1
|
Jiang Z, Wang X, Zhou Z, Peng L, Lin X, Luo X, Song Y, Ning H, Gan C, He X, Zhu C, Ouyang L, Zhou D, Cai Y, Xu J, He H, Liu Y. Functional characterization of D-type cyclins involved in cell division in rice. BMC PLANT BIOLOGY 2024; 24:157. [PMID: 38424498 PMCID: PMC10905880 DOI: 10.1186/s12870-024-04828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND D-type cyclins (CYCD) regulate the cell cycle G1/S transition and are thus closely involved in cell cycle progression. However, little is known about their functions in rice. RESULTS We identified 14 CYCD genes in the rice genome and confirmed the presence of characteristic cyclin domains in each. The expression of the OsCYCD genes in different tissues was investigated. Most OsCYCD genes were expressed at least in one of the analyzed tissues, with varying degrees of expression. Ten OsCYCD proteins could interact with both retinoblastoma-related protein (RBR) and A-type cyclin-dependent kinases (CDKA) forming holistic complexes, while OsCYCD3;1, OsCYCD6;1, and OsCYCD7;1 bound only one component, and OsCYCD4;2 bound to neither protein. Interestingly, all OsCYCD genes except OsCYCD7;1, were able to induce tobacco pavement cells to re-enter mitosis with different efficiencies. Transgenic rice plants overexpressing OsCYCD2;2, OsCYCD6;1, and OsCYCD7;1 (which induced cell division in tobacco with high-, low-, and zero-efficiency, respectively) were created. Higher levels of cell division were observed in both the stomatal lineage and epidermal cells of the OsCYCD2;2- and OsCYCD6;1-overexpressing plants, with lower levels seen in OsCYCD7;1-overexpressing plants. CONCLUSIONS The distinct expression patterns and varying effects on the cell cycle suggest different functions for the various OsCYCD proteins. Our findings will enhance understanding of the CYCD family in rice and provide a preliminary foundation for the future functional verification of these genes.
Collapse
Affiliation(s)
- Zhishu Jiang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xin Wang
- Jiangxi Province Forest Resources Protection Center, Nanchang, 330008, Jiangxi, China
| | - Zhiwei Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Limei Peng
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoli Lin
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaowei Luo
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yongping Song
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huaying Ning
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cong Gan
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yicong Cai
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Yantong Liu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Romero-Sánchez DI, Vázquez-Santana S, Alonso-Alvarez RA, Vázquez-Ramos JM, Lara-Núñez A. Tissue and subcellular localization of CycD2 and KRPs are dissimilarly distributed by glucose and sucrose during early maize germination. Acta Histochem 2023; 125:152092. [PMID: 37717384 DOI: 10.1016/j.acthis.2023.152092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
In maize, immunoprecipitation assays have shown that CycD2;2 interacts with KRPs. However, evidence on CycD2;2 or KRPs localization and their possible interaction in specific tissues is lacking and its physiological consequence is still unknown. This work explores the spatiotemporal presence of CyclinD2s and KRPs, cell cycle regulators, during maize seed germination (18 and 36 h) after soaking on glucose or sucrose (120 mM). CyclinD2s are positive actors driving proliferation; KRPs are inhibitors of the main kinase controlling proliferation (a negative signal that slows down the cell cycle). Cell cycle proteins were analyzed by immunolocalization on longitudinal sections of maize embryo axis in seven different tissues or zones (with different proliferation or differentiation potential) and in the nucleus of their cells. Results showed a prevalence of these cell cycle proteins on embryo axes from dry seeds, particularly, their accumulation in nuclei of radicle cells. The absence of sugar caused the accumulation of these regulators in different proliferating zones. CyclinD2 abundance was reduced during germination in the presence of sucrose along the embryo axis, while there was an increase at 36 h on glucose. KRP proteins showed a slight increase at 18 h and a decrease at 36 h on both sugars. There was no correlation between cell cycle regulators/DNA co-localization on both sugars. Results suggest glucose induced a specific accumulation of each cell cycle regulator depending on the proliferation zone as well as nuclear localization which may reflect the differential morphogenetic program regarding the proliferation potential in each zone, while sucrose has a mild influence on both cell cycle proteins accumulation during germination. Whenever CycD2s were present in the nucleus, KRPs were absent after treatment with either sugar and at the two imbibition times analyzed, along the different embryo axe zones.
Collapse
Affiliation(s)
- Diana I Romero-Sánchez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sonia Vázquez-Santana
- Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rafael A Alonso-Alvarez
- Dirección General de Orientación y Atención Educativa, Universidad, Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
3
|
Vargas-Cortez T, Guerrero-Molina ED, Axosco-Marin J, Vázquez-Ramos JM, Lara-Núñez A. The glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase and hexokinase interact with cell cycle proteins in maize. FEBS Lett 2023; 597:2072-2085. [PMID: 37489921 DOI: 10.1002/1873-3468.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
Cyclin/cyclin-dependent kinase (CDK) heterodimers have multiple phosphorylation targets and may alter the activity of these targets. Proteins from different metabolic processes are among the phosphorylation targets, that is, enzymes of central carbon metabolism. This work explores the interaction of Cyc/CDK complex members with the glycolytic enzymes hexokinase 7 (HXK7) and glyceraldehyde-3-phosphate dehydrogenase (GAP). Both enzymes interacted steadily with CycD2;2, CycB2;1 and CDKA;1 but not with CDKB1;1. However, Cyc/CDKB1;1 complexes phosphorylated both enzymes, decreasing their activities. Treatment with a CDK-specific inhibitor (RO-3306) or with lambda phosphatase after kinase assay restored total HXK7 activity, but not GAP activity. In enzymatic assays, increasing concentrations of CDKB1;1, but not of CycD2;2, CycB2;1 or CycD2;2/CDKB1;1 complex, decreased GAP activity. Cell cycle regulators may modulate carbon channeling in glycolysis by two different mechanisms: Cyc/CDK-mediated phosphorylation of targets (e.g., HXK7; canonical mechanism) or by direct and transient interaction of the metabolic enzyme (e.g., GAP) with CDKB1;1 without a Cyc partner (alternative mechanism).
Collapse
Affiliation(s)
- Teresa Vargas-Cortez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico
| | | | - Javier Axosco-Marin
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico
| | | | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
4
|
Huang Y, Cui J, Li M, Yang R, Hu Y, Yu X, Chen Y, Wu Q, Yao H, Yu G, Guo J, Zhang H, Wu S, Cai Y. Conservation and divergence of flg22, pep1 and nlp20 in activation of immune response and inhibition of root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111686. [PMID: 36963637 DOI: 10.1016/j.plantsci.2023.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Many pattern-recognition receptors (PRRs) and their corresponding ligands have been identified. However, it is largely unknown how similar and different these ligands are in inducing plant innate immunity and affecting plant development. In this study, we examined three well characterized ligands in Arabidopsis thaliana, namely flagellin 22 (flg22), plant elicitor peptide 1 (pep1) and a conserved 20-amino-acid fragment found in most necrosis and ethylene-inducing peptide 1-like proteins (nlp20). Our quantitative analyses detected the differences in amplitude in the early immune responses of these ligands, with nlp20-induced responses typically being slower than those mediated by flg22 and pep1. RNA sequencing showed the shared differentially expressed genes (DEGs) was mostly enriched in defense response, whereas nlp20-regulated genes represent only a fraction of those genes differentially regulated by flg22 and pep1. The three elicitors all inhibited primary root growth, especially pep1, which inhibited both auxin transport and signaling pathway. In addition, pep1 significantly inhibited the cell division and genes involved in cell cycle. Compared with flg22 and nlp20, pep1 induced much stronger expression of its receptor in roots, suggesting a potential positive feedback regulation in the activation of immune response. Despite PRRs and their co-receptor BAK1 were necessary for both PAMP induced immune response and root growth inhibition, bik1 mutant only showed impaired defense response but relatively normal root growth inhibition, suggesting BIK1 acts differently in these two biological processes.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Junmei Cui
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Meng Li
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rongqian Yang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Yang Hu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Ying Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Qiqi Wu
- Lusyno Biotech Ltd., Chengdu, Sichuan, PR China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Guozhi Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Jinya Guo
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Huaiyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China.
| |
Collapse
|
5
|
López-Hernández MN, Vázquez-Ramos JM. Maize CDKA2;1a and CDKB1;1 kinases have different requirements for their activation and participate in substrate recognition. FEBS J 2023; 290:2463-2488. [PMID: 36259272 DOI: 10.1111/febs.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 05/04/2023]
Abstract
Cyclin-dependent kinases (CDKs), in association with cyclins, control cell cycle progression by phosphorylating a large number of substrates. In animals, activation of CDKs regularly requires both the association with a cyclin and then phosphorylation of a highly conserved threonine residue in the CDK activation loop (the classical mechanism), mediated by a CDK-activating kinase (CAK). In addition to this typical mechanism of activation, some CDKs can also be activated by the association of a cyclin to a monomeric CDK previously phosphorylated by CAK although not all CDKs can be activated by this mechanism. In animals and yeast, cyclin, in addition to being required for CDK activation, provides substrate specificity to the cyclin/CDK complex; however, in plants both the mechanisms of CDKs activation and the relevance of the CDK-associated cyclin for substrate targeting have been poorly studied. In this work, by co-expressing proteins in E. coli, we studied maize CDKA2;1a and CDKB1;1, two of the main types of CDKs that control the cell cycle in plants. These kinases could be activated by the classical mechanism and by the association of CycD2;2a to a phosphorylated intermediate in its activation loop, a previously unproven mechanism for the activation of plant CDKs. Unlike CDKA2;1a, CDKB1;1 did not require CAK for its activation, since it autophosphorylated in its activation loop. Phosphorylation of CDKB1;1 and association of CycD2;2 was not enough for its full activation as association of maize CKS, a scaffolding protein, differentially stimulated substrate phosphorylation. Our results suggest that both CDKs participate in substrate recognition.
Collapse
Affiliation(s)
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
6
|
Farooqi MQU, Nawaz G, Wani SH, Choudhary JR, Rana M, Sah RP, Afzal M, Zahra Z, Ganie SA, Razzaq A, Reyes VP, Mahmoud EA, Elansary HO, El-Abedin TKZ, Siddique KHM. Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:965878. [PMID: 36212378 PMCID: PMC9538355 DOI: 10.3389/fpls.2022.965878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/23/2022] [Indexed: 06/12/2023]
Abstract
High-throughput sequencing technologies (HSTs) have revolutionized crop breeding. The advent of these technologies has enabled the identification of beneficial quantitative trait loci (QTL), genes, and alleles for crop improvement. Climate change have made a significant effect on the global maize yield. To date, the well-known omic approaches such as genomics, transcriptomics, proteomics, and metabolomics are being incorporated in maize breeding studies. These approaches have identified novel biological markers that are being utilized for maize improvement against various abiotic stresses. This review discusses the current information on the morpho-physiological and molecular mechanism of abiotic stress tolerance in maize. The utilization of omics approaches to improve abiotic stress tolerance in maize is highlighted. As compared to single approach, the integration of multi-omics offers a great potential in addressing the challenges of abiotic stresses of maize productivity.
Collapse
Affiliation(s)
| | - Ghazala Nawaz
- Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Jeet Ram Choudhary
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Maneet Rana
- Division of Crop Improvement, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rameswar Prasad Sah
- Division of Crop Improvement, ICAR-National Rice Research Institute, Cuttack, India
| | - Muhammad Afzal
- College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zahra Zahra
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA, United States
| | | | - Ali Razzaq
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | | | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Hosam O. Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Floriculture, Ornamental Horticulture, and Garden Design Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
- Department of Geography, Environmental Management, and Energy Studies, University of Johannesburg, Johannesburg, South Africa
| | - Tarek K. Zin El-Abedin
- Department of Agriculture & Biosystems Engineering, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
7
|
Kamal KY, Khodaeiaminjan M, Yahya G, El-Tantawy AA, Abdel El-Moneim D, El-Esawi MA, Abd-Elaziz MAA, Nassrallah AA. Modulation of cell cycle progression and chromatin dynamic as tolerance mechanisms to salinity and drought stress in maize. PHYSIOLOGIA PLANTARUM 2021; 172:684-695. [PMID: 33159351 DOI: 10.1111/ppl.13260] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 05/14/2023]
Abstract
Salinity and drought are the major abiotic stresses that disturb several aspects of maize plants growth at the cellular level, one of these aspects is cell cycle machinery. In our study, we dissected the molecular alterations and downstream effectors of salinity and drought stress on cell cycle regulation and chromatin remodeling. Effects of salinity and drought stress were determined on maize seedlings using 200 mM NaCl (induced salinity stress), and 250 mM mannitol (induced drought stress) treatments, then cell cycle progression and chromatin remodeling dynamics were investigated. Seedlings displayed severe growth defects, including inhibition of root growth. Interestingly, stress treatments induced cell cycle arrest in S-phase with extensive depletion of cyclins B1 and A1. Further investigation of gene expression profiles of cell cycle regulators showed the downregulation of the CDKA, CDKB, CYCA, and CYCB. These results reveal the direct link between salinity and drought stress and cell cycle deregulation leading to a low cell proliferation rate. Moreover, abiotic stress alters chromatin remodeling dynamic in a way that directs the cell cycle arrest. We observed low DNA methylation patterns accompanied by dynamic histone modifications that favor chromatin decondensation. Also, the high expression of DNA topoisomerase 2, 6 family was detected as consequence of DNA damage. In conclusion, in response to salinity and drought stress, maize seedlings exhibit modulation of cell cycle progression, resulting in the cell cycle arrest through chromatin remodeling.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Redox Biology and Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, Texas, USA
| | - Mortaza Khodaeiaminjan
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, The Czech Republic
| | - Galal Yahya
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Ahmed A El-Tantawy
- Ornamental Horticulture Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Diaa Abdel El-Moneim
- Department of Plant production (Genetic branch), Faculty of Environmental and Agricultural Sciences, Arish University, Arish, Egypt
| | | | - Mohamed A A Abd-Elaziz
- Maize Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Amr A Nassrallah
- Biochemistry Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Lara-Núñez A, Romero-Sánchez DI, Axosco-Marín J, Garza-Aguilar SM, Gómez-Martínez AE, Ayub-Miranda MF, Bravo-Alberto CE, Vázquez-Santana S, Vázquez-Ramos JM. Two cyclin Bs are differentially modulated by glucose and sucrose during maize germination. Biochimie 2021; 182:108-119. [PMID: 33421501 DOI: 10.1016/j.biochi.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/02/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022]
Abstract
Cell proliferation during seed germination is determinant for an appropriate seedling establishment. The present work aimed to evaluate the participation of two maize B-type Cyclins during germination and under the stimulus of two simple sugars: sucrose and glucose. We found out that the corresponding genes, ZmCycB1;2 and ZmCycB2;1, increased their expression at 24 h of germination, but only ZmCycB1;2 responded negatively to sugar type at the highest sugar concentration tested (120 mM). Also, CycB1;2 showed differential protein levels along germination in response to sugar, or its absence. Both CycBs interacted with CDKA;1 and CDKB1;1 by pull down assays. By an immunoprecipitation approach, it was found that each CycB associated with two CDKB isoforms (34 and 36 kDa). A higher proportion of CycB1;2-CDKB-36kDa was coincident to an increased kinase activity in the presence of sugar and particularly in glucose treatment at 36 h of imbibition. CycB1;2-CDKB activity increased in parallel to germination advance and this was dependent on sugar: glucose > sucrose > No sugar treatment. At RAM, CycB1;2 was more abundant in nuclei on Glucose at late germination; DNA-CycB1;2 colocalization was parallel to CycB1;2 inside the nucleus. Overall, results point out CycB1;2 as a player on promoting proliferation during germination by binding a specific CDKB isoform partner and changing its cellular localization to nuclei, co-localizing with DNA, being glucose a triggering signal.
Collapse
Affiliation(s)
- Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Diana I Romero-Sánchez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Javier Axosco-Marín
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Sara M Garza-Aguilar
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | | | - María Fernanda Ayub-Miranda
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Carlos E Bravo-Alberto
- Bio-Rad México, Eugenia 197, Int. Piso 10A. Col. Narvarte, Benito Juarez, C.P. 03020, CDMX, México.
| | - Sonia Vázquez-Santana
- Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Díaz-Granados VH, López-López JM, Flores-Sánchez J, Olguin-Alor R, Bedoya-López A, Dinkova TD, Salazar-Díaz K, Vázquez-Santana S, Vázquez-Ramos JM, Lara-Núñez A. Glucose modulates proliferation in root apical meristems via TOR in maize during germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:126-135. [PMID: 32745931 DOI: 10.1016/j.plaphy.2020.07.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 05/25/2023]
Abstract
The Glucose-Target of Rapamycin (Glc-TOR) pathway has been studied in different biological systems, but scarcely during early seed germination. This work examines its importance for cell proliferation, expression of cell cycle key genes, their protein levels, besides morphology and cellularization of the root apical meristem of maize (Zea mays) embryo axes during germination under the influence of two simple sugars, glucose and sucrose, and a specific inhibitor of TOR activity, AZD 8055. The two sugars promote germination similarly and to an extent, independently of TOR activity. However, the Glc-TOR pathway increases the number of cells committed to proliferation, increasing the expression of a cell cycle gene, ZmCycD4;2, a putative G1/S regulator. Also, Glc-TOR may have influence on the protein stability of another G1/S cyclin, ZmCycD3, but had no influence on ZmCDKA;1 or ZmKRP3 or their proteins. Results suggest that the Glc-TOR pathway participates in the regulation of proliferation through different mechanisms that, in the end, modify the timing of seed germination.
Collapse
Affiliation(s)
- Víctor Hugo Díaz-Granados
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Jorge Manuel López-López
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Jesús Flores-Sánchez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Roxana Olguin-Alor
- Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Andrea Bedoya-López
- Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Tzvetanka D Dinkova
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Kenia Salazar-Díaz
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Sonia Vázquez-Santana
- Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Jorge Manuel Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Sánchez-Camargo VA, Suárez-Espinoza C, Romero-Rodríguez S, Garza-Aguilar SM, Stam M, García-Ramírez E, Lara-Núñez A, Vázquez-Ramos JM. Maize E2F transcription factors. Expression, association to promoters of S-phase genes and interaction with the RBR1 protein in chromatin during seed germination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110491. [PMID: 32540010 DOI: 10.1016/j.plantsci.2020.110491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
For seed germination, it is necessary to restart the cell cycle, a process regulated at multiple levels including transcriptional control, that is executed by the E2F family of transcription factors. We identified 12 genes of the E2F family in maize that are expressed differentially during the first 28 h post imbibition (HAI). E2Fa/b1;1 and E2Fc proteins were characterized as an activator and a putative repressor respectively, both forming heterodimers with DPb2 that bind differentially to consensus E2F response elements in promoters of E2F target genes. Transcripts of target genes for these transcription factors accumulate during germination; in dry seeds E2Fc protein is enriched in the target promoters and is replaced by E2Fa/b1;1 as germination advances. RBR1 is found in the same promoters in non-imbibed and 28 HAI seeds, when DNA replication has concluded, and transcription of the E2F targets should stop. During germination promoters of these target genes seem to be decorated with histone marks related to relaxed chromatin structure. Therefore, E2Fs appear to occupy their target genes in a context of open chromatin, with RBR1 fine tuning the progression between the phases.
Collapse
Affiliation(s)
- Víctor A Sánchez-Camargo
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Cassandra Suárez-Espinoza
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Samantha Romero-Rodríguez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Sara M Garza-Aguilar
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Elpidio García-Ramírez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico.
| |
Collapse
|
11
|
Cheon KS, Won YJ, Jeong YM, Lee YY, Kang DY, Oh J, Oh H, Kim SL, Kim N, Lee E, Yoon IS, Choi I, Baek J, Kim KH, Park HS, Ji H. QTL mapping for pre-harvest sprouting resistance in japonica rice varieties utilizing genome re-sequencing. Mol Genet Genomics 2020; 295:1129-1140. [PMID: 32458040 PMCID: PMC7391406 DOI: 10.1007/s00438-020-01688-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/11/2020] [Indexed: 11/29/2022]
Abstract
Pre-harvest sprouting (PHS) leads to serious economic losses because of reductions in yield and quality. To analyze the quantitative trait loci (QTLs) for PHS resistance in japonica rice, PHS rates on panicles were measured in 160 recombinant inbred lines (RILs) derived from a cross between the temperate japonica varieties Odae (PHS resistant) and Unbong40 (PHS susceptible) under two different environmental conditions—field (summer) and greenhouse (winter) environments. Genome re-sequencing of the parental varieties detected 266,773 DNA polymorphisms including 248,255 single nucleotide polymorphisms and 18,518 insertions/deletions. We constructed a genetic map comprising 239 kompetitive allele-specific PCR and 49 cleaved amplified polymorphic sequence markers. In the field environment, two major QTLs, qPHS-3FD and qPHS-11FD, were identified on chromosomes 3 and 11, respectively, whereas three major QTLs, qPHS-3GH, qPHS-4GH, and qPHS-11GH, were identified on chromosomes 3, 4, and 11, respectively, in the greenhouse environment. qPHS-11GH and qPHS-11FD had similar locations on chromosome 11, suggesting the existence of a gene conferring stable PHS resistance effects under different environmental conditions. The QTLs identified in this study can be used to improve the PHS resistance of japonica varieties, and they may improve our understanding of the genetic basis of PHS resistance.
Collapse
Affiliation(s)
- Kyeong-Seong Cheon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, South Korea
| | - Yong Jae Won
- Cheorwon Branch, National Institute of Crop Science, Rural Development Administration (RDA), Cheorwon, 24010, South Korea
| | - Young-Min Jeong
- Seed Industry Promotion Center, Foundation of Agri. Tech. Commercialization & Transfer (FACT), Gimje, 54324, South Korea
| | - Youn-Young Lee
- Seed Industry Promotion Center, Foundation of Agri. Tech. Commercialization & Transfer (FACT), Gimje, 54324, South Korea
| | - Do-Yu Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, South Korea
| | - Jun Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, South Korea
| | - Hyoja Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, South Korea
| | - Song Lim Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, South Korea
| | - Nyunhee Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, South Korea
| | - Eungyeong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, South Korea
| | - In Sun Yoon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, South Korea
| | - Inchan Choi
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, South Korea
| | - Jeongho Baek
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, South Korea
| | - Kyung-Hwan Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, South Korea
| | - Hyun-Su Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration (RDA), Wanju, 55365, South Korea
| | - Hyeonso Ji
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, South Korea.
| |
Collapse
|
12
|
Méndez AAE, Pena LB, Curto LM, Fernández MM, Malchiodi EL, Garza-Aguilar SM, Vázquez-Ramos JM, Gallego SM. Oxidation of proline from the cyclin-binding motif in maize CDKA;1 results in lower affinity with its cyclin regulatory subunit. PHYTOCHEMISTRY 2020; 169:112165. [PMID: 31610323 DOI: 10.1016/j.phytochem.2019.112165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Cyclin dependent kinase A; 1 (CDKA; 1) is essential in G1/S transition of cell cycle and its oxidation has been implicated in cell cycle arrest during plant abiotic stress. In the present study, an evaluation at the molecular level was performed to find possible sites of protein oxidative modifications. In vivo studies demonstrated that carbonylation of maize CDKA,1 is associated with a decrease in complex formation with maize cyclin D (CycD). Control and in vitro oxidized recombinant CDKA; 1 were sequenced by mass spectrometry. Proline at the PSTAIRE cyclin-binding motif was identified as the most susceptible oxidation site by comparative analysis of the resulted peptides. The specific interaction between CDKA; 1 and CycD6; 1, measured by surface plasmon resonance (SPR), demonstrated that the affinity and the kinetic of the interaction depended on the reduced-oxidized state of the CDKA; 1. CDKA; 1 protein oxidative modification would be in part responsible for affecting cell cycle progression, and thus producing plant growth inhibition under oxidative stress.
Collapse
Affiliation(s)
- Andrea A E Méndez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Liliana B Pena
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Lucrecia M Curto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Marisa M Fernández
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Profesor Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Profesor Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Sara M Garza-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - Jorge M Vázquez-Ramos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - Susana M Gallego
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Optimization of recombinant maize CDKA;1 and CycD6;1 production in Escherichia coli by response surface methodology. Protein Expr Purif 2019; 165:105483. [PMID: 31479737 DOI: 10.1016/j.pep.2019.105483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022]
Abstract
The complex formed by the cyclin-dependent kinase A (CDKA) and cyclin D is responsible for the G1-S transition in the plant cell cycle. Maize (Zea mays L) CDKA; 1 and CycD6; 1 were cloned and expressed in E. coli. The present study describes the optimization of both proteins production using a statistical approach known as response surface methodology (RSM). The experimental design took into account the effects of four variables: optical density of the culture (OD600) before induction, isopropyl β-d-1-thiogalactopyranoside (IPTG) concentration, post-induction temperature, and post-induction time. For each protein, a 24 full factorial central composite rotary design for these four independent variables (at five levels each) was employed to fit a polynomial model; which indicated that 30 experiments were required for this procedure. An optimization of CDKA; 1 and CycD6; 1 production levels in the soluble fraction was achieved. Protein conformation and stability were studied by circular dichroism and fluorescence spectroscopy. Finally, in vitro Cyc-CDK complex formation and its kinase activity were confirmed.
Collapse
|
14
|
Garza-Aguilar SM, Axosco-Marín J, Lara-Núñez A, Guerrero-Molina ED, Lemus-Enciso AT, García-Ramírez E, Vázquez-Ramos JM. Proliferating cell nuclear antigen associates to protein complexes containing cyclins/cyclin dependent kinases susceptible of inhibition by KRPs during maize germination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:297-304. [PMID: 30824007 DOI: 10.1016/j.plantsci.2018.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
The Proliferating Cell Nuclear Antigen, PCNA, has roles in both G1 and S phases of the cell cycle. Here we show that maize PCNA can be found in cells in structures of a trimer or a dimer of trimer, in complexes of high molecular mass that change in size as germination proceeds, co-eluting with cell cycle proteins as CycD3;1 and CDKs (A/B1;1). Using different methodological strategies, we show that PCNA actually interacts with CycD3;1, CDKA, CDKB1;1, KRP1;1 and KRP4;1, all of which contain PIP or PIP-like motifs. Anti-PCNA immunoprecipitates show kinase activity that is inhibited by KRP1;1 and KRP4;2, indicating the formation of quaternary complexes PCNA-CycD/CDKs-KRPs in which PCNA would act as a platform. This inhibitory effect seems to be differential during the germination process, more pronounced as germination advances, suggesting a complex regulatory mechanism in which PCNA could bind different sets of cyclins/CDKs, some more susceptible to inhibition by KRPs than others.
Collapse
Affiliation(s)
- Sara Margarita Garza-Aguilar
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Javier Axosco-Marín
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Aldo Tonatiuh Lemus-Enciso
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elpidio García-Ramírez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Ren K, Hayat S, Qi X, Liu T, Cheng Z. The garlic allelochemical DADS influences cucumber root growth involved in regulating hormone levels and modulating cell cycling. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:51-60. [PMID: 30170241 DOI: 10.1016/j.jplph.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/12/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Most allelochemicals are phytotoxic to the receiver plants and may influence the cell micro- and ultrastructure, cell division, phytohormone levels, and ultimately growth. In order to understand the allelopathic potential of garlic, the effects of its main bioactive allelochemical diallyl disulfide (DADS), experiments were carried out to observe the seed germination, root growth, and developmental responses in cucumber seedlings treated with various concentrations of DADS. The obtained data suggested active influence of DADS on cucumber root growth and development. Significant responses were observed in early root growth and elongation, mitotic cell division and elongation, and root architecture modulation. The effect, however, was dose dependent, and lower concentrations of DADS proved to be promotional whereas higher concentrations of DADS inhibited cucumber root growth and development. Relative root elongation (RRE) revealed that DADS could increase growth of cucumber roots in the early developmental days. Moreover, DADS application significantly influenced mitosis-related gene expression. Observed genes CYCA and CDKB were initially downregulated in the first 24 h but significantly upregulated after 48 h, while gene CDKA was upregulated in the first 24 h. Similarly, DADS application significantly altered primary plant hormones, such as IAA, ABA, GA3, and ZR, in the cucumber roots. Taken together, low concentrations of DADS treatment could promote cucumber root growth and induce main root elongation by upregulating CDKA and CDKB gene expression and regulating hormone balance in root. The current findings offer insight into the allelopathic potential of garlic allelochemical DADS and can be considered vital for establishing plant allelopathic studies.
Collapse
Affiliation(s)
- Kaili Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Sikandar Hayat
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Xiaofang Qi
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Tao Liu
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Zhihui Cheng
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China.
| |
Collapse
|
16
|
Garza-Aguilar SM, Lara-Núñez A, García-Ramírez E, Vázquez-Ramos JM. Modulation of CycD3;1-CDK complexes by phytohormones and sucrose during maize germination. PHYSIOLOGIA PLANTARUM 2017; 160:84-97. [PMID: 27995635 DOI: 10.1111/ppl.12537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/14/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Maize CycD3;1 associates to CDKA or CDKB1;1 proteins during germination and the complexes formed develop kinase activity. These complexes appear to vary in size as germination proceeds, suggesting association to different sets of proteins. CycD3;1 and associated CDK proteins respond to phytohormones and sucrose. Results revealed a reduction in the CycD3;1 protein amount along germination in the presence of indoleacetic acid (IAA) or abscisic acid (ABA), although in the latter protein levels recover at the end of germination. While the levels of CDKA increase with IAA, they decrease with ABA. Both phytohormones, IAA and ABA, increase levels of CDKB1;1 only during the early germination times. CycD3;1 associated kinase activity is only reduced by both phytohormones towards the end of the germination period. On the other hand, lack of sucrose in the imbibition medium strongly reduces CycD3;1 protein levels without affecting the levels of neither CDKA nor CDKB1;1. The corresponding CycD3;1 associated kinase activity is also severely decreased. The presence of sucrose in the medium appears to stabilize the CycD3;1 protein levels.
Collapse
Affiliation(s)
- Sara M Garza-Aguilar
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elpidio García-Ramírez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
17
|
Lara-Núñez A, García-Ayala BB, Garza-Aguilar SM, Flores-Sánchez J, Sánchez-Camargo VA, Bravo-Alberto CE, Vázquez-Santana S, Vázquez-Ramos JM. Glucose and sucrose differentially modify cell proliferation in maize during germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:20-31. [PMID: 28157579 DOI: 10.1016/j.plaphy.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/19/2016] [Accepted: 01/20/2017] [Indexed: 05/21/2023]
Abstract
Glucose and sucrose play a dual role: as carbon and energy sources and as signaling molecules. In order to address the impact that sugars may have on maize seeds during germination, embryo axes were incubated with or without either of the two sugars. Expression of key cell cycle markers and protein abundance, cell patterning and de novo DNA synthesis in root meristem zones were analyzed. Embryo axes without added sugars in imbibition medium were unable to grow after 7 days; in sucrose, embryo axes developed seminal and primary roots with numerous root hairs, whereas in glucose axes showed a twisted morphology, no root hair formation but callus-like structures on adventitious and primary seminal roots. More and smaller cells were observed with glucose treatment in root apical meristems. de novo DNA synthesis was stimulated more by glucose than by sucrose. At 24 h of imbibition, expression of ZmCycD2;2a and ZmCycD4;2 was increased by sucrose and reduced by glucose. CDKA1;1 and CDKA2;1 expression was stimulated equally by both sugars. Protein abundance patterns were modified by sugars: ZmCycD2 showed peaks on glucose at 12 and 36 h of imbibition whereas sucrose promoted ZmCycD3 protein accumulation. In presence of glucose ZmCycD3, ZmCycD4 and ZmCycD6 protein abundance was reduced after 24 h. Finally, both sugars stimulated ZmCDKA protein accumulation but at different times. Overall, even though glucose appears to act as a stronger mitogen stimulator, sucrose stimulated the expression of more cell cycle markers during germination. This work provides evidence of a differential response of cell cycle markers to sucrose and glucose during maize germination that may affect the developmental program during plantlet establishment.
Collapse
Affiliation(s)
- Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Brendy B García-Ayala
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sara M Garza-Aguilar
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jesús Flores-Sánchez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Victor A Sánchez-Camargo
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos E Bravo-Alberto
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sonia Vázquez-Santana
- Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
18
|
Godínez-Palma SK, Rosas-Bringas FR, Rosas-Bringas OG, García-Ramírez E, Zamora-Zaragoza J, Vázquez-Ramos JM. Two maize Kip-related proteins differentially interact with, inhibit and are phosphorylated by cyclin D-cyclin-dependent kinase complexes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1585-1597. [PMID: 28369656 PMCID: PMC5444471 DOI: 10.1093/jxb/erx054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The family of maize Kip-related proteins (KRPs) has been studied and a nomenclature based on the relationship to rice KRP genes is proposed. Expression studies of KRP genes indicate that all are expressed at 24 h of seed germination but expression is differential in the different tissues of maize plantlets. Recombinant KRP1;1 and KRP4;2 proteins, members of different KRP classes, were used to study association to and inhibitory activity on different maize cyclin D (CycD)-cyclin-dependent kinase (CDK) complexes. Kinase activity in CycD2;2-CDK, CycD4;2-CDK, and CycD5;3-CDK complexes was inhibited by both KRPs; however, only KRP1;1 inhibited activity in the CycD6;1-CDK complex, not KRP4;2. Whereas KRP1;1 associated with either CycD2;2 or CycD6;1, and to cyclin-dependent kinase A (CDKA) recombinant proteins, forming ternary complexes, KRP4;2 bound CDKA and CycD2;2 but did not bind CycD6;1, establishing a differential association capacity. All CycD-CDK complexes included here phosphorylated both the retinoblastoma-related (RBR) protein and the two KRPs; interestingly, while KRP4;2 phosphorylated by the CycD2;2-CDK complex increased its inhibitory capacity, when phosphorylated by the CycD6;1-CDK complex the inhibitory capacity was reduced or eliminated. Evidence suggests that the phosphorylated residues in KRP4;2 may be different for every kinase, and this would influence its performance as a cyclin-CDK inhibitor.
Collapse
Affiliation(s)
- Silvia K Godínez-Palma
- Facultad de Química, Departamento de Bioquímica, UNAM, Avenida Universidad y Copilco, México DF 04510, México
| | - Fernando R Rosas-Bringas
- Facultad de Química, Departamento de Bioquímica, UNAM, Avenida Universidad y Copilco, México DF 04510, México
- I. Medizinische Klinik and Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz Obere Zahlbacherstr. 63 55131 Mainz, Germany
| | - Omar G Rosas-Bringas
- Facultad de Química, Departamento de Bioquímica, UNAM, Avenida Universidad y Copilco, México DF 04510, México
| | - Elpidio García-Ramírez
- Facultad de Química, Departamento de Bioquímica, UNAM, Avenida Universidad y Copilco, México DF 04510, México
| | - Jorge Zamora-Zaragoza
- Facultad de Química, Departamento de Bioquímica, UNAM, Avenida Universidad y Copilco, México DF 04510, México
- Department of Plant Sciences, Plant Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, UNAM, Avenida Universidad y Copilco, México DF 04510, México
| |
Collapse
|
19
|
Strzalka WK, Aggarwal C, Krzeszowiec W, Jakubowska A, Sztatelman O, Banas AK. Arabidopsis PCNAs form complexes with selected D-type cyclins. FRONTIERS IN PLANT SCIENCE 2015; 6:516. [PMID: 26379676 PMCID: PMC4550699 DOI: 10.3389/fpls.2015.00516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/26/2015] [Indexed: 05/29/2023]
Abstract
Proliferating Cell Nuclear Antigen (PCNA) is a key nuclear protein of eukaryotic cells. It has been shown to form complexes with cyclin dependent kinases, cyclin dependent kinase inhibitors and the D-type cyclins which are involved in the cell cycle control. In Arabidopsis two genes coding for PCNA1 and PCNA2 proteins have been identified. In this study by analyzing Arabidopsis PCNA/CycD complexes we tested the possible functional differentiation of PCNA1/2 proteins in cell cycle control. Most out of the 10 cyclins investigated showed only nuclear localization except CycD2;1, CycD4;1, and CycD4;2 which were observed both in the nucleus and cytoplasm. Using the Y2H, BiFC and FLIM-FRET techniques we identified D-type cyclins which formed complexes with either PCNA1 or PCNA2. Among the candidates tested only CycD1;1, CycD3;1, and CycD3;3 were not detected in a complex with the PCNA proteins. Moreover, our results indicate that the formation of CycD3;2/PCNA and CycD4;1/PCNA complexes can be regulated by other as yet unidentified factor(s). Additionally, FLIM-FRET analyses suggested that in planta the distance between PCNA1/CycD4;1, PCNA1/CycD6;1, PCNA1/CycD7;1, and PCNA2/CycD4;2 proteins was shorter than that between PCNA2/CycD4;1, PCNA2/CycD6;1, PCNA2/CycD7;1, and PCNA1/CycD4;2 pairs. These data indicate that the nine amino acid differences between PCNA1 and PCNA2 have an impact on the architecture of Arabidopsis CycD/PCNA complexes.
Collapse
Affiliation(s)
- Wojciech K. Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
- The Bioremediation Department, Malopolska Centre of Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Chhavi Aggarwal
- Department of Gene Expression, Faculty of Biology, Adam Mickiewicz UniversityPoznan, Poland
| | - Weronika Krzeszowiec
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Agata Jakubowska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Olga Sztatelman
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Agnieszka K. Banas
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
20
|
Zhao L, Wang P, Hou H, Zhang H, Wang Y, Yan S, Huang Y, Li H, Tan J, Hu A, Gao F, Zhang Q, Li Y, Zhou H, Zhang W, Li L. Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize. PLoS One 2014; 9:e106070. [PMID: 25171199 PMCID: PMC4149478 DOI: 10.1371/journal.pone.0106070] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/27/2014] [Indexed: 12/22/2022] Open
Abstract
The histone modification level has been shown to be related with gene activation and repression in stress-responsive process, but there is little information on the relationship between histone modification and cell cycle gene expression responsive to environmental cues. In this study, the function of histone modifications in mediating the transcriptional regulation of cell cycle genes under various types of stress was investigated in maize (Zea mays L.). Abiotic stresses all inhibit the growth of maize seedlings, and induce total acetylation level increase compared with the control group in maize roots. The positive and negative regulation of the expression of some cell cycle genes leads to perturbation of cell cycle progression in response to abiotic stresses. Chromatin immunoprecipitation analysis reveals that dynamic histone acetylation change in the promoter region of cell cycle genes is involved in the control of gene expression in response to external stress and different cell cycle genes have their own characteristic patterns for histone acetylation. The data also showed that the combinations of hyperacetylation and hypoacetylation states of specific lysine sites on the H3 and H4 tails on the promoter regions of cell cycle genes regulate specific cell cycle gene expression under abiotic stress conditions, thus resulting in prolonged cell cycle duration and an inhibitory effect on growth and development in maize seedlings.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yapei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shihan Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junjun Tan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ao Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingnan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Zhang
- Renmin Hospital, Wuhan University, Wuhan, China
- * E-mail: (LL); (WZ)
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LL); (WZ)
| |
Collapse
|