1
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Nie H, Cheng C, Kong J, Li H, Hua J. Plant non-coding RNAs function in pollen development and male sterility. FRONTIERS IN PLANT SCIENCE 2023; 14:1109941. [PMID: 36875603 PMCID: PMC9975556 DOI: 10.3389/fpls.2023.1109941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Male sterility is classified as either cytoplasmic male sterility (CMS) or genic male sterility (GMS). Generally, CMS involves mitochondrial genomes interacting with the nuclear genome, while GMS is caused by nuclear genes alone. Male sterility is regulated by multilevel mechanisms in which non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and phased small interfering RNAs (phasiRNAs), which have been proven to be critical elements. The development of high-throughput sequencing technology offers new opportunities to evaluate the genetic mechanism of ncRNAs in plant male sterility. In this review, we summarize the critical ncRNAs that regulate gene expression in ways dependent on or independent of hormones, which involve the differentiation of the stamen primordia, degradation of the tapetum, formation of microspores, and the release of pollen. In addition, the key mechanisms of the miRNA-lncRNA-mRNA interaction networks mediating male sterility in plants are elaborated. We present a different perspective on exploring the ncRNA-mediated regulatory pathways that control CMS in plants and create male-sterile lines through hormones or genome editing. A refined understanding of the ncRNA regulatory mechanisms in plant male sterility for the development of new sterile lines would be conducive to improve hybridization breeding.
Collapse
Affiliation(s)
- Hushuai Nie
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Cheng Cheng
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Bao C, Qin G, Cao F, He J, Shen X, Chen P, Niu C, Zhang D, Ren T, Zhi F, Ma L, Ma F, Guan Q. MdZAT5 regulates drought tolerance via mediating accumulation of drought-responsive miRNAs and mRNAs in apple. THE NEW PHYTOLOGIST 2022; 236:2131-2150. [PMID: 36161284 DOI: 10.1111/nph.18512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Drought limits apple yield and fruit quality. However, the molecular mechanism of apple in response to drought is not well known. Here, we report a Cys2/His2 (C2H2)-type zinc-finger protein, MdZAT5, that positively regulates apple drought tolerance by regulating drought-responsive RNAs and microRNAs (miRNAs). DNA affinity purification and sequencing and yeast-one hybrid analysis identified the binding motifs of MdZAT5, T/ACACT/AC/A/G. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and electrophoretic mobility shift assays (EMSAs) showed that MdZAT5 directly binds to the promoters of the drought-responsive genes including MdRHA2a, MdLEA14, MdTPX1, and MdCAT3, and activates their expression under drought stress. MdZAT5 interacts with and directly targets HYPONASTIC LEAVES1 (MdHYL1). MdZAT5 may facilitate the interaction of MdHYL1 with pri-miRNAs or MdDCL1 by activating MdHYL1 expression, thereby regulating the biogenesis of drought-responsive miRNAs. Genetic dissection showed that MdHYL1 is essential for MdZAT5-mediated drought tolerance and miRNA biogenesis. In addition, ChIP-qPCR and EMSA revealed that MdZAT5 binds directly to the promoters of some MIR genes including Mdm-miR171i and Mdm-miR172c, and modulates their transcription. Taken together, our findings improve our understanding of the molecular mechanisms of drought response in apple and provide a candidate gene for the breeding of drought-tolerant cultivars.
Collapse
Affiliation(s)
- Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gege Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuguo Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyu Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Cao B, Wang H, Bai J, Wang X, Li X, Zhang Y, Yang S, He Y, Yu X. miR319-Regulated TCP3 Modulates Silique Development Associated with Seed Shattering in Brassicaceae. Cells 2022; 11:cells11193096. [PMID: 36231057 PMCID: PMC9563637 DOI: 10.3390/cells11193096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Seed shattering is an undesirable trait that leads to crop yield loss. Improving silique resistance to shattering is critical for grain and oil crops. In this study, we found that miR319-targeted TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCPs) inhibited the process of post-fertilized fruits (silique) elongation and dehiscence via regulation of FRUITFULL (FUL) expression in Arabidopsis thaliana and Brassica napus. AtMIR319a activation resulted in a longer silique with thickened and lignified replum, whereas overexpression of an miR319a-resistant version of AtTCP3 (mTCP3) led to a short silique with narrow and less lignified replum. Further genetic and expressional analysis suggested that FUL acted downstream of TCP3 to negatively regulate silique development. Moreover, hyper-activation of BnTCP3.A8, a B. napus homolog of AtTCP3, in rapeseed resulted in an enhanced silique resistance to shattering due to attenuated replum development. Taken together, our findings advance our knowledge of TCP-regulated silique development and provide a potential target for genetic manipulation to reduce silique shattering in Brassica crops.
Collapse
Affiliation(s)
- Biting Cao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Hongfeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266101, China
| | - Jinjuan Bai
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xuan Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Yanfeng Zhang
- Hybrid Rape Research Center of Shaanxi Province, Yangling 712100, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Changchun 130102, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- Correspondence: (Y.H.); (X.Y.)
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (Y.H.); (X.Y.)
| |
Collapse
|
6
|
You C, Yu Y, Wang Y. Small RNA in plant meiosis and gametogenesis. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Wang X, Jin S, Chang X, Li G, Zhang L, Jin S. Two interaction proteins between AtPHB6 and AtSOT12 regulate plant salt resistance through ROS signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:70-80. [PMID: 34773804 DOI: 10.1016/j.plaphy.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
In the past, the PHB gene function was mainly focused on anti-cell proliferation and antitumor effects. But the molecular mechanism of the PHB gene regarding saline and oxidative stresses is unclear. To study the role of AtPHB6 in salt and oxidative stress, AtPHB6 was cloned from A. thaliana. Bioinformatics analysis showed that AtPHB6 was closely related to AtPHB1 and AtPHB2, which are both type II PHB. RT-qPCR results indicated that the AtPHB6 in the leaves and roots of A. thaliana was obviously induced under different stress treatments. AtPHB6-overexpressing plants were larger and more lush than wild-type and mutant plants when placed under stress treatments during seed germination. The root length and fresh weight of AtPHB6 transgenic plants showed the best resistance compared to wild-type plants under different treatments, in contrast, the AtPHB6 mutants had the worst resistance during the seedling stage. AtSOT12 was an interacting protein of AtPHB6, which screened by yeast two-hybrid system. The interaction between the two proteins were further confirmed using in vitro pull-down experiments and in vivo BiFC experiments. Subcellular localization showed both AtPHB6 and AtSOT12 protein expressed in the nucleus and cytoplasm. The H2O2 content in both the transgenic AtPHB6 and AtSOT12 plants were lower than that in the wild type under stresses. Thus, AtPHB6 increased plant resistance to salt stress and interacted with the AtSOT12 protein.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shengxuan Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China; College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xu Chang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guanrong Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ling Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shumei Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
8
|
Yang X, Dong W, Ren W, Zhao Q, Wu F, He Y. Cytoplasmic HYL1 modulates miRNA-mediated translational repression. THE PLANT CELL 2021; 33:1980-1996. [PMID: 33764452 PMCID: PMC8290291 DOI: 10.1093/plcell/koab090] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/19/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) control various biological processes by repressing target mRNAs. In plants, miRNAs mediate target gene repression via both mRNA cleavage and translational repression. However, the mechanism underlying this translational repression is poorly understood. Here, we found that Arabidopsis thaliana HYPONASTIC LEAVES1 (HYL1), a core component of the miRNA processing machinery, regulates miRNA-mediated mRNA translation but not miRNA biogenesis when it localized in the cytoplasm. Cytoplasmic HYL1 localizes to the endoplasmic reticulum and associates with ARGONAUTE1 (AGO1) and ALTERED MERISTEM PROGRAM1. In the cytoplasm, HYL1 monitors the distribution of AGO1 onto polysomes, binds to the mRNAs of target genes, represses their translation, and partially rescues the phenotype of the hyl1 null mutant. This study uncovered another function of HYL1 and provides insight into the mechanism of plant gene regulation.
Collapse
Affiliation(s)
- Xi Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weiguo Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenqing Ren
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuxia Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Feijie Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for correspondence:
| |
Collapse
|
9
|
Lian H, Wang L, Ma N, Zhou CM, Han L, Zhang TQ, Wang JW. Redundant and specific roles of individual MIR172 genes in plant development. PLoS Biol 2021; 19:e3001044. [PMID: 33529193 PMCID: PMC7853526 DOI: 10.1371/journal.pbio.3001044] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
Evolutionarily conserved microRNAs (miRNAs) usually have high copy numbers in the genome. The redundant and specific roles of each member of a multimember miRNA gene family are poorly understood. Previous studies have shown that the miR156-SPL-miR172 axis constitutes a signaling cascade in regulating plant developmental transitions. Here, we report the feasibility and utility of CRISPR-Cas9 technology to investigate the functions of all 5 MIR172 family members in Arabidopsis. We show that an Arabidopsis plant devoid of miR172 is viable, although it displays pleiotropic morphological defects. MIR172 family members exhibit distinct expression pattern and exert functional specificity in regulating meristem size, trichome initiation, stem elongation, shoot branching, and floral competence. In particular, we find that the miR156-SPL-miR172 cascade is bifurcated into specific flowering responses by matching pairs of coexpressed SPL and MIR172 genes in different tissues. Our results thus highlight the spatiotemporal changes in gene expression that underlie evolutionary novelties of a miRNA gene family in nature. The expansion of MIR172 genes in the Arabidopsis genome provides molecular substrates for the integration of diverse floral inductive cues, which ensures that plants flower at the optimal time to maximize seed yields. This study uses CRISPR-Cas9 technology to investigate the functions of all five miR172 genes in Arabidopsis, finding that miRNA172 family members exhibit distinct expression pattern and exert functional specificity in regulating meristem size, trichome initiation, stem elongation, shoot branching and floral competence.
Collapse
Affiliation(s)
- Heng Lian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ning Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Henan University, Kaifeng, China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lin Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- ShanghaiTech University, Shanghai, China
- * E-mail:
| |
Collapse
|
10
|
Sun J, Li GS. Leaf dorsoventrality candidate gene CpARF4 has conserved expression pattern but divergent tasiR-ARF regulation in the water fern Ceratopteris pteridoides. AMERICAN JOURNAL OF BOTANY 2020; 107:1470-1480. [PMID: 33216953 DOI: 10.1002/ajb2.1570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Leaves are traditionally classified into microphylls and megaphylls, and recently have been regarded as independently originating in lycophytes, ferns, and seed plants. The developmental genetics of leaf dorsoventrality, a synapomorphy in vascular plants, has been extensively studied in flowering plants. AUXIN RESPONSE FACTOR4 (ARF4) genes are key to leaf abaxial identity in flowering plants, but whether they exist in ferns is still an open question. METHODS ARF4 genes from Ceratopteris pteridoides, Cyrtomium guizhouense, and Parathelypteris nipponica were mined from transcriptomes and investigated in terms of evolutionary phylogeny and sequence motifs, with a focus on the tasiR-ARF binding site. In situ hybridization was used to localize expression of CpARF4 in Ceratopteris pteridoides. 5'RNA ligase-mediated-RACE was employed to verify whether CpARF4 transcripts were sliced by tasiR-ARF. RESULTS ARF4 genes exist in ferns, and this lineage originates from a gene duplication in the common ancestor of ferns and seed plants. ARF4 genes are of a single copy in the ferns studied here, and they contain divergent and, at most, one tasiR-ARF binding site. CpARF4 is expressed in the abaxial but not the adaxial domain of leaf primordia at various developmental stages. Transcript slicing guided by tasiR-ARF is active in C. pteridoides, but CpARF4 probably has not been affected by it. CONCLUSIONS Fern ARF4 genes differ in copy number and tasiR-ARF regulation relative to flowering plants, though they can be similarly expressed in the abaxial domain of leaves, revealing a key role for ARF4 genes in the evolution of leaf dorsoventrality of vascular plants.
Collapse
Affiliation(s)
- Jun Sun
- Laboratory of Plant Resource Conservation and Utilization, Jishou University, Jishou, 416000, China
| | - Gui-Sheng Li
- Laboratory of Plant Resource Conservation and Utilization, Jishou University, Jishou, 416000, China
| |
Collapse
|
11
|
Tian X, Li X, Yu Q, Zhao H, Song J, Liao J. Irregular adaxial-abaxial polarity rearrangement contributes to the monosymmetric-to-asymmetric transformation of Canna indica stamen. AOB PLANTS 2020; 12:plaa051. [PMID: 33133481 PMCID: PMC7590949 DOI: 10.1093/aobpla/plaa051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
In flowering plants, lateral organs including stamens develop according to the precise regulation of adaxial-abaxial polarity. However, the polarity establishment process is poorly understood in asymmetric stamens. Canna indica (Zingiberales: Cannaceae) is a common ornamental plant with an asymmetric stamen comprising a one-theca anther and a petaloid appendage. In this study, we depicted the monosymmetric-to-asymmetric morphogenesis of C. indica stamen, and the morphogenesis of the monosymmetric stamen of a sister species was used as a contrast. We chose a HD-ZIP III gene family member and a YABBY family member as the adaxial and abaxial polarity marker genes, respectively, and tested their expression using mRNA in situ hybridization. The expression patterns of the two genes changed dynamically and asymmetrically during the stamen development process. Compared with their homologues in Arabidopsis thaliana, these two genes exhibited some specific expression patterns. We hypothesize that the distinctive adaxial-abaxial polarity participates in the irregular morphogenesis of C. indica stamen, which mediates the putative stamen-to-petaloid staminode conversion in this species.
Collapse
Affiliation(s)
- Xueyi Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qianxia Yu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Haichan Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Xinxing Vocational School of Traditional Chinese Medicine, Xinxing, Guangdong, China
| | - Juanjuan Song
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Conservation Biology/Economic Botany/Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
12
|
Abstract
Biogenesis of plant microRNAs (miRNAs) takes place in nuclear dicing bodies (D-bodies), where the ribonulease III-type enzyme Dicer-like 1 (DCL1) processes primary transcripts of miRNAs (pri-miRNAs) into miRNA/miRNA* (*, passenger strand) duplexes from either base-to-loop or loop-to-base directions. Hyponastic Leaves 1 (HYL1), a double-stranded RNA-binding protein, is crucial for efficient and accurate processing. However, whether HYL1 has additional function remains unknown. Here, we report that HYL1 plays a noncanonical role in protecting pri-miRNAs from nuclear exosome attack in addition to ensuring processing. Loss of functions in SOP1 or HEN2, two cofactors of the nucleoplasmic exosome, significantly suppressed the morphological phenotypes of hyl1-2 Remarkably, mature miRNAs generated from loop-to-base processing were partially but preferentially restored in the hyl1 sop1 and hyl1 hen2 double mutants. Accordingly, loop-to-base-processed pri-miRNAs accumulated to higher levels in double mutants. In addition, dysfunction of HEN2, but not of SOP1, in hyl1-2 resulted in overaccumulation of many base-to-loop-processed pri-miRNAs, with most of their respective miRNAs unaffected. In summary, our findings reveal an antagonistic action of exosome in pri-miRNA biogenesis and uncover dual roles of HYL1 in stabilizing and processing of pri-miRNAs.
Collapse
|
13
|
Wei SJ, Chai S, Zhu RM, Duan CY, Zhang Y, Li S. HUA ENHANCER1 Mediates Ovule Development. FRONTIERS IN PLANT SCIENCE 2020; 11:397. [PMID: 32351522 PMCID: PMC7174553 DOI: 10.3389/fpls.2020.00397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/03/2023]
Abstract
Ovules are female reproductive organs of angiosperms, containing sporophytic integuments and gametophytic embryo sacs. After fertilization, embryo sacs develop into embryos and endosperm whereas integuments into seed coat. Ovule development is regulated by transcription factors (TF) whose expression is often controlled by microRNAs. Mutations of Arabidopsis DICER-LIKE 1 (DCL1), a microRNA processing protein, caused defective ovule development and reduced female fertility. However, it was not clear whether other microRNA processing proteins participate in this process and how defective ovule development influenced female fertility. We report that mutations of HUA ENHANCER1 (HEN1) and HYPONASTIC LEAVES 1 (HYL1) interfered with integument growth. The sporophytic defect caused abnormal embryo sac development and inability of mutant ovules to attract pollen tubes, leading to reduced female fertility. We show that the role of HEN1 in integument growth is cell-autonomous. Although AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 were ectopically expressed in mutant ovules, consistent with the reduction of microRNA167 in hen1, introducing arf6;arf8 did not suppress ovule defects of hen1, suggesting the involvement of more microRNAs in this process. Results presented indicate that the microRNA processing machinery is critical for ovule development and seed production through multiple microRNAs and their targets.
Collapse
|
14
|
Dhaka N, Sharma S, Vashisht I, Kandpal M, Sharma MK, Sharma R. Small RNA profiling from meiotic and post-meiotic anthers reveals prospective miRNA-target modules for engineering male fertility in sorghum. Genomics 2019; 112:1598-1610. [PMID: 31521711 DOI: 10.1016/j.ygeno.2019.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Understanding male gametophyte development is essential to augment hybrid production in sorghum. Although small RNAs are known to critically influence anther/pollen development, their roles in sorghum reproduction have not been deciphered yet. Here, we report small RNA profiling and high-confidence annotation of microRNAs (miRNAs) from meiotic and post-meiotic anthers in sorghum. We identified 262 miRNAs (82 known and 180 novel), out of which 58 (35 known and 23 novel) exhibited differential expression between two stages. Out of 35 differentially expressed known miRNAs, 13 are known to regulate anther/pollen development in other plant species. We also demonstrated conserved spatiotemporal patterns of 21- and 24-nt phasiRNAs and their respective triggers, miR2118 and miR2275, in sorghum anthers as evidenced in other monocots. miRNA target identification yielded 5622 modules, of which 46 modules comprising 16 known and 8 novel miRNA families with 38 target genes are prospective candidates for engineering male fertility in grasses.
Collapse
Affiliation(s)
- Namrata Dhaka
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Shalini Sharma
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Ira Vashisht
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Manu Kandpal
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Manoj Kumar Sharma
- Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Rita Sharma
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India.
| |
Collapse
|
15
|
Li X, Lian H, Zhao Q, He Y. MicroRNA166 Monitors SPOROCYTELESS/NOZZLE for Building of the Anther Internal Boundary. PLANT PHYSIOLOGY 2019; 181:208-220. [PMID: 31248965 PMCID: PMC6716238 DOI: 10.1104/pp.19.00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/13/2019] [Indexed: 05/24/2023]
Abstract
The internal boundary between inner and outer microsporangia within anthers is essential for male fertility of vascular plants. Dehiscence zones embedded in the boundary release pollen for fertilization. However, the molecular mechanism underlying boundary formation in anthers remains poorly understood. Here, we report that microRNA166 (miR166) and its target PHABULOSA (PHB) regulate SPOROCYTELESS/NOZZLE (SPL/NZZ), which controls microsporogenesis. In developing anthers of Arabidopsis (Arabidopsis thaliana), the expression domains of miR165/6 and SPL/NZZ are overlapped and rearranged synchronously. Dominant mutation of PHB suppresses SPL/NZZ expression on the adaxial sides of stamens, resulting in a thickened boundary, whereas activation of MIR166g up-regulates SPL/NZZ expression, leading to ectopic microsporogenesis in the boundary. PHB limits the expression domains of SPL/NZZ to facilitate construction of the boundary, while miR166 preserves the expression domains of SPL/NZZ by inhibiting PHB to allow the inner microsporangia to take shape. Subsequently, PHB activates the key stem cell maintainer WUSCHEL in anthers to restrict the stomium cells to the boundary so that dehiscence zones develop and release pollen properly. These findings link adaxial/abaxial polarity to microsporogenesis in building of the internal boundary of anthers and thus advance the concepts underlying the establishment of the internal structure of male organs.
Collapse
Affiliation(s)
- Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Lian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiuxia Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Li H, Guo J, Zhang C, Zheng W, Song Y, Wang Y. Identification of Differentially Expressed miRNAs between a Wheat K-type Cytoplasmic Male Sterility Line and Its Near-Isogenic Restorer Line. PLANT & CELL PHYSIOLOGY 2019; 60:1604-1618. [PMID: 31076750 DOI: 10.1093/pcp/pcz065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
K-type cytoplasmic male sterility (KCMS) lines were ideal material for three-line hybrid wheat system due to the major role in hybrid wheat production. In this study, the morphology of developing microspore and mature pollen was compared between a KCMS line and its near-isogenic restorer line (KCMS-NIL). The most striking difference is that the microspore was unable to develop into tricellular pollen in the KCMS line. MicroRNA plays vital roles in flowering and gametophyte development. Small RNA sequencing identified a total of 274 known and 401 novel miRNAs differentially expressed between two lines or two developmental stages. Most of miRNAs with high abundance were differentially expressed at the uninucleate stage, and their expression level recovered or remained at the binucleate stage. Further degradome sequencing identified target genes which were mainly enriched in transcription regulation, phytohormone signaling and RNA degradation pathways. Combining with the transcriptome data, a correlation was found between the abnormal anther development, such as postmeiotic mitosis cessation, deformative pollen wall and the chromosome condensation of the vegetative cell, and the alterations in the related miRNA and their targets expression profiles. According to the correlation and pathway analysis, we propose a hypothetic miRNA-mediated network for the control of KCMS restoration.
Collapse
Affiliation(s)
- Hongxia Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jinglei Guo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Chengyang Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Weijun Zheng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yulong Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yu Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
17
|
Wang L, Zhou CM, Mai YX, Li LZ, Gao J, Shang GD, Lian H, Han L, Zhang TQ, Tang HB, Ren H, Wang FX, Wu LY, Liu XL, Wang CS, Chen EW, Zhang XN, Liu C, Wang JW. A spatiotemporally regulated transcriptional complex underlies heteroblastic development of leaf hairs in Arabidopsis thaliana. EMBO J 2019; 38:embj.2018100063. [PMID: 30842098 DOI: 10.15252/embj.2018100063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
Heteroblasty refers to a phenomenon that a plant produces morphologically or functionally different lateral organs in an age-dependent manner. In the model plant Arabidopsis thaliana, the production of trichomes (epidermal leaf hairs) on the abaxial (lower) side of leaves is a heteroblastic mark for the juvenile-to-adult transition. Here, we show that the heteroblastic development of abaxial trichomes is regulated by a spatiotemporally regulated complex comprising the leaf abaxial fate determinant (KAN1) and the developmental timer (miR172-targeted AP2-like proteins). We provide evidence that a short-distance chromatin loop brings the downstream enhancer element into close association with the promoter elements of GL1, which encodes a MYB transcription factor essential for trichome initiation. During juvenile phase, the KAN1-AP2 repressive complex binds to the downstream sequence of GL1 and represses its expression through chromatin looping. As plants age, the gradual reduction in AP2-like protein levels leads to decreased amount of the KAN1-AP2 complex, thereby licensing GL1 expression and the abaxial trichome initiation. Our results thus reveal a novel molecular mechanism by which a heteroblastic trait is governed by integrating age and leaf polarity cue in plants.
Collapse
Affiliation(s)
- Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Guang-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Lian
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lin Han
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Hong-Bo Tang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Hang Ren
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Lian-Yu Wu
- ShanghaiTech University, Shanghai, China
| | | | - Chang-Sheng Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Er-Wang Chen
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Xue-Ning Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China .,ShanghaiTech University, Shanghai, China
| |
Collapse
|
18
|
Ning L, Wang H, Li D, Lin Z, Li Y, Zhao W, Chao H, Miao L, Li M. Transcriptomic and Proteomic Analysis of Shaan2A Cytoplasmic Male Sterility and Its Maintainer Line in Brassica napus. FRONTIERS IN PLANT SCIENCE 2019; 10:252. [PMID: 30886625 PMCID: PMC6409359 DOI: 10.3389/fpls.2019.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Cytoplasmic male sterility (CMS) lines are widely used for hybrid production in Brassica napus. The Shaan2A CMS system is one of the most important in China and has been used for decades; however, the male sterility mechanism underlying Shaan2A CMS remains unknown. Here, we performed transcriptomic and proteomic analysis, combined with additional morphological observation, in the Shaan2A CMS. Sporogenous cells, endothecium, middle layer, and tapetum could not be clearly distinguished in Shaan2A anthers. Furthermore, Shaan2A anther chloroplasts contained fewer starch grains than those in Shaan2B (a near-isogenic line of Shaan2A), and the lamella structure of chloroplasts in Shaan2A anther wall cells was obviously aberrant. Transcriptomic analysis revealed differentially expressed genes (DEGs) mainly related to carbon metabolism, lipid and flavonoid metabolism, and the mitochondrial electron transport/ATP synthesis pathway. Proteomic results showed that differentially expressed proteins were mainly associated with carbohydrate metabolism, energy metabolism, and genetic information processing pathways. Importantly, nine gene ontology categories associated with anther and pollen development were enriched among down-regulated DEGs at the young bud (YB) stage, including microsporogenesis, sporopollenin biosynthetic process, and tapetal layer development. Additionally, 464 down-regulated transcription factor (TF) genes were identified at the YB stage, including some related to early anther differentiation such as SPOROCYTELESS (SPL, also named NOZZLE, NZZ), DYSFUNCTIONAL TAPETUM 1 (DYT1), MYB80 (formerly named MYB103), and ABORTED MICROSPORES (AMS). These results suggested that the sterility gene in the Shaan2A mitochondrion might suppress expression of these TF genes in the nucleus, affecting early anther development. Finally, we constructed an interaction network of candidate proteins based on integrative analysis. The present study provides new insights into the molecular mechanism of Shaan2A CMS in B. napus.
Collapse
Affiliation(s)
- Luyun Ning
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Dianrong Li
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Zhiwei Lin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghong Li
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liyun Miao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
19
|
Pradillo M, Santos JL. Genes involved in miRNA biogenesis affect meiosis and fertility. Chromosome Res 2018; 26:233-241. [PMID: 30343461 DOI: 10.1007/s10577-018-9588-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are a class of small (containing about 22 nucleotides) single-stranded non-coding RNAs that regulate gene expression at the post-transcriptional level in plants and animals, being absent from unicellular organisms. They act on diverse key physiological and cellular processes, such as development and tissue differentiation, cell identity, cell cycle progression, and programmed cell death. They are also likely to be involved in a broad spectrum of human diseases. Particularly, this review examines and summarizes work characterizing the function of miRNAs in gametogenesis and fertility. Although numerous studies have elucidated the involvement of reproductive-specific small interfering RNAs (siRNAs) in regulating germ cell development and meiosis, less is known about the role of miRNAs in these processes. We focus on the study of hypomorphic and null alleles of genes encoding components of miRNA biogenesis in both plants (Arabidopsis thaliana) and mammals (Mus musculus). We compare the consequences of the presence of these mutations on male meiosis in both species.
Collapse
Affiliation(s)
- Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, 28040, Madrid, Spain.
| | - Juan L Santos
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, 28040, Madrid, Spain
| |
Collapse
|
20
|
Tian X, Zou P, Miao M, Ning Z, Liao J. RNA-Seq analysis reveals the distinctive adaxial-abaxial polarity in the asymmetric one-theca stamen of Canna indica. Mol Genet Genomics 2017; 293:391-400. [PMID: 29138931 DOI: 10.1007/s00438-017-1392-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
Proper establishment of adaxial-abaxial polarity is essential for the development of lateral organs, while former researches were mostly focused on the polarity regulation in leaves, and little is known in stamens, especially in the asymmetric ones. Canna indica (Zingiberales: Cannaceae) is a widely cultivated ornamental plant and the representative species to study the evolutionary development of Zingiberales. The androecium of Canna indica comprises 3-4 petaloid staminodes and a fertile stamen (FS), which consists of a one-theca anther and a petaloid appendage. The partially petaloid stamen is considered as an intermediate state organ from a two-thecae stamen to a completely petaloid staminode. Using RNA-Seq, we quantified the expressions of the transcripts in anther and petaloid appendage, and detected 64,430 and 57,041 unigenes in these two organs, respectively. 4574 unigenes were down-regulated, and 3525 were up-regulated in petaloid appendage compared with those in anther. GO enrichment analysis indicated that the function of cytokinin is more related to cell differentiation in anther, while auxin is more to cell division in petaloid appendage. B- and C-class floral homeotic genes were expressed in these two androecium parts. Most of the class III HD-ZIP family members, which specify adaxial identity, were expressed lower in petaloid appendage than in anther; while KANADIs and YABBYs, which promote abaxial identity, exhibited opposite expression patterns. In situ hybridization showed that the adaxial marker gene was mainly expressed in the region between the two protrusions of the anther, while the abaxial marker was mainly expressed in petaloid appendage. We hypothesize that the adaxial-abaxial polarity participates in the distinctive anther-petaloid appendage patterning within the asymmetric FS of Canna indica.
Collapse
Affiliation(s)
- Xueyi Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Pu Zou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Mingzhi Miao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China.,Guiyang University, Jianlongdong Road 103, Nanming District, Guiyang, 550005, China
| | - Zulin Ning
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China.
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China.
| |
Collapse
|
21
|
Zhang TQ, Lian H, Zhou CM, Xu L, Jiao Y, Wang JW. A Two-Step Model for de Novo Activation of WUSCHEL during Plant Shoot Regeneration. THE PLANT CELL 2017; 29:1073-1087. [PMID: 28389585 PMCID: PMC5466026 DOI: 10.1105/tpc.16.00863] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/17/2017] [Accepted: 04/05/2017] [Indexed: 05/18/2023]
Abstract
Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in Arabidopsis thaliana We found that WUS-positive (WUS+) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the WUS locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate WUS expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of WUS.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
- University of Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Heng Lian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- National Center for Plant Gene Research, Beijing 100101, P.R. China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
- ShanghaiTech University, Shanghai 200031, P.R. China
| |
Collapse
|
22
|
Field S, Thompson B. Analysis of the Maize dicer-like1 Mutant, fuzzy tassel, Implicates MicroRNAs in Anther Maturation and Dehiscence. PLoS One 2016; 11:e0146534. [PMID: 26745722 PMCID: PMC4706427 DOI: 10.1371/journal.pone.0146534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/18/2015] [Indexed: 11/23/2022] Open
Abstract
Sexual reproduction in plants requires development of haploid gametophytes from somatic tissues. Pollen is the male gametophyte and develops within the stamen; defects in the somatic tissues of the stamen and in the male gametophyte itself can result in male sterility. The maize fuzzy tassel (fzt) mutant has a mutation in dicer-like1 (dcl1), which encodes a key enzyme required for microRNA (miRNA) biogenesis. Many miRNAs are reduced in fzt, and fzt mutants exhibit a broad range of developmental defects, including male sterility. To gain further insight into the roles of miRNAs in maize stamen development, we conducted a detailed analysis of the male sterility defects in fzt mutants. Early development was normal in fzt mutant anthers, however fzt anthers arrested in late stages of anther maturation and did not dehisce. A minority of locules in fzt anthers also exhibited anther wall defects. At maturity, very little pollen in fzt anthers was viable or able to germinate. Normal pollen is tricellular at maturity; pollen from fzt anthers included a mixture of unicellular, bicellular, and tricellular pollen. Pollen from normal anthers is loaded with starch before dehiscence, however pollen from fzt anthers failed to accumulate starch. Our results indicate an absolute requirement for miRNAs in the final stages of anther and pollen maturation in maize. Anther wall defects also suggest that miRNAs have key roles earlier in anther development. We discuss candidate miRNAs and pathways that might underlie fzt anther defects, and also note that male sterility in fzt resembles water deficit-induced male sterility, highlighting a possible link between development and stress responses in plants.
Collapse
Affiliation(s)
- Sterling Field
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, United States of America
| | - Beth Thompson
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, United States of America
| |
Collapse
|
23
|
Li ZF, Zhang YC, Chen YQ. miRNAs and lncRNAs in reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:46-52. [PMID: 26259173 DOI: 10.1016/j.plantsci.2015.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/24/2015] [Accepted: 05/25/2015] [Indexed: 05/14/2023]
Abstract
Non-coding RNAs (ncRNAs) regulate gene expression at the transcriptional and post-transcriptional levels. Many ncRNAs have been identified in the past decade, including small ncRNAs, such as microRNAs (miRNAs), and long ncRNAs (lncRNAs). These novel molecules have important roles in a wide range of biological processes such as the regulation of reproduction and sex determination. Due to their ability to regulate specific genes or entire gene families, these molecules have the potential for uses in the development of breeding strategies as well as in the genetic modification of agronomic traits. In this review, we summarize recent progress on the understanding of plant miRNAs and lncRNAs in male and female development. We also discuss future challenges of using these molecules in agricultural applications, including transgenic plants in hybrid breeding, for novel genetic trait selection, for rapid character screening, and genetic modification for crop improvement.
Collapse
Affiliation(s)
- Zhe-Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Chan Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue-Qin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
24
|
Yang X, Ren W, Zhao Q, Zhang P, Wu F, He Y. Homodimerization of HYL1 ensures the correct selection of cleavage sites in primary miRNA. Nucleic Acids Res 2014; 42:12224-36. [PMID: 25294831 PMCID: PMC4231765 DOI: 10.1093/nar/gku907] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MicroRNA (miRNA) plays an important role in the control of gene expression. HYPONASTIC LEAVES1 (HYL1) is a double-stranded RNA-binding protein that forms a complex with DICER-LIKE1 (DCL1) and SERRATE (SE) to process primary miRNA (pri-miRNA) into mature miRNA. Although HYL1 has been shown to partner with DCL1 to enhance miRNA accuracy, the mechanism by which HYL1 selects the DCL1-targeted cleavage sites in pri-miRNA has remained unknown. By mutagenesis of HYL1 and analysis of in vivo pri-miRNA processing, we investigated the role of HYL1 in pri-miRNA cleavage. HYL1 forms homodimers in which the residues Gly147 and Leu165 in the dsRBD2 domain are shown to be critical. Disruption of HYL1 homodimerization causes incorrect cleavage at sites in pri-miRNA without interrupting the interaction of HYL1 with DCL1 and accumulation of pri-miRNAs in HYL1/pri-miRNA complexes, leading to a reduction in the efficiency and accuracy of miRNAs that results in strong mutant phenotypes of the plants. HYL1 homodimers may function as a molecular anchor for DCL1 to cleave at a distance from the ssRNA–dsRNA junction in pri-miRNA. These results suggest that HYL1 ensures the correct selection of pri-miRNA cleavage sites through homodimerization and thus contributes to gene silencing and plant development.
Collapse
Affiliation(s)
- Xi Yang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenqing Ren
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiuxia Zhao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Feijie Wu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|