1
|
Girardi F, Canton M, Populin F, Tijero V, Bettio G, Munné-Bosch S, Rasori A, Cardillo V, Costa G, Botton A. A gibberellin-assisted study of the transcriptional and hormonal changes occurring at floral transition in peach buds (Prunus persica L. Batsch). BMC PLANT BIOLOGY 2024; 24:643. [PMID: 38973005 PMCID: PMC11229236 DOI: 10.1186/s12870-024-05360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Flower load in peach is an important determinant of final fruit quality and is subjected to cost-effective agronomical practices, such as the thinning, to finely balance the sink-source relationships within the tree and drive the optimal amount of assimilates to the fruits. Floral transition in peach buds occurs as a result of the integration of specific environmental signals, such as light and temperature, into the endogenous pathways that induce the meristem to pass from vegetative to reproductive growth. The cross talk and integration of the different players, such as the genes and the hormones, are still partially unknown. In the present research, transcriptomics and hormone profiling were applied on bud samples at different developmental stages. A gibberellin treatment was used as a tool to identify the different phases of floral transition and characterize the bud sensitivity to gibberellins in terms of inhibition of floral transition. RESULTS Treatments with gibberellins showed different efficacies and pointed out a timeframe of maximum inhibition of floral transition in peach buds. Contextually, APETALA1 gene expression was shown to be a reliable marker of gibberellin efficacy in controlling this process. RNA-Seq transcriptomic analyses allowed to identify specific genes dealing with ROS, cell cycle, T6P, floral induction control and other processes, which are correlated with the bud sensitivity to gibberellins and possibly involved in bud development during its transition to the reproductive stage. Transcriptomic data integrated with the quantification of the main bioactive hormones in the bud allowed to identify the main hormonal regulators of floral transition in peach, with a pivotal role played by endogenous gibberellins and cytokinins. CONCLUSIONS The peach bud undergoes different levels of receptivity to gibberellin inhibition. The stage with maximum responsiveness corresponded to a transcriptional and hormonal crossroad, involving both flowering inhibitors and inductors. Endogenous gibberellin levels increased only at the latest developmental stage, when floral transition was already partially achieved, and the bud was less sensitive to exogenous treatments. A physiological model summarizes the main findings and suggests new research ideas to improve our knowledge about floral transition in peach.
Collapse
Affiliation(s)
- Francesco Girardi
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
| | - Monica Canton
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
| | - Francesca Populin
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
- Berry Genetics and Breeding Unit - Research and Innovation Centre (CRI), Fondazione Edmund Mach, San Michele all'Adige, Trento, 38098, Italy
| | - Verónica Tijero
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
- Fruit Production Programme, Institute of Agrifood Research and Technology (IRTA), Parc Agrobiotech Lleida, Parc de Gardeny, Edifici Fruitcentre, Lleida, 25003, Spain
| | - Giorgia Bettio
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, Barcelona, 08017, Spain
| | - Angela Rasori
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
| | - Valerio Cardillo
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
| | - Guglielmo Costa
- Department of Agricultural and Food Sciences - DISTAL, University of Bologna, Bologna, 40126, Italy
| | - Alessandro Botton
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy.
| |
Collapse
|
2
|
Kumar A, Mushtaq M, Kumar P, Sharma DP, Gahlaut V. Insights into flowering mechanisms in apple (Malus × domestica Borkh.) amidst climate change: An exploration of genetic and epigenetic factors. Biochim Biophys Acta Gen Subj 2024; 1868:130593. [PMID: 38408683 DOI: 10.1016/j.bbagen.2024.130593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Apple (Malus × domestica Borkh.) holds a prominent position among global temperate fruit crops, with flowering playing a crucial role in both production and breeding. This review delves into the intricate mechanisms governing apple flowering amidst the backdrop of climate change, acknowledging the profound influence of external and internal factors on biennial bearing, flower bud quality, and ultimately, fruit quality. Notably, the challenge faced in major apple production regions is not an inadequacy of flowers but an excess, leading to compromised fruit quality necessitating thinning practices. Climate change exacerbates these challenges, rendering apple trees more susceptible to crop failure due to unusual weather events, such as reduced winter snowfall, early spring cold weather, and hailstorms during flowering and fruit setting. Altered climatic conditions, exemplified by increased spring warming coupled with sub-freezing temperatures, negatively impact developing flower buds and decrease overall crop production. Furthermore, changing winter conditions affect chilling accumulation, disrupting flower development and synchronicity. Although the physiological perception of apple flowering has been reviewed in the past, the genetic, epigenetic, and multi-omics regulatory mechanisms governing floral induction and flowering are still rarely discussed in the case of apple flowering. This article comprehensively reviews the latest literature encompassing all aspects of apple flowering, aiming to broaden our understanding and address flowering challenges while also laying a solid foundation for future research in developing cultivars that are ideally adapted to climate change.
Collapse
Affiliation(s)
- Anshul Kumar
- MS Swaminathan School of Agriculture, Shoolini University, Bhajol, Solan, Himachal Pradesh 173229, India
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University, Bhajol, Solan, Himachal Pradesh 173229, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. YS Parmar University of Horticulture and Forestry Nauni Solan, Himachal Pradesh 173230, India.
| | - Dharam Paul Sharma
- Department of Fruit Science, Dr. YS Parmar University of Horticulture and Forestry Nauni Solan, Himachal Pradesh 173230, India
| | - Vijay Gahlaut
- University Centre for Research & Development, Chandigarh University, Punjab 140413, India.
| |
Collapse
|
3
|
Lin W, Liu S, Xiao X, Sun W, Lu X, Gao Y, He J, Zhu Z, Wu Q, Zhang X. Integrative Analysis of Metabolome and Transcriptome Provides Insights into the Mechanism of Flower Induction in Pineapple ( Ananas comosus (L.) Merr.) by Ethephon. Int J Mol Sci 2023; 24:17133. [PMID: 38138962 PMCID: PMC10742410 DOI: 10.3390/ijms242417133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Exogenous ethylene is commonly utilized to initiate flower induction in pineapple (Ananas comosus (L.) Merr.). However, the molecular mechanisms and metabolic changes involved are not well understood. In this study, we explored the genetic network and metabolic shifts in the 'Comte de Paris' pineapple variety during ethylene-induced flowering. This was achieved through an integrative analysis of metabolome and transcriptome profiles at vegetative shoot apexes (0 d after ethephon treatment named BL_0d), the stage of bract primordia (8 d after ethephon treatment named BL_8d), stage of flower primordia (18 d after ethephon treatment named BL_18d), and the stage of stopped floret differentiation (34 d after ethephon treatment named BL_34d). We isolated and identified 804 metabolites in the pineapple shoot apex and inflorescence, categorized into 24 classes. Notably, 29, 31, and 46 metabolites showed significant changes from BL_0d to BL_8d, BL_8d to BL_18d, and BL_18d to BL_34d, respectively. A marked decrease in indole was observed, suggesting its role as a characteristic metabolite during flower induction. Transcriptomic analysis revealed 956, 1768, and 4483 differentially expressed genes (DEGs) for BL_0d vs. BL_8d, BL_8d vs. BL_18d, and BL_18d vs. BL_34d, respectively. These DEGs were significantly enriched in carbohydrate metabolism and hormone signaling pathways, indicating their potential involvement in flower induction. Integrating metabolomic and transcriptomic data, we identified several candidate genes, such as Agamous-Like9 (AGL9), Ethylene Insensitive 3-like (ETIL3), Apetala2 (AP2), AP2-like ethylene-responsive transcription factor ANT (ANT), and Sucrose synthase 2 (SS2), that play potentially crucial roles in ethylene-induced flower induction in pineapple. We also established a regulatory network for pineapple flower induction, correlating metabolites and DEGs, based on the Arabidopsis thaliana pathway as a reference. Overall, our findings offer a deeper understanding of the metabolomic and molecular mechanisms driving pineapple flowering.
Collapse
Affiliation(s)
- Wenqiu Lin
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Shenghui Liu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiou Xiao
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
| | - Weisheng Sun
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
| | - Xinhua Lu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Yuyao Gao
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Junjun He
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
| | - Zhuying Zhu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
| | - Qingsong Wu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiumei Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| |
Collapse
|
4
|
Shemesh-Mayer E, Faigenboim A, Sherman A, Gao S, Zeng Z, Liu T, Kamenetsky-Goldstein R. Deprivation of Sexual Reproduction during Garlic Domestication and Crop Evolution. Int J Mol Sci 2023; 24:16777. [PMID: 38069099 PMCID: PMC10706073 DOI: 10.3390/ijms242316777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Garlic, originating in the mountains of Central Asia, has undergone domestication and subsequent widespread introduction to diverse regions. Human selection for adaptation to various climates has resulted in the development of numerous garlic varieties, each characterized by specific morphological and physiological traits. However, this process has led to a loss of fertility and seed production in garlic crops. In this study, we conducted morpho-physiological and transcriptome analyses, along with whole-genome resequencing of 41 garlic accessions from different regions, in order to assess the variations in reproductive traits among garlic populations. Our findings indicate that the evolution of garlic crops was associated with mutations in genes related to vernalization and the circadian clock. The decline in sexual reproduction is not solely attributed to a few mutations in specific genes, but is correlated with extensive alterations in the genetic regulation of the annual cycle, stress adaptations, and environmental requirements. The regulation of flowering ability, stress response, and metabolism occurs at both the genetic and transcriptional levels. We conclude that the migration and evolution of garlic crops involve substantial and diverse changes across the entire genome landscape. The construction of a garlic pan-genome, encompassing genetic diversity from various garlic populations, will provide further insights for research into and the improvement of garlic crops.
Collapse
Affiliation(s)
- Einat Shemesh-Mayer
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| | - Adi Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| | - Song Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Hanjiang District, Yangzhou 225012, China; (S.G.); (Z.Z.); (T.L.)
| | - Zheng Zeng
- College of Horticulture and Landscape Architecture, Yangzhou University, Hanjiang District, Yangzhou 225012, China; (S.G.); (Z.Z.); (T.L.)
| | - Touming Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Hanjiang District, Yangzhou 225012, China; (S.G.); (Z.Z.); (T.L.)
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| |
Collapse
|
5
|
Zhang M, Jiang Y, Dong H, Shan X, Tian J, Sun M, Ma F, Ren C, Yuan Y. Transcriptomic response for revealing the molecular mechanism of oat flowering under different photoperiods. FRONTIERS IN PLANT SCIENCE 2023; 14:1279107. [PMID: 38023932 PMCID: PMC10644674 DOI: 10.3389/fpls.2023.1279107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Proper flowering is essential for the reproduction of all kinds of plants. Oat is an important cereal and forage crop; however, its cultivation is limited because it is a long-day plant. The molecular mechanism by which oats respond to different photoperiods is still unclear. In this study, oat plants were treated under long-day and short-day photoperiods for 10 days, 15 days, 20 days, 25 days, 30 days, 40 days and 50 days, respectively. Under the long-day treatment, oats entered the reproductive stage, while oats remained vegetative under the short-day treatment. Forty-two samples were subjected to RNA-Seq to compare the gene expression patterns of oat under long- and short-day photoperiods. A total of 634-5,974 differentially expressed genes (DEGs) were identified for each time point, while the floral organ primordium differentiation stage showed the largest number of DEGs, and the spikelet differentiation stage showed the smallest number. Gene Ontology (GO) analysis showed that the plant hormone signaling transduction and hormone metabolism processes significantly changed in the photoperiod regulation of flowering time in oat. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Mapman analysis revealed that the DEGs were mainly concentrated in the circadian rhythm, protein antenna pathways and sucrose metabolism process. Additionally, transcription factors (TFs) involved in various flowering pathways were explored. Combining all this information, we established a molecular model of oat flowering induced by a long-day photoperiod. Taken together, the long-day photoperiod has a large effect at both the morphological and transcriptomic levels, and these responses ultimately promote flowering in oat. Our findings expand the understanding of oat as a long-day plant, and the explored genes could be used in molecular breeding to help break its cultivation limitations in the future.
Collapse
Affiliation(s)
- Man Zhang
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Yuan Jiang
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Haixiao Dong
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Xiaohui Shan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Juan Tian
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Moke Sun
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Feiyue Ma
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Changzhong Ren
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Yaping Yuan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
6
|
Reig C, García-Lorca A, Martínez-Fuentes A, Mesejo C, Agustí M. Warm temperature during floral bud transition turns off EjTFL1 gene expression and promotes flowering in Loquat (Eriobotrya japonica Lindl.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111810. [PMID: 37500016 DOI: 10.1016/j.plantsci.2023.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
The Rosaceae family includes several deciduous woody species whose flower development extends over two consecutive growing seasons with a winter dormant period in between. Loquat (Eriobotrya japonica Lindl.) belongs to this family, but it is an evergreen species whose flower bud initiation and flowering occur within the same growing year. Vegetative growth dominates from spring to late summer when terminal buds bloom as panicles. Thus, its floral buds do not undergo winter dormancy until flowering, but a summer heat period of dormancy is required for floral bud differentiation, and that is why we used loquat to study the mechanism by which this summer rest period contributes to floral differentiation of Rosaceae species. As for the deciduous species, the bud transition to the generative stage is initiated by the floral integrator genes. There is evidence that combinations of environmental signals and internal cues (plant hormones) control the expression of TFL1, but the mechanism by which this gene regulates its expression in loquat needs to be clarified for a better understanding of its floral initiation and seasonal growth cycles. Under high temperatures (>25ºC) after floral bud inductive period, EjTFL1 expression decreases during meristem transition to the reproductive stage, and the promoters of flowering (EjAP1 and EjLFY) increase, indicating that the floral bud differentiation is affected by high temperatures. Monitoring the apical meristem of loquat in June-August of two consecutive years under ambient and thermal controlled conditions showed that under lower temperatures (<25ºC) during the same period, shoot apex did not stop growing and a higher EjTFL1 expression was recorded, preventing the bud to flower. Likewise, temperature directly affects ABA content in the meristem paralleling EjTFL1 expression, suggesting signaling cascades could converge to refine the expression of EjTFL1 under specific conditions (Tª<25ºC) during the floral transition stage.
Collapse
Affiliation(s)
- Carmina Reig
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain.
| | - Ana García-Lorca
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Amparo Martínez-Fuentes
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Carlos Mesejo
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Manuel Agustí
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| |
Collapse
|
7
|
Bai M, Wang W, Chen Y, Fan C, Sun J, Lu J, Liu J, Wang C. The intragenic cis-elements mediate temperature response of RrKSN. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107983. [PMID: 37611488 DOI: 10.1016/j.plaphy.2023.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Gene regulation via intragenic sequences is becoming more recognized in many eukaryotes. However, the intragenic sequences mediated gene expressions in response to environmental stimuli have been largely uncharacterized. Here, we showed that the first intron of RrKSN from the Rosa rugosa cultivar 'Purple branch' had a positive effect on RrKSN expression, and the effect depends on its position and orientation. Further analyses revealed that the four adjacent cis-elements (T)CGATT/AATCG(A) within the first intron were critical for the positive regulation, and the RrKSN promotion was significantly suppressed with mutations of these elements. These cis-elements were further evidenced as binding sites for RrARR1, the homologous of Arabidopsis type-B ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) transcription factor. The first intron-mediated RrKSN expression was enhanced with over-expressing of RrARR1, but abolished with RrARR1 silencing in rose seedlings. Moreover, the expression difference of RrKSN between 16°C and 28°C was eliminated along with RrARR1-silencing. Taken together, these results suggested both RrARR1 and its binding elements are required for the first intron-mediated RrKSN expression in response to varying temperatures. Therefore, our results reveal a unique intragenic regulation mechanism of gene expression by which plants perceive the signal of ambient temperature in rose.
Collapse
Affiliation(s)
- Mengjuan Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Weinan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeqing Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunguo Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Zhang(张宇鹏) Y, Fan G, Toivainen T, Tengs T, Yakovlev I, Krokene P, Hytönen T, Fossdal CG, Grini PE. Warmer temperature during asexual reproduction induce methylome, transcriptomic, and lasting phenotypic changes in Fragaria vesca ecotypes. HORTICULTURE RESEARCH 2023; 10:uhad156. [PMID: 37719273 PMCID: PMC10500154 DOI: 10.1093/hr/uhad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Plants must adapt with increasing speed to global warming to maintain their fitness. One rapid adaptation mechanism is epigenetic memory, which may provide organisms sufficient time to adapt to climate change. We studied how the perennial Fragaria vesca adapted to warmer temperatures (28°C vs. 18°C) over three asexual generations. Differences in flowering time, stolon number, and petiole length were induced by warmer temperature in one or more ecotypes after three asexual generations and persisted in a common garden environment. Induced methylome changes differed between the four ecotypes from Norway, Iceland, Italy, and Spain, but shared methylome responses were also identified. Most differentially methylated regions (DMRs) occurred in the CHG context, and most CHG and CHH DMRs were hypermethylated at the warmer temperature. In eight CHG DMR peaks, a highly similar methylation pattern could be observed between ecotypes. On average, 13% of the differentially methylated genes between ecotypes also showed a temperature-induced change in gene expression. We observed ecotype-specific methylation and expression patterns for genes related to gibberellin metabolism, flowering time, and epigenetic mechanisms. Furthermore, we observed a negative correlation with gene expression when repetitive elements were found near (±2 kb) or inside genes. In conclusion, lasting phenotypic changes indicative of an epigenetic memory were induced by warmer temperature and were accompanied by changes in DNA methylation patterns. Both shared methylation patterns and transcriptome differences between F. vesca accessions were observed, indicating that DNA methylation may be involved in both general and ecotype-specific phenotypic variation.
Collapse
Affiliation(s)
- YuPeng Zhang(张宇鹏)
- EVOGENE, Department of Biosciences, University of Oslo, 0313 Oslo, Norway
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Guangxun Fan
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Torstein Tengs
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Igor Yakovlev
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Paul E. Grini
- EVOGENE, Department of Biosciences, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
9
|
Fadón E, Herrera S, Gheban TI, Rodrigo J. Chilling Requirements of Apricot ( Prunus armeniaca L.) Cultivars Using Male Meiosis as a Dormancy Biomarker. PLANTS (BASEL, SWITZERLAND) 2023; 12:3025. [PMID: 37687272 PMCID: PMC10489937 DOI: 10.3390/plants12173025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Apricot has undergone an important cultivar renewal during the last years in response to productive and commercial changes in the crop. The impact of the sharka disease (plum pox virus) prompted the release of cultivars resistant/tolerant to this virus, leading to a major cultivar renewal worldwide. This has caused high variability in chilling requirements on new releases that remain unknown in many cases. In many apricot-growing areas, the lack of winter chilling is becoming a limiting factor in recent years. To deal with this situation, growers must choose cultivars well adapted to their areas. However, the information available on the agroclimatic requirements of the cultivars is very limited. To fill this gap, in this work, we have characterized the chilling requirements of 13 new apricot cultivars from Europe (France, Greece and Spain) and North America (USA) in two experimental collections in Aragón (Spain). We established the chilling period using male meiosis as a biomarker for endodormancy release over two years. Chilling requirements ranged from 51.9 Chill Portions (CP) to 70.9 CP. Knowing the chilling requirements of cultivars will help growers to select suitable cultivars adapted to the chill availability of their region.
Collapse
Affiliation(s)
- Erica Fadón
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain (T.I.G.)
- Instituto Agroalimentario de Aragón—IA2, CITA-Universidad de Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Sara Herrera
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain (T.I.G.)
- Instituto Agroalimentario de Aragón—IA2, CITA-Universidad de Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Tudor I. Gheban
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain (T.I.G.)
| | - Javier Rodrigo
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain (T.I.G.)
- Instituto Agroalimentario de Aragón—IA2, CITA-Universidad de Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
10
|
Qin C, Du T, Zhang R, Wang Q, Liu Y, Wang T, Cao H, Bai Q, Zhang Y, Su S. Integrated transcriptome, metabolome and phytohormone analysis reveals developmental differences between the first and secondary flowering in Castanea mollissima. FRONTIERS IN PLANT SCIENCE 2023; 14:1145418. [PMID: 37008486 PMCID: PMC10060901 DOI: 10.3389/fpls.2023.1145418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Chestnut (Castanea mollissima BL.) is an important woody grain, and its flower formation has a significant impact on fruit yield and quality. Some chestnut species in northern China re-flower in the late summer. On the one hand, the second flowering consumes a lot of nutrients in the tree, weakening the tree and thus affecting flowering in the following year. On the other hand, the number of female flowers on a single bearing branch during the second flowering is significantly higher than that of the first flowering, which can bear fruit in bunches. Therefore, these can be used to study the sex differentiation of chestnut. METHODS In this study, the transcriptomes, metabolomes, and phytohormones of male and female chestnut flowers were determined during spring and late summer. We aimed to understand the developmental differences between the first and secondary flowering stages in chestnuts. We analysed the reasons why the number of female flowers is higher in the secondary flowering than in the first flowering and found ways to increase the number of female flowers or decrease the number of male flowers in chestnuts. RESULTS Transcriptome analysis of male and female flowers in different developmental seasons revealed that EREBP-like mainly affected the development of secondary female flowers and HSP20 mainly affected the development of secondary male flowers. KEGG enrichment analysis showed that 147 common differentially-regulated genes were mainly enriched from circadian rhythm-plant, carotenoid biosynthesis, phenylpropanoid biosynthesis, and plant hormone signal transduction pathways. Metabolome analysis showed that the main differentially accumulated metabolites in female flowers were flavonoids and phenolic acids, whereas the main differentially accumulated metabolites in male flowers were lipids, flavonoids, and phenolic acids. These genes and their metabolites are positively correlated with secondary flower formation. Phytohormone analysis showed that abscisic and salicylic acids were negatively correlated with secondary flower formation. MYB305, a candidate gene for sex differentiation in chestnuts, promoted the synthesis of flavonoid substances and thus increased the number of female flowers. DISCUSSION We constructed a regulatory network for secondary flower development in chestnuts, which provides a theoretical basis for the reproductive development mechanism of chestnuts. This study has important practical implications for improving chestnut yield and quality.
Collapse
|
11
|
Ahmad S, Lu C, Gao J, Wei Y, Xie Q, Jin J, Zhu G, Yang F. The Integrated mRNA and miRNA Approach Reveals Potential Regulators of Flowering Time in Arundina graminifolia. Int J Mol Sci 2023; 24:ijms24021699. [PMID: 36675213 PMCID: PMC9865619 DOI: 10.3390/ijms24021699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Orchids are among the most precious flowers in the world. Regulation of flowering time is one of the most important targets to enhance their ornamental value. The beauty of Arundina graminifolia is its year-round flowering, although the molecular mechanism of this flowering ability remains masked. Therefore, we performed a comprehensive assessment to integrate transcriptome and miRNA sequencing to disentangle the genetic regulation of flowering in this valuable species. Clustering analyses provided a set of molecular regulators of floral transition and floral morphogenesis. We mined candidate floral homeotic genes, including FCA, FPA, GI, FT, FLC, AP2, SOC1, SVP, GI, TCP, and CO, which were targeted by a variety of miRNAs. MiR11091 targeted the highest number of genes, including candidate regulators of phase transition and hormonal control. The conserved miR156-miR172 pathway of floral time regulation was evident in our data, and we found important targets of these miRNAs in the transcriptome. Moreover, endogenous hormone levels were determined to decipher the hormonal control of floral buds in A. graminifolia. The qRT-PCR analysis of floral and hormonal integrators validated the transcriptome expression. Therefore, miRNA-mediated mining of candidate genes with hormonal regulation forms the basis for comprehending the complex regulatory network of perpetual flowering in precious orchids. The findings of this study can do a great deal to broaden the breeding programs for flowering time manipulation of orchids.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-020-8516-1014
| |
Collapse
|
12
|
Fu S, Yang Y, Wang P, Ying Z, Xu W, Zhou Z. Comparative transcriptomic analysis of normal and abnormal in vitro flowers in Cymbidium nanulum Y. S. Wu et S. C. Chen identifies differentially expressed genes and candidate genes involved in flower formation. FRONTIERS IN PLANT SCIENCE 2022; 13:1007913. [PMID: 36352857 PMCID: PMC9638074 DOI: 10.3389/fpls.2022.1007913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
It is beneficial for breeding and boosting the flower value of ornamental plants such as orchids, which can take several years of growth before blooming. Over the past few years, in vitro flowering of Cymbidium nanulum Y. S. Wu et S. C. Chen has been successfully induced; nevertheless, the production of many abnormal flowers has considerably limited the efficiency of this technique. We carried out transcriptomic analysis between normal and abnormal in vitro flowers, each with four organs, to investigate key genes and differentially expressed genes (DEGs) and to gain a comprehensive perspective on the formation of abnormal flowers. Thirty-six DEGs significantly enriched in plant hormone signal transduction, and photosynthesis-antenna proteins pathways were identified as key genes. Their broad upregulation and several altered transcription factors (TFs), including 11 MADS-box genes, may contribute to the deformity of in vitro flowers. By the use of weighted geneco-expression network analysis (WGCNA), three hub genes, including one unknown gene, mitochondrial calcium uniporter (MCU) and harpin-induced gene 1/nonrace-specific disease resistance gene 1 (NDR1/HIN1-Like) were identified that might play important roles in floral organ formation. The data presented in our study may serve as a comprehensive resource for understanding the regulatory mechanisms underlying flower and floral organ formation of C. nanulum Y. S. Wu et S. C. Chen in vitro.
Collapse
|
13
|
Liang F, Zhang Y, Wang X, Yang S, Fang T, Zheng S, Zeng L. Integrative mRNA and Long Noncoding RNA Analysis Reveals the Regulatory Network of Floral Bud Induction in Longan ( Dimocarpus longan Lour.). FRONTIERS IN PLANT SCIENCE 2022; 13:923183. [PMID: 35774802 PMCID: PMC9237614 DOI: 10.3389/fpls.2022.923183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
Longan (Dimocarpus longan Lour.) is a tropical/subtropical fruit tree of significant economic importance. Floral induction is an essential process for longan flowering and plays decisive effects on the longan yield. Due to the instability of flowering, it is necessary to understand the molecular mechanisms of floral induction in longan. In this study, mRNA and long noncoding RNA (lncRNA) transcriptome sequencing were performed using the apical buds of fruiting branches as materials. A total of 7,221 differential expressions of mRNAs (DEmRNAs) and 3,238 differential expressions of lncRNAs (DElncRNAs) were identified, respectively. KEGG enrichment analysis of DEmRNAs highlighted the importance of starch and sucrose metabolic, circadian rhythms, and plant hormone signal transduction pathways during floral induction. Combining the analysis of weighted gene co-expression network (WGCNA) and expression pattern of DEmRNAs in the three pathways, specific transcriptional characteristics at each stage during floral induction and regulatory network involving co-expressed genes were investigated. The results showed that sucrose metabolism and auxin signal transduction may be crucial for the growth and maturity of autumn shoots in September and October (B1-B2 stage); starch and sucrose metabolic, circadian rhythms, and plant hormone signal transduction pathways participated in the regulation of floral bud physiological differentiation together in November and December (B3-B4 stage) and the crosstalk among three pathways was also found. Hub genes in the co-expression network and key DEmRNAs in three pathways were identified. The circadian rhythm genes FKF1 and GI were found to activate SOC1gene through the photoperiod core factor COL genes, and they were co-expressed with auxin, gibberellin, abscisic acid, ethylene signaling genes, and sucrose biosynthesis genes at B4 stage. A total of 12 hub-DElncRNAs had potential for positively affecting their distant target genes in three putative key pathways, predominantly in a co-transcriptional manner. A hypothetical model of regulatory pathways and key genes and lncRNAs during floral bud induction in longan was proposed finally. Our studies will provide valuable clues and information to help elucidate the potential molecular mechanisms of floral initiation in longan and woody fruit trees.
Collapse
Affiliation(s)
- Fan Liang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiyong Zhang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaodan Wang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuo Yang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Fang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoquan Zheng
- Fujian Breeding Engineering Technology Research Center for Longan & Loquat, Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzho, China
| | - Lihui Zeng
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Fan G, Andrés J, Olbricht K, Koskela E, Hytönen T. Natural Variation in the Control of Flowering and Shoot Architecture in Diploid Fragaria Species. FRONTIERS IN PLANT SCIENCE 2022; 13:832795. [PMID: 35310677 PMCID: PMC8926021 DOI: 10.3389/fpls.2022.832795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
In perennial fruit and berry crops of the Rosaceae family, flower initiation occurs in late summer or autumn after downregulation of a strong repressor TERMINAL FLOWER1 (TFL1), and flowering and fruiting takes place the following growing season. Rosaceous fruit trees typically form two types of axillary shoots, short flower-bearing shoots called spurs and long shoots that are, respectively, analogous to branch crowns and stolons in strawberry. However, regulation of flowering and shoot architecture differs between species, and environmental and endogenous controlling mechanisms have just started to emerge. In woodland strawberry (Fragaria vesca L.), long days maintain vegetative meristems and promote stolon formation by activating TFL1 and GIBBERELLIN 20-OXIDASE4 (GA20ox4), respectively, while silencing of these factors by short days and cool temperatures induces flowering and branch crown formation. We characterized flowering responses of 14 accessions of seven diploid Fragaria species native to diverse habitats in the northern hemisphere and selected two species with contrasting environmental responses, Fragaria bucharica Losinsk. and Fragaria nilgerrensis Schlecht. ex J. Gay for detailed studies together with Fragaria vesca. Similar to F. vesca, short days at 18°C promoted flowering in F. bucharica, and the species was induced to flower regardless of photoperiod at 11°C after silencing of TFL1. F. nilgerrensis maintained higher TFL1 expression level and likely required cooler temperatures or longer exposure to inductive treatments to flower. We also found that high expression of GA20ox4 was associated with stolon formation in all three species, and its downregulation by short days and cool temperature coincided with branch crown formation in F. vesca and F. nilgerrensis, although the latter did not flower. F. bucharica, in contrast, rarely formed branch crowns, regardless of flowering or GA20ox4 expression level. Our findings highlighted diploid Fragaria species as rich sources of genetic variation controlling flowering and plant architecture, with potential applications in breeding of Rosaceous crops.
Collapse
Affiliation(s)
- Guangxun Fan
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Javier Andrés
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Klaus Olbricht
- Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elli Koskela
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
| |
Collapse
|
15
|
Tominaga A, Ito A, Sugiura T, Yamane H. How Is Global Warming Affecting Fruit Tree Blooming? "Flowering (Dormancy) Disorder" in Japanese Pear ( Pyrus pyrifolia) as a Case Study. FRONTIERS IN PLANT SCIENCE 2022; 12:787638. [PMID: 35211129 PMCID: PMC8861528 DOI: 10.3389/fpls.2021.787638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 05/12/2023]
Abstract
Recent climate change has resulted in warmer temperatures. Warmer temperatures from autumn to spring has negatively affected dormancy progression, cold (de)acclimation, and cold tolerance in various temperate fruit trees. In Japan, a physiological disorder known as flowering disorder, which is an erratic flowering and bud break disorder, has recently emerged as a serious problem in the production of the pome fruit tree, Japanese (Asian) pear (Pyrus pyrifolia Nakai). Due to global warming, the annual temperature in Japan has risen markedly since the 1990s. Surveys of flowering disorder in field-grown and greenhouse-grown Japanese pear trees over several years have indicated that flowering disorder occurs in warmer years and cultivation conditions, and the risk of flowering disorder occurrence is higher at lower latitudes than at higher latitudes. Susceptibility to flowering disorder is linked to changes in the transcript levels of putative dormancy/flowering regulators such as DORMANCY-ASSOCIATED MADS-box (DAM) and FLOWERING LOCUS T (FT). On the basis of published studies, we conclude that autumn-winter warm temperatures cause flowering disorder through affecting cold acclimation, dormancy progression, and floral bud maturation. Additionally, warm conditions also decrease carbohydrate accumulation in shoots, leading to reduced tree vigor. We propose that all these physiological and metabolic changes due to the lack of chilling during the dormancy phase interact to cause flowering disorder in the spring. We also propose that the process of chilling exposure rather than the total amount of chilling may be important for the precise control of dormancy progression and robust blooming, which in turn suggests the necessity of re-evaluation of the characteristics of cultivar-dependent chilling requirement trait. A full understanding of the molecular and metabolic regulatory mechanisms of both dormancy completion (floral bud maturation) and dormancy break (release from the repression of bud break) will help to clarify the physiological basis of dormancy-related physiological disorder and also provide useful strategies to mitigate or overcome it under global warming.
Collapse
Affiliation(s)
| | - Akiko Ito
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Toshihiko Sugiura
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Martínez-Herrera G, Trejo I, Moreno-Calles AI, de Alba-Navarro MF, Martínez-Ballesté A. Knowing the Clouds through the Land: Perceptions of Changes in Climate through Agricultural Practices in Two Nahua Indigenous Communities. J ETHNOBIOL 2021. [DOI: 10.2993/0278-0771-41.3.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Gonzalo Martínez-Herrera
- Jardín Botánico, Instituto de Biología, UNAM, México, Circuito Exterior s/n, Ciudad Universitaria, Copilco, Coyoacán A.P. 70-614 México, Ciudad de México. C.P. 04510
| | - Irma Trejo
- Instituto de Geografía, UNAM, México, Ciudad Universitaria, Copilco, México
| | - Ana I. Moreno-Calles
- Escuela Nacional de Estudios Superiores Unidad Morelia (ENES), Universidad Nacional Autónoma de México. UNAM, Campus Morelia, Morelia, Michoacán, México
| | - María Fernanda de Alba-Navarro
- Jardín Botánico, Instituto de Biología, UNAM, México, Circuito Exterior s/n, Ciudad Universitaria, Copilco, Coyoacán A.P. 70-614 México, Ciudad de México. C.P. 04510
| | - Andrea Martínez-Ballesté
- Jardín Botánico, Instituto de Biología, UNAM, México, Circuito Exterior s/n, Ciudad Universitaria, Copilco, Coyoacán A.P. 70-614 México, Ciudad de México. C.P. 04510
| |
Collapse
|
17
|
Jiang Y, Liu Y, Gao Y, Peng J, Su W, Yuan Y, Yang X, Zhao C, Wang M, Lin S, Peng Z, Xie F. Gibberellin Induced Transcriptome Profiles Reveal Gene Regulation of Loquat Flowering. Front Genet 2021; 12:703688. [PMID: 34567066 PMCID: PMC8460860 DOI: 10.3389/fgene.2021.703688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Flowering is an integral part of the life cycle of flowering plants, which is essential for plant survival and crop production. Most woody fruit trees such as apples and pears bloom in spring, but loquat blooms in autumn and winter. Gibberellin (GA) plays a key role in the regulation of plant flower formation. In this study, we sprayed loquat plants with exogenous GA3, which resulted in vigorous vegetative growth rather than floral bud formation. We then performed a comprehensive RNA-seq analysis on GA3-treated and control-treated leaves and buds over three time periods to observe the effects of exogenous GA3 application on floral initiation and development. The results showed that 111 differentially expressed genes (DEGs) and 563 DEGs were down-regulated, and 151 DEGs and 506 DEGs were up-regulated in buds and leaves, respectively, upon treatment with GA3. Among those that are homologs of the DELLA-mediated GA signal pathway genes, some may be involved in the positive regulation of flower development, including EjWRKY75, EjFT, EjSOC1, EjAGL24, EjSPL, EjLFY, EjFUL, and EjAP1; while some may be involved in the negative regulation of flower development, including EjDELLA, EjMYC3, EjWRKY12, and EjWRKY13. Finally, by analyzing the co-expression of DEGs and key floral genes EjSOC1s, EjLFYs, EjFULs, EjAP1s, 330 candidate genes that may be involved in the regulation of loquat flowering were screened. These genes belong to 74 gene families, including Cyclin_C, Histone, Kinesin, Lipase_GDSL, MYB, P450, Pkinase, Tubulin, and ZF-HD_dimer gene families. These findings provide new insights into the regulation mechanism of loquat flowering.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yicun Liu
- College of Agriculture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongshun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China.,Beijing Academy of Forestry and Pomology Sciences, Beijing, China.,Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Jiangrong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wenbing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China.,Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Yuan Yuan
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xianghui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chongbin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Man Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shunquan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ze Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Fangfang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Gioppato HA, Dornelas MC. Plant design gets its details: Modulating plant architecture by phase transitions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:1-14. [PMID: 33799013 DOI: 10.1016/j.plaphy.2021.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Plants evolved different strategies to better adapt to the environmental conditions in which they live: the control of their body architecture and the timing of phase change are two important processes that can improve their fitness. As they age, plants undergo two major phase changes (juvenile to adult and adult to reproductive) that are a response to environmental and endogenous signals. These phase transitions are accompanied by alterations in plant morphology and also by changes in physiology and the behavior of gene regulatory networks. Six main pathways involving environmental and endogenous cues that crosstalk with each other have been described as responsible for the control of plant phase transitions: the photoperiod pathway, the autonomous pathway, the vernalization pathway, the temperature pathway, the GA pathway, and the age pathway. However, studies have revealed that sugar is also involved in phase change and the control of branching behavior. In this review, we discuss recent advances in plant biology concerning the genetic and molecular mechanisms that allow plants to regulate phase transitions in response to the environment. We also propose connections between phase transition and plant architecture control.
Collapse
Affiliation(s)
- Helena Augusto Gioppato
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil
| | - Marcelo Carnier Dornelas
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil.
| |
Collapse
|
19
|
Fadón E, Herrera S, Herrero M, Rodrigo J. Male meiosis in sweet cherry is constrained by the chilling and forcing phases of dormancy. TREE PHYSIOLOGY 2021; 41:619-630. [PMID: 32453409 DOI: 10.1093/treephys/tpaa063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/23/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Male meiosis in temperate fruit trees occurs in the anthers once a year, synchronized with the seasons. The alternation of dormant and growth cycles determines the optimum moment for the male gametophyte formation, a process sensitive to both cold and warm temperatures. This ensures pollen viability and subsequent reproduction success that guarantee fruit production. In this work, we explore how male meiosis is framed by seasonality in sweet cherry. For this purpose, the dormant phases, male meiosis and blooming dates were established in four cultivars with different flowering dates and chilling requirements over 7 years. The chilling and heat requirements for each cultivar were empirically estimated, and chilling and heat temperatures were quantified according to the Dynamic and Growing Degree Hours (GDH) models, respectively. Endodormancy was overcome approximately a fortnight earlier during the colder winters than during the milder winters. Against our initial hypothesis, these differences were not clearly reflected in the time of male meiosis. The period between chilling fulfillment and meiosis lasted several weeks, during which a high amount of GDH accumulated. Results showed that male meiosis is conditioned by endodormancy but especially by warm temperatures, during the forcing period. This differs from what has been described in other related species and creates a framework for further studies to understand the strategies of synchronizing dormancy with seasons.
Collapse
Affiliation(s)
- Erica Fadón
- INRES - Gartenbauwissenschaft, Universität Bonn, Bonn, Germany
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Departamento de Pomología, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD - CSIC), Zaragoza, Spain
| | - Sara Herrera
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
| | - María Herrero
- Departamento de Pomología, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD - CSIC), Zaragoza, Spain
| | - Javier Rodrigo
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón - IA2 (CITA - Universidad de Zaragoza), Zaragoza, Spain
| |
Collapse
|
20
|
Nishiyama S, Matsushita MC, Yamane H, Honda C, Okada K, Tamada Y, Moriya S, Tao R. Functional and expressional analyses of apple FLC-like in relation to dormancy progress and flower bud development. TREE PHYSIOLOGY 2021; 41:562-570. [PMID: 31728534 DOI: 10.1093/treephys/tpz111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/22/2019] [Indexed: 05/26/2023]
Abstract
We previously identified the FLOWERING LOCUS C (FLC)-like gene, a MADS-box transcription factor gene that belongs to Arabidopsis thaliana L. FLC clade, in apple (Malus $\times$ domestica Borkh.), and its expression in dormant flower buds is positively correlated with cumulative cold exposure. To elucidate the role of the MdFLC-like in the dormancy process and flower development, we first characterized the phenotypes of MdFLC-like overexpressing lines with the Arabidopsis Columbia-0 background. The overexpression of MdFLC-like significantly delayed the bolting date and reduced the plant size, but it did not significantly affect the number of rosette leaves or flower organ formation. Thus, MdFLC-like may affect vegetative growth and development rather than flowering when expressed in Arabidopsis, which is not like Arabidopsis FLC that affects development of flowering. We compared seasonal expression patterns of MdFLC-like in low-chill 'Anna' and high-chill 'Fuji' and 'Tsugaru' apples collected from trees grown in a cold winter region in temperate zone and found an earlier upregulation in 'Anna' compared with 'Fuji' and 'Tsugaru'. Expression patterns were also compared in relation to developmental changes in the flower primordia during the chilling accumulation period. Overall, MdFLC-like was progressively upregulated during flower primordia differentiation and development in autumn to early winter and reached a maximum expression level at around the same time as the genotype-dependent chilling requirements were fulfilled in high-chill cultivars. Thus, we hypothesize MdFLC-like may be upregulated in response to cold exposure and flower primordia development during the progress of endodormancy. Our study also suggests MdFLC-like may have a growth-inhibiting function during the end of endodormancy and ecodormancy when the temperature is low and unfavorable for rapid bud outgrowth.
Collapse
Affiliation(s)
- Soichiro Nishiyama
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | | | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Chikako Honda
- Graduate School of Agricultural and Life Science, The University of Tokyo, Midori-Cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Kazuma Okada
- Apple Research Station, Institute of Fruit Tree and Tea Science, NARO, Morioka 020-0123, Japan
| | - Yosuke Tamada
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- School of Life Science, Sokendai, Okazaki 444-8585, Japan
| | - Shigeki Moriya
- Apple Research Station, Institute of Fruit Tree and Tea Science, NARO, Morioka 020-0123, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| |
Collapse
|
21
|
Shen Q, Chen Y, Sun J, Liu Q, Sun C. Comparative transcriptomic analyses of normal and peloric mutant flowers in Cymbidium goeringii Rchb.f identifies differentially expressed genes associated with floral development. Mol Biol Rep 2021; 48:2123-2132. [PMID: 33630208 DOI: 10.1007/s11033-021-06216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Cymbidium geringii has high ornamental and economic importance. Its traits, including flower shape, size, and color, are highly sought by orchid breeders. Gaining insights into the molecular basis of C. geringi flower development would accelerate genetic improvement of other orchids. Methods and Results: Here, C. goeringii RNA was purified from normal and peloric mutant flowers, and cDNA libraries constructed for Illumina sequencing. We generated 329,156,782 clean reads, integrated them, and then assembled into 236,811 unigenes averaging 595 bp long. A total of 11,992 differentially expressed genes s, of which 6119 were upregulated and 5873 downregulated, were uncovered in peloric mutant flower buds relative to normal flower buds. Kyoto Encyclopedia of Genes and Genomes enrichment assessments posited that these differentially expressed genes are associated with "Photosynthesis", "Linoleic acid metabolism", as well as "Plant hormone signal transduction" cascades. The DEGs were designated to 12 remarkably enriched GO terms, and 16 cell wall associated GO terms. The expression level of 16 determined genes were verified using RT-qPCR. Conclusions: Our gene expression data may be used to study the regulatory mechanism of flower organ development in C. geringi.
Collapse
Affiliation(s)
- Qi Shen
- Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, Zhejiang, China.
| | - Junwei Sun
- College of Modern Science and Technology, China Jiliang University, Hangzhou, 310018, China
| | - Qian Liu
- Institute of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Zhang M, Li P, Yan X, Wang J, Cheng T, Zhang Q. Genome-wide characterization of PEBP family genes in nine Rosaceae tree species and their expression analysis in P. mume. BMC Ecol Evol 2021; 21:32. [PMID: 33622244 PMCID: PMC7901119 DOI: 10.1186/s12862-021-01762-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/08/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Phosphatidylethanolamine-binding proteins (PEBPs) constitute a common gene family found among animals, plants and microbes. Plant PEBP proteins play an important role in regulating flowering time, plant architecture as well as seed dormancy. Though PEBP family genes have been well studied in Arabidopsis and other model species, less is known about these genes in perennial trees. RESULTS To understand the evolution of PEBP genes and their functional roles in flowering control, we identified 56 PEBP members belonging to three gene clades (MFT-like, FT-like, and TFL1-like) and five lineages (FT, BFT, CEN, TFL1, and MFT) across nine Rosaceae perennial species. Structural analysis revealed highly conserved gene structure and protein motifs among Rosaceae PEBP proteins. Codon usage analysis showed slightly biased codon usage across five gene lineages. With selection pressure analysis, we detected strong purifying selection constraining divergence within most lineages, while positive selection driving the divergence of FT-like and TFL1-like genes from the MFT-like gene clade. Spatial and temporal expression analyses revealed the essential role of FT in regulating floral bud breaking and blooming in P. mume. By employing a weighted gene co-expression network approach, we inferred a putative FT regulatory module required for dormancy release and blooming in P. mume. CONCLUSIONS We have characterized the PEBP family genes in nine Rosaceae species and examined their phylogeny, genomic syntenic relationship, duplication pattern, and expression profiles during flowering process. These results revealed the evolutionary history of PEBP genes and their functions in regulating floral bud development and blooming among Rosaceae tree species.
Collapse
Affiliation(s)
- Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Xiaolan Yan
- Mei Germplasm Research Center, Wuhan, 430073, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
23
|
Bai M, Liu J, Fan C, Chen Y, Chen H, Lu J, Sun J, Ning G, Wang C. KSN heterozygosity is associated with continuous flowering of Rosa rugosa Purple branch. HORTICULTURE RESEARCH 2021; 8:26. [PMID: 33518715 PMCID: PMC7848002 DOI: 10.1038/s41438-021-00464-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 05/02/2023]
Abstract
Rose (Rosa spp.) plants flower via two contrasting methods: once flowering (OF) and continuous flowering (CF). Purple branch is a rare continuously flowering variety of Rosa rugosa that is extensively cultivated in China. However, the genetic basis of its CF behavior is unknown. We demonstrated that Purple branch is heterozygous for the TFL1 homolog KSN. One KSN allele with a 9 kb Copia insertion was found to be identical to that from continuously flowering Rosa chinensis Old blush. The other allele was found to be a functional wild-type allele. The overall expression of KSN was closely linked to the floral transition, and it was significantly repressed in continuously flowering Purple branch compared with OF Plena. The promoter region of the normal KSN allele was hypermethylated, and histone methylation at H3H4, H3K9, and H3K27 of the KSN gene locus was modified in continuously flowering Purple branch. Silencing of the DNA methyltransferase genes MET1 and CMT3 and the histone methyltransferase gene SUVR5 in Purple branch led to enhanced KSN expression, but silencing of the histone demethylase gene JMJ12 suppressed KSN expression. Therefore, the CF habit of Purple branch may be due to reduced expression of KSN caused by the halved dose and may be associated with epigenetic modifications together with retrotransposon insertions along the chromosome. Our study revealed a novel mechanism underlying the CF behavior of rose plants.
Collapse
Affiliation(s)
- Mengjuan Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunguo Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeqing Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guogui Ning
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
24
|
Peng Z, Wang M, Zhang L, Jiang Y, Zhao C, Shahid MQ, Bai Y, Hao J, Peng J, Gao Y, Su W, Yang X. EjRAV1/ 2 Delay Flowering Through Transcriptional Repression of EjFTs and EjSOC1s in Loquat. FRONTIERS IN PLANT SCIENCE 2021; 12:816086. [PMID: 35035390 PMCID: PMC8759039 DOI: 10.3389/fpls.2021.816086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 05/02/2023]
Abstract
Most species in Rosaceae usually need to undergo several years of juvenile phase before the initiation of flowering. After 4-6 years' juvenile phase, cultivated loquat (Eriobotrya japonica), a species in Rosaceae, enters the reproductive phase, blooms in the autumn and sets fruits during the winter. However, the mechanisms of the transition from a seedling to an adult tree remain obscure in loquat. The regulation networks controlling seasonal flowering are also largely unknown. Here, we report two RELATED TO ABI3 AND VP1 (RAV) homologs controlling juvenility and seasonal flowering in loquat. The expressions of EjRAV1/2 were relatively high during the juvenile or vegetative phase and low at the adult or reproductive phase. Overexpression of the two EjRAVs in Arabidopsis prolonged (about threefold) the juvenile period by repressing the expressions of flowering activator genes. Additionally, the transformed plants produced more lateral branches than the wild type plants. Molecular assays revealed that the nucleus localized EjRAVs could bind to the CAACA motif of the promoters of flower signal integrators, EjFT1/2, to repress their expression levels. These findings suggest that EjRAVs play critical roles in maintaining juvenility and repressing flower initiation in the early life cycle of loquat as well as in regulating seasonal flowering. Results from this study not only shed light on the control and maintenance of the juvenile phase, but also provided potential targets for manipulation of flowering time and accelerated breeding in loquat.
Collapse
Affiliation(s)
- Ze Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), South China Agricultural University, Guangzhou, China
| | - Man Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), South China Agricultural University, Guangzhou, China
| | - Ling Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), South China Agricultural University, Guangzhou, China
- Lushan Botanical Garden Jiangxi Province and Chinese Academy of Sciences, Lushan, China
| | - Yuanyuan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), South China Agricultural University, Guangzhou, China
| | - Chongbin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), South China Agricultural University, Guangzhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yunlu Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), South China Agricultural University, Guangzhou, China
| | - Jingjing Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), South China Agricultural University, Guangzhou, China
| | - Jiangrong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), South China Agricultural University, Guangzhou, China
| | - Yongshun Gao
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wenbing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), South China Agricultural University, Guangzhou, China
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xianghui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Zhang M, Yang Q, Yuan X, Yan X, Wang J, Cheng T, Zhang Q. Integrating Genome-Wide Association Analysis With Transcriptome Sequencing to Identify Candidate Genes Related to Blooming Time in Prunus mume. FRONTIERS IN PLANT SCIENCE 2021; 12:690841. [PMID: 34335659 PMCID: PMC8319914 DOI: 10.3389/fpls.2021.690841] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/28/2021] [Indexed: 05/12/2023]
Abstract
Prunus mume is one of the most important woody perennials for edible and ornamental use. Despite a substantial variation in the flowering phenology among the P. mume germplasm resources, the genetic control for flowering time remains to be elucidated. In this study, we examined five blooming time-related traits of 235 P. mume landraces for 2 years. Based on the phenotypic data, we performed genome-wide association studies, which included a combination of marker- and gene-based association tests, and identified 1,445 candidate genes that are consistently linked with flowering time across multiple years. Furthermore, we assessed the global transcriptome change of floral buds from the two P. mume cultivars exhibiting contrasting bloom dates and detected 617 associated genes that were differentially expressed during the flowering process. By integrating a co-expression network analysis, we screened out 191 gene candidates of conserved transcriptional pattern during blooming across cultivars. Finally, we validated the temporal expression profiles of these candidates and highlighted their putative roles in regulating floral bud break and blooming time in P. mume. Our findings are important to expand the understanding of flowering time control in woody perennials and will boost the molecular breeding of novel varieties in P. mume.
Collapse
Affiliation(s)
- Man Zhang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qingqing Yang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xi Yuan
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | | | - Jia Wang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- *Correspondence: Qixiang Zhang
| |
Collapse
|
26
|
Liu J, Ren M, Chen H, Wu S, Yan H, Jalal A, Wang C. Evolution of SHORT VEGETATIVE PHASE (SVP) genes in Rosaceae: Implications of lineage-specific gene duplication events and function diversifications with respect to their roles in processes other than bud dormancy. THE PLANT GENOME 2020; 13:e20053. [PMID: 33217197 DOI: 10.1002/tpg2.20053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
MADS-box genes that are homologous to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been shown to play key roles in the regulation of bud dormancy in perennial species, particularly in the deciduous fruit trees of Rosaceae. However, their evolutionary profiles in Rosaceae have not yet been analyzed systematically. Here, The SVP genes were found to be significantly expanded in Rosaceae when compared with annual species from Brassicaceae. Phylogenetic analysis showed that Rosaceae SVP genes could be classified into five clades, namely, SVP1, SVP2-R1, SVP2-R2, SVP2-R3 and SVP3. The SVP1 clade genes were retained in most of the species, whereas the SVP2-R2 and SVP2-R3 clades were found to be Maleae- and Amygdaleae-specific (Both of the lineages belong to Amygdaloideae), respectively, and SVP2-R1 was Rosoideae-specific in Rosaceae. Furthermore, 10 lineage-specific gene duplication (GD) events (GD1-10) were proposed for the expansion of SVP genes, suggesting that the expansion and divergence of Rosaceae SVP genes were mainly derived by lineage-specific manner during evolution. Moreover, tandem and segmental duplications were the major reasons for the expansion of SVP genes, and interestingly, tandem duplications, a well-known evolutionary feature of SVP genes, were found to be mainly Amygdaloideae-specific. Sequence alignment, selection pressure, and cis-acting element analysis suggested large functional innovations and diversification of SVP genes in different lineages of Rosaceae. Finally, the different growth cycle of Rosa multiflora and their novel expression patterns of RmSVP genes provided new insights into the functional diversification of SVP genes in terms of their roles in processes other than bud dormancy.
Collapse
Affiliation(s)
- Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Min Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Shanghai Forestry Station, Shanghai, 200072, China
| | - Hui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Silin Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huijun Yan
- Yunnan Academy of Agricultural Sciences, Flower Research Institute, Kunming, Yunnan, 650200, China
| | - Abdul Jalal
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
27
|
Dhiman N, Kumar A, Kumar D, Bhattacharya A. De novo transcriptome analysis of the critically endangered alpine Himalayan herb Nardostachys jatamansi reveals the biosynthesis pathway genes of tissue-specific secondary metabolites. Sci Rep 2020; 10:17186. [PMID: 33057076 PMCID: PMC7560736 DOI: 10.1038/s41598-020-74049-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023] Open
Abstract
The study is the first report on de novo transcriptome analysis of Nardostachys jatamansi, a critically endangered medicinal plant of alpine Himalayas. Illumina GAIIx sequencing of plants collected during end of vegetative growth (August) yielded 48,411 unigenes. 74.45% of these were annotated using UNIPROT. GO enrichment analysis, KEGG pathways and PPI network indicated simultaneous utilization of leaf photosynthates for flowering, rhizome fortification, stress response and tissue-specific secondary metabolites biosynthesis. Among the secondary metabolite biosynthesis genes, terpenoids were predominant. UPLC-PDA analysis of in vitro plants revealed temperature-dependent, tissue-specific differential distribution of various phenolics. Thus, as compared to 25 °C, the phenolic contents of both leaves (gallic acid and rutin) and roots (p-coumaric acid and cinnamic acid) were higher at 15 °C. These phenolics accounted for the therapeutic properties reported in the plant. In qRT-PCR of in vitro plants, secondary metabolite biosynthesis pathway genes showed higher expression at 15 °C and 14 h/10 h photoperiod (conditions representing end of vegetative growth period). This provided cues for in vitro modulation of identified secondary metabolites. Such modulation of secondary metabolites in in vitro systems can eliminate the need for uprooting N. jatamansi from wild. Hence, the study is a step towards effective conservation of the plant.
Collapse
Affiliation(s)
- Nisha Dhiman
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India
| | - Amita Bhattacharya
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
28
|
Lu J, Sun J, Jiang A, Bai M, Fan C, Liu J, Ning G, Wang C. Alternate expression of CONSTANS-LIKE 4 in short days and CONSTANS in long days facilitates day-neutral response in Rosa chinensis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4057-4068. [PMID: 32227095 PMCID: PMC7475255 DOI: 10.1093/jxb/eraa161] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/26/2020] [Indexed: 05/08/2023]
Abstract
Photoperiodic flowering responses are classified into three major types: long day (LD), short day (SD), and day neutral (DN). The inverse responses to daylength of LD and SD plants have been partly characterized in Arabidopsis and rice; however, the molecular mechanism underlying the DN response is largely unknown. Modern roses are economically important ornamental plants with continuous flowering (CF) features, and are generally regarded as DN plants. Here, RcCO and RcCOL4 were identified as floral activators up-regulated under LD and SD conditions, respectively, in the CF cultivar Rosa chinensis 'Old-Blush'. Diminishing the expression of RcCO or/and RcCOL4 by virus-induced gene silencing (VIGS) delayed flowering time under both SDs and LDs. Interestingly, in contrast to RcCO-silenced plants, the flowering time of RcCOL4-silenced plants was more delayed under SD than under LD conditions, indicating perturbed plant responses to day neutrality. Further analyses revealed that physical interaction between RcCOL4 and RcCO facilitated binding of RcCO to the CORE motif in the promoter of RcFT and induction of RcFT. Taken together, the complementary expression of RcCO in LDs and of RcCOL4 in SDs guaranteed flowering under favorable growth conditions regardless of the photoperiod. This finding established the molecular foundation of CF in roses and further shed light on the underlying mechanisms of DN responses.
Collapse
Affiliation(s)
- Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Anqi Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mengjuan Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chunguo Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guogui Ning
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Correspondence:
| |
Collapse
|
29
|
Vayssières A, Mishra P, Roggen A, Neumann U, Ljung K, Albani MC. Vernalization shapes shoot architecture and ensures the maintenance of dormant buds in the perennial Arabis alpina. THE NEW PHYTOLOGIST 2020; 227:99-115. [PMID: 32022273 DOI: 10.1111/nph.16470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/29/2020] [Indexed: 05/11/2023]
Abstract
Perennials have a complex shoot architecture with axillary meristems organized in zones of differential bud activity and fate. This includes zones of buds maintained dormant for multiple seasons and used as reservoirs for potential growth in case of damage. The shoot of Arabis alpina, a perennial relative of Arabidopsis thaliana, consists of a zone of dormant buds placed between subapical vegetative and basal flowering branches. This shoot architecture is shaped after exposure to prolonged cold, required for flowering. To understand how vernalization ensures the maintenance of dormant buds, we performed physiological and transcriptome studies, followed the spatiotemporal changes of auxin, and generated transgenic plants. Our results demonstrate that the complex shoot architecture in A. alpina is shaped by its flowering behavior, specifically the initiation of inflorescences during cold treatment and rapid flowering after subsequent exposure to growth-promoting conditions. Dormant buds are already formed before cold treatment. However, dormancy in these buds is enhanced during, and stably maintained after, vernalization by a BRC1-dependent mechanism. Post-vernalization, stable maintenance of dormant buds is correlated with increased auxin response, transport, and endogenous indole-3-acetic acid levels in the stem. Here, we provide a functional link between flowering and the maintenance of dormant buds in perennials.
Collapse
Affiliation(s)
- Alice Vayssières
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Priyanka Mishra
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| |
Collapse
|
30
|
Hu J, Liu Y, Tang X, Rao H, Ren C, Chen J, Wu Q, Jiang Y, Geng F, Pei J. Transcriptome profiling of the flowering transition in saffron (Crocus sativus L.). Sci Rep 2020; 10:9680. [PMID: 32541892 PMCID: PMC7295807 DOI: 10.1038/s41598-020-66675-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 02/19/2020] [Indexed: 01/08/2023] Open
Abstract
Saffron, derived from the stigma of Crocus sativus, is not only a valuable traditional Chinese medicine but also the expensive spice and dye. Its yield and quality are seriously influenced by its flowering transition. However, the molecular regulatory mechanism of the flowering transition in C. sativus is still unknown. In this study, we performed morphological, physiological and transcriptomic analyses using apical bud samples from C. sativus during the floral transition process. Morphological results indicated that the flowering transition process could be divided into three stages: an undifferentiated period, the early flower bud differentiation period, and the late flower bud differentiation period. Sugar, gibberellin (GA3), auxin (IAA) and zeatin (ZT) levels were steadily upregulated, while starch and abscisic acid (ABA) levels were gradually downregulated. Transcriptomic analysis showed that a total of 60 203 unigenes were identified, among which 19 490 were significantly differentially expressed. Of these, 165 unigenes were involved in flowering and were significantly enriched in the sugar metabolism, hormone signal transduction, cell cycle regulatory, photoperiod and autonomous pathways. Based on the above analysis, a hypothetical model for the regulatory networks of the saffron flowering transition was proposed. This study lays a theoretical basis for the genetic regulation of flowering in C. sativus.
Collapse
Affiliation(s)
- Jing Hu
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuping Liu
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaohui Tang
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huajing Rao
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chaoxiang Ren
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiang Chen
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinghua Wu
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Jiang
- New Zealand Academy of Chinese Medicine Science, Christchurch, 8014, New Zealand
| | - Fuchang Geng
- The Good Doctor Pharmaceutical group co. LTD, Mianyang, 622650, China
| | - Jin Pei
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
31
|
Shirasawa K, Esumi T, Hirakawa H, Tanaka H, Itai A, Ghelfi A, Nagasaki H, Isobe S. Phased genome sequence of an interspecific hybrid flowering cherry, 'Somei-Yoshino' (Cerasus × yedoensis). DNA Res 2020; 26:379-389. [PMID: 31334758 PMCID: PMC6796508 DOI: 10.1093/dnares/dsz016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
We report the phased genome sequence of an interspecific hybrid, the flowering cherry ‘Somei-Yoshino’ (Cerasus × yedoensis). The sequence data were obtained by single-molecule real-time sequencing technology, split into two subsets based on genome information of the two probable ancestors, and assembled to obtain two haplotype phased genome sequences of the interspecific hybrid. The resultant genome assembly consisting of the two haplotype sequences spanned 690.1 Mb with 4,552 contigs and an N50 length of 1.0 Mb. We predicted 95,076 high-confidence genes, including 94.9% of the core eukaryotic genes. Based on a high-density genetic map, we established a pair of eight pseudomolecule sequences, with highly conserved structures between the two haplotype sequences with 2.4 million sequence variants. A whole genome resequencing analysis of flowering cherries suggested that ‘Somei-Yoshino’ might be derived from a cross between C. spachiana and either C. speciosa or its relatives. A time-course transcriptome analysis of floral buds and flowers suggested comprehensive changes in gene expression in floral bud development towards flowering. These genome and transcriptome data are expected to provide insights into the evolution and cultivation of flowering cherry and the molecular mechanism underlying flowering.
Collapse
|
32
|
Ben Michael TE, Faigenboim A, Shemesh-Mayer E, Forer I, Gershberg C, Shafran H, Rabinowitch HD, Kamenetsky-Goldstein R. Crosstalk in the darkness: bulb vernalization activates meristem transition via circadian rhythm and photoperiodic pathway. BMC PLANT BIOLOGY 2020; 20:77. [PMID: 32066385 PMCID: PMC7027078 DOI: 10.1186/s12870-020-2269-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/29/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Geophytes possess specialized storage organs - bulbs, tubers, corms or rhizomes, which allow their survival during unfovarable periods and provide energy support for sprouting and sexual and vegetative reproduction. Bulbing and flowering of the geophyte depend on the combined effects of the internal and external factors, especially temperature and photoperiod. Many geophytes are extensively used in agriculture, but mechanisms of regulation of their flowering and bulbing are still unclear. RESULTS Comparative morpho-physiological and transcriptome analyses and quantitative validation of gene expression shed light on the molecular regulation of the responses to vernalization in garlic, a typical bulbous plant. Long dark cold exposure of bulbs is a major cue for flowering and bulbing, and its interactions with the genetic makeup of the individual plant dictate the phenotypic expression during growth stage. Photoperiod signal is not involved in the initial nuclear and metabolic processes, but might play role in the later stages of development, flower stem elongation and bulbing. Vernalization for 12 weeks at 4 °C and planting in November resulted in flower initiation under short photoperiod in December-January, and early blooming and bulbing. In contrast, non-vernalized plants did not undergo meristem transition. Comparisons between vernalized and non-vernalized bulbs revealed ~ 14,000 differentially expressed genes. CONCLUSIONS Low temperatures stimulate a large cascades of molecular mechanisms in garlic, and a variety of flowering pathways operate together for the benefit of meristem transition, annual life cycle and viable reproduction results.The circadian clock appears to play a central role in the transition of the meristem from vegetative to reproductive stage in bulbous plant, serving as integrator of the low-temperature signals and the expression of the genes associated with vernalization, photoperiod and meristem transition. The reserved photoperiodic pathway is integrated at an upstream point, possibly by the same receptors. Therefore, in bulb, low temperatures stimulate cascades of developmental mechanisms, and several genetic flowering pathways intermix to achieve successful sexual and vegetative reproduction.
Collapse
Affiliation(s)
- Tomer E Ben Michael
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion, Israel
- Robert H. Smith Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion, Israel
| | | | - Itzhak Forer
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Chen Gershberg
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Hadass Shafran
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Haim D Rabinowitch
- Robert H. Smith Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
33
|
Mild Water Stress Makes Apple Buds More Likely to Flower and More Responsive to Artificial Forcing— Impacts of an Unusually Warm and Dry Summer in Germany. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change may result in increasingly frequent extreme events, such as the unusually dry conditions that occurred in Germany during the apple growing season of 2018. To assess the effects of this phenomenon on dormancy release and flowering in apples, we compared irrigated and non-irrigated orchard blocks at Campus Klein-Altendorf. We evaluated bud development, dormancy release and flowering in the following season under orchard and controlled forcing conditions. Results showed that irrigated trees presented longer (39.2%) and thinner shoots compared to non-irrigated trees. In both treatments, apical buds developed a similar number of flower primordia per cyme (4–5), presenting comparable development and starch dynamics during dormancy. Interestingly, buds on non-irrigated shoots exposed to low chill levels responded earlier to forcing conditions than those on irrigated shoots. However, chill requirements (~50 Chill Portions) and bud phenology under field conditions did not differ between treatments. In spring, buds on non-irrigated trees presented a higher bloom probability (0.42) than buds on irrigated trees (0.30). Our findings show that mild water stress during summer influenced vegetative growth during the same season, as well as the response of buds to forcing temperatures and flowering of the following season. The differences between irrigation levels in the phenological responses of shoots under low-chill conditions point to a so-far understudied impact of water supply on chilling requirements, as well as subsequent bud behavior. Accounting for the effects of both the water status during summer and the temperature during the dormant season may be required for accurately predicting future tree phenology in a changing climate.
Collapse
|
34
|
Abstract
The perennial life strategy of temperate trees relies on establishing a dormant stage during winter to survive unfavorable conditions. To overcome this dormant stage, trees require cool (i.e., chilling) temperatures as an environmental cue. Numerous approaches have tried to decipher the physiology of dormancy, but these efforts have usually remained relatively narrowly focused on particular regulatory or metabolic processes, recently integrated and linked by transcriptomic studies. This work aimed to synthesize existing knowledge on dormancy into a general conceptual framework to enhance dormancy comprehension. The proposed conceptual framework covers four physiological processes involved in dormancy progression: (i) transport at both whole-plant and cellular level, (ii) phytohormone dynamics, (iii) genetic and epigenetic regulation, and (iv) dynamics of nonstructural carbohydrates. We merged the regulatory levels into a seasonal framework integrating the environmental signals (i.e., temperature and photoperiod) that trigger each dormancy phase.
Collapse
|
35
|
Han T, Xu E, Yao L, Zheng B, Younis A, Shao Q. Regulation of flowering time using temperature, photoperiod and spermidine treatments in Anoectochilus roxburghii. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:247-260. [PMID: 32158132 PMCID: PMC7036380 DOI: 10.1007/s12298-019-00742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the effects of different temperatures, photoperiods and spermidine concentrations on the flowering time regulation of Anoectochilus roxburghii by measuring changes in the soluble sugar, soluble protein, malondialdehyde and proline contents, and the peroxidase, superoxide dismutase and catalase activities in A. roxburghii flower buds. The flowering time could be advanced under 25/20 °C (day/night), 16/8-h (day/night) long day conditions or low spermidine concentrations. The plants grew more rapidly and flowering rates were greater. The flowering time could be delayed under a low temperature of 20/15 °C or 8/16-h short day conditions, resulting in a low flowering rate. Under a high temperature of 30/25 °C or high spermidine concentrations, the plants could not flower normally and even died. There were significant differences in the seven measured indices among the various treatments. Thus, different treatments had significant effects on the flowering time regulation and flowering quality of A. roxburghii, providing a reliable theoretical basis for further studies on the flowering-related regulatory mechanisms of A. roxburghii.
Collapse
Affiliation(s)
- Tingting Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300 China
| | - Enting Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300 China
| | - Linna Yao
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300 China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
| | - Adnan Younis
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300 China
| |
Collapse
|
36
|
Rothkegel K, Sandoval P, Soto E, Ulloa L, Riveros A, Lillo-Carmona V, Cáceres-Molina J, Almeida AM, Meneses C. Dormant but Active: Chilling Accumulation Modulates the Epigenome and Transcriptome of Prunus avium During Bud Dormancy. FRONTIERS IN PLANT SCIENCE 2020; 11:1115. [PMID: 32765576 PMCID: PMC7380246 DOI: 10.3389/fpls.2020.01115] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
Temperate deciduous fruit tree species like sweet cherry (Prunus avium) require long periods of low temperatures to trigger dormancy release and flowering. In addition to sequence-based genetic diversity, epigenetic variation may contribute to different chilling requirements among varieties. For the low chill variety 'Royal Dawn' and high chill variety 'Kordia', we studied the methylome of floral buds during chilling accumulation using MethylC-seq to identify differentially methylated regions (DMRs) during chilling hours (CH) accumulation, followed by transcriptome analysis to correlate changes in gene expression with DNA methylation. We found that during chilling accumulation, DNA methylation increased from 173 CH in 'Royal Dawn' and 443 CH in 'Kordia' and was mostly associated with the CHH context. In addition, transcriptional changes were observed from 443 CH in 'Kordia' with 1,210 differentially expressed genes, increasing to 4,292 genes at 1,295 CH. While 'Royal Dawn' showed approximately 5,000 genes differentially expressed at 348 CH and 516 CH, showing a reprogramming that was specific for each genotype. From conserved upregulated genes that overlapped with hypomethylated regions and downregulated genes that overlapped with hypermethylated regions in both varieties, we identified genes related to cold-sensing, cold-signaling, oxidation-reduction process, metabolism of phenylpropanoids and lipids, and a MADS-box SVP-like gene. As a complementary analysis, we used conserved and non-conserved DEGs that presented a negative correlation between DNA methylations and mRNA levels across all chilling conditions, obtaining Gene Ontology (GO) categories related to abiotic stress, metabolism, and oxidative stress. Altogether, this data indicates that changes in DNA methylation precedes transcript changes and may occur as an early response to low temperatures to increase the cold tolerance in the endodormancy period, contributing with the first methylome information about the effect of environmental cues over two different genotypes of sweet cherry.
Collapse
Affiliation(s)
- Karin Rothkegel
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Paula Sandoval
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Esteban Soto
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Lissette Ulloa
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Anibal Riveros
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Victoria Lillo-Carmona
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Javier Cáceres-Molina
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Andrea Miyasaka Almeida
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- ;*Correspondence: Andrea Miyasaka Almeida, ; Claudio Meneses,
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP, Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
- ;*Correspondence: Andrea Miyasaka Almeida, ; Claudio Meneses,
| |
Collapse
|
37
|
Jiang Y, Zhu Y, Zhang L, Su W, Peng J, Yang X, Song H, Gao Y, Lin S. EjTFL1 Genes Promote Growth but Inhibit Flower Bud Differentiation in Loquat. FRONTIERS IN PLANT SCIENCE 2020; 11:576. [PMID: 32528491 PMCID: PMC7247538 DOI: 10.3389/fpls.2020.00576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 04/17/2020] [Indexed: 05/14/2023]
Abstract
TERMINAL FLOWER1 (TFL1), a key factor belonging to the phosphatidyl ethanolamine-binding protein (PEBP) family, controls flowering time and inflorescence architecture in some plants. However, the role of TFL1 in loquat remains unknown. In this study, we cloned two TFL1-like genes (EjTFL1-1 and EjTFL1-2) with conserved deduced amino acid sequences from cultivated loquat (Eriobotrya japonica Lindl.). First, we determined that flower bud differentiation occurs at the end of June and early July, and then comprehensively analyzed the temporal and spatial expression patterns of these EjTFL1s during loquat growth and development. We observed the contrasting expression trends for EjTFL1s and EjAP1s (APETALA 1) in shoot apices, and EjTFL1s were mainly expressed in young tissues. In addition, short-day and exogenous GA3 treatments promoted the expression of EjTFL1s, and no flower bud differentiation was observed after these treatments in loquat. Moreover, EjTFL1s were localized to the cytoplasm and nucleus, and both interacted with another flowering transcription factor, EjFD, in the nucleus, and EjTFL1s-EjFD complex significantly repressed the promoter activity of EjAP1-1. The two EjTFL1s were overexpressed in wild-type Arabidopsis thaliana Col-0, which delayed flowering time, promoted stem elongation, increased the number of branches, and also affected flower and silique phenotypes. In conclusion, our results suggested that EjTFL1-1 and EjTFL1-2 do not show the same pattern of expression whereas both are able of inhibiting flower bud differentiation and promoting vegetative growth in loquat by integrating GA3 and photoperiod signals. These findings provide useful clues for analyzing the flowering regulatory network of loquat and provide meaningful references for flowering regulation research of other woody fruit trees.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yunmei Zhu
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ling Zhang
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wenbing Su
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiangrong Peng
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xianghui Yang
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Huwei Song
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, China
| | - Yongshun Gao
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Yongshun Gao,
| | - Shunquan Lin
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Shunquan Lin,
| |
Collapse
|
38
|
High crop load and low temperature delay the onset of bud initiation in apple. Sci Rep 2019; 9:17986. [PMID: 31784602 PMCID: PMC6884464 DOI: 10.1038/s41598-019-54381-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 11/14/2019] [Indexed: 11/08/2022] Open
Abstract
The reproductive cycle of apple (Malus × domestica Borkh.) starts with the induction of floral development, however, first morphological changes within the bud appear during the following period of bud initiation. This study identifies the onset and duration of bud initiation in the apple cultivars 'Fuji' and 'Gala', characterized by biennial and non-biennial bearing behaviour, respectively, and describes the effect of crop load and heat accumulation on the temporal pattern of floral development. The onset of flower bud initiation in heavy cropping 'Gala' trees was delayed for 20 days compared to trees with no crop load, but the rate of initiation was not affected by crop load. Bud initiation on heavy cropping 'Fuji' trees was minor, whereas trees with no crop load started initiating buds 19 days earlier than those of 'Gala' despite the same cropping status and growing degree hours in a given year. The onset of bud initiation in 'Fuji' 'off' trees was 5 and 20 days after summer solstice, respectively, in two consecutive growing seasons, suggesting that this process is driven by heat accumulation rather than by daylength. The results indicate, that the genetic make-up of the cultivar determines the onset of bud initiation. This can be delayed by increasing crop loads and low temperatures at the beginning of the flower formation process.
Collapse
|
39
|
The Role of EjSVPs in Flower Initiation in Eriobotrya japonica. Int J Mol Sci 2019; 20:ijms20235933. [PMID: 31779080 PMCID: PMC6928820 DOI: 10.3390/ijms20235933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Flowering plants have evolved different flowering habits to sustain long-term reproduction. Most woody trees experience dormancy and then bloom in the warm spring, but loquat blooms in the cold autumn and winter. To explore its mechanism of flowering regulation, we cloned two SHORT VEGETATIVE PHASE (SVP) homologous genes from 'Jiefanzhong' loquat (Eriobotrya japonica Lindl.), namely, EjSVP1 and EjSVP2. Sequence analysis revealed that the EjSVPs were typical MADS-box transcription factors and exhibited a close genetic relationship with other plant SVP/DORMANCY-ASSOCIATED MADS-BOX (DAM) proteins. The temporal and spatial expression patterns showed that EjSVP1 and EjSVP2 were mainly expressed in the shoot apical meristem (SAM) after the initiation of flowering; after reaching their highest level, they gradually decreased with the development of the flower until they could not be detected. EjSVP1 expression levels were relatively high in young tissues, and EjSVP2 expression levels were relatively high in young to mature transformed tissues. Interestingly, EjSVP2 showed relatively high expression levels in various flower tissues. We analyzed the EjSVP promoter regions and found that they did not contain the C-repeat/dehydration-responsive element. Finally, we overexpressed the EjSVPs in wild-type Arabidopsis thaliana Col-0 and found no significant changes in the number of rosette leaves of Arabidopsis thaliana; however, overexpression of EjSVP2 affected the formation of Arabidopsis thaliana flower organs. In conclusion, EjSVPs were found to play an active role in the development of loquat flowering. These findings may provide a reference for exploring the regulation mechanisms of loquat flowering and the dormancy mechanisms of other plants.
Collapse
|
40
|
Labadie M, Denoyes B, Guédon Y. Identifying phenological phases in strawberry using multiple change-point models. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5687-5701. [PMID: 31328226 PMCID: PMC6812722 DOI: 10.1093/jxb/erz331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/10/2019] [Indexed: 05/11/2023]
Abstract
Plant development studies often generate data in the form of multivariate time series, each variable corresponding to a count of newly emerged organs for a given development process. These phenological data often exhibit highly structured patterns, and the aim of this study was to identify such patterns in cultivated strawberry. Six strawberry genotypes were observed weekly for their course of emergence of flowers, leaves, and stolons during 7 months. We assumed that these phenological series take the form of successive phases, synchronous between individuals. We applied univariate multiple change-point models for the identification of flowering, vegetative development, and runnering phases, and multivariate multiple change-point models for the identification of consensus phases for these three development processes. We showed that the flowering and the runnering processes are the main determinants of the phenological pattern. On this basis, we propose a typology of the six genotypes in the form of a hierarchical classification. This study introduces a new longitudinal data modeling approach for the identification of phenological phases in plant development. The focus was on development variables but the approach can be directly extended to growth variables and to multivariate series combining growth and development variables.
Collapse
Affiliation(s)
- Marc Labadie
- UMR BFP, INRA, Université de Bordeaux, Villenave d’Ornon, France
- CIRAD, UMR AGAP and Université de Montpellier, Montpellier, France
| | - Béatrice Denoyes
- UMR BFP, INRA, Université de Bordeaux, Villenave d’Ornon, France
- Correspondence: or
| | - Yann Guédon
- UMR BFP, INRA, Université de Bordeaux, Villenave d’Ornon, France
- CIRAD, UMR AGAP and Université de Montpellier, Montpellier, France
- Correspondence: or
| |
Collapse
|
41
|
Qin L, Zhang X, Yan J, Fan L, Rong C, Mo C, Zhang M. Effect of exogenous spermidine on floral induction, endogenous polyamine and hormone production, and expression of related genes in 'Fuji' apple (Malus domestica Borkh.). Sci Rep 2019; 9:12777. [PMID: 31484948 PMCID: PMC6726604 DOI: 10.1038/s41598-019-49280-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Flower bud formation in ‘Fuji’ apple (Malus domestica Borkh.) is difficult, which severely constrains commercial production. Spermidine (Spd) plays an important role in floral induction, but the mechanism of its action is incompletely understood. To investigate the effect of Spd on flowering, 6-year-old ‘Fuji’ apple trees were treated with 1 × 10−5 mol L−1 Spd to study the responses of polyamines [putrescine (Put), Spd and spermine (Spm)], hormones [gibberellins (GA3) and abscisic acid (ABA)], and polyamine-, hormone- and flowering-related genes. Spd application promoted flowering during floral induction by increasing MdGA2ox2 (gibberellin 2-oxidase) through GA3 reduction and increasing MdNCED1 and MdNCED3 (9-cis-epoxycarotenoid dioxygenase) through ABA enrichment during 60 to 80 days after full bloom. The flowering rate as well as the expressions of flower-related genes, except for MdLEY (LEAFY), also increased, thereby promoting flowering. In addition, spraying with Spd significantly increased the contents of endogenous polyamines except for Spm in terminal buds by increasing the expressions of polyamine-associated genes. We hypothesize that the contribution of Spd to flowering is related to crosstalk among polyamines, hormone signals, and related gene expressions, which suggests that Spd participates in the apple floral induction process.
Collapse
Affiliation(s)
- Ling Qin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Yan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lu Fan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunxiao Rong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chuanyuan Mo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Manrang Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
42
|
Kemi U, Leinonen PH, Savolainen O, Kuittinen H. Inflorescence shoot elongation, but not flower primordia formation, is photoperiodically regulated in Arabidopsis lyrata. ANNALS OF BOTANY 2019; 124:91-102. [PMID: 31321402 PMCID: PMC6676387 DOI: 10.1093/aob/mcz035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/22/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Photoperiod contains information about the progress of seasons. Plants use the changing photoperiod as a cue for the correct timing of important life history events, including flowering. Here the effect of photoperiod on flowering in four Arabidopsis lyrata populations originating from different latitudes was studied, as well as expression levels of candidate genes for governing the between-population differences. METHODS Flowering of plants from four A. lyrata populations was studied in three different photoperiods after vernalization. Flowering development was separated into three steps: flower primordia formation, inflorescence shoot elongation and opening of the first flower. Circadian expression rhythms of the A. lyrata homologues of GIGANTEA (GI), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), CONSTANS (CO) and FLOWERING LOCUS T (FT) were studied in three of the populations in the intermediate (14 h) photoperiod treatment. KEY RESULTS Most plants in all populations formed visible flower primordia during vernalization. Further inflorescence development after vernalization was strongly inhibited by short days in the northern European population (latitude 61°N), only slightly in the central European population (49°N) and not at all in the North American populations (36°N and 42°N). In the 14 h daylength, where all plants from the three southernmost populations but only 60 % of the northernmost population flowered, the circadian expression rhythm of the A. lyrata FT was only detected in the southern populations, suggesting differentiation in the critical daylength for activation of the long-day pathway. However, circadian expression rhythms of A. lyrata GI, FKF1 and CO were similar between populations. CONCLUSIONS The results indicate that in A. lyrata, transition to flowering can occur through pathways independent of long days, but elongation of inflorescences is photoperiodically regulated.
Collapse
Affiliation(s)
- Ulla Kemi
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg, Cologne, Germany
| | - Päivi H Leinonen
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
- Biodiversity Unit, University of Turku, Turku, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Helmi Kuittinen
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
43
|
Fadón E, Herrero M, Rodrigo J. Anther and pollen development in sweet cherry (Prunus avium L.) in relation to winter dormancy. PROTOPLASMA 2019; 256:733-744. [PMID: 30506265 DOI: 10.1007/s00709-018-01332-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/21/2018] [Indexed: 05/23/2023]
Abstract
Anther and pollen development is a highly conserved process in angiosperms, but while pollen formation in annual plants occurs in a few days, in temperate woody perennials, it requires several months. How anther and pollen development is framed in terms of seasonality plays a clear part in reproductive success. In this study, seasonal anther and pollen development is characterized in two sweet cherry cultivars over 2 years, paying special attention to the period of dormancy and unveiling the role of starch in this process. We evaluated starch content from the autumn until bud burst with the help of an image analysis system fitted to a light microscope. Microscope observations allowed the temporal relationship of pollen development to the phenological stages of flower and bud development to be determined. In both cultivars and years, anther and pollen development followed the same pattern. Development was halted by dormancy, when the anthers showed no morphological changes until several weeks after chilling fulfillment, until the milder temperatures reactivated development. After dormancy, starch was accumulated in the connective tissue until tracheary element differentiation. Quantification of starch in the connective tissue of anthers revealed its importance in supporting pollen meiosis and subsequent anther growth.
Collapse
Affiliation(s)
- Erica Fadón
- Centro de Investigación y Tecnología Agroalimentaria de Aragón. Instituto Agroalimentario de Aragón - IA2 (CITA), Universidad de Zaragoza, Av. Montañana 930, 50059, Zaragoza, Spain
- Estación Experimental Aula Dei, CSIC, Av. Montañana 1005, 50059, Zaragoza, Spain
| | - María Herrero
- Estación Experimental Aula Dei, CSIC, Av. Montañana 1005, 50059, Zaragoza, Spain
| | - Javier Rodrigo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón. Instituto Agroalimentario de Aragón - IA2 (CITA), Universidad de Zaragoza, Av. Montañana 930, 50059, Zaragoza, Spain.
| |
Collapse
|
44
|
Zhang H, Wang L, Shi K, Shan D, Zhu Y, Wang C, Bai Y, Yan T, Zheng X, Kong J. Apple tree flowering is mediated by low level of melatonin under the regulation of seasonal light signal. J Pineal Res 2019; 66:e12551. [PMID: 30597595 DOI: 10.1111/jpi.12551] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 12/14/2022]
Abstract
Melatonin regulates the seasonal reproduction in photoperiodic sensitive animals. Its function in plants reproduction has not been extensively studied. In the current study, the effects of melatonin on the apple tree flowering have been systematically investigated. For consecutive 2-year monitoring, it was found that the flowering was always associated with the drop of melatonin level in apple tree. Melatonin application before flowering postponed apple tree flowering with a dose-dependent manner. The increased melatonin levels at a suitable range also resulted in more flowering. The data indicated that similar to the animals, the melatonin also serves as the signal of the environmental light to regulate the plant reproduction. It was mainly the blue and far-red light to regulate the gene expression of melatonin synthetic enzymes and melatonin production in plants. The seasonal alterations of the blue and far-red lights coordinated well with the changes of the melatonin levels and led to decreased melatonin level before flowering. The mechanism studies showed that melatonin per se inhibits all the four flowering pathways in apple. The results not only provide the basic knowledge for melatonin research, but also uncover melatonin as a chemical message of light signal to mediate plant reproduction. This information can be potentially used to control flowering period and prolong the harvest time, helpfully to open a new avenue for increasing crop yield by melatonin application.
Collapse
Affiliation(s)
- Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing, China
| | - Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yunpeng Zhu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Chanyu Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yixue Bai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tianci Yan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
The Effects of DNA Methylation Inhibition on Flower Development in the Dioecious Plant Salix Viminalis. FORESTS 2019. [DOI: 10.3390/f10020173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation, an important epigenetic modification, regulates the expression of genes and is therefore involved in the transitions between floral developmental stages in flowering plants. To explore whether DNA methylation plays different roles in the floral development of individual male and female dioecious plants, we injected 5-azacytidine (5-azaC), a DNA methylation inhibitor, into the trunks of female and male basket willow (Salix viminalis L.) trees before flower bud initiation. As expected, 5-azaC decreased the level of DNA methylation in the leaves of both male and female trees during floral development; however, it increased DNA methylation in the leaves of male trees at the flower transition stage. Furthermore, 5-azaC increased the number, length and diameter of flower buds in the female trees but decreased these parameters in the male trees. The 5-azaC treatment also decreased the contents of soluble sugars, starch and reducing sugars in the leaves of the female plants, while increasing them in the male plants at the flower transition stage; however, this situation was largely reversed at the flower development stage. In addition, 5-azaC treatment decreased the contents of auxin indoleacetic acid (IAA) in both male and female trees at the flower transition stage. These results indicate that hypomethylation in leaves at the flower transition stage promotes the initiation of flowering and subsequent floral growth in Salix viminalis, suggesting that DNA methylation plays a similar role in vegetative–reproductive transition and early floral development. Furthermore, methylation changes during the vegetative–reproductive transition and floral development were closely associated with the biosynthesis, metabolism and transportation of carbohydrates and IAA. These results provide insight into the epigenetic regulation of carbohydrate accumulation.
Collapse
|
46
|
Jiang Y, Peng J, Zhu Y, Su W, Zhang L, Jing Y, Lin S, Gao Y. The Role of EjSOC1s in Flower Initiation in Eriobotrya japonica. FRONTIERS IN PLANT SCIENCE 2019. [PMID: 30930912 DOI: 10.3389/fpls.2019.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The MADS-box transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) integrates environmental and endogenous signals to promote flowering in Arabidopsis. However, the role of SOC1 homologs in regulating flowering time in fruit trees remains unclear. To better understand the molecular mechanism of flowering regulation in loquat (Eriobotrya japonica Lindl.), two SOC1 homologs (EjSOC1-1 and EjSOC1-2) were identified and characterized in this work. Sequence analysis showed that EjSOC1-1 and EjSOC1-2 have conserved MADS-box and K-box domains. EjSOC1-1 and EjSOC1-2 were clearly expressed in vegetative organs, and high expression was detected in flower buds. As observed in paraffin-embedded sections, expression of the downstream flowering genes EjAP1s and EjLFYs started to increase at the end of June, a time when flower bud differentiation occurs. Additionally, high expression of EjSOC1-1 and EjSOC1-2 began 10 days earlier than that of EjAP1s and EjLFYs in shoot apical meristem (SAM). EjSOC1-1 and EjSOC1-2 were inhibited by short-day (SD) conditions and exogenous GA3, and flower bud differentiation did not occur after these treatments. EjSOC1-1 and EjSOC1-2 were found to be localized to the nucleus. Moreover, ectopic overexpression of EjSOC1-1 and EjSOC1-2 in wild-type Arabidopsis promoted early flowering, and overexpression of both was able to rescue the late flowering phenotype of the soc1-2 mutant. In conclusion, the results suggest that cultivated loquat flower bud differentiation in southern China begins in late June to early July and that EjSOC1-1 and EjSOC1-2 participate in the induction of flower initiation. These findings provide new insight into the artificial regulation of flowering time in fruit trees.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiangrong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yunmei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wenbing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ling Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yi Jing
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shunquan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yongshun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
47
|
Jiang Y, Peng J, Zhu Y, Su W, Zhang L, Jing Y, Lin S, Gao Y. The Role of EjSOC1s in Flower Initiation in Eriobotrya japonica. FRONTIERS IN PLANT SCIENCE 2019; 10:253. [PMID: 30930912 PMCID: PMC6409497 DOI: 10.3389/fpls.2019.00253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/15/2019] [Indexed: 05/07/2023]
Abstract
The MADS-box transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) integrates environmental and endogenous signals to promote flowering in Arabidopsis. However, the role of SOC1 homologs in regulating flowering time in fruit trees remains unclear. To better understand the molecular mechanism of flowering regulation in loquat (Eriobotrya japonica Lindl.), two SOC1 homologs (EjSOC1-1 and EjSOC1-2) were identified and characterized in this work. Sequence analysis showed that EjSOC1-1 and EjSOC1-2 have conserved MADS-box and K-box domains. EjSOC1-1 and EjSOC1-2 were clearly expressed in vegetative organs, and high expression was detected in flower buds. As observed in paraffin-embedded sections, expression of the downstream flowering genes EjAP1s and EjLFYs started to increase at the end of June, a time when flower bud differentiation occurs. Additionally, high expression of EjSOC1-1 and EjSOC1-2 began 10 days earlier than that of EjAP1s and EjLFYs in shoot apical meristem (SAM). EjSOC1-1 and EjSOC1-2 were inhibited by short-day (SD) conditions and exogenous GA3, and flower bud differentiation did not occur after these treatments. EjSOC1-1 and EjSOC1-2 were found to be localized to the nucleus. Moreover, ectopic overexpression of EjSOC1-1 and EjSOC1-2 in wild-type Arabidopsis promoted early flowering, and overexpression of both was able to rescue the late flowering phenotype of the soc1-2 mutant. In conclusion, the results suggest that cultivated loquat flower bud differentiation in southern China begins in late June to early July and that EjSOC1-1 and EjSOC1-2 participate in the induction of flower initiation. These findings provide new insight into the artificial regulation of flowering time in fruit trees.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiangrong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yunmei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wenbing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ling Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yi Jing
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shunquan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- *Correspondence: Shunquan Lin, Yongshun Gao,
| | - Yongshun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- *Correspondence: Shunquan Lin, Yongshun Gao,
| |
Collapse
|
48
|
Xing L, Zhang D, Qi S, Chen X, An N, Li Y, Zhao C, Han M, Zhao J. Transcription profiles reveal the regulatory mechanisms of spur bud changes and flower induction in response to shoot bending in apple (Malus domestica Borkh.). PLANT MOLECULAR BIOLOGY 2019; 99:45-66. [PMID: 30519825 DOI: 10.1007/s11103-018-0801-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/25/2018] [Indexed: 05/27/2023]
Abstract
Shoot bending, as an effective agronomic measure, has been widely used to promote flowering in 'Fuji' apple trees. Here, we examined the transcriptional responses of genes in 'Fuji' apple buds at different flowering stages under a shoot-bending treatment using RNA sequencing. A complex genetic crosstalk-regulated network, involving abscisic acid-related genes, starch metabolism and circadian rhythm-related genes, as well as stress response-related genes, was up-regulated by shoot bending, in which were contrbuted to apple flower bud formation in response to shoot-bending conditions. Flower induction plays an important role in the apple tree life cycle, but young trees produce fewer and inferior flower buds. Shoot bending, as an effective agronomic measure, has been widely used to promote flowering in 'Fuji' apple trees. However, little is known about the gene expression network patterns and molecular regulatory mechanisms caused by shoot bending during the induced flowering. Here, we examined the transcriptional responses of genes in 'Fuji' apple buds at different flowering stages under a shoot-bending treatment using RNA sequencing. A steady up-regulation of carbon metabolism-related genes led to relatively high levels of sucrose in early induced flowering stages and starch accumulation during shoot bending. Additionally, global gene expression profiling determined that cytokinin, indole-3-acetic acid, gibberellin synthesis and signalling-related genes were significantly regulated by shoot bending, contributing to cell division and differentiation, bud growth and flower induction. A complex genetic crosstalk-regulated network, involving abscisic acid-related genes, starch metabolism- and circadian rhythm-related genes, as well as stress response-related genes, was up-regulated by shoot bending. Additionally, some transcription factor family genes that were involved in sugar, abscisic acid and stress response signalling were significantly induced by shoot bending. These important flowering genes, which were mainly involved in photoperiod, age and autonomous pathways, were up-regulated by shoot bending. Thus, a complex genetic network of regulatory mechanisms involved in sugar, hormone and stress response signalling pathways may mediate the induction of apple tree flowering in response to shoot-bending conditions.
Collapse
Affiliation(s)
- Libo Xing
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Siyan Qi
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xilong Chen
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Youmei Li
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Juan Zhao
- College of Mechaincal and Electronic Engineering, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
49
|
Shalmani A, Fan S, Jia P, Li G, Muhammad I, Li Y, Sharif R, Dong F, Zuo X, Li K, Chen KM, Han M. Genome Identification of B-BOX Gene Family Members in Seven Rosaceae Species and Their Expression Analysis in Response to Flower Induction in Malus domestica. Molecules 2018; 23:molecules23071763. [PMID: 30021984 PMCID: PMC6100437 DOI: 10.3390/molecules23071763] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 11/22/2022] Open
Abstract
BBX proteins play important roles in regulating plant growth and development including photomorphogenesis, photoperiodic regulation of flowering, and responses to biotic and abiotic stresses. At present, the genomes of seven Rosaceae fruit species have been fully sequenced. However, little is known about the BBX gene family and their evolutionary history in these Rosaceae species. Therefore, in this study total, 212 BBX genes were investigated from seven Rosaceae species (67 from Malus × domestica, 40 from Pyruscommunis, 22 from Rosa Chinesis, 20 from Prunuspersica, 21 from Fragariavesca, 22 from Prunusavium, and 20 from Rubusoccidentalis). The chemical properties, gene structures, and evolutionary relationships of the BBX genes were also studied. All the BBX genes were grouped into six subfamilies on the basis of their phylogenetic relationships and structural features. Analysis of gene structure, segmental and tandem duplication, gene phylogeny, and tissue-specific expression with the ArrayExpress database showed their diversification in function, quantity, and structure. The expression profiles of 19 MdBBX genes in different tissues were evaluated through qRT-PCR. These genes showed distinct transcription level among the tested tissues (bud, flower, fruit, stem, and leaf). Moreover, expression patterns of 19 MdBBX genes were examined during flowering induction time under flowering-related hormones and treatments (GA3, 6-BA, and sucrose). The expressions of the candidates BBX genes were affected and showed diverse expression profile. Furthermore, changes in response to these flowering-related hormones and treatment specifying their potential involvement in flowering induction. Based on these findings, BBX genes could be used as potential genetic markers for the growth and development of plants particularly in the area of functional analysis, and their involvement in flower induction in fruit plants.
Collapse
Affiliation(s)
- Abdullah Shalmani
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Sheng Fan
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Peng Jia
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Guofang Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Youmei Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Feng Dong
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xiya Zuo
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Ke Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
50
|
Fadón E, Herrero M, Rodrigo J. Dormant Flower Buds Actively Accumulate Starch over Winter in Sweet Cherry. FRONTIERS IN PLANT SCIENCE 2018; 9:171. [PMID: 29497434 PMCID: PMC5818465 DOI: 10.3389/fpls.2018.00171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/30/2018] [Indexed: 05/12/2023]
Abstract
Temperate woody perennials survive to low temperatures in winter entering a dormant stage. Dormancy is not just a survival strategy, since chilling accumulation is required for proper flowering and arbitrates species adaptation to different latitudes. In spite of the fact that chilling requirements have been known for two centuries, the biological basis behind remain elusive. Since chilling accumulation is required for the normal growth of flower buds, it is tempting to hypothesize that something might be going on at this particular stage during winter dormancy. Here, we characterized flower bud development in relation to dormancy, quantifying changes in starch in the flower primordia in two sweet cherry cultivars over a cold and a mild year. Results show that, along the winter, flower buds remain at the same phenological stage with flower primordia at the very same developmental stage. But, surprisingly, important variation in the starch content of the ovary primordia cells occurs. Starch accumulated following the same pattern than chilling accumulation and reaching a maximum at chilling fulfillment. This starch subsequently vanished during ecodormancy concomitantly with ovary development before budbreak. These results showed that, along the apparent inactivity during endodormancy, flower primordia were physiologically active accumulating starch, providing a biological basis to understand chilling requirements.
Collapse
Affiliation(s)
- Erica Fadón
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, Spain
- Department of Pomology, Estación Experimental de Aula Dei (CSIC), Zaragoza, Spain
| | - María Herrero
- Department of Pomology, Estación Experimental de Aula Dei (CSIC), Zaragoza, Spain
| | - Javier Rodrigo
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, Spain
- *Correspondence: Javier Rodrigo,
| |
Collapse
|