1
|
Galindo-Trigo S, Bågman AM, Ishida T, Sawa S, Brady SM, Butenko MA. Dissection of the IDA promoter identifies WRKY transcription factors as abscission regulators in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2417-2434. [PMID: 38294133 PMCID: PMC11016851 DOI: 10.1093/jxb/erae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Plants shed organs such as leaves, petals, or fruits through the process of abscission. Monitoring cues such as age, resource availability, and biotic and abiotic stresses allow plants to abscise organs in a timely manner. How these signals are integrated into the molecular pathways that drive abscission is largely unknown. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) gene is one of the main drivers of floral organ abscission in Arabidopsis and is known to transcriptionally respond to most abscission-regulating cues. By interrogating the IDA promoter in silico and in vitro, we identified transcription factors that could potentially modulate IDA expression. We probed the importance of ERF- and WRKY-binding sites for IDA expression during floral organ abscission, with WRKYs being of special relevance to mediate IDA up-regulation in response to biotic stress in tissues destined for separation. We further characterized WRKY57 as a positive regulator of IDA and IDA-like gene expression in abscission zones. Our findings highlight the promise of promoter element-targeted approaches to modulate the responsiveness of the IDA signaling pathway to harness controlled abscission timing for improved crop productivity.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| | - Anne-Maarit Bågman
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Siobhán M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
2
|
Alling R, Galindo-Trigo S. Reproductive defects in the abscission mutant ida-2 are caused by T-DNA-induced genomic rearrangements. PLANT PHYSIOLOGY 2023; 193:2292-2297. [PMID: 37555453 PMCID: PMC10663105 DOI: 10.1093/plphys/kiad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Affiliation(s)
- Renate Alling
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
3
|
Lee J, Chen H, Lee G, Emonet A, Kim S, Shim D, Lee Y. MSD2-mediated ROS metabolism fine-tunes the timing of floral organ abscission in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:2466-2480. [PMID: 35689444 PMCID: PMC9543660 DOI: 10.1111/nph.18303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 06/14/2023]
Abstract
The timely removal of end-of-purpose flowering organs is as essential for reproduction and plant survival as timely flowering. Despite much progress in understanding the molecular mechanisms of floral organ abscission, little is known about how various environmental factors are integrated into developmental programmes that determine the timing of abscission. Here, we investigated whether reactive oxygen species (ROS), mediators of various stress-related signalling pathways, are involved in determining the timing of abscission and, if so, how they are integrated with the developmental pathway in Arabidopsis thaliana. MSD2, encoding a secretory manganese superoxide dismutase, was preferentially expressed in the abscission zone of flowers, and floral organ abscission was accelerated by the accumulation of ROS in msd2 mutants. The expression of the genes encoding the receptor-like kinase HAESA (HAE) and its cognate peptide ligand INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), the key signalling components of abscission, was accelerated in msd2 mutants, suggesting that MSD2 acts upstream of IDA-HAE. Further transcriptome and pharmacological analyses revealed that abscisic acid and nitric oxide facilitate abscission by regulating the expression of IDA and HAE during MSD2-mediated signalling. These results suggest that MSD2-dependent ROS metabolism is an important regulatory point integrating environmental stimuli into the developmental programme leading to abscission.
Collapse
Affiliation(s)
- Jinsu Lee
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Korea
- Research Centre for Plant PlasticitySeoul National UniversitySeoul08826Korea
| | - Huize Chen
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Korea
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response in Shanxi ProvinceShanxi Normal UniversityTaiyuan030000ShanxiChina
| | - Gisuk Lee
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Aurélia Emonet
- Department of Plant Molecular BiologyUniversity of Lausanne1015LausanneSwitzerland
| | - Sang‐Gyu Kim
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Donghwan Shim
- Department of Biological SciencesChungnam National UniversityDaejeon34134Korea
| | - Yuree Lee
- Research Centre for Plant PlasticitySeoul National UniversitySeoul08826Korea
- School of Biological SciencesSeoul National UniversitySeoul08826Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoul08826Korea
| |
Collapse
|
4
|
Guo C, Li X, Zhang Z, Wang Q, Zhang Z, Wen L, Liu C, Deng Z, Chu Y, Liu T, Guo Y. The INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 Peptide Functions as a Positive Modulator of Leaf Senescence in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:909378. [PMID: 35845701 PMCID: PMC9280484 DOI: 10.3389/fpls.2022.909378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is a highly coordinated process and has a significant impact on agriculture. Plant peptides are known to act as important cell-to-cell communication signals that are involved in multiple biological processes such as development and stress responses. However, very limited number of peptides has been reported to be associated with leaf senescence. Here, we report the characterization of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 (IDL6) peptide as a regulator of leaf senescence. The expression of IDL6 was up-regulated in senescing leaves. Exogenous application of synthetic IDL6 peptides accelerated the process of leaf senescence. The idl6 mutant plants showed delayed natural leaf senescence as well as senescence included by darkness, indicating a regulatory role of IDL6 peptides in leaf senescence. The role of IDL6 as a positive regulator of leaf senescence was further supported by the results of overexpression analysis and complementation test. Transcriptome analysis revealed differential expression of phytohormone-responsive genes in idl6 mutant plants. Further analysis indicated that altered expression of IDL6 led to changes in leaf senescence phenotypes induced by ABA and ethylene treatments. The results from this study suggest that the IDL6 peptide positively regulates leaf senescence in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Cun Guo
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Zenglin Zhang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Qi Wang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Zhenbiao Zhang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lichao Wen
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- QuJing Tobacco Company, Qujing, China
| | - Zhichao Deng
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yumeng Chu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Tao Liu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Guo
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| |
Collapse
|
5
|
Ma X, Li C, Yuan Y, Zhao M, Li J. Xyloglucan endotransglucosylase/hydrolase genes LcXTH4/7/19 are involved in fruitlet abscission and are activated by LcEIL2/3 in litchi. PHYSIOLOGIA PLANTARUM 2021; 173:1136-1146. [PMID: 34302699 DOI: 10.1111/ppl.13509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Organ abscission in plants requires the hydrolysis of cell wall components, mainly including celluloses, pectins, and xyloglucans. However, how the genes that encode those hydrolytic enzymes are regulated and their function in abscission remains unclear. Previously we revealed that two cellulase genes LcCEL2/8 and two polygalacturonase genes LcPG1/2 were responsible for the degradation of celluloses and pectins, respectively, during fruitlet abscission in litchi. Here, we further identified three xyloglucan endotransglucosylase/hydrolase genes (LcXTH4, LcXTH7, LcXTH19) that are also involved in this process. Nineteen LcXTHs, named LcXTH1-19, were identified in the litchi genome. Transcriptome data and qRT-PCR confirmed that LcXTH4/7/19 were significantly induced at the abscission zone (AZ) during fruitlet abscission in litchi. The GUS reporter driven by each promoter of LcXTH4/7/19 was specifically expressed at the floral abscission zone of Arabidopsis, and importantly ectopic expression of LcXTH19 in Arabidopsis resulted in precocious floral organ abscission. Moreover, electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter analysis showed that the expression of LcXTH4/7/19 could be directly activated by two ETHYLENE INSENSITIVE 3-like (EIL) transcription factors LcEIL2/3. Collectively, we propose that LcXTH4/7/19 are involved in fruitlet abscission, and LcEIL2/3-mediated transcriptional regulation of diverse cell wall hydrolytic genes is responsible for this process in litchi.
Collapse
Affiliation(s)
- Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ye Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Guo C, Wang Q, Li Z, Sun J, Zhang Z, Li X, Guo Y. Bioinformatics and Expression Analysis of IDA-Like Genes Reveal Their Potential Functions in Flower Abscission and Stress Response in Tobacco ( Nicotiana tabacum L.). Front Genet 2021; 12:670794. [PMID: 33986773 PMCID: PMC8110903 DOI: 10.3389/fgene.2021.670794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/04/2022] Open
Abstract
The inflorescence deficient in abscission-like (IDL) genes have been shown to play critical roles in floral organ abscission, lateral root formation and various stress responses in Arabidopsis. The IDL gene family has been characterized in a number of plant species, while limited information is available about IDL genes of tobacco. In the current study, 15 NtIDL members were identified in the tobacco genome, and were classified into six groups together with IDL members from other species. Evolution analysis suggested that the NtIDL members form group VI might have originated from duplication events. Notably, NtIDL06 shared high similarities with AtIDA in the EPIP sequence, and its encoding gene was highly expressed in the abscission zone of flowers at late developmental stages, implying that NtIDL06 might regulate tobacco flower abscission. In addition, the results from cis-elements analysis of promoters and expression after stress treatments suggested that NtIDL members might be involved in various stress responses of tobacco. The results from this study provide information for further functional analysis related to flower abscission and stress responses of NtIDL genes.
Collapse
Affiliation(s)
- Cun Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinhao Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
7
|
Wang R, Li R, Cheng L, Wang X, Fu X, Dong X, Qi M, Jiang C, Xu T, Li T. SlERF52 regulates SlTIP1;1 expression to accelerate tomato pedicel abscission. PLANT PHYSIOLOGY 2021; 185:1829-1846. [PMID: 33638643 PMCID: PMC8133580 DOI: 10.1093/plphys/kiab026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 05/05/2023]
Abstract
Abscission of plant organs is induced by developmental signals and diverse environmental stimuli and involves multiple regulatory networks, including biotic or abiotic stress-impaired auxin flux in the abscission zone (AZ). Depletion of auxin activates AZ ethylene (ETH) production and triggers acceleration of abscission, a process that requires hydrogen peroxide (H2O2). However, the interaction between these networks and the underlying mechanisms that control abscission are poorly understood. Here, we found that expression of tonoplast intrinsic proteins, which belong to the aquaporin (AQP) family in the AZ was important for tomato (Solanum lycopersicum) pedicel abscission. Liquid chromatography-tandem mass spectrometry and in situ hybridization revealed that SlTIP1;1 was most abundant and specifically present in the tomato pedicel AZ. SlTIP1;1 localized in the plasma membrane and tonoplast. Knockout of SlTIP1;1 resulted in delayed abscission, whereas overexpression of SlTIP1;1 accelerated abscission. Further analysis indicated that SlTIP1;1 mediated abscission via gating of cytoplasmic H2O2 concentrations and osmotic water permeability (Pf). Elevated cytoplasmic levels of H2O2 caused a suppressed auxin signal in the early abscission stage and enhanced ETH production during abscission. Furthermore, we found that increasing Pf was required to enhance the turgor pressure to supply the break force for AZ cell separation. Moreover, we observed that SlERF52 bound directly to the SlTIP1;1 promoter to regulate its expression, demonstrating a positive loop in which cytoplasmic H2O2 activates ETH production, which activates SlERF52. This, in turn, induces SlTIP1;1, which leads to elevated cytoplasmic H2O2 and water influx.
Collapse
Affiliation(s)
- Rong Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Xiaoyang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Xin Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Xiufen Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Caizhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture Research Service, California, USA
- Department of Plant Sciences, University of California, California, USA
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Author for communication:
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
8
|
Characterization of Two Ethephon-Induced IDA-Like Genes from Mango, and Elucidation of Their Involvement in Regulating Organ Abscission. Genes (Basel) 2021; 12:genes12030439. [PMID: 33808710 PMCID: PMC8003476 DOI: 10.3390/genes12030439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
In mango (Mangifera indica L.), fruitlet abscission limits productivity. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide acts as a key component controlling abscission events in Arabidopsis. IDA-like peptides may assume similar roles in fruit trees. In this study, we isolated two mango IDA-like encoding-genes, MiIDA1 and MiIDA2. We used mango fruitlet-bearing explants and fruitlet-bearing trees, in which fruitlets abscission was induced using ethephon. We monitored the expression profiles of the two MiIDA-like genes in control and treated fruitlet abscission zones (AZs). In both systems, qRT-PCR showed that, within 24 h, both MiIDA-like genes were induced by ethephon, and that changes in their expression profiles were associated with upregulation of different ethylene signaling-related and cell-wall modifying genes. Furthermore, ectopic expression of both genes in Arabidopsis promoted floral-organ abscission, and was accompanied by an early increase in the cytosolic pH of floral AZ cells-a phenomenon known to be linked with abscission, and by activation of cell separation in vestigial AZs. Finally, overexpression of both genes in an Atida mutant restored its abscission ability. Our results suggest roles for MiIDA1 and MiIDA2 in affecting mango fruitlet abscission. Based on our results, we propose new possible modes of action for IDA-like proteins in regulating organ abscission.
Collapse
|
9
|
Ventimilla D, Domingo C, González-Ibeas D, Talon M, Tadeo FR. Differential expression of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like genes in Nicotiana benthamiana during corolla abscission, stem growth and water stress. BMC PLANT BIOLOGY 2020; 20:34. [PMID: 31959115 PMCID: PMC6971993 DOI: 10.1186/s12870-020-2250-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/14/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like signaling peptides and the associated HAE (HAESA)-like family of receptor kinases were originally reported in the model plant Arabidopsis thaliana (Arabidopsis) to be deeply involved in the regulation of abscission. Actually, IDA peptides, as cell-to-cell communication elements, appear to be implicated in many developmental processes that rely on cell separation events, and even in the responses to abiotic stresses. However, the knowledge related to the molecular machinery regulating abscission in economically important crops is scarce. In this work, we determined the conservation and phylogeny of the IDA-like and HAE-like gene families in relevant species of the Solanaceae family and analyzed the expression of these genes in the allopolyploid Nicotiana benthamiana, in order to identify members involved in abscission, stem growth and in the response to drought conditions. RESULTS The phylogenetic relationships among the IDA-like members of the Solanaceae studied, grouped the two pairs of NbenIDA1 and NbenIDA2 protein homeologs with the Arabidopsis prepropeptides related to abscission. Analysis of promoter regions searching for regulatory elements showed that these two pairs of homeologs contained both hormonal and drought response elements, although NbenIDA2A lacked the hormonal regulatory elements. Expression analyses showed that the pair of NbenIDA1 homeologs were upregulated during corolla abscission. NbenIDA1 and NbenIDA2 pairs showed tissue differential expression under water stress conditions, since NbenIDA1 homeologs were highly expressed in stressed leaves while NbenIDA2 homeologs, especially NbenIDA2B, were highly expressed in stressed roots. In non-stressed active growing plants, nodes and internodes were the tissues with the highest expression levels of all members of the IDA-like family and their putative HAE-like receptors. CONCLUSION Our results suggest that the pair of NbenIDA1 homeologs are involved in the natural process of corolla abscission while both pairs of NbenIDA1 and NbenIDA2 homeologs are implicated in the response to water stress. The data also suggest that IDA peptides may be important during stem growth and development. These results provide additional evidence that the functional module formed by IDA peptides and its receptor kinases, as defined in Arabidopsis, may also be conserved in Solanaceae.
Collapse
Affiliation(s)
- Daniel Ventimilla
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| | - Concha Domingo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| | - Daniel González-Ibeas
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| | - Francisco R. Tadeo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| |
Collapse
|
10
|
Ventimilla D, Domingo C, González-Ibeas D, Talon M, Tadeo FR. Differential expression of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like genes in Nicotiana benthamiana during corolla abscission, stem growth and water stress. BMC PLANT BIOLOGY 2020; 20:34. [PMID: 31959115 DOI: 10.1186/s12870-020-2250-2258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/14/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like signaling peptides and the associated HAE (HAESA)-like family of receptor kinases were originally reported in the model plant Arabidopsis thaliana (Arabidopsis) to be deeply involved in the regulation of abscission. Actually, IDA peptides, as cell-to-cell communication elements, appear to be implicated in many developmental processes that rely on cell separation events, and even in the responses to abiotic stresses. However, the knowledge related to the molecular machinery regulating abscission in economically important crops is scarce. In this work, we determined the conservation and phylogeny of the IDA-like and HAE-like gene families in relevant species of the Solanaceae family and analyzed the expression of these genes in the allopolyploid Nicotiana benthamiana, in order to identify members involved in abscission, stem growth and in the response to drought conditions. RESULTS The phylogenetic relationships among the IDA-like members of the Solanaceae studied, grouped the two pairs of NbenIDA1 and NbenIDA2 protein homeologs with the Arabidopsis prepropeptides related to abscission. Analysis of promoter regions searching for regulatory elements showed that these two pairs of homeologs contained both hormonal and drought response elements, although NbenIDA2A lacked the hormonal regulatory elements. Expression analyses showed that the pair of NbenIDA1 homeologs were upregulated during corolla abscission. NbenIDA1 and NbenIDA2 pairs showed tissue differential expression under water stress conditions, since NbenIDA1 homeologs were highly expressed in stressed leaves while NbenIDA2 homeologs, especially NbenIDA2B, were highly expressed in stressed roots. In non-stressed active growing plants, nodes and internodes were the tissues with the highest expression levels of all members of the IDA-like family and their putative HAE-like receptors. CONCLUSION Our results suggest that the pair of NbenIDA1 homeologs are involved in the natural process of corolla abscission while both pairs of NbenIDA1 and NbenIDA2 homeologs are implicated in the response to water stress. The data also suggest that IDA peptides may be important during stem growth and development. These results provide additional evidence that the functional module formed by IDA peptides and its receptor kinases, as defined in Arabidopsis, may also be conserved in Solanaceae.
Collapse
Affiliation(s)
- Daniel Ventimilla
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain
| | - Concha Domingo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain
| | - Daniel González-Ibeas
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain
| | - Francisco R Tadeo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain.
| |
Collapse
|
11
|
Lee Y. More than cell wall hydrolysis: orchestration of cellular dynamics for organ separation. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:37-43. [PMID: 31030063 DOI: 10.1016/j.pbi.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 05/22/2023]
Abstract
Plants' ability to cope with the ever-changing environment is one of the hallmarks that distinguishes plants from animals. Plants stationed in one place have evolved to remodel their architecture in response to the environmental factors by continuously creating new organ systems and removing existing organs through abscission. Herein, I provide insights into developmental plasticity of plants, focusing on the exit strategy (abscission). When plants start developing organs, the elimination tactics are also established in the form of abscission zones (AZ), that is, specialized cell layers for organ separation. Herein, recent advances in understanding the spatial regulatory mechanism of AZ in terms of cellular dynamics, coordination, and reconfiguration of the physical barrier of the cell wall to achieve precise abscission are discussed.
Collapse
Affiliation(s)
- Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Kućko A, Smoliński D, Wilmowicz E, Florkiewicz A, de Dios Alché J. Spatio-temporal localization of LlBOP following early events of floral abscission in yellow lupine. PROTOPLASMA 2019; 256:1173-1183. [PMID: 30993471 PMCID: PMC6713700 DOI: 10.1007/s00709-019-01365-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/11/2019] [Indexed: 05/06/2023]
Abstract
The phenomenon of excessive flower abscission in yellow lupine is a process of substantial interest to the agricultural industries, because it substantially affects the yield. The aim of this work was to provide an analysis of the changes taking place precisely in the abscission zone (AZ) during early stages of flower separation. We put particular emphasis on mRNA accumulation of BOP (BLADE ON PETIOLE) gene encoding a transcriptional factor so far considered to be essential for AZ formation. Our results show that the AZ displays a particular transcriptional network active in the specific stages of its function, as reflected by the expression profile of LlBOP. Noteworthy, spatio-temporal LlBOP transcript accumulation in the elements of pedicel vascular tissue reveals divergent regulatory mechanism of its activity. We have also found that AZ cells accumulate reactive oxidative species following abscission and what is more, become active due to the increasing amount of uridine-rich small nuclear RNA, accompanied by poly(A) mRNA intensive synthesis. Our paper is a novel report for BOP involvement in the AZ functioning in relation to the whole transcriptional activity of AZ and overall discussed regarding BOP role as a potential mobile key regulator of abscission.
Collapse
Affiliation(s)
- Agata Kućko
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Toruń, Poland
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 166 Street, 02-787, Warsaw, Poland
| | - Dariusz Smoliński
- Department of Cell Biology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wileńska Street, 87-100, Toruń, Poland
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Toruń, Poland.
| | - Aleksandra Florkiewicz
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Toruń, Poland
| | - Juan de Dios Alché
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 1 Profesor Albareda Street, 18008, Granada, Spain
| |
Collapse
|
13
|
Shi CL, Alling RM, Hammerstad M, Aalen RB. Control of Organ Abscission and Other Cell Separation Processes by Evolutionary Conserved Peptide Signaling. PLANTS 2019; 8:plants8070225. [PMID: 31311120 PMCID: PMC6681299 DOI: 10.3390/plants8070225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023]
Abstract
Plants both generate and shed organs throughout their lifetime. Cell separation is in function during opening of anthers to release pollen; floral organs are detached after pollination when they have served their purpose; unfertilized flowers are shed; fruits and seeds are abscised from the mother plant to secure the propagation of new generations. Organ abscission takes place in specialized abscission zone (AZ) cells where the middle lamella between adjacent cell files is broken down. The plant hormone ethylene has a well-documented promoting effect on abscission, but mutation in ethylene receptor genes in Arabidopsis thaliana only delays the abscission process. Microarray and RNA sequencing have identified a large number of genes differentially expressed in the AZs, especially genes encoding enzymes involved in cell wall remodelling and disassembly. Mutations in such genes rarely give a phenotype, most likely due to functional redundancy. In contrast, mutation in the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) blocks floral organ abscission in Arabidopsis. IDA encodes a small peptide that signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAE-LIKE2 (HSL2) to control floral organ abscission and facilitate lateral root emergence. Untimely abscission is a severe problem in many crops, and in a more applied perspective, it is of interest to investigate whether IDA-HAE/HSL2 is involved in other cell separation processes and other species. Genes encoding IDA and HSL2 orthologues have been identified in all orders of flowering plants. Angiosperms have had enormous success, with species adapted to all kinds of environments, adaptations which include variation with respect to which organs they shed. Here we review, from an evolutionary perspective, the properties of the IDA-HAE/HSL2 signaling module and the evidence for its hypothesized involvement in various cell separation processes in angiosperms.
Collapse
Affiliation(s)
- Chun-Lin Shi
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Renate Marie Alling
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Marta Hammerstad
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Reidunn B Aalen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway.
| |
Collapse
|
14
|
Zhao Y, Xie P, Guan P, Wang Y, Li Y, Yu K, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Xie C, Peng H. Btr1-A Induces Grain Shattering and Affects Spike Morphology and Yield-Related Traits in Wheat. PLANT & CELL PHYSIOLOGY 2019; 60:1342-1353. [PMID: 30994893 DOI: 10.1093/pcp/pcz050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Spike brittleness represents an important domestication trait in crops. Although the brittle rachis of wild wheat was cloned, however, the molecular mechanism underlying spike brittleness is yet to be elucidated. Here, we identified a single dominant brittle rachis gene Br-Ab on chromosome arm 3AbS using an F2 population of diploid wheat and designated Btr1-Ab. Sequence analysis of the Btr1-A gene in 40 diploid wheat accessions, 80 tetraploid wheat accessions and 38 hexaploid wheat accessions showed that two independent mutations (Ala119Thr for diploid and Gly97* for polyploids) in the Btr1-A coding region resulting in the nonbrittle rachis allele. Overexpression of Btr1-Ab in nonbrittle hexaploid wheat led to brittle rachis in transgenic plants. RNA-Seq analysis revealed that Btr1-A represses the expression of cell wall biosynthesis genes during wheat rachis development. In addition, we found that Btr1-A can modify spike morphology and reduce threshability, grain size and thousand grain weight in transgenic wheat. These results demonstrated that Btr1-A reduces cell wall synthesis in rachis nodes, resulting in natural spikelet shattering, and that the transition from Btr1-A to btr1-A during wheat domestication had profound effects on evolution of spike morphology and yield-related traits.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
- These authors contributed equally to this work
| | - Peng Xie
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
- These authors contributed equally to this work
| | - Panfeng Guan
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
- These authors contributed equally to this work
| | - Yongfa Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Yinghui Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Kuohai Yu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Chaojie Xie
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
15
|
Meir S, Philosoph-Hadas S, Riov J, Tucker ML, Patterson SE, Roberts JA. Re-evaluation of the ethylene-dependent and -independent pathways in the regulation of floral and organ abscission. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1461-1467. [PMID: 30726930 DOI: 10.1093/jxb/erz038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/15/2019] [Indexed: 05/25/2023]
Abstract
Abscission is a developmental process with important implications for agricultural practices. Ethylene has long been considered as a key regulator of the abscission process. The existence of an ethylene-independent abscission pathway, controlled by the complex of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide and the HAESA (HAE) and HAESA-like2 (HSL2) kinases, has been proposed, based mainly on observations that organ abscission in ethylene-insensitive mutants was delayed but not inhibited. A recent review on plant organ abscission signaling highlighted the IDA-HAE-HSL2 components as the regulators of organ abscission, while the role of auxin and ethylene in this process was hardly addressed. After a careful analysis of the relevant abscission literature, we propose that the IDA-HAE-HSL2 pathway is essential for the final stages of organ abscission, while ethylene plays a major role in its initiation and progression. We discuss the view that the IDA-HAE-HSL2 pathway is ethylene independent, and present recent evidence showing that ethylene activates the IDA-HAE-HSL2 complex. We conclude that the ability of an organ to abscise is tightly linked to cell turgidity in the abscission zone, and suggest that lack of cell turgidity might contribute to the failure of floral organ abscission in the ida mutants.
Collapse
Affiliation(s)
- Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, Israel
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, Israel
| | - Joseph Riov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mark L Tucker
- Soybean Genomics and Improvement Lab, Agricultural Research Service, United States Department of Agriculture, BARC-West, Beltsville, MD, USA
| | - Sara E Patterson
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy A Roberts
- Office of the Vice-Chancellor, Drake Circus, Plymouth, Devon, UK
| |
Collapse
|
16
|
Quantitative Analysis of Floral Organ Abscission in Arabidopsis Via a Petal Breakstrength Assay. Methods Mol Biol 2019; 1744:81-88. [PMID: 29392657 DOI: 10.1007/978-1-4939-7672-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Petal breakstrength (pBS) is a method to study floral organ abscission by quantitating the force required to pull a petal from the receptacle. However, it is only well established in some labs and used in a subset of abscission studies. Here, we describe the mechanism and operation of the pBS meter, as well as detailed measurement and further data analysis. We show that it is a powerful tool to detect early or delayed floral organ abscission in mutant or transgenic plants, which is not easily detected by phenotypic investigation.
Collapse
|
17
|
Liu C, Zhang C, Fan M, Ma W, Chen M, Cai F, Liu K, Lin F. GmIDL2a and GmIDL4a, Encoding the Inflorescence Deficient in Abscission-Like Protein, Are Involved in Soybean Cell Wall Degradation during Lateral Root Emergence. Int J Mol Sci 2018; 19:E2262. [PMID: 30072588 PMCID: PMC6121880 DOI: 10.3390/ijms19082262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 11/23/2022] Open
Abstract
The number of lateral roots (LRs) of a plant determines the efficiency of water and nutrient uptake. Soybean is a typical taproot crop which is deficient in LRs. The number of LRs is therefore an important agronomic trait in soybean breeding. It is reported that the inflorescence deficient in abscission (IDA) protein plays an important role in the emergence of Arabidopsis LRs. Previously, the genes which encode IDA-like (IDL) proteins have been identified in the soybean genome. However, the functions of these genes in LR development are unknown. Therefore, it is of great value to investigate the function of IDL genes in soybean. In the present study, the functions of two root-specific expressed IDL genes, GmIDL2a and GmIDL4a, are investigated. The expressions of GmIDL2a and GmIDL4a, induced by auxin, are located in the overlaying tissue, where LRs are initiated. Overexpression of GmIDL2a and GmIDL4a increases the LR densities of the primary roots, but not in the elder root. Abnormal cell layer separation has also been observed in GmIDL2a- and GmIDL4a-overexpressing roots. These results suggest that the overlaying tissues of GmIDL2a- and GmIDL4a-overexpressing roots are looser and are suitable for the emergence of the LR primordium. Further investigation shows that the expression of some of the cell wall remodeling (CWR) genes, such as xyloglucan endotransglucosylase/hydrolases, expansins, and polygalacturonases, are increased when GmIDL2a and GmIDL4a are overexpressed in hairy roots. Here, we conclude that GmIDL2a and GmIDL4a function in LR emergence through regulating soybean CWR gene expression.
Collapse
Affiliation(s)
- Chen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Chunyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Mingxia Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Wenjuan Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Meiming Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Fengchun Cai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Kuichen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Feng Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| |
Collapse
|
18
|
Naramoto S, Kyozuka J. ARF GTPase machinery at the plasma membrane regulates auxin transport-mediated plant growth. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:155-159. [PMID: 31819717 PMCID: PMC6879391 DOI: 10.5511/plantbiotechnology.18.0312a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 05/23/2023]
Abstract
VAN3 is a plant ACAP-type ADP-ribosylation factor-GTPase activating protein (ARF-GAP) that regulates auxin transport-mediated plant morphogenesis such as continuous venation and lateral root development in Arabidopsis. Previous studies suggested that VAN3 localizes at the plasma membrane (PM) and intracellular structures. However, the role of PM localization in mediating the van3 mutant phenotype is not clear. Here we performed subcellular localization analysis of VAN3 and its regulators CVP2 and VAB to determine their endogenous functions. We found that GFP-tagged CVP2 and VAB preferentially localize at the PM in stably transformed plants. We determined that transgenic plants with lower expression levels of GFP- or mRFP-tagged VAN3 displayed PM localization, which was sufficient to rescue the van3 mutant. Functional VAN3-mRFP and VAB-GFP colocalized at PMs. The van3 mutant phenotype was suppressed by mutation of VAN7/GNOM, which encodes an ARF-GEF that localizes at the PM and Golgi apparatus. These combined results suggest that ARF-GTPase machinery at the PM regulates auxin transport-mediated plant growth and development.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
19
|
Patharkar OR, Gassmann W, Walker JC. Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves. PLoS Genet 2017; 13:e1007132. [PMID: 29253890 PMCID: PMC5749873 DOI: 10.1371/journal.pgen.1007132] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/02/2018] [Accepted: 11/28/2017] [Indexed: 01/04/2023] Open
Abstract
Plants utilize an innate immune system to protect themselves from disease. While many molecular components of plant innate immunity resemble the innate immunity of animals, plants also have evolved a number of truly unique defense mechanisms, particularly at the physiological level. Plant's flexible developmental program allows them the unique ability to simply produce new organs as needed, affording them the ability to replace damaged organs. Here we develop a system to study pathogen-triggered leaf abscission in Arabidopsis. Cauline leaves infected with the bacterial pathogen Pseudomonas syringae abscise as part of the defense mechanism. Pseudomonas syringae lacking a functional type III secretion system fail to elicit an abscission response, suggesting that the abscission response is a novel form of immunity triggered by effectors. HAESA/HAESA-like 2, INFLORESCENCE DEFICIENT IN ABSCISSION, and NEVERSHED are all required for pathogen-triggered abscission to occur. Additionally phytoalexin deficient 4, enhanced disease susceptibility 1, salicylic acid induction-deficient 2, and senescence-associated gene 101 plants with mutations in genes necessary for bacterial defense and salicylic acid signaling, and NahG transgenic plants with low levels of salicylic acid fail to abscise cauline leaves normally. Bacteria that physically contact abscission zones trigger a strong abscission response; however, long-distance signals are also sent from distal infected tissue to the abscission zone, alerting the abscission zone of looming danger. We propose a threshold model regulating cauline leaf defense where minor infections are handled by limiting bacterial growth, but when an infection is deemed out of control, cauline leaves are shed. Together with previous results, our findings suggest that salicylic acid may regulate both pathogen- and drought-triggered leaf abscission.
Collapse
Affiliation(s)
- O. Rahul Patharkar
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States of America
| | - Walter Gassmann
- Division of Plant Sciences, CS Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States of America
| | - John C. Walker
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
20
|
Merelo P, Agustí J, Arbona V, Costa ML, Estornell LH, Gómez-Cadenas A, Coimbra S, Gómez MD, Pérez-Amador MA, Domingo C, Talón M, Tadeo FR. Cell Wall Remodeling in Abscission Zone Cells during Ethylene-Promoted Fruit Abscission in Citrus. FRONTIERS IN PLANT SCIENCE 2017; 8:126. [PMID: 28228766 PMCID: PMC5296326 DOI: 10.3389/fpls.2017.00126] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital relevance to control production. To identify genes preferentially expressed within the citrus fruit abscission zone (AZ-C), we performed a comparative transcriptomics assay at the cell type resolution level between the AZ-C and adjacent fruit rind cells (non-abscising tissue) during ethylene-promoted abscission. Our strategy combined laser microdissection with microarray analysis. Cell wall modification-related gene families displayed prominent representation in the AZ-C. Phylogenetic analyses of such gene families revealed a link between phylogenetic proximity and expression pattern during abscission suggesting highly conserved roles for specific members of these families in abscission. Our transcriptomic data was validated with (and strongly supported by) a parallel approach consisting on anatomical, histochemical and biochemical analyses on the AZ-C during fruit abscission. Our work identifies genes potentially involved in organ abscission and provides relevant data for future biotechnology approaches aimed at controlling such crucial process for citrus yield.
Collapse
Affiliation(s)
- Paz Merelo
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Javier Agustí
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Vicent Arbona
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Mário L. Costa
- Departamento de Biologia, Faculdade de Ciências, Universidade do PortoPorto, Portugal
| | | | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume ICastelló de la Plana, Spain
| | - Silvia Coimbra
- Departamento de Biologia, Faculdade de Ciências, Universidade do PortoPorto, Portugal
| | - María D. Gómez
- Departamento de Desarrollo y Acción Hormonal en Plantas, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Miguel A. Pérez-Amador
- Departamento de Desarrollo y Acción Hormonal en Plantas, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Concha Domingo
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Manuel Talón
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Francisco R. Tadeo
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
- *Correspondence: Francisco R. Tadeo
| |
Collapse
|
21
|
Ying P, Li C, Liu X, Xia R, Zhao M, Li J. Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis. Sci Rep 2016; 6:37135. [PMID: 27845425 PMCID: PMC5109030 DOI: 10.1038/srep37135] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023] Open
Abstract
Unexpected abscission of flowers or fruits is a major limiting factor for crop productivity. Key genes controlling abscission in plants, especially in popular fruit trees, are largely unknown. Here we identified a litchi (Litchi chinensis Sonn.) IDA-like (INFLORESCENCE DEFICIENT IN ABSCISSION-like) gene LcIDL1 as a potential key regulator of abscission. LcIDL1 encodes a peptide that shows the closest homology to Arabidopsis IDA, and is localized in cell membrane and cytoplasm. Real-time PCR analysis showed that the expression level of LcIDL1 accumulated gradually following flower abscission, and it was obviously induced by fruit abscission-promoting treatments. Transgenic plants expressing LcIDL1 in Arabidopsis revealed a role of LcIDL1 similar to IDA in promoting floral organ abscission. Moreover, ectopic expression of LcIDL1 in Arabidopsis activated the expression of abscission-related genes. Taken together, our findings provide evidence that LcIDL1 may act as a key regulator in control of abscission.
Collapse
Affiliation(s)
- Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
22
|
Groner WD, Christy ME, Kreiner CM, Liljegren SJ. Allele-Specific Interactions between CAST AWAY and NEVERSHED Control Abscission in Arabidopsis Flowers. FRONTIERS IN PLANT SCIENCE 2016; 7:1588. [PMID: 27818674 PMCID: PMC5073242 DOI: 10.3389/fpls.2016.01588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
An advantage of analyzing abscission in genetically tractable model plants is the ability to make use of classic genetic tools such as suppression analysis. We have investigated the regulation of organ abscission by carrying out suppression analysis in Arabidopsis flowers. Plants carrying mutations in the NEVERSHED (NEV) gene, which encodes an ADP-ribosylation factor GTPase-activating protein, retain their outer floral organs after fertilization. Mutant alleles of CAST AWAY (CST), which encodes a receptor-like cytoplasmic kinase, were found to restore organ abscission in nev flowers in an allele-specific manner. To further explore the basis of the interactions between CST and NEV, we tested whether the site of a nev mutation is predictive of its ability to be suppressed. Our results suggest instead that the strength of a nev allele influences whether organ abscission can be rescued by a specific allele of CST.
Collapse
|
23
|
Wang GQ, Wei PC, Tan F, Yu M, Zhang XY, Chen QJ, Wang XC. The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:863. [PMID: 27379143 PMCID: PMC4911407 DOI: 10.3389/fpls.2016.00863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/01/2016] [Indexed: 05/20/2023]
Abstract
Organ abscission is an important plant developmental process that occurs in response to environmental stress or pathogens. In Arabidopsis, ligand signals, such as ethylene or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), can regulate organ abscission. Previously, we reported that overexpression of AtDOF4.7, a transcription factor gene, directly suppresses the expression of the abscission-related gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 2 (ADPG2), resulting in a deficiency of floral organ abscission. However, the relationship between AtDOF4.7 and abscission pathways still needs to be investigated. In this study, we showed that ethylene regulates the expression of AtDOF4.7, and the peptide ligand, IDA negatively regulates AtDOF4.7 at the transcriptional level. Genetic evidence indicates that AtDOF4.7 and IDA are involved in a common pathway, and a MAPK cascade can phosphorylate AtDOF4.7 in vitro. Further in vivo data suggest that AtDOF4.7 protein levels may be regulated by this phosphorylation. Collectively, our results indicate that ethylene regulates AtDOF4.7 that is involved in the IDA-mediated floral organ abscission pathway.
Collapse
Affiliation(s)
- Gao-Qi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Peng-Cheng Wei
- Rice Research Institution, AnHui Academy of Agricultural SciencesHefei, China
| | - Feng Tan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Man Yu
- Department of Food and Biological Technology, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China
| | - Xiao-Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Xue-Chen Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
- *Correspondence: Xue-Chen Wang,
| |
Collapse
|
24
|
Stø IM, Orr RJS, Fooyontphanich K, Jin X, Knutsen JMB, Fischer U, Tranbarger TJ, Nordal I, Aalen RB. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2. FRONTIERS IN PLANT SCIENCE 2015; 6:931. [PMID: 26579174 PMCID: PMC4627355 DOI: 10.3389/fpls.2015.00931] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/15/2015] [Indexed: 11/13/2022]
Abstract
The peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2), controls different cell separation events in Arabidopsis thaliana. We hypothesize the involvement of this signaling module in abscission processes in other plant species even though they may shed other organs than A. thaliana. As the first step toward testing this hypothesis from an evolutionarily perspective we have identified genes encoding putative orthologs of IDA and its receptors by BLAST searches of publically available protein, nucleotide and genome databases for angiosperms. Genes encoding IDA or IDA-LIKE (IDL) peptides and HSL proteins were found in all investigated species, which were selected as to represent each angiosperm order with available genomic sequences. The 12 amino acids representing the bioactive peptide in A. thaliana have virtually been unchanged throughout the evolution of the angiosperms; however, the number of IDL and HSL genes varies between different orders and species. The phylogenetic analyses suggest that IDA, HSL2, and the related HSL1 gene, were present in the species that gave rise to the angiosperms. HAE has arisen from HSL1 after a genome duplication that took place after the monocot-eudicots split. HSL1 has also independently been duplicated in the monocots, while HSL2 has been lost in gingers (Zingiberales) and grasses (Poales). IDA has been duplicated in eudicots to give rise to functionally divergent IDL peptides. We postulate that the high number of IDL homologs present in the core eudicots is a result of multiple whole genome duplications (WGD). We substantiate the involvement of IDA and HAE/HSL2 homologs in abscission by providing gene expression data of different organ separation events from various species.
Collapse
Affiliation(s)
- Ida M Stø
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo Oslo, Norway
| | - Russell J S Orr
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo Oslo, Norway
| | - Kim Fooyontphanich
- UMR Diversité et Adaptation et Développement des Plantes, Institut de Recherche pour le Développement Montpellier, France
| | - Xu Jin
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences Umeå, Sweden
| | - Jonfinn M B Knutsen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo Oslo, Norway
| | - Urs Fischer
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences Umeå, Sweden
| | - Timothy J Tranbarger
- UMR Diversité et Adaptation et Développement des Plantes, Institut de Recherche pour le Développement Montpellier, France
| | - Inger Nordal
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo Oslo, Norway
| | - Reidunn B Aalen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo Oslo, Norway
| |
Collapse
|
25
|
Ma C, Meir S, Xiao L, Tong J, Liu Q, Reid MS, Jiang CZ. A KNOTTED1-LIKE HOMEOBOX protein regulates abscission in tomato by modulating the auxin pathway. PLANT PHYSIOLOGY 2015; 167:844-53. [PMID: 25560879 PMCID: PMC4348773 DOI: 10.1104/pp.114.253815] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/30/2014] [Indexed: 05/20/2023]
Abstract
A gene encoding a KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) is highly expressed in both leaf and flower abscission zones. Reducing the abundance of transcripts of this gene in tomato (Solanum lycopersicum) by both virus-induced gene silencing and stable transformation with a silencing construct driven by an abscission-specific promoter resulted in a striking retardation of pedicel and petiole abscission. In contrast, Petroselinum, a semidominant KD1 mutant, showed accelerated pedicel and petiole abscission. Complementary DNA microarray and quantitative reverse transcription-polymerase chain reaction analysis indicated that regulation of abscission by KD1 was associated with changed abundance of genes related to auxin transporters and signaling components. Measurement of auxin content and activity of a DR5::β-glucuronidase auxin reporter assay showed that changes in KD1 expression modulated the auxin concentration and response gradient in the abscission zone.
Collapse
Affiliation(s)
- Chao Ma
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| | - Shimon Meir
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| | - Langtao Xiao
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| | - Jianhua Tong
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| | - Qing Liu
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| | - Michael S Reid
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| |
Collapse
|
26
|
Sundaresan S, Philosoph-Hadas S, Riov J, Belausov E, Kochanek B, Tucker ML, Meir S. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1355-68. [PMID: 25504336 PMCID: PMC4339595 DOI: 10.1093/jxb/eru483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H(+)-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression.
Collapse
Affiliation(s)
- Srivignesh Sundaresan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan 5025001, Israel The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan 5025001, Israel
| | - Joseph Riov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Eduard Belausov
- Department of Ornamental Horticulture, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan 5025001, Israel
| | - Betina Kochanek
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan 5025001, Israel
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan 5025001, Israel
| |
Collapse
|
27
|
Kim J, Sundaresan S, Philosoph-Hadas S, Yang R, Meir S, Tucker ML. Examination of the Abscission-Associated Transcriptomes for Soybean, Tomato, and Arabidopsis Highlights the Conserved Biosynthesis of an Extensible Extracellular Matrix and Boundary Layer. FRONTIERS IN PLANT SCIENCE 2015; 6:1109. [PMID: 26697054 PMCID: PMC4678212 DOI: 10.3389/fpls.2015.01109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/23/2015] [Indexed: 05/07/2023]
Abstract
Abscission zone (AZ) development and the progression of abscission (detachment of plant organs) have been roughly separated into four stages: first, AZ differentiation; second, competence to respond to abscission signals; third, activation of abscission; and fourth, formation of a protective layer and post-abscission trans-differentiation. Stage three, activation of abscission, is when changes in the cell wall and extracellular matrix occur to support successful organ separation. Most abscission research has focused on gene expression for enzymes that disassemble the cell wall within the AZ and changes in phytohormones and other signaling events that regulate their expression. Here, transcriptome data for soybean, tomato and Arabidopsis were examined and compared with a focus not only on genes associated with disassembly of the cell wall but also on gene expression linked to the biosynthesis of a new extracellular matrix. AZ-specific up-regulation of genes associated with cell wall disassembly including cellulases (beta-1,4-endoglucanases, CELs), polygalacturonases (PGs), and expansins (EXPs) were much as expected; however, curiously, changes in expression of xyloglucan endotransglucosylase/hydrolases (XTHs) were not AZ-specific in soybean. Unexpectedly, we identified an early increase in the expression of genes underlying the synthesis of a waxy-like cuticle. Based on the expression data, we propose that the early up-regulation of an abundance of small pathogenesis-related (PR) genes is more closely linked to structural changes in the extracellular matrix of separating cells than an enzymatic role in pathogen resistance. Furthermore, these observations led us to propose that, in addition to cell wall loosening enzymes, abscission requires (or is enhanced by) biosynthesis and secretion of small proteins (15-25 kDa) and waxes that form an extensible extracellular matrix and boundary layer on the surface of separating cells. The synthesis of the boundary layer precedes what is typically associated with the post-abscission synthesis of a protective scar over the fracture plane. This modification in the abscission model is discussed in regard to how it influences our interpretation of the role of multiple abscission signals.
Collapse
Affiliation(s)
- Joonyup Kim
- Soybean Genomics and Improvement Lab, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Srivignesh Sundaresan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| | - Ronghui Yang
- Soybean Genomics and Improvement Lab, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| | - Mark L. Tucker
- Soybean Genomics and Improvement Lab, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
- *Correspondence: Mark L. Tucker
| |
Collapse
|
28
|
Aalen RB. Maturing peptides open for communication. JOURNAL OF EXPERIMENTAL BOTANY 2014; 64:5231-5. [PMID: 24259454 DOI: 10.1093/jxb/ert378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Marmiroli N, Maestri E. Plant peptides in defense and signaling. Peptides 2014; 56:30-44. [PMID: 24681437 DOI: 10.1016/j.peptides.2014.03.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
Abstract
This review focuses on plant peptides involved in defense against pathogen infection and those involved in the regulation of growth and development. Defense peptides, defensins, cyclotides and anti-microbial peptides are compared and contrasted. Signaling peptides are classified according to their major sites of activity. Finally, a network approach to creating an interactomic peptide map is described.
Collapse
Affiliation(s)
- Nelson Marmiroli
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, 43124 Parma, Italy.
| | - Elena Maestri
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, 43124 Parma, Italy
| |
Collapse
|
30
|
Kim J. Four shades of detachment: regulation of floral organ abscission. PLANT SIGNALING & BEHAVIOR 2014; 9:e976154. [PMID: 25482787 PMCID: PMC4623469 DOI: 10.4161/15592324.2014.976154] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 05/19/2023]
Abstract
Abscission of floral organs from the main body of a plant is a dynamic process that is developmentally and environmentally regulated. In the past decade, genetic studies in Arabidopsis have identified key signaling components and revealed their interactions in the regulation of floral organ abscission. The phytohormones jasmonic acid (JA) and ethylene play critical roles in flower development and floral organ abscission. These hormones regulate the timing of floral organ abscission both independently and inter-dependently. Although significant progress has been made in understanding abscission signaling, there are still many unanswered questions. These include considering abscission in the context of reproductive development and interplay between hormones embedded in the developmental processes. This review summarizes recent advances in the identification of molecular components in Arabidopsis and discusses their relationship with reproductive development. The emerging roles of hormones in the regulation of floral organ abscission, particularly by JA and ethylene, are examined.
Collapse
Key Words
- AGL15, AGAMOUS-LIKE 15
- AOS/DDE2, ALLENE OXIDE SYNTHASE/DELAYED DEHISCENCE 2
- ARF-GAP, ADP-ribosylation factor-GTPase activating protein
- AZ, abscission zone
- BOP1/2, BLADE ON PETIOLE 1/2
- BTP/POZ, Broad-Complex, Tramtrack, and Bric-a-brac/Pox virus and Zinc finger
- CST, CAST AWAY RECEPTOR-LIKE KINASE
- CTR1, CONSTITUTIVE TRIPLE RESPONSE 1
- DAB4/ COI1, DELAYED ABSCISSION 4/CORONATINE INSENSITIVE 1
- DAD1, DEFECTIVE ANTHER DEHISCENCE 1
- DDE1/OPR3, DELAYED DEHISCENCE 1/OXOPHYTODIENOATE-REDUCTASE 3
- EVR, EVERSHED RECEPTOR-LIKE KINASE
- EXP, EXPANSIN
- FAD7/8/3, FATTY ACID DESATURASE 7/8/3
- FYF, FOREVER YOUNG FLOWER
- HAE/HSL2, HAESA/HAESA-LIKE 2
- IM, inflorescence meristem
- JA, jasmonic acid
- JAZ, JASMONATE-ZIM DOMAIN
- KNAT1, KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 1
- LOX3/4, LIPOXYGENASE 3/4
- LRR, leucine-rich repeat
- MAPK3/6, MAP Kinase 3/6
- MKK4/5, MAP Kinase Kinase 4/5
- NEV, NEVERSHED
- NPR1, NONEXPRESSOR OF PR GENES 1
- PG , POLYGALATURONASE
- PR1, Pathogenesis-related Protein 1
- SERK1, SOMATIC EMBRYO RECEPTOR-LIKE KIASE 1
- TCP4, TEOSINTE BRANCHED/CYCLOIDEA/PCF4
- XTH , XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE
- ein2-1, ethylene insensitive 2-1
- ethylene
- etr1-1, ethylene response1-1
- floral organ abscission
- flower senescence
- ida, inflorescence deficient in abscission
- inflorescence meristem
- jasmonic acid
- reproductive development
Collapse
Affiliation(s)
- Joonyup Kim
- Soybean Genomics and Improvement Laboratory; Agricultural Research Service; USDA; Beltsville, MD USA
- Correspondence to: Joonyup Kim;
| |
Collapse
|
31
|
Gubert CM, Liljegren SJ. HAESA and HAESA-LIKE2 activate organ abscission downstream of NEVERSHED and EVERSHED in Arabidopsis flowers. PLANT SIGNALING & BEHAVIOR 2014; 9:e29115. [PMID: 25763490 PMCID: PMC4203531 DOI: 10.4161/psb.29115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A ligand-receptor module comprised of the peptide inflorescence deficient in abscission (IDA) and the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2) activates organ abscission in Arabidopsis flowers. Another set of receptor-like kinases, including EVERSHED (EVR), restricts the extent of cell separation in abscission zones by potentially altering HAE/HSL2 localization or activity. The NEVERSHED (NEV) ADP-ribosylation factor GTPase-activating protein facilitates the intracellular movement of molecules required for organ abscission and fruit growth. Here we report further analysis of the relationship between NEV-mediated intracellular traffic, EVR activity and IDA-HAE/HSL2 signaling during flower development. Our results support a model in which cell separation is mediated by HAE/HSL2 signaling downstream of NEV and EVR. We discuss the possibility that conserved circuits control organ abscission and modulate fruit growth.
Collapse
|
32
|
Aalen RB, Wildhagen M, Stø IM, Butenko MA. IDA: a peptide ligand regulating cell separation processes in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5253-61. [PMID: 24151306 DOI: 10.1093/jxb/ert338] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In contrast to animals, plants continuously produce new organs, such as leaves, flowers, and lateral roots (LRs), and may shed organs that have served their purpose. In the model plant Arabidopsis thaliana the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) signals through the leucine-rich repeat-receptor-like kinases (LRR-RLKs) HAESA (HAE), and HAESA-LIKE2 (HSL2) to control the abscission of floral organs after pollination. Recent work from other plant species indicates that this signalling system is conserved and could regulate leaf abscission in soybean and tomato. Abscission is a cell separation process involving the breakdown of cell walls between adjacent files of abscission zone (AZ) cells at the base of organs to be shed. The emergence of new lateral root primordia (LRP), initiated deep inside the root under the influence of the phytohormone auxin, is similarly dependent on cell wall dissolution to separate cells in the overlying tissues. It has been shown that this process also requires IDA, HAE, and HSL2. The receptors are redundant in function during floral organ abscission, but during lateral root emergence (LRE) they are differentially involved in regulating cell wall remodelling (CWR) genes. An overview is given here of the similarities and differences of IDA signalling during floral organ abscission and LRE.
Collapse
Affiliation(s)
- Reidunn B Aalen
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | | | | | | |
Collapse
|