOX5 binds to the CYCD3;3 promoter CYCD3;3 and CYCD1;1 stimulate division during formation of the columella
Collapse
Affiliation(s)
- Celine Forzani
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Ernst Aichinger
- Faculty of Biology, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Emily Sornay
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Viola Willemsen
- Plant Developmental Biology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Thomas Laux
- Faculty of Biology, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Walter Dewitte
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| | - James A H Murray
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| |
Collapse
|
38
|
Valluru R, Reynolds MP, Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1463-89. [PMID: 24913362 DOI: 10.1007/s00122-014-2332-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 05/15/2014] [Indexed: 05/21/2023]
Abstract
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.
Collapse
Affiliation(s)
- Ravi Valluru
- Wheat Physiology, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56130, Mexico DF, Mexico,
| | | | | |
Collapse
|
39
|
Scofield S, Jones A, Murray JAH. The plant cell cycle in context. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2557-62. [PMID: 25025122 DOI: 10.1093/jxb/eru188] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
|
40
|
Lin HY, Chen JC, Wei MJ, Lien YC, Li HH, Ko SS, Liu ZH, Fang SC. Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite. PLANT MOLECULAR BIOLOGY 2014; 84:203-26. [PMID: 24222213 PMCID: PMC3840290 DOI: 10.1007/s11103-013-0128-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/03/2013] [Indexed: 05/06/2023]
Abstract
Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.
Collapse
Affiliation(s)
- Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Miao-Ju Wei
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Yi-Chen Lien
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Huang-Hsien Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Swee-Suak Ko
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Zin-Huang Liu
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
41
|
Dante RA, Larkins BA, Sabelli PA. Cell cycle control and seed development. FRONTIERS IN PLANT SCIENCE 2014; 5:493. [PMID: 25295050 PMCID: PMC4171995 DOI: 10.3389/fpls.2014.00493] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/05/2014] [Indexed: 05/18/2023]
Abstract
Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed.
Collapse
Affiliation(s)
- Ricardo A. Dante
- Embrapa Agricultural InformaticsCampinas, Brazil
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| | - Brian A. Larkins
- Department of Agronomy and Horticulture, University of NebraskaLincoln, NE, USA
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| | - Paolo A. Sabelli
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| |
Collapse
|
42
|
Bihmidine S, Hunter CT, Johns CE, Koch KE, Braun DM. Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. FRONTIERS IN PLANT SCIENCE 2013; 4:177. [PMID: 23761804 PMCID: PMC3671192 DOI: 10.3389/fpls.2013.00177] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/17/2013] [Indexed: 05/18/2023]
Abstract
Recent developments have altered our view of molecular mechanisms that determine sink strength, defined here as the capacity of non-photosynthetic structures to compete for import of photoassimilates. We review new findings from diverse systems, including stems, seeds, flowers, and fruits. An important advance has been the identification of new transporters and facilitators with major roles in the accumulation and equilibration of sugars at a cellular level. Exactly where each exerts its effect varies among systems. Sugarcane and sweet sorghum stems, for example, both accumulate high levels of sucrose, but may do so via different paths. The distinction is central to strategies for targeted manipulation of sink strength using transporter genes, and shows the importance of system-specific analyses. Another major advance has been the identification of deep hypoxia as a feature of normal grain development. This means that molecular drivers of sink strength in endosperm operate in very low oxygen levels, and under metabolic conditions quite different than previously assumed. Successful enhancement of sink strength has nonetheless been achieved in grains by up-regulating genes for starch biosynthesis. Additionally, our understanding of sink strength is enhanced by awareness of the dual roles played by invertases (INVs), not only in sucrose metabolism, but also in production of the hexose sugar signals that regulate cell cycle and cell division programs. These contributions of INV to cell expansion and division prove to be vital for establishment of young sinks ranging from flowers to fruit. Since INV genes are themselves sugar-responsive "feast genes," they can mediate a feed-forward enhancement of sink strength when assimilates are abundant. Greater overall productivity and yield have thus been attained in key instances, indicating that even broader enhancements may be achievable as we discover the detailed molecular mechanisms that drive sink strength in diverse systems.
Collapse
Affiliation(s)
- Saadia Bihmidine
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- Missouri Maize Center, University of MissouriColumbia, MO, USA
| | - Charles T. Hunter
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Christine E. Johns
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Karen E. Koch
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - David M. Braun
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- Missouri Maize Center, University of MissouriColumbia, MO, USA
| |
Collapse
|