1
|
Chen M, Zhang H, Cao S, Song M, Yin D, Wang X, Wei M, Zhu C, Yang N, Gan L. Cytokinin negatively regulates tomato fruit ripening by influencing the ethylene pathway. PLANT CELL REPORTS 2025; 44:41. [PMID: 39873772 DOI: 10.1007/s00299-025-03430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
KEY MESSAGE Reducing endogenous CK levels accelerates fruit ripening in tomato by regulating ethylene biosynthesis and signalling pathway. Tomato is a typical climacteric fruit and is recognized as one of the most important horticultural crops globally. The ripening of tomato fruits is a complex process, highly regulated by phytohormones. Cytokinin (CK) is a hormone that primarily impacts the early development of fruit, however its influence on fruit ripening has not been thoroughly investigated. In this study, we used both wild-type Micro-Tom and transgenic tomato plants that overexpress AtCKX2, a CK degradation gene driven by the fruit-specific promoter Tfm7, to investigate the effect of CK on tomato fruit ripening. Our findings revealed that reducing endogenous CK levels in transgenic plants can accelerate the ripening process of tomato fruits. Premature activation of ethylene biosynthetic genes and ripening regulator genes was upregulated in CK-deficient fruits. Moreover, the application of exogenous ethylene inhibitors resulted in delayed fruit ripening in CK-deficient fruits. These results together suggest that CK plays a negative role in tomato fruit ripening by affecting the ethylene pathway.
Collapse
Affiliation(s)
- Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanqi Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengying Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dexing Yin
- Nanjing Institute of Vegetable Science, Nanjing, 210042, China
| | - Xi Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manman Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Zhang K, Chen M, Peng X, Song P, Zhou J, Luo X, Zhang H, Wang X, Tang K, Li H, Zhou Q, Wang X, Deng Q. Pre-harvest application of forchlorfenuron enhances fruit quality and bioactive substance accumulation in Chunhua loquat. Food Chem 2025; 473:143059. [PMID: 39879758 DOI: 10.1016/j.foodchem.2025.143059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Chunhua loquat is a novel cultivar that effectively avoids frost damage. However, the quality characteristics of loquats are limited, and the effects of forchlorfenuron application on loquat fruit quality and bioactive substance accumulation remain unclear. In this study, forchlorfenuron was applied at concentrations of 0 (control), 10, 20, 30, and 40 mg/L to the fruit at 24 and 38 days after bloom. Results showed that forchlorfenuron increased fruit weight by at least 9.32 % and improved the sugar-to-acid ratio by at least 25.26 %. Additionally, forchlorfenuron increased the levels of the most detected aroma compounds, such as terpenoids, ketones, and alcohols. Specifically, 2-hexenal (E)- and 2-hexenal, the most abundant compounds, increased by 17.58 % at 20 mg/L. Forchlorfenuron altered phenylpropane metabolism, upregulating C4H, COMT, CCR, and HCT expression, which affected the content of bioactive substances such as total phenolics, flavonoids, p-hydroxybenzoic acid, and cinnamic acid. Forchlorfenuron also modulated carotenoid metabolism by upregulating CCD, CYCB, BCH, and NCED expression, which affected the content of β-cryptoxanthin, β-carotene, and α-carotene. Furthermore, forchlorfenuron modulated endogenous hormone levels, thereby affecting the accumulation of bioactive substances. In conclusion, forchlorfenuron enhances fruit quality and bioactive substance accumulation in loquat, with an optimal effect at 20 mg/L.
Collapse
Affiliation(s)
- Kun Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mingmin Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xuemei Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Panhui Song
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jiayun Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Huifen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xia Wang
- Economic Crops Station, Agriculture and Rural Affairs Bureau of Shimian County, Ya'an 625400, China
| | - Kaijing Tang
- Economic Crops Station, Agriculture and Rural Affairs Bureau of Shimian County, Ya'an 625400, China
| | - Hongzhang Li
- Economic Crops Station, Agriculture and Rural Affairs Bureau of Renshou County, Meishan 620500, China
| | - Qiong Zhou
- Agriculture and Rural Affairs Bureau of Hanyuan County, Ya'an 625300, China
| | - Xiaofeng Wang
- Agriculture and Rural Affairs Bureau of Hanyuan County, Ya'an 625300, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Xing Y, Zhang X, Feng Z, Ni W, Xie H, Guan Y, Zhu Z, Ge S, Jiang Y. Optimizing 'Red Fuji' apple quality: Auxin-mediated calcium distribution via fruit-stalk in bagging practices. Food Chem 2025; 463:141126. [PMID: 39276559 DOI: 10.1016/j.foodchem.2024.141126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
In apples, a bottleneck effect in calcium (Ca) transport within fruit stalk has been observed. To elucidate that how auxin affects Ca forms and distribution in the apple fruit stalk, we investigated the effects of different concentrations of auxin treatment (0, 10, 20, and 30 mg·L-1) on Ca content, forms, distribution, and fruit quality during later stages of fruit expansion. The results showed that auxin treatment led to a dramatic reduction in total Ca content in stalk, while an approximately 30 % increase in fruit. Furthermore, auxin treatment effectively enhanced the functionality of xylem vessels in vascular bundles of the stalk in bagged apples. Finally, TOPSIS method was used to assess fruit quality, with treatments ranked as follows: IAA20 > NAA20 > IAA30 > IAA10 > CK > NPA. The findings lay a foundation for further studies on the bottleneck in Ca transport within stalk, uneven distribution of Ca in fruit, and provide insights into Ca utilization efficiency in bagged apples.
Collapse
Affiliation(s)
- Yue Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Xin Zhang
- 421 Lab, Xinlianxin hemical Group Co., LTD, Henan, China
| | - Ziquan Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Wei Ni
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Hongmei Xie
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Yafei Guan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Zhanling Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China.
| | - Shunfeng Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China.
| | - Yuanmao Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China.
| |
Collapse
|
4
|
Arabia A, Muñoz P, Munné-Bosch S. Fruit-specific effects of tryptophan and melatonin as active components to extend the functionality of red fruits during post-harvest processing. Food Chem 2025; 463:141487. [PMID: 39369602 DOI: 10.1016/j.foodchem.2024.141487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Preserving quality attributes in the distribution chain is a challenging task, particularly in fruits with a brief shelf life. The application of melatonin in cherries, raspberries, strawberries and blueberries stored at room temperature was evaluated, as well as the effects of its precursor (tryptophan) to determine their specificity and interchangeable feasibility for post-harvest applications. The results demonstrated that melatonin is effective in all tested fruits, reducing deterioration rate and its severity, preserving fruit firmness and reducing darkening and weight loss. Furthermore, tryptophan applications incremented melatonin contents in strawberries and blueberries and delayed decay in both fruits. Melatonin reduced postharvest losses in all studied fruits related to its antisenescent properties, while the beneficial impact of tryptophan in extending shelf life was fruit-specific and appeared to be partly mediated by melatonin. Melatonin and tryptophan must be considered as active components of new formulations for extending the shelf life of red fruits during post-harvest processing.
Collapse
Affiliation(s)
- Alba Arabia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Wei W, Liu Z, Pan X, Yang T, An C, Wang Y, Li L, Liao W, Wang C. Effects of reactive oxygen species on fruit ripening and postharvest fruit quality. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112391. [PMID: 39805341 DOI: 10.1016/j.plantsci.2025.112391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Reactive oxygen species (ROS) serve as important signaling molecule, involved in numerous biological processes, particularly in the physiological changes associated with fruit ripening and postharvest handing. This review explores ROS key role in plant fruit ripening and postharvest quality. The mechanism of ROS production and degradation in maintaining ROS homeostasis are analyzed in detail. Fruit ripening is a complex and highly coordinated process involving physiological and biochemical changes. Studies have observed that the content of ROS, mainly hydrogen peroxide (H2O2), dynamically changes in various types of fruits during ripening. Furthermore, ROS have significant effects on fruit softening, color change, and other ripening processes. In addition, in the postharvest stage, the abnormal accumulation of ROS isclosely related to the decline in fruit quality and the occurrence of decay browning, which seriously affects the market value and shelf life of fruit. Overall, this review demonstrates the crucial role of ROS in regulating the ripening process and postharvest quality of fruit.
Collapse
Affiliation(s)
- Wenying Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zesheng Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingyue Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Caiting An
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanhui Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Long Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
6
|
Li M, Jiao S, Yao P, Xie Y, Yang X, Zhang H, Yao H, Liu J, Pang X, Bo W, Cheng S. Comparative transcriptome analysis and heterologous overexpression indicate that the ZjZOG gene may positively regulate the size of jujube fruit. BMC PLANT BIOLOGY 2024; 24:1267. [PMID: 39731028 DOI: 10.1186/s12870-024-05997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Fruit size is a crucial economic trait that impacts the quality of jujube (Ziziphus jujuba), however, research in this area remains limited. This study utilized two jujube cultivars with similar genetic backgrounds but differing fruit sizes to investigate the regulatory mechanisms affecting fruit size through cytological observations, transcriptome sequencing, and heterologous overexpression. RESULTS The findings reveal that variations in mesocarp cell numbers during early fruit development significantly influence final fruit size. Comparative transcriptome sequencing identified 16,778 differentially expressed genes across five developmental stages. Co-expression network analysis identified 16 co-expression modules. KEGG enrichment analysis of these modules indicated the significant role of plant hormone-related pathways in fruit development. A detailed analysis of the 'sky blue' module revealed candidate genes associated with the regulation of mesocarp cells, leading to the construction of a regulatory network. Heterologous overexpression of the candidate gene ZjZOG in tomato confirmed its positive role in fruit size enhancement. Transcriptomic analysis of these overexpression lines further validated the regulatory network and identified reliable candidate genes for fruit size control. CONCLUSION This study provides valuable insights into the regulatory mechanisms of fruit size, which may facilitate the breeding of larger jujube cultivars.
Collapse
Affiliation(s)
- Meiyu Li
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco- economic Woody Plant, Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Siqian Jiao
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco- economic Woody Plant, Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Pengqiang Yao
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco- economic Woody Plant, Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Yuanzhe Xie
- National Tree Breeding Station for Platycladus orientalis in Jiaxian, Forest Farm of Jiaxian County, Jiaxian, Henan, 467100, China
| | - Xiaolei Yang
- National Tree Breeding Station for Platycladus orientalis in Jiaxian, Forest Farm of Jiaxian County, Jiaxian, Henan, 467100, China
| | - Huijin Zhang
- National Tree Breeding Station for Platycladus orientalis in Jiaxian, Forest Farm of Jiaxian County, Jiaxian, Henan, 467100, China
| | - Hongju Yao
- National Tree Breeding Station for Platycladus orientalis in Jiaxian, Forest Farm of Jiaxian County, Jiaxian, Henan, 467100, China
| | - Junchao Liu
- National Tree Breeding Station for Platycladus orientalis in Jiaxian, Forest Farm of Jiaxian County, Jiaxian, Henan, 467100, China
| | - Xiaoming Pang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shiping Cheng
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco- economic Woody Plant, Pingdingshan University, Pingdingshan, Henan, 467000, China.
| |
Collapse
|
7
|
Zang N, Li X, Zhang Z, Liu W, Qi L, Yang Y, Sun Q, Yin Z, Wang A. Transcription factors PuNAC37/PuWRKY74 and E3 ubiquitin ligase PuRDUF2 inhibit volatile ester synthesis in 'Nanguo' pear. PLANT PHYSIOLOGY 2024; 197:kiae635. [PMID: 39607735 DOI: 10.1093/plphys/kiae635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
As major contributors to flavor in many fruit species, volatile esters are useful for investigating the regulation of the biosynthesis pathways of volatile aroma compounds in plants. Ethylene promotes the biosynthesis of volatile esters during fruit storage while accelerating fruit ripening; thus, the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) is employed to prolong the shelf life of fruits. However, the mechanisms by which 1-MCP regulates volatiles synthesis remain unclear. In this study, we analyzed the pathway of 1-MCP-mediated volatile ester synthesis in 'Nanguo' pear (Pyrus ussuriensis). 1-MCP significantly decreased volatile ester synthesis during storage. Comparative transcriptome analysis showed that the genes encoding two transcription factors (PuNAC37 and PuWRKY74) and a RING-type E3 ubiquitin ligase that have a domain of unknown function (PuRDUF2) were expressed at high levels, whereas ALCOHOL ACYLTRANSFERASE 1 (PuAAT1), encoding an enzyme responsible for volatile ester synthesis, was expressed at low levels in 1-MCP-treated fruit. Moreover, PuNAC37 inhibited the expression of PuWRKY74 via transcriptional regulation, whereas PuNAC37 and PuWRKY74, after directly binding to the promoter of PuAAT1, synergistically inhibited its expression in 1-MCP-treated fruit. In addition, in vitro and in vivo ubiquitination experiments revealed that PuRDUF2 functions as an E3 ubiquitin ligase that ubiquitinates PuAAT1, causing its degradation via the 26S proteasome pathway following 1-MCP treatment. Subsequent PuAAT1 degradation resulted in a reduction of volatile esters during fruit storage. Our findings provide insights into the complex transcriptional regulation of volatile ester formation in 'Nanguo' pears and contribute to future research on AAT protein ubiquitination in other species.
Collapse
Affiliation(s)
- Nannan Zang
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaojing Li
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xinghai South Street 98, Xingcheng 125100, China
| | - Zhuoran Zhang
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiting Liu
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Liyong Qi
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xinghai South Street 98, Xingcheng 125100, China
| | - Yueming Yang
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qitian Sun
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zepeng Yin
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
8
|
Wang L, Xiao M, Guo X, Yang Y, Zhang Z, Lee C. Sensing Technologies for Outdoor/Indoor Farming. BIOSENSORS 2024; 14:629. [PMID: 39727894 PMCID: PMC11674220 DOI: 10.3390/bios14120629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
To face the increasing requirement for grains as the global population continues to grow, improving both crop yield and quality has become essential. Plant health directly impacts crop quality and yield, making the development of plant health-monitoring technologies essential. Variable sensing technologies for outdoor/indoor farming based on different working principles have emerged as important tools for monitoring plants and their microclimates. These technologies can detect factors such as plant water content, volatile organic compounds (VOCs), and hormones released by plants, as well as environmental conditions like humidity, temperature, wind speed, and light intensity. To achieve comprehensive plant health monitoring for multidimensional assessment, multimodal sensors have been developed. Non-invasive monitoring approaches are also gaining attention, leveraging biocompatible and flexible sensors for plant monitoring without interference with its natural growth. Furthermore, wireless data transmission is crucial for real-time monitoring and efficient farm management. Reliable power supplies for these systems are vital to ensure continuous operation. By combining wearable sensors with intelligent data analysis and remote monitoring, modern agriculture can achieve refined management, resource optimization, and sustainable production, offering innovative solutions to global food security and environmental challenges.
Collapse
Affiliation(s)
- Luwei Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore 117558, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Mengyao Xiao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Xinge Guo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore 117558, Singapore
| | - Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore 117558, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School–Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
9
|
Li C, Cui J, Lu X, Shi M, Xu J, Yu W. Function of DNA methylation in fruits: A review. Int J Biol Macromol 2024; 282:137086. [PMID: 39500431 DOI: 10.1016/j.ijbiomac.2024.137086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/14/2024]
Abstract
Advances in the detection and mapping of DNA methylation redefine our understanding of the modifications as epigenetic regulation. In plants, the most prevalent DNA methylation plays crucial and dynamic roles in a wide variety of processes, such as stress responses, seedlings growth, fruit ripening and so on. Here, we discuss firstly the changes of DNA methylation (CG, CHG, and CHH) dynamic in plants. Second, we review the latest research progress on DNA methylation in the pigment accumulation of fruits including apple, grape, pear, kiwifruit, sweet orange, peach, cucumber, and tomato. Thirdly, the roles of DNA methylation in fruit development and ripening also are summarized. Moreover, DNA methylation is also associates with disease resistance, and flavor and nutritional quality in fruits. Lastly, we also provide some perspectives on future research of the unknown DNA methylation in fruits.
Collapse
Affiliation(s)
- Changxia Li
- College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Jing Cui
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Meimei Shi
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
10
|
Guan W, Cao M, Chen W, Yang Z, Li X, Wang L, Shi L. Indole-3-acetic acid treatment promotes postharvest kiwifruit softening by regulating starch and cell wall metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1485678. [PMID: 39600895 PMCID: PMC11588445 DOI: 10.3389/fpls.2024.1485678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
The softening process of postharvest kiwifruit is a critical aspect of fruit quality that has been extensively studied. However, the impact of indole-3-acetic acid (IAA) treatment on this process remains largely unexplored. In this study, we examined the effect of IAA treatment on the softening of postharvest kiwifruit. The results depicted that kiwifruit treated with IAA exhibited decreased firmness and increased ethylene production. Treatment with IAA upregulated the expression of starch decomposition genes, including AcSEX and AcBAM, resulting in a reduction in starch content. Additionally, IAA treatment induced cell wall breakdown, attributed to the enhanced transcript levels of cell wall-related degradation genes such as AcPE, AcPG, AcPL, and AcCX compared to the control. Consequently, IAA-treated kiwifruit displayed lower levels of cellulose and protopectin but higher levels of water-soluble pectin. In summary, our findings indicate that exogenous IAA promoted postharvest starch and cell wall biodegradation in kiwifruit, which reduced fruit firmness and accelerated fruit softening.
Collapse
Affiliation(s)
- Wenhao Guan
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Mengze Cao
- Senior School, Seymour College, Glen Osmond, SA, Australia
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhenfeng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Xuewen Li
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| | - Li Wang
- College of Tea and Food Sci Tech, Anhui Agricultural University, Hefei, China
| | - Liyu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
11
|
Ochiki SN, Chen T, Meng Z, Zhou J, Gao Z, Deng Y, Luan M. Characterization of ATP-dependent phosphofructokinase genes during ripening and their modulation by phytohormones during postharvest storage of citrus fruits (Citrus reticulata Blanco.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109235. [PMID: 39471755 DOI: 10.1016/j.plaphy.2024.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The level of sweetness in citrus fruit is crucial for consumer appeal and market competitiveness, determined mainly by soluble sugars and organic acids. ATP-dependent 6-phosphofructokinase is central to regulating sugar metabolism, yet its role in citrus fruit ripening and postharvest storage remains underexplored. We characterized phosphofructokinase genes in citrus, identifying eight genes classified into pyrophosphate-dependent phosphofructokinase (PFP) and ATP-dependent 6-phosphofructokinase (PFK) subgroups using phylogenetic analysis, genomic architectures, and protein motifs. Comparative genomic analysis with other plants highlighted significant protein homology among CitPFKs. The motif analysis indicated conserved phosphofructokinase domains in CitPFK sequences, with upstream promoter regions containing diverse cis-regulatory elements, most notably light-responsive (LREs). The gene expression profiling throughout fruit development and ripening revealed differential patterns, with responses to gibberellic acid and salicylic acid phytohormones during postharvest indicating their roles in regulating CitPFK genes. The analysis of the transcriptome showed high expression of ATP-dependent 6-phosphofructokinase 3 (CitPFK3) during fruit development, indicating a positive role in fruit maturation. Consequently, silencing CitPFK3 through virus-induced gene silencing (VIGS) increased hexose sugar content, suggesting its function in sugar accumulation. These findings improve our understanding of PFKs in citrus, particularly CitPFK3's pivotal role in regulating hexose sugar dynamics and their modulation by exogenous phytohormones after harvest. This study provides a foundation for optimizing soluble sugar regulation to enhance fruit quality and postharvest handling in citrus production.
Collapse
Affiliation(s)
- Sophia Nyamusi Ochiki
- The Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; The School of Agricultural Sciences and Natural Resources, University of Kabianga, P.O. Box 2030-20200, Kericho, Kenya
| | - Tianxin Chen
- The Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; Hunan Vegetable Research Institute, Changsha, 410125, China
| | - Zhixin Meng
- The Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Jiahao Zhou
- The Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Zexin Gao
- The Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Yong Deng
- The Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; The National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Mingbao Luan
- The Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; The National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| |
Collapse
|
12
|
Huang Y, Zhu C, Hu Y, Yan S, Luo Z, Zou Y, Wu W, Zeng J. Integrated hormone and transcriptome profiles provide insight into the pericarp differential development mechanism between Mandarin 'Shatangju' and 'Chunhongtangju'. FRONTIERS IN PLANT SCIENCE 2024; 15:1461316. [PMID: 39450074 PMCID: PMC11499144 DOI: 10.3389/fpls.2024.1461316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Introduction Citrus reticulata cv. 'Chunhongtangju' was mutated from Mandarin 'Shatangju', which has been identified as a new citrus variety. Mandarin 'Chunhongtangju' fruits were late-ripening for about two months than Mandarin 'Shatangju'. Methods To understand the pericarp differential development mechanism in Mandarin 'Shatangju' (CK) and 'Chunhongtangju' (LM), hormones and transcriptome profiles of pericarps were performed in different development stages: Young fruit stage (CK1/LM1), Expansion and Turning color stage (CK2), Expansion stage (LM2), Turning color stage (LM3), and Maturity stage (CK3/LM4). Results In this study, the development of LM was significantly slower, and the maturity was significantly delayed. At the same stage, most hormones in Mandarin 'Chunhongtangju' pericarps were higher than that in 'Shatangju' such as gibberellin A24, cis(+)-12-oxophytodienoic acid, and L-phenylalanine. The deficiency of hormones in late-maturing pericarps was mainly manifested in ABA, 12-OHJA, MeSAG, and ABA-GE. Differences in transcriptome profiles between the two citrus varieties are primarily observed in energy metabolism, signal transduction such as MAPK signaling pathway and plant hormone signaling, and biosynthesis of secondary metabolites. After analyzing the hormones and transcriptome data, we found that the top genes and hormones, such as Cs_ont_5g020040 (transcription elongation factor, TFIIS), Cs_ont_7g021670 (BAG family molecular chaperone regulator 5, BAG5), Cs_ont_2g025760 (40S ribosomal protein S27, Rps27), 5-deoxystrigol, salicylic acid 2-O-β-glucosid, and gibberellin A24, contributed significantly to gene transcription and hormone synthesis. Discussion This study suggests that the variances of pericarp development between the two varieties are linked to variations in the transcription levels of genes associated with energy and secondary metabolism, signal transduction related genes. These findings expand our understanding of the complex transcriptional and hormonal regulatory hierarchy during pericarp development.
Collapse
Affiliation(s)
- Yongjing Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Congyi Zhu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Yibo Hu
- Deqing County Agricultural Technology Promotion Center, Zhaoqing, China
| | - Sanjiao Yan
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Zhimin Luo
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Yanping Zou
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Wen Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Jiwu Zeng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| |
Collapse
|
13
|
Muhammad N, Liu Z, Wang L, Yang M, Liu M. The underlying molecular mechanisms of hormonal regulation of fruit color in fruit-bearing plants. PLANT MOLECULAR BIOLOGY 2024; 114:104. [PMID: 39316226 DOI: 10.1007/s11103-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/01/2024] [Indexed: 09/25/2024]
Abstract
Fruit color is a key feature of fruit quality, primarily influenced by anthocyanin or carotenoid accumulation or chlorophyll degradation. Adapting the pigment content is crucial to improve the fruit's nutritional and commercial value. Genetic factors along with other environmental components (i.e., light, temperature, nutrition, etc.) regulate fruit coloration. The fruit coloration process is influenced by plant hormones, which also play a vital role in various physiological and biochemical metabolic processes. Additionally, phytohormones play a role in the regulation of a highly conserved transcription factor complex, called MBW (MYB-bHLH-WD40). The MBW complex, which consists of myeloblastosis (MYB), basic helix-loop-helix (bHLH), and WD40 repeat (WDR) proteins, coordinates the expression of downstream structural genes associated with anthocyanin formation. In fruit production, the application of plant hormones may be important for promoting coloration. However, concerns such as improper concentration or application time must be addressed. This article explores the molecular processes underlying pigment formation and how they are influenced by various plant hormones. The ABA, jasmonate, and brassinosteroid increase anthocyanin and carotenoid formation, but ethylene, auxin, cytokinin, and gibberellin have positive as well as negative effects on anthocyanin formation. This article establishes the necessary groundwork for future studies into the molecular mechanisms of plant hormones regulating fruit color, ultimately aiding in their effective and scientific application towards fruit coloration.
Collapse
Grants
- (HBCT2024190201) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- (CARS-30-2-07) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- (2020YFD1000705 Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- 2019YFD1001605 Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- 2018YFD1000607) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
Collapse
Affiliation(s)
- Noor Muhammad
- College of Forestry, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lixin Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Minsheng Yang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
14
|
Yuan S, Gou X, Hu J, Xiao C, Du J. Mutation of tomato xyloglucan transglucosylase/hydrolase5 increases fruit firmness and contributes to prolonged shelf life. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154350. [PMID: 39293266 DOI: 10.1016/j.jplph.2024.154350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Fruit ripening in tomato is a highly coordinated developmental process accompanied with fruit softening, which is closely associated with cell wall degradation and remodeling. Xyloglucan endotransglucosylase/hydrolases (XTHs) are known to play an essential role in cell wall xyloglucan metabolism. Tomato XTH5 exhibits xyloglucan endotransglucosylase (XET) activity in vitro, but the understanding of its biological role in fruit ripening remains unclear. In this study, we revealed that SlXTH5 is highly expressed in mature fruits. Knockout mutant plants of SlXTH5 were generated by CRISPR/Cas9 gene editing strategy in tomato cultivar Micro-Tom. The mutant fruits showed accelerated transition from unripe to ripe process and earlier ethylene accumulation compared to wild type fruits. Although the mutation of SlXTH5 did not affect the size, weight and number of fruits, it indeed increased fruit firmness and extended shelf life, which is probably attributed to the increased cell layer and cell wall thickness of pericarp tissue. Pathogen infection experiment showed the enhanced resistance of mutant fruits to Botrytis cinerea. These results revealed the role of SlXTH5 in fruit ripening process, and provide new insight into how cell wall metabolism and remodeling regulate fruit softening and shelf life.
Collapse
Affiliation(s)
- Shuai Yuan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xin Gou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jing Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
15
|
Zhang D, Ma Y, Naz M, Ahmed N, Zhang L, Zhou JJ, Yang D, Chen Z. Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants. Genes (Basel) 2024; 15:958. [PMID: 39062737 PMCID: PMC11276256 DOI: 10.3390/genes15070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA with multiple biological functions. Whole circRNA genomes in plants have been identified, and circRNAs have been demonstrated to be widely present and highly expressed in various plant tissues and organs. CircRNAs are highly stable and conserved in plants, and exhibit tissue specificity and developmental stage specificity. CircRNAs often interact with other biomolecules, such as miRNAs and proteins, thereby regulating gene expression, interfering with gene function, and affecting plant growth and development or response to environmental stress. CircRNAs are less studied in plants than in animals, and their regulatory mechanisms of biogenesis and molecular functions are not fully understood. A variety of circRNAs in plants are involved in regulating growth and development and responding to environmental stress. This review focuses on the biogenesis and regulatory mechanisms of circRNAs, as well as their biological functions during growth, development, and stress responses in plants, including a discussion of plant circRNA research prospects. Understanding the generation and regulatory mechanisms of circRNAs is a challenging but important topic in the field of circRNAs in plants, as it can provide insights into plant life activities and their response mechanisms to biotic or abiotic stresses as well as new strategies for plant molecular breeding and pest control.
Collapse
Affiliation(s)
- Dongqin Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Yue Ma
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Misbah Naz
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Nazeer Ahmed
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Libo Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Jing-Jiang Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ding Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| |
Collapse
|
16
|
Sun Y, Yang H, Ren T, Zhao J, Lang X, Nie L, Zhao W. CmERF1 acts as a positive regulator of fruits and leaves growth in melon (Cucumis melo L.). PLANT MOLECULAR BIOLOGY 2024; 114:70. [PMID: 38842600 DOI: 10.1007/s11103-024-01468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.
Collapse
Affiliation(s)
- Yufan Sun
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Haiming Yang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Tiantian Ren
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jiateng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xinmei Lang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Lanchun Nie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, 071000, China.
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, Hebei, 071000, China.
| | - Wensheng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, 071000, China.
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, Hebei, 071000, China.
| |
Collapse
|
17
|
Tian J, Zhang F, Zhang G, Li X, Wen C, Li H. A long noncoding RNA functions in pumpkin fruit development through S-adenosyl-L-methionine synthetase. PLANT PHYSIOLOGY 2024; 195:940-957. [PMID: 38417836 PMCID: PMC11142375 DOI: 10.1093/plphys/kiae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in various biological processes. However, the regulatory roles of lncRNAs underlying fruit development have not been extensively studied. The pumpkin (Cucurbita spp.) is a preferred model for understanding the molecular mechanisms regulating fruit development because of its variable shape and size and large inferior ovary. Here, we performed strand-specific transcriptome sequencing on pumpkin (Cucurbita maxima "Rimu") fruits at 6 developmental stages and identified 5,425 reliably expressed lncRNAs. Among the 332 lncRNAs that were differentially expressed during fruit development, the lncRNA MSTRG.44863.1 was identified as a negative regulator of pumpkin fruit development. MSTRG.44863.1 showed a relatively high expression level and an obvious period-specific expression pattern. Transient overexpression and silencing of MSTRG.44863.1 significantly increased and decreased the content of 1-aminocyclopropane carboxylic acid (a precursor of ethylene) and ethylene production, respectively. RNA pull-down and microscale thermophoresis assays further revealed that MSTRG.44863.1 can interact with S-adenosyl-L-methionine synthetase (SAMS), an enzyme in the ethylene synthesis pathway. Considering that ethylene negatively regulates fruit development, these results indicate that MSTRG.44863.1 plays an important role in the regulation of pumpkin fruit development, possibly through interacting with SAMS and affecting ethylene synthesis. Overall, our findings provide a rich resource for further study of fruit-related lncRNAs while offering insights into the regulation of fruit development in plants.
Collapse
Affiliation(s)
- Jiaxing Tian
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guoyu Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaojie Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haizhen Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
18
|
Wang YW, Nambeesan SU. Ethylene promotes fruit ripening initiation by downregulating photosynthesis, enhancing abscisic acid and suppressing jasmonic acid in blueberry (Vaccinium ashei). BMC PLANT BIOLOGY 2024; 24:418. [PMID: 38760720 PMCID: PMC11102277 DOI: 10.1186/s12870-024-05106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Blueberry fruit exhibit atypical climacteric ripening with a non-auto-catalytic increase in ethylene coincident with initiation of ripening. Further, application of ethephon, an ethylene-releasing plant growth regulator, accelerates ripening by increasing the proportion of ripe (blue) fruit as compared to the control treatment. To investigate the mechanistic role of ethylene in regulating blueberry ripening, we performed transcriptome analysis on fruit treated with ethephon, an ethylene-releasing plant growth regulator. RESULTS RNA-Sequencing was performed on two sets of rabbiteye blueberry ('Powderblue') fruit: (1) fruit from divergent developmental stages; and (2) fruit treated with ethephon, an ethylene-releasing compound. Differentially expressed genes (DEGs) from divergent developmental stages clustered into nine groups, among which cluster 1 displayed reduction in expression during ripening initiation and was enriched with photosynthesis related genes, while cluster 7 displayed increased expression during ripening and was enriched with aromatic-amino acid family catabolism genes, suggesting stimulation of anthocyanin biosynthesis. More DEGs were apparent at 1 day after ethephon treatment suggesting its early influence during ripening initiation. Overall, a higher number of genes were downregulated in response to ethylene. Many of these overlapped with cluster 1 genes, indicating that ethylene-mediated downregulation of photosynthesis is an important developmental event during the ripening transition. Analyses of DEGs in response to ethylene also indicated interplay among phytohormones. Ethylene positively regulated abscisic acid (ABA), negatively regulated jasmonates (JAs), and influenced auxin (IAA) metabolism and signaling genes. Phytohormone quantification supported these effects of ethylene, indicating coordination of blueberry fruit ripening by ethylene. CONCLUSION This study provides insights into the role of ethylene in blueberry fruit ripening. Ethylene initiates blueberry ripening by downregulating photosynthesis-related genes. Also, ethylene regulates phytohormone-metabolism and signaling related genes, increases ABA, and decreases JA concentrations. Together, these results indicate that interplay among multiple phytohormones regulates the progression of ripening, and that ethylene is an important coordinator of such interactions during blueberry fruit ripening.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences Building, Athens, GA, 30602, USA
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
| | - Savithri U Nambeesan
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences Building, Athens, GA, 30602, USA.
| |
Collapse
|
19
|
Rossouw GC, Orr R, Bennett D, Bally ISE. The roles of non-structural carbohydrates in fruiting: a review focusing on mango ( Mangifera indica). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23195. [PMID: 38588720 DOI: 10.1071/fp23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Reproductive development of fruiting trees, including mango (Mangifera indica L.), is limited by non-structural carbohydrates. Competition for sugars increases with cropping, and consequently, vegetative growth and replenishment of starch reserves may reduce with high yields, resulting in interannual production variability. While the effect of crop load on photosynthesis and the distribution of starch within the mango tree has been studied, the contribution of starch and sugars to different phases of reproductive development requires attention. This review focuses on mango and examines the roles of non-structural carbohydrates in fruiting trees to clarify the repercussions of crop load on reproductive development. Starch buffers the plant's carbon availability to regulate supply with demand, while sugars provide a direct resource for carbon translocation. Sugar signalling and interactions with phytohormones play a crucial role in flowering, fruit set, growth, ripening and retention, as well as regulating starch, sugar and secondary metabolites in fruit. The balance between the leaf and fruit biomass affects the availability and contributions of starch and sugars to fruiting. Crop load impacts photosynthesis and interactions between sources and sinks. As a result, the onset and rate of reproductive processes are affected, with repercussions for fruit size, composition, and the inter-annual bearing pattern.
Collapse
Affiliation(s)
- Gerhard C Rossouw
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Ryan Orr
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Dale Bennett
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Ian S E Bally
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| |
Collapse
|
20
|
Cao X, Li X, Su Y, Zhang C, Wei C, Chen K, Grierson D, Zhang B. Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. PLANT PHYSIOLOGY 2024; 194:2049-2068. [PMID: 37992120 DOI: 10.1093/plphys/kiad627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Fruit ripening is accompanied by dramatic changes in color, texture, and flavor and is regulated by transcription factors (TFs) and epigenetic factors. However, the detailed regulatory mechanism remains unclear. Gene expression patterns suggest that PpNAC1 (NAM/ATAF1/2/CUC) TF plays a major role in peach (Prunus persica) fruit ripening. DNA affinity purification (DAP)-seq combined with transactivation tests demonstrated that PpNAC1 can directly activate the expression of multiple ripening-related genes, including ACC synthase1 (PpACS1) and ACC oxidase1 (PpACO1) involved in ethylene biosynthesis, pectinesterase1 (PpPME1), pectate lyase1 (PpPL1), and polygalacturonase1 (PpPG1) related to cell wall modification, and lipase1 (PpLIP1), fatty acid desaturase (PpFAD3-1), and alcohol acyltransferase1 (PpAAT1) involved in volatiles synthesis. Overexpression of PpNAC1 in the tomato (Solanum lycopersicum) nor (nonripening) mutant restored fruit ripening, and its transient overexpression in peach fruit induced target gene expression, supporting a positive role of PpNAC1 in fruit ripening. The enhanced transcript levels of PpNAC1 and its target genes were associated with decreases in their promoter mCG methylation during ripening. Declining DNA methylation was negatively associated with increased transcripts of DNA demethylase1 (PpDML1), whose promoter is recognized and activated by PpNAC1. We propose that decreased methylation of the promoter region of PpNAC1 leads to a subsequent decrease in DNA methylation levels and enhanced transcription of ripening-related genes. These results indicate that positive feedback between PpNAC1 and PpDML1 plays an important role in directly regulating expression of multiple genes required for peach ripening and quality formation.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinzhao Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yike Su
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chi Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Hangzhou, Zhejiang Province 310021, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
21
|
Fang H, Zuo J, Ma Q, Zhang X, Xu Y, Ding S, Wang J, Luo Q, Li Y, Wu C, Lv J, Yu J, Shi K. Phytosulfokine promotes fruit ripening and quality via phosphorylation of transcription factor DREB2F in tomato. PLANT PHYSIOLOGY 2024; 194:2739-2754. [PMID: 38214105 DOI: 10.1093/plphys/kiae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Phytosulfokine (PSK), a plant peptide hormone with a wide range of biological functions, is recognized by its receptor PHYTOSULFOKINE RECEPTOR 1 (PSKR1). Previous studies have reported that PSK plays important roles in plant growth, development, and stress responses. However, the involvement of PSK in fruit development and quality formation remains largely unknown. Here, using tomato (Solanum lycopersicum) as a research model, we show that exogenous application of PSK promotes the initiation of fruit ripening and quality formation, while these processes are delayed in pskr1 mutant fruits. Transcriptomic profiling revealed that molecular events and metabolic pathways associated with fruit ripening and quality formation are affected in pskr1 mutant lines and transcription factors are involved in PSKR1-mediated ripening. Yeast screening further identified that DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2F (DREB2F) interacts with PSKR1. Silencing of DREB2F delayed the initiation of fruit ripening and inhibited the promoting effect of PSK on fruit ripening. Moreover, the interaction between PSKR1 and DREB2F led to phosphorylation of DREB2F. PSK improved the efficiency of DREB2F phosphorylation by PSKR1 at the tyrosine-30 site, and the phosphorylation of this site increased the transcription level of potential target genes related to the ripening process and functioned in promoting fruit ripening and quality formation. These findings shed light on the involvement of PSK and its downstream signaling molecule DREB2F in controlling climacteric fruit ripening, offering insights into the regulatory mechanisms governing ripening processes in fleshy fruits.
Collapse
Affiliation(s)
- Hanmo Fang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinhua Zuo
- Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiaomei Ma
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuanbo Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuanrui Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuting Ding
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiao Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qian Luo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yimei Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Changqi Wu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianrong Lv
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Wan X, Wu Z, Sun D, Long L, Song Q, Gao C. Cytological characteristics of blueberry fruit development. BMC PLANT BIOLOGY 2024; 24:184. [PMID: 38475704 DOI: 10.1186/s12870-024-04809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
Using the blueberry cultivar "Powderblue" after pollination, fruits at different developmental stages were collected for study. The transverse and longitudinal diameters, individual fruit weight, and fruit water content were measured during their development. Employing tissue sectioning and microscopy techniques, we systematically studied the morphological features and anatomical structures of the fruits and seeds at various developmental stages, aiming to elucidate the cytological patterns during blueberry fruit development. The results of our study revealed that the "Powderblue" blueberry fruit growth and development followed a double "S" curve. Mature "Powderblue" blueberries were blue-black in color, elliptical in shape, with five locules, an inferior ovary, and an average fruit weight of 1.73 ± 0.17 g, and a moisture content of 78.865 ± 0.9%. Blueberry fruit flesh cells were densely arranged with no apparent intercellular spaces, and mesocarp cells accounted for 52.06 ± 7.4% of fruit cells. In the early fruit development stages, the fruit flesh cells were rapidly dividing, significantly increasing in number but without greatly affecting the fruit's morphological characteristics. During the later stages of fruit development, the expansion of the fruit flesh cells became prominent, resulting in a noticeable increase in the fruit's dimensions. Except for the epidermal cells, cells in all fruit tissues showed varying degrees of rupture as fruit development progressed, with the extent of cell rupture increasing, becoming increasingly apparent as the fruit gradually softened. Additionally, numerous brachysclereids (stone cells) appeared in the fruit flesh cells. Stone cells are mostly present individually in the fruit flesh tissue, while in the placental tissue, they often group together. The "Powderblue" blueberry seeds were light brown, 4.13 ± 0.42 mm long, 2.2 ± 0.14 mm wide, with each fruit containing 50-60 seeds. The "Powderblue" seeds mainly consisted of the seed coat, endosperm, and embryo. The embryo was located at the chalazal end in the center of the endosperm and was spatially separated. The endosperm, occupying the vast majority of the seed volume, comprised both the chalazal and outer endosperm, and the endosperm developed and matured before the embryo. As the seed developed, the seed coat was gradually lignified and consisted of palisade-like stone cells externally and epidermal layer cells internally.
Collapse
Affiliation(s)
- Xianqin Wan
- Institute for Forest Resources and Environment of Guizhou, Key laboratory of forest cultivation in plateau mountain of Guizhou province, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zewei Wu
- Institute for Forest Resources and Environment of Guizhou, Key laboratory of forest cultivation in plateau mountain of Guizhou province, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Dongchan Sun
- Institute for Forest Resources and Environment of Guizhou, Key laboratory of forest cultivation in plateau mountain of Guizhou province, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Li Long
- Institute for Forest Resources and Environment of Guizhou, Key laboratory of forest cultivation in plateau mountain of Guizhou province, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Qiling Song
- Institute for Forest Resources and Environment of Guizhou, Key laboratory of forest cultivation in plateau mountain of Guizhou province, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chao Gao
- Institute for Forest Resources and Environment of Guizhou, Key laboratory of forest cultivation in plateau mountain of Guizhou province, College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
23
|
Feng J, Zhang W, Wang W, Nieuwenhuizen NJ, Atkinson RG, Gao L, Hu H, Zhao W, Ma R, Zheng H, Tao J. Integrated Transcriptomic and Proteomic Analysis Identifies Novel Regulatory Genes Associated with Plant Growth Regulator-Induced Astringency in Grape Berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4433-4447. [PMID: 38354220 DOI: 10.1021/acs.jafc.3c04408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Astringency influences the sensory characteristics and flavor quality of table grapes. We tested the astringency sensory attributes of berries and investigated the concentration of flavan-3-ols/proanthocyanidins (PAs) in skins after the application of the plant growth regulators CPPU and GA3 to the flowers and young berries of the "Summer Black" grape. Our results showed that CPPU and GA3 applications increase sensory astringency perception scores and flavan-3-ol/proanthocyanidin concentrations. Using integrated transcriptomic and proteomic analysis, differentially expressed transcripts and proteins associated with growth regulator treatment were identified, including those for flavonoid biosynthesis that contribute to the changes in sensory astringency levels. Transient overexpression of candidate astringency-related regulatory genes in grape leaves revealed that VvWRKY71, in combination with VvMYBPA1 and VvMYC1, could promote the biosynthesis of proanthocyanidins, while overexpression of VvNAC83 reduced the accumulation of proanthocyanidins. However, in transient promoter studies in Nicotiana benthamiana, VvWRKY71 repressed the promoter of VvMYBPA2, while VvNAC83 had no significant effect on the promoter activity of four PA-related genes, and VvMYBPA1 was shown to activate its own promoter. This study provides new insights into the molecular mechanisms of sensory astringency formation induced by plant growth regulators in grape berries.
Collapse
Affiliation(s)
- Jiao Feng
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi,Xinjiang 830001, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 92169, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 92169, New Zealand
| | - Lei Gao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Haipeng Hu
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Wanli Zhao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Ruiyang Ma
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Huan Zheng
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Jianmin Tao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi,Xinjiang 830001, China
| |
Collapse
|
24
|
Muñoz P, Tijero V, Vincent C, Munné-Bosch S. Abscisic acid triggers vitamin E accumulation by transient transcript activation of VTE5 and VTE6 in sweet cherry fruits. Biochem J 2024; 481:279-293. [PMID: 38314636 DOI: 10.1042/bcj20230399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/06/2024]
Abstract
Tocopherols are lipophilic antioxidants known as vitamin E and synthesized from the condensation of two metabolic pathways leading to the formation of homogentisate and phytyl diphosphate. While homogentisate is derived from tyrosine metabolism, phytyl diphosphate may be formed from geranylgeranyl diphosphate or phytol recycling from chlorophyll degradation. Here, we hypothesized that abscisic acid (ABA) could induce tocopherol biosynthesis in sweet cherries by modifying the expression of genes involved in vitamin E biosynthesis, including those from the phytol recycling pathway. Hence, the expression of key tocopherol biosynthesis genes was determined together with vitamin E and chlorophyll contents during the natural development of sweet cherries on the tree. Moreover, the effects of exogenously applied ABA on the expression of key tocopherol biosynthesis genes were also investigated during on-tree fruit development, and tocopherols and chlorophylls contents were analyzed. Results showed that the expression of tocopherol biosynthesis genes, including VTE5, VTE6, HPPD and HPT showed contrasting patterns of variation, but in all cases, increased by 2- and 3-fold over time during fruit de-greening. This was not the case for GGDR and VTE4, the first showing constitutive expression during fruit development and the second with marked down-regulation at ripening onset. Furthermore, exogenous ABA stimulated the production of both α- and γ-tocopherols by 60% and 30%, respectively, promoted chlorophyll degradation and significantly enhanced VTE5 and VTE6 expression, and also that of HPPD and VTE4, altogether increasing total tocopherol accumulation. In conclusion, ABA increases promote the transcription of phytol recycling enzymes, which may contribute to vitamin E biosynthesis during fruit development in stone fruits like sweet cherries.
Collapse
Affiliation(s)
- Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Verónica Tijero
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Celia Vincent
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Ma L, Zheng Y, Zhou Z, Deng Z, Tan J, Bai C, Fu A, Wang Q, Zuo J. Dissection of mRNA ac 4C acetylation modifications in AC and Nr fruits: insights into the regulation of fruit ripening by ethylene. MOLECULAR HORTICULTURE 2024; 4:5. [PMID: 38369544 PMCID: PMC10875755 DOI: 10.1186/s43897-024-00082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
N4-acetylcytidine (ac4C) modification of mRNA has been shown to be present in plant RNAs, but its regulatory function in plant remains largely unexplored. In this study, we investigated the differentially expressed mRNAs, lncRNAs and acetylation modifications of mRNAs in tomato fruits from both genotypes. By comparing wild-type (AC) tomato and the ethylene receptor-mutant (Nr) tomato from mature green (MG) to six days after the breaker (Br6) stage, we identified differences in numerous key genes related to fruit ripening and observed the corresponding lncRNAs positively regulated the target genes expression. At the post-transcriptional level, the acetylation level decreased and increased in AC and Nr tomatoes from MG to Br6 stage, respectively. The integrated analysis of RNA-seq and ac4C-seq data revealed the potential positive role of acetylation modification in regulating gene expression. Furthermore, we found differential acetylation modifications of certain transcripts (ACO, ETR, ERF, PG, CesA, β-Gal, GAD, AMY, and SUS) in AC and Nr fruits which may explain the differences in ethylene production, fruit texture, and flavor during their ripening processes. The present study provides new insights into the molecular mechanisms by which acetylation modification differentially regulates the ripening process of wild-type and mutant tomato fruits deficient in ethylene signaling.
Collapse
Affiliation(s)
- Lili Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Zhongjing Zhou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhiping Deng
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinjuan Tan
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chunmei Bai
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Anzhen Fu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Qing Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
| |
Collapse
|
26
|
Li D, Yang J, Dai Z, Chen Y, Shao Z, Wang C, Jin X, Wang Y, Feng L. Prohexadione-calcium improves grape quality by regulating endogenous hormones, sugar and acid metabolism and related enzyme activities in grape berries. BMC PLANT BIOLOGY 2024; 24:122. [PMID: 38373883 PMCID: PMC10875774 DOI: 10.1186/s12870-024-04803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Prohexadione-Calcium (Pro-Ca) plays key roles in improving fruit quality and yield by regulating various aspects of plant growth. However, the effects of how Pro-Ca regulates the regulation of sugar and acid balance and its impact on the production of volatile aroma substances during fruit growth and development are poorly understood. In this study, the Pro-Ca solutions developed at concentrations of 200, 400, 600 and 800 mg·L-1 were sprayed on the entire "Chardonnay" grape tree 22, 42, 62 and 82 days after initial flowering. The values of endogenous hormones, sugar and acid content, enzyme activities and flavor content were then measured in grapes 45, 65, 85 and 105 days (ripeness stage) after the initial flowering. The results showed that Pro-Ca had significant effects on fruits during development, including reducing ABA content, increasing ZT, GA3 and IAA levels, promoting fruit ripening and enhancing enzymes, which are involved in sugar and acid synthesis. Consequently, these effects led to an increase in sugar and acid content in the berries. Particularly during the ripening phase, the application of 600 mg L-1 Pro-Ca resulted in an increase in soluble sugar content of 11.28% and a significant increase in citric acid and malic acid content of 97.80% and 68.86%, respectively. Additionally, Pro-Ca treatment enhanced both the variety and quantity of aroma compounds present in the berries, with the 600 mg·L-1 Pro-Ca treatment showcasing the most favorable impact on volatile aroma compounds in 'Chardonnay' grapes. The levels of aldehydes, esters, alcohols, phenols, acids, ketones, and terpenes were significantly higher under the 600 mg·L-1 Pro-Ca treatment compared to those of control with 51.46 - 423.85% increase. In conclusion, Pro-Ca can regulate the content of endogenous hormones and the activities of enzymes related to sugar and acid metabolism in fruit, thereby increasing the content of soluble sugar and organic acid in fruit and the diversity and concentration of fruit aroma substances. Among them, foliar spraying 600 mg · L-1 Pro-Ca has the best effect. In the future, we need to further understand the molecular mechanism of Pro-Ca in grape fruit to lay a solid foundation for quality improvement breeding.
Collapse
Affiliation(s)
- Dou Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangshan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Zibo Dai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yajuan Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhang Shao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chunheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xin Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuhang Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lidan Feng
- Research and Development Center of Wine Industry in Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
27
|
Feng S, Liu Z, Chen H, Li N, Yu T, Zhou R, Nie F, Guo D, Ma X, Song X. PHGD: An integrative and user-friendly database for plant hormone-related genes. IMETA 2024; 3:e164. [PMID: 38868516 PMCID: PMC10989150 DOI: 10.1002/imt2.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 12/17/2023] [Indexed: 06/14/2024]
Abstract
Plant Hormone Gene Database (PHGD) database platform construction pipeline. First, we collected all reported hormone-related genes in the model plant Arabidopsis thaliana, and combined with the existing experimental background, mapped the hormone-gene interaction network to provide a blueprint. Next, we collected 469 high-quality plant genomes. Then, bioinformatics was used to identify hormone-related genes in these plants. Finally, these genetic data were programmed to be stored in a database and a platform website PHGD was built. PHGD was divided into eight modules, namely Home, Browse, Search, Resources, Download, Tools, Help, and Contact. We provided data resources and platform services to facilitate the study of plant hormones.
Collapse
Affiliation(s)
- Shuyan Feng
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Zhuo Liu
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Huilong Chen
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Nan Li
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Tong Yu
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Rong Zhou
- Department of Food ScienceAarhus UniversityAarhusDenmark
| | - Fulei Nie
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Di Guo
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Xiao Ma
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
- College of Horticultural Science & Technology, Hebei NormalUniversity of Science & TechnologyQinhuangdaoHebeiChina
| | - Xiaoming Song
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| |
Collapse
|
28
|
Cardarelli M, El Chami A, Rouphael Y, Ciriello M, Bonini P, Erice G, Cirino V, Basile B, Corrado G, Choi S, Kim HJ, Colla G. Plant biostimulants as natural alternatives to synthetic auxins in strawberry production: physiological and metabolic insights. FRONTIERS IN PLANT SCIENCE 2024; 14:1337926. [PMID: 38264017 PMCID: PMC10803581 DOI: 10.3389/fpls.2023.1337926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
The demand for high-quality strawberries continues to grow, emphasizing the need for innovative agricultural practices to enhance both yield and fruit quality. In this context, the utilization of natural products, such as biostimulants, has emerged as a promising avenue for improving strawberry production while aligning with sustainable and eco-friendly agricultural approaches. This study explores the influence of a bacterial filtrate (BF), a vegetal-derived protein hydrolysate (PH), and a standard synthetic auxin (SA) on strawberry, investigating their effects on yield, fruit quality, mineral composition and metabolomics of leaves and fruits. Agronomic trial revealed that SA and BF significantly enhanced early fruit yield due to their positive influence on flowering and fruit set, while PH treatment favored a gradual and prolonged fruit set, associated with an increased shoot biomass and sustained production. Fruit quality analysis showed that PH-treated fruits exhibited an increase of firmness and soluble solids content, whereas SA-treated fruits displayed lower firmness and soluble solids content. The ionomic analysis of leaves and fruits indicated that all treatments provided sufficient nutrients, with heavy metals within regulatory limits. Metabolomics indicated that PH stimulated primary metabolites, while SA and BF directly affected flavonoid and anthocyanin biosynthesis, and PH increased fruit quality through enhanced production of beneficial metabolites. This research offers valuable insights for optimizing strawberry production and fruit quality by harnessing the potential of natural biostimulants as viable alternative to synthetic compounds.
Collapse
Affiliation(s)
| | - Antonio El Chami
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Gorka Erice
- Atens - Agrotecnologías Naturales, La Riera de Gaià, Spain
| | | | - Boris Basile
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Seunghyun Choi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX, United States
| | - Hye-Ji Kim
- Agri-tech and Food Innovation Department, Urban Food Solutions Division, Singapore Food Agency, Singapore, Singapore
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
29
|
Graci S, Barone A. Tomato plant response to heat stress: a focus on candidate genes for yield-related traits. FRONTIERS IN PLANT SCIENCE 2024; 14:1245661. [PMID: 38259925 PMCID: PMC10800405 DOI: 10.3389/fpls.2023.1245661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Climate change and global warming represent the main threats for many agricultural crops. Tomato is one of the most extensively grown and consumed horticultural products and can survive in a wide range of climatic conditions. However, high temperatures negatively affect both vegetative growth and reproductive processes, resulting in losses of yield and fruit quality traits. Researchers have employed different parameters to evaluate the heat stress tolerance, including evaluation of leaf- (stomatal conductance, net photosynthetic rate, Fv/Fm), flower- (inflorescence number, flower number, stigma exertion), pollen-related traits (pollen germination and viability, pollen tube growth) and fruit yield per plant. Moreover, several authors have gone even further, trying to understand the plants molecular response mechanisms to this stress. The present review focused on the tomato molecular response to heat stress during the reproductive stage, since the increase of temperatures above the optimum usually occurs late in the growing tomato season. Reproductive-related traits directly affects the final yield and are regulated by several genes such as transcriptional factors, heat shock proteins, genes related to flower, flowering, pollen and fruit set, and epigenetic mechanisms involving DNA methylation, histone modification, chromatin remodelling and non-coding RNAs. We provided a detailed list of these genes and their function under high temperature conditions in defining the final yield with the aim to summarize the recent findings and pose the attention on candidate genes that could prompt on the selection and constitution of new thermotolerant tomato plant genotypes able to face this abiotic challenge.
Collapse
Affiliation(s)
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
30
|
Alsharairi NA. Experimental Studies on the Therapeutic Potential of Vaccinium Berries in Breast Cancer-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:153. [PMID: 38256707 PMCID: PMC10818444 DOI: 10.3390/plants13020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Breast cancer (BC) is the largest contributor to cancer deaths in women worldwide. Various parts of plants, including fruits, are known for their therapeutic properties and are used in traditional medicine. Fruit species exhibit anticancer activities due to the presence of bioactive natural compounds such as flavonoids and carotenoids. The Vaccinium spp. are fleshy berry-like drupes and are rich in bioactive compounds, with flavonols, flavanols, chalcones, and phenolic acids as the major groups of compounds. While there is clear evidence linking Vaccinium berries with a decreased risk of BC both in in vivo and in vitro experiments, the exact mechanisms involved in the protective effects of Vaccinium spp. rich extracts on BC cells are not fully understood. Thus, the purpose of this review is to highlight the mechanisms of action involved in the therapeutic potential of Vaccinium berries against BC in experimental models.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
31
|
Meinzer M, Ahmad N, Nielsen BL. Halophilic Plant-Associated Bacteria with Plant-Growth-Promoting Potential. Microorganisms 2023; 11:2910. [PMID: 38138054 PMCID: PMC10745547 DOI: 10.3390/microorganisms11122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The salinization of soils is a growing agricultural concern worldwide. Irrigation practices, drought, and climate change are leading to elevated salinity levels in many regions, resulting in reduced crop yields. However, there is potential for a solution in the microbiome of halophytes, which are naturally salt-tolerant plants. These plants harbor a salt-tolerant microbiome in their rhizosphere (around roots) and endosphere (within plant tissue). These bacteria may play a significant role in conferring salt tolerance to the host plants. This leads to the possibility of transferring these beneficial bacteria, known as salt-tolerant plant-growth-promoting bacteria (ST-PGPB), to salt-sensitive plants, enabling them to grow in salt-affected areas to improve crop productivity. In this review, the background of salt-tolerant microbiomes is discussed and their potential use as ST-PGPB inocula is explored. We focus on two Gram-negative bacterial genera, Halomonas and Kushneria, which are commonly found in highly saline environments. These genera have been found to be associated with some halophytes, suggesting their potential for facilitating ST-PGPB activity. The study of salt-tolerant microbiomes and their use as PGPB holds promise for addressing the challenges posed by soil salinity in the context of efforts to improve crop growth in salt-affected areas.
Collapse
Affiliation(s)
- McKay Meinzer
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan;
| | - Brent L. Nielsen
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan;
| |
Collapse
|
32
|
Espley RV, Jaakola L. The role of environmental stress in fruit pigmentation. PLANT, CELL & ENVIRONMENT 2023; 46:3663-3679. [PMID: 37555620 DOI: 10.1111/pce.14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
For many fruit crops, the colour of the fruit outwardly defines its eating quality. Fruit pigments provide reproductive advantage for the plant as well as providing protection against unfavourable environmental conditions and pathogens. For consumers these colours are considered attractive and provide many of the dietary benefits derived from fruits. In the majority of species, the main pigments are either carotenoids and/or anthocyanins. They are produced in the fruit as part of the ripening process, orchestrated by phytohormones and an ensuing transcriptional cascade, culminating in pigment biosynthesis. Whilst this is a controlled developmental process, the production of pigments is also attuned to environmental conditions such as light quantity and quality, availability of water and ambient temperature. If these factors intensify to stress levels, fruit tissues respond by increasing (or ceasing) pigment production. In many cases, if the stress is not severe, this can have a positive outcome for fruit quality. Here, we focus on the principal environmental factors (light, temperature and water) that can influence fruit colour.
Collapse
Affiliation(s)
- Richard V Espley
- Department of New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
33
|
Camarero MC, Briegas B, Corbacho J, Labrador J, Gomez-Jimenez MC. Hormonal Content and Gene Expression during Olive Fruit Growth and Ripening. PLANTS (BASEL, SWITZERLAND) 2023; 12:3832. [PMID: 38005729 PMCID: PMC10675085 DOI: 10.3390/plants12223832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
The cultivated olive (Olea europaea L. subsp. europaea var. europaea) is one of the most valuable fruit trees worldwide. However, the hormonal mechanisms underlying the fruit growth and ripening in olives remain largely uncharacterized. In this study, we investigated the physiological and hormonal changes, by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), as well as the expression patterns of hormone-related genes, using quantitative real-time PCR (qRT-PCR) analysis, during fruit growth and ripening in two olive cultivars, 'Arbequina' and 'Picual', with contrasting fruit size and shape as well as fruit ripening duration. Hormonal profiling revealed that olive fruit growth involves a lowering of auxin (IAA), cytokinin (CKs), and jasmonic acid (JA) levels as well as a rise in salicylic acid (SA) levels from the endocarp lignification to the onset of fruit ripening in both cultivars. During olive fruit ripening, both abscisic acid (ABA) and anthocyanin levels rose, while JA levels fell, and SA levels showed no significant changes in either cultivar. By contrast, differential accumulation patterns of gibberellins (GAs) were found between the two cultivars during olive fruit growth and ripening. GA1 was not detected at either stage of fruit development in 'Arbequina', revealing a specific association between the GA1 and 'Picual', the cultivar with large sized, elongated, and fast-ripening fruit. Moreover, ABA may play a central role in regulating olive fruit ripening through transcriptional regulation of key ABA metabolism genes, whereas the IAA, CK, and GA levels and/or responsiveness differ between olive cultivars during olive fruit ripening. Taken together, the results indicate that the relative absence or presence of endogenous GA1 is associated with differences in fruit morphology and size as well as in the ripening duration in olives. Such detailed knowledge may be of help to design new strategies for effective manipulation of olive fruit size as well as ripening duration.
Collapse
Affiliation(s)
| | | | | | | | - Maria C. Gomez-Jimenez
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
34
|
Liu Y, Gao Y, Chen M, Jin Y, Qin Y, Hao G. GIFTdb: a useful gene database for plant fruit traits improving. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1030-1040. [PMID: 37856620 DOI: 10.1111/tpj.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Fruit traits are critical determinants of plant fitness, resource diversity, productive and quality. Gene regulatory networks in plants play an essential role in determining fruit traits, such as fruit size, yield, firmness, aroma and other important features. Many research studies have focused on elucidating the associated signaling pathways and gene interaction mechanism to better utilize gene resources for regulating fruit traits. However, the availability of specific database of genes related to fruit traits for use by the plant research community remains limited. To address this limitation, we developed the Gene Improvements for Fruit Trait Database (GIFTdb, http://giftdb.agroda.cn). GIFTdb contains 35 365 genes, including 896 derived from the FR database 1.0, 305 derived from 30 882 articles from 2014 to 2021, 236 derived from the Universal Protein Resource (UniProt) database, and 33 928 identified through homology analysis. The database supports several aided analysis tools, including signal transduction pathways, gene ontology terms, protein-protein interactions, DNAWorks, Basic Local Alignment Search Tool (BLAST), and Protein Subcellular Localization Prediction (WoLF PSORT). To provide information about genes currently unsupported in GIFTdb, potential fruit trait-related genes can be searched based on homology with the supported genes. GIFTdb can provide valuable assistance in determining the function of fruit trait-related genes, such as MYB306-like, by conducting a straightforward search. We believe that GIFTdb will be a valuable resource for researchers working on gene function annotation and molecular breeding to improve fruit traits.
Collapse
Affiliation(s)
- Yingwei Liu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
- Engineering Training Center, Guizhou Minzu University, Guiyang, 550025, P.R. China
| | - Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Yin Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Yongbin Qin
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
| | - Gefei Hao
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| |
Collapse
|
35
|
Zhang Y, Su Z, Luo L, Wang P, Zhu X, Liu J, Wang C. Exogenous auxin regulates the growth and development of peach fruit at the expansion stage by mediating multiple-hormone signaling. BMC PLANT BIOLOGY 2023; 23:499. [PMID: 37848815 PMCID: PMC10583367 DOI: 10.1186/s12870-023-04514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Fruit expansion stage is crucial to fruit yield and quality formation, and auxin plays a significant role by mediating multi-hormone signals during fruit expansion. However, till now, it is still unclear of the molecular regulatory network during auxin-mediated peach fruit expansion. RESULTS Here, exogenous NAA application markedly increased IAA content and drastically decreased ABA content at the fruit expansion stage. Correspondingly, NAA mainly induced the auxin biosynthesis gene (1 PpYUCCA) and early auxin-responsive genes (7PpIAA, 3 PpGH3, and 14 PpSAUR); while NAA down-regulated ABA biosynthesis genes (2 PpNCED, 1 PpABA3, and 1 PpAAO3). In addition, many DEGs involved in other plant hormone biosynthesis and signal transduction were significantly enriched after NAA treatment, including 7 JA, 7 CTK, 6 ETH, and 3 GA. Furthermore, we also found that NAA treatment down-regulated most of genes involved in the growth and development of peach fruit, including the cell wall metabolism-related genes (PpEG), sucrose metabolism-related genes (PpSPS), phenylalanine metabolism-related genes (PpPAL, Pp4CL, and PpHCT), and transcription factors (PpNAC, PpMADS-box, PpDof, PpSBP, and PpHB). CONCLUSION Overall, NAA treatment at the fruit expansion stage could inhibit some metabolism processes involved in the related genes in the growth and development of peach fruit by regulating multiple-hormone signaling networks. These results help reveal the short-term regulatory mechanism of auxin at the fruit expansion stage and provide new insights into the multi-hormone cascade regulatory network of fruit growth and development.
Collapse
Affiliation(s)
- Yanping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Faculty of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China.
| | - Ziwen Su
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linjia Luo
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengkai Wang
- Faculty of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiecai Liu
- Inner MongoliaAgricultural University, Huhehaote, 010010, China.
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Faculty of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China.
| |
Collapse
|
36
|
Liu Z, Wang Y, Guan P, Hu J, Sun L. Interaction of VvDELLA2 and VvCEB1 Mediates Expression of Expansion-Related Gene during GA-Induced Enlargement of Grape Fruit. Int J Mol Sci 2023; 24:14870. [PMID: 37834318 PMCID: PMC10573625 DOI: 10.3390/ijms241914870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Exogenous gibberellin treatment can promote early growth of grape fruit, but the underlying regulatory mechanisms are not well understood. Here, we show that VvDELLA2 directly regulates the activity of the VvCEB1 transcription factor, a key regulator in the control of cell expansion in grape fruit. Our results show that VvCEB1 binds directly to the promoters of cell expansion-related genes in grape fruit and acts as a transcriptional activator, while VvDELLA2 blocks VvCEB1 function by binding to its activating structural domain. The exogenous gibberellin treatment relieved this inhibition by promoting the degradation of VvDELLA2 protein, thus, allowing VvCEB1 to transcriptionally activate the expression of cell expansion-related genes. In conclusion, we conclude that exogenous GA3 treatment regulates early fruit expansion by affecting the VvDELLA-VvCEB1 interaction in grape fruit development.
Collapse
Affiliation(s)
- Zhenhua Liu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China; (Z.L.); (Y.W.)
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Yan Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China; (Z.L.); (Y.W.)
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Pingyin Guan
- College of Horticulture, China Agricultural University, Beijing 100193, China;
| | - Jianfang Hu
- College of Horticulture, China Agricultural University, Beijing 100193, China;
| | - Lei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China; (Z.L.); (Y.W.)
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| |
Collapse
|
37
|
Li J, Shen Y. A clathrin-related protein FaRRP1/SCD2 integrates ABA trafficking and signaling to regulate strawberry fruit ripening. J Biol Chem 2023; 299:105250. [PMID: 37714466 PMCID: PMC10582773 DOI: 10.1016/j.jbc.2023.105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
Abscisic acid (ABA) is a critical regulator for nonclimacteric fruit ripening such as in the model plant of strawberry (Fragaria × ananassa). Although FaRRP1 is proposed to participate in clathrin-mediated endocytosis of ABA, its action molecular mechanisms in ABA signaling are not fully understood. Here, using our isolated FaRRP1 (ripening-regulation protein) and candidate ABA receptor FaPYL2 and FaABAR from strawberry fruit, a series of silico and molecular interaction analyses demonstrate that they all bind to ABA, and FaRRP1 binds both FaPYL2 and FaABAR; by contrast, the binding affinity of FaRRP1 to FaPYL2 is relatively higher. Interestingly, the binding of FaRRP1 to FaPYL2 and FaABAR affects the perception affinity to ABA. Furthermore, exogenous ABA application and FaRRP1 transgenic analyses confirm that FaRRP1 participates in clathrin-mediated endocytosis and vesicle transport. Importantly, FaRRP1, FaPYL2, and FaABAR all trigger the initiation of strawberry fruit ripening at physiological and molecular levels. In conclusion, FaRRP1 not only binds to ABA but also affects the binding affinity of FaPYL2 and FaABAR to ABA, thus promoting strawberry fruit ripening. Our findings provide novel insights into the role of FaRRP1 in ABA trafficking and signaling, at least in strawberry, a model plant for nonclimacteric fruit ripening.
Collapse
Affiliation(s)
- Jiajing Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
38
|
Zhang P, Tang Y, Liu Y, Liu J, Wang Q, Wang H, Li H, Li L, Qin P. Metabolic characteristics of self-pollinated wheat seed under red and blue light during early development. PLANTA 2023; 258:63. [PMID: 37543957 DOI: 10.1007/s00425-023-04217-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
MAIN CONCLUSION Blue light has a greater effect on jasmonic acid and flavonoid accumulation in wheat seeds than red light; blue light reduces starch synthesis and the size of starch granules and seeds. This study sought to elucidate the effects of blue and red light on seed metabolism to provide important insights regarding the role of light quality in regulating seed growth and development. We used combined multi-omics analysis to investigate the impact of red and blue light (BL) on the induction of secondary metabolite accumulation in the hexaploid wheat Dianmai 3 after pollination. Flavonoids and alkaloids were the most differentially abundant metabolites detected under different treatments. Additionally, we used multi-omics and weighted correlation network analysis to screen multiple candidate genes associated with jasmonic acid (JA) and flavonoids. Expression regulatory networks were constructed based on RNA-sequencing data and their potential binding sites. The results revealed that BL had a greater effect on JA and flavonoid accumulation in wheat seeds than red light. Furthermore, BL reduced starch synthesis and stunted the size of starch granules and seeds. Collectively, these findings clarify the role of BL in the metabolic regulation of early seed development in wheat.
Collapse
Affiliation(s)
- Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Yongsheng Tang
- Qujing Academy of Agricultural Science, Qujing, 655000, People's Republic of China
| | - Yongjiang Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
| |
Collapse
|
39
|
Wang P, Liang X, Fang H, Wang J, Liu X, Li Y, Shi K. Transcriptomic and genetic approaches reveal that the pipecolate biosynthesis pathway simultaneously regulates tomato fruit ripening and quality. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107920. [PMID: 37527607 DOI: 10.1016/j.plaphy.2023.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP) have been found to accumulate during the ripening of multiple types of fruits; however, the function and mechanism of pipecolate pathway in fruits remain unclear. Here study was conducted on fruits produced by the model plant tomato, wherein the NHP biosynthesis-related genes, Slald1 and Slfmo1, were mutated. The results showed that the fruits of both the Slald1 and the Slfmo1 mutants exhibited a delayed onset of ripening, decreased fruit size, nutrition and flavor. Exogenous treatment with Pip and NHP promoted fruit ripening and improved fruit quality. Transcriptomic analysis combined with weighted gene co-expression network analysis revealed that the genes involved in the biosynthesis of amino acids, carbon metabolism, photosynthesis, starch and sucrose metabolism, flavonoid biosynthesis, and plant hormone signal transduction were affected by SlFMO1 gene mutation. Transcription factor prediction analysis revealed that the NAC and AP2/ERF-ERF family members are notably involved in the regulation pathway. Overall, our results suggest that the pipecolate biosynthesis pathway is involved in the simultaneous regulation of fruit ripening and quality and indicate that a regulatory mechanism at the transcriptional level exists. However, possible roles of endogenously synthesized Pip and NHP in these processes remain to be determined. The biosynthesis pathway genes SlALD1 and SlFMO1 may be potential breeding targets for promoting fruit ripening and improving fruit quality with concomitant yield increases.
Collapse
Affiliation(s)
- Ping Wang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China; Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiao Liang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Hanmo Fang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Jiao Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiaotian Liu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yimei Li
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Kai Shi
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China; Department of Horticulture, Zhejiang University, Hangzhou, China.
| |
Collapse
|
40
|
Di Giacomo M, Vega TA, Cambiaso V, Picardi LA, Rodríguez GR, Pereira da Costa JH. An Integrative Transcriptomics and Proteomics Approach to Identify Putative Genes Underlying Fruit Ripening in Tomato near Isogenic Lines with Long Shelf Life. PLANTS (BASEL, SWITZERLAND) 2023; 12:2812. [PMID: 37570966 PMCID: PMC10421356 DOI: 10.3390/plants12152812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
The elucidation of the ripening pathways of climacteric fruits helps to reduce postharvest losses and improve fruit quality. Here, we report an integrative study on tomato ripening for two near-isogenic lines (NIL115 and NIL080) with Solanum pimpinellifolium LA0722 introgressions. A comprehensive analysis using phenotyping, molecular, transcript, and protein data were performed. Both NILs show improved fruit firmness and NIL115 also has longer shelf life compared to the cultivated parent. NIL115 differentially expressed a transcript from the APETALA2 ethylene response transcription factor family (AP2/ERF) with a potential role in fruit ripening. E4, another ERF, showed an upregulated expression in NIL115 as well as in the wild parent, and it was located physically close to a wild introgression. Other proteins whose expression levels changed significantly during ripening were identified, including an ethylene biosynthetic enzyme (ACO3) and a pectate lyase (PL) in NIL115, and an alpha-1,4 glucan phosphorylase (Pho1a) in NIL080. In this study, we provide insights into the effects of several genes underlying tomato ripening with potential impact on fruit shelf life. Data integration contributed to unraveling ripening-related genes, providing opportunities for assisted breeding.
Collapse
Affiliation(s)
- Melisa Di Giacomo
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
| | - Tatiana Alejandra Vega
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
| | - Vladimir Cambiaso
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| | - Liliana Amelia Picardi
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| | - Gustavo Rubén Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| | - Javier Hernán Pereira da Costa
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| |
Collapse
|
41
|
Chen Y, Liu L, Feng Q, Liu C, Bao Y, Zhang N, Sun R, Yin Z, Zhong C, Wang Y, Li Q, Li B. FvWRKY50 is an important gene that regulates both vegetative growth and reproductive growth in strawberry. HORTICULTURE RESEARCH 2023; 10:uhad115. [PMID: 37577404 PMCID: PMC10419500 DOI: 10.1093/hr/uhad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/21/2023] [Indexed: 08/15/2023]
Abstract
The WRKY transcription factors play important roles in plant growth and resistance, but only a few members have been identified in strawberry. Here we identified a WRKY transcription factor, FvWRKY50, in diploid strawberry which played essential roles in strawberry vegetative growth, and reproductive growth. Knocking out FvWRKY50 by genome editing accelerated flowering time and leaf senescence but delayed anthocyanin accumulation in fruit. Further analysis showed that FvWRKY50 acted as a transcriptional repressor to negatively regulate the expression of flowering- and leaf senescence-related genes, including FvFT2, FvCO, FvFT3, and FvSAUR36. Notably, FvWRKY50 directly upregulated the expression of FvCHI and FvDFR by binding their promoter under normal conditions, but at low temperature FvWRKY50 was phosphorylated by FvMAPK3 and then induced protein degradation by ubiquitination, delaying anthocyanin accumulation. In addition, the homozygous mutant of FvWRKY50 was smaller while the biallelic mutant showed normal size. These new findings provide important clues for us to further reveal the regulatory mechanisms of strawberry growth and fruit ripening.
Collapse
Affiliation(s)
- Yating Chen
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 10093, China
| | - Liping Liu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 10093, China
| | - Qianqian Feng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 10093, China
| | - Chuang Liu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 10093, China
| | - Yujuan Bao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 10093, China
| | - Nan Zhang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 10093, China
| | - Ronghui Sun
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 10093, China
| | - Zhaonan Yin
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 10093, China
| | - Chuanfei Zhong
- Beijing Engineering Research Center for Strawberry, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yuanhua Wang
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jiangsu, 212400, China
- Engineering and Technical Center for Modern Horticulture, Jiangsu, 212400, China
| | - Qian Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 10093, China
| | - Bingbing Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 10093, China
| |
Collapse
|
42
|
Park MH, Yang HJ, Malka SK. Hormonal regulation of ethylene response factors in tomato during storage and distribution. FRONTIERS IN PLANT SCIENCE 2023; 14:1197776. [PMID: 37448864 PMCID: PMC10338070 DOI: 10.3389/fpls.2023.1197776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023]
Abstract
Introduction Ethylene response factors (ERFs) play a critical role in regulating hormone interactions that affect the shelf life of tomatoes. Understanding their regulation during storage and distribution can be highly beneficial. Methods This study examined the effects of treatment with ethylene (ET), brassinosteroid (BR), auxin (AUX), and gibberellin (GA) on fruit ripening and the expression of 18 ripening-associated ERFs in tomato stored at 20°C (room temperature) for 10 d or 4°C (cold storage) for 14 d followed by 2 d at 20°C (retailer conditions). Results The results showed that ripening was accelerated by ET and BR but was delayed by AUX and GA at room temperature. Cold storage delayed ripening in all groups, with ET and GA treatments showing the highest and lowest a* values, respectively. The effects of hormone treatment were consistent with room temperature when the fruits were transferred from cold storage to retail conditions. At room temperature, ERFs responsive to ET (ERF.B1, B2, B6, E2, and F1) and BR (ERF.E5, F2, and F3) were inhibited by AUX. ET-induced genes (ERF.C1, E1, F4, and H7) could be co-regulated by other hormones at cold storage. When the fruits were transferred from cold storage to retailer conditions, ERFs responsive to ET and BR were inhibited by GA. Additionally, ET-responsive ERFs could be inhibited by BR at room temperature, whereas ET could inhibit BR-responsive ERFs at retailer conditions. The same ERFs that were regulated by ET at room temperature were instead regulated by BR under retailer conditions, and vice versa. Discussion These findings can help provide a better understanding of the complex hormone interactions regulating the postharvest physiology of tomato and in maintaining its quality and shelf life during storage and distribution.
Collapse
|
43
|
Liu R, Deng Y, Wu D, Liu Y, Wang Z, Yu S, Nie Y, Zhu W, Zhou Z, Diao J. Systemic enantioselectivity study of penthiopyrad: enantioselective bioactivity, acute toxicity, degradation and influence on tomato. PEST MANAGEMENT SCIENCE 2023; 79:2107-2116. [PMID: 36722434 DOI: 10.1002/ps.7388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND In order to promote the green development of agriculture, it is important to study the enantioselective effect of chiral pesticides. The bioactivity of the chiral fungicide penthiopyrad (PEN) racemate and enantiomers against phytopathogens, toxicity to non-target organisms, effect on tomato fruit growth and maturation, and environmental fate in tomato cultivation were evaluated at an enantioselective level in this study. RESULTS The results indicated that at the same efficacy, the optically pure S-(+)-PEN could lower the dosage of racemate by 20-96%. The S-enantiomer had low toxicity to earthworms. Besides, the S-(+)-PEN did not cause significant abiotic stress to the tomato and increased fruit fresh weight and size via modulating the contents of plant hormones. However, the content of hydrogen peroxide (H2 O2 ), superoxide (O2 - ) and malondialdehyde in the R-enantiomer treatment group was significantly higher than the control group. The effect of the racemate on tomato fruit was between the enantiomers. Furthermore, compared to R-(-)-PEN and racemate, the S-enantiomer degraded more quickly in tomato fruit, leaves, and soil, reducing the danger of human exposure. CONCLUSION The S-enantiomer is highly effective and less toxic. The development of enantiomer pure S-(+)-PEN products might be an efficient and low-risk strategy. The results lay the foundation for comprehensive evaluation and proper application of PEN. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Liu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Di Wu
- Beijing Plant Protection Station, Beijing, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| |
Collapse
|
44
|
Fu G, Ren Y, Kang J, Wang B, Zhang J, Fang J, Wu W. Integrative analysis of grapevine ( Vitis vinifera L) transcriptome reveals regulatory network for Chardonnay quality formation. Front Nutr 2023; 10:1187842. [PMID: 37324731 PMCID: PMC10265639 DOI: 10.3389/fnut.2023.1187842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Anthocyanins, total phenols, soluble sugar and fruit shape plays a significant role in determining the distinct fruit quality and customer preference. However, for the majority of fruit species, little is known about the transcriptomics and underlying regulatory networks that control the generation of overall quality during fruit growth and ripening. This study incorporated the quality-related transcriptome data from 6 ecological zones across 3 fruit development and maturity phases of Chardonnay cultivars. With the help of this dataset, we were able to build a complex regulatory network that may be used to identify important structural genes and transcription factors that control the anthocyanins, total phenols, soluble sugars and fruit shape in grapes. Overall, our findings set the groundwork to improve grape quality in addition to offering novel views on quality control during grape development and ripening.
Collapse
Affiliation(s)
- Guangqing Fu
- Research Institute of Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yanhua Ren
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Horticultural College, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jun Kang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Bo Wang
- Research Institute of Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Junxiang Zhang
- Food and Wine Academy, Ningxia University, Yinchuan, Ningxia, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Food and Wine Academy, Ningxia University, Yinchuan, Ningxia, China
| | - Weimin Wu
- Research Institute of Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
45
|
Hu J, Li X, Sun TP. Four class A AUXIN RESPONSE FACTORs promote tomato fruit growth despite suppressing fruit set. NATURE PLANTS 2023; 9:706-719. [PMID: 37037878 DOI: 10.1038/s41477-023-01396-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/14/2023] [Indexed: 05/23/2023]
Abstract
In flowering plants, auxin produced in seeds after fertilization promotes fruit initiation. The application of auxin to unpollinated ovaries can also induce parthenocarpy (seedless fruit production). Previous studies have shown that auxin signalling components SlIAA9 and SlARF7 (a class A AUXIN RESPONSE FACTOR (ARF)) are key repressors of fruit initiation in tomato (Solanum lycopersicum). A similar repressive role of class A ARFs in fruit set has also been observed in other plant species. However, evidence is lacking for a role of any class A ARF in promoting fruit development as predicted in the current auxin signalling model. Here we generated higher-order tomato mutants of four class A SlARFs (SlARF5, SlARF7, SlARF8A and SlARF8B) and uncovered their precise combinatorial roles that lead to suppressing and promoting fruit development. All four class A SlARFs together with SlIAA9 inhibited fruit initiation but promoted subsequent fruit growth. Transgenic tomato lines expressing truncated SlARF8A/8B lacking the IAA9-interacting PB1 domain displayed strong parthenocarpy, further confirming the promoting role of SlARF8A/8B in fruit growth. Altering the doses of these four SlARFs led to biphasic fruit growth responses, showing their versatile dual roles as both negative and positive regulators. RNA-seq and chromatin immunoprecipitation-quantitative PCR analyses further identified SlARF8A/8B target genes, including those encoding MADS-BOX transcription factors (AG1, MADS2 and AGL6) that are key repressors of fruit set. These results support the idea that SlIAA9/SlARFs directly regulate the transcription of these MADS-BOX genes to inhibit fruit set. Our study reveals the previously unknown dual function of four class A SlARFs in tomato fruit development and illuminates the complex combinatorial effects of multiple ARFs in controlling auxin-mediated fruit set and fruit growth.
Collapse
Affiliation(s)
- Jianhong Hu
- Department of Biology, Duke University, Durham, NC, USA
| | - Xiao Li
- Department of Biology, Duke University, Durham, NC, USA
- School of Grassland Science, Beijing Forestry University, Beijing, P. R. China
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
46
|
Li P, Long J, Bai G, Zhang J, Cha Y, Gao W, Luan X, Wu L, Mu M, Kennelly EJ, Gao P, Liu Y, Sun L, Yang Q, Wang G, Yu Z, He J, Yang Y, Yan J. Metabolomics and Transcriptomics Reveal that Diarylheptanoids Vary in Amomum tsao-ko Fruit Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7020-7031. [PMID: 37126773 DOI: 10.1021/acs.jafc.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amomum tsao-ko is an important spice and medicinal plant that has received extensive attention in recent years for its high content of bioactive constituents with the potential for food additives and drug development. Diarylheptanoids are major and characteristic compounds in A. tsao-ko; however, the biochemical and molecular foundation of diarylheptanoids in fruit is unknown. We performed comparative metabolomics and transcriptomics studies in the ripening stages of A. tsao-ko fruit. The chemical constituents of fruit vary in different harvest periods, and the diarylheptanoids have a trend to decrease or increase with fruit development. GO enrichment analysis revealed that plant hormone signaling pathways including the ethylene-activated signaling pathway, salicylic acid, jasmonic acid, abscisic acid, and response to hydrogen peroxide were associated with fruit ripening. The biosynthetic pathways including phenylpropanoid, flavonoids, and diarylheptanoids biosynthesis were displayed in high enrichment levels in ripening fruit. The molecular networking and phytochemistry investigation of A. tsao-ko fruit has isolated and identified 10 diarylheptanoids including three new compounds. The candidate genes related to diarylheptanoids were obtained by coexpression network analysis and phylogenetic analysis. Two key genes have been verified to biosynthesize linear diarylheptanoids. This integrative approach provides gene regulation and networking associated with the biosynthesis of characteristic diarylheptanoids, which can be used to improve the quality of A. tsao-ko as food and medicine.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Junru Long
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Genxiang Bai
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jian Zhang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yunsheng Cha
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, China
| | - Wenjie Gao
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xinbo Luan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Lianzhang Wu
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, China
| | - Mingxing Mu
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College and the Graduate Center, City University of New York, Bronx, New York 10468, United States
| | - Penghui Gao
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, China
| | - Yuanyuan Liu
- Key lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650205, China
| | - Lirong Sun
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Quan Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guanhua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhijian Yu
- Nujiang State Meteorological Bureau, Lushui, Yunnan 673199, China
| | - Juncai He
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, China
| | - Yi Yang
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, China
| | - Jian Yan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
47
|
Dong R, Yuan Y, Liu Z, Sun S, Wang H, Ren H, Cui X, Li R. ASYMMETRIC LEAVES 2 and ASYMMETRIC LEAVES 2-LIKE are partially redundant genes and essential for fruit development in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36932869 DOI: 10.1111/tpj.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 03/09/2023] [Indexed: 06/08/2023]
Abstract
Fruit size and shape are controlled by genes expressed during the early developmental stages of fruit. Although the function of ASYMMETRIC LEAVES 2 (AS2) in promoting leaf adaxial cell fates has been well characterized in Arabidopsis thaliana, the molecular mechanisms conferring freshy fruit development as a spatial-temporal expression gene in tomato pericarp remain unclear. In the present study, we verified the transcription of SlAS2 and SlAS2L, two homologs of AS2, in the pericarp during early fruit development. Disruption of SlAS2 or SlAS2L caused a significant decrease in pericarp thickness as a result of a reduction in the number of pericarp cell layers and cell area, leading to smaller tomato fruit size, which revealed their critical roles in tomato fruit development. In addition, leaves and stamens exhibited severe morphological defects in slas2 and slas2l single mutants, as well as in the double mutants. These results demonstrated the redundant and pleiotropic functions of SlAS2 and SlAS2L in tomato fruit development. Yeast two-hybrid and split-luciferase complementation assays showed that both SlAS2 and SlAS2L physically interact with SlAS1. Molecular analyses further indicated that SlAS2 and SlAS2L regulate various downstream genes in leaf and fruit development, and that some genes participating in the regulation of cell division and cell differentiation in the tomato pericarp are affected by these genes. Our findings demonstrate that SlAS2 and SlAS2L are vital transcription factors required for tomato fruit development.
Collapse
Affiliation(s)
- Rongrong Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yaqin Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, College of Horticulture Science, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
48
|
Seedlessness Trait and Genome Editing—A Review. Int J Mol Sci 2023; 24:ijms24065660. [PMID: 36982733 PMCID: PMC10057249 DOI: 10.3390/ijms24065660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Parthenocarpy and stenospermocarpy are the two mechanisms underlying the seedless fruit set program. Seedless fruit occurs naturally and can be produced using hormone application, crossbreeding, or ploidy breeding. However, the two types of breeding are time-consuming and sometimes ineffective due to interspecies hybridization barriers or the absence of appropriate parental genotypes to use in the breeding process. The genetic engineering approach provides a better prospect, which can be explored based on an understanding of the genetic causes underlying the seedlessness trait. For instance, CRISPR/Cas is a comprehensive and precise technology. The prerequisite for using the strategy to induce seedlessness is identifying the crucial master gene or transcription factor liable for seed formation/development. In this review, we primarily explored the seedlessness mechanisms and identified the potential candidate genes underlying seed development. We also discussed the CRISPR/Cas-mediated genome editing approaches and their improvements.
Collapse
|
49
|
Fahad M, Altaf MT, Jamil A, Basit A, Aslam MM, Liaqat W, Shah MN, Ullah I, Mohamed HI. Functional characterization of transcriptional activator gene SIARRI in tomato reveals its role in fruit growth and ripening. Transgenic Res 2023; 32:77-93. [PMID: 36806962 DOI: 10.1007/s11248-023-00337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
Auxins regulate several characteristics of plant development and growth. Here, we characterized a new transcriptional activator SIARRI which binds specific DNA sequences and was revealed in Arabidopsis (ARR1). SIARRI acts as a two-component response regulator and its Arabidopsis homologous gene is AT3G16857. It belongs to the subfamily of type-B response regulators in the cytokinin signaling pathway. The study aimed to characterize the transgenic Micro-Tom plants by the overexpression of Solanum lycopersicum two-component response regulator ARR1. Overexpression of SIARRI results in a pleiotropic phenotype during fruit development and ripening. This study indicates that SIARRI is a primary regulator of leaf morphology and fruit development. Moreover, overexpressed plants showed variations in growth related to auxin as well as shorter hypocotyl elongation, enlarged leaf vascularization, and decreased apical dominance. The qRT-PCR investigation revealed that expression was downregulated at the breaker stage and high at Br+6 at various stages of fruit growth and ripening. In contrast to the fruit color, lycopene and β-carotene concentrations in red-yellow overexpression line fruits were reduced significantly, and also slightly reduced in some red fruits. The quantity of β-carotene in the transgenic fruits was lower than that of lycopene. This study showed that this gene might be a new transcriptional activator in fruit development and ripening. Furthermore, this study will provide new insights into tomato fruit ripening.
Collapse
Affiliation(s)
- Muhammad Fahad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Tanveer Altaf
- Department of Plant Protection, Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Amna Jamil
- Department of Horticulture, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Abdul Basit
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Mudassir Aslam
- Department of Plant Breeding and Genetics, University College of Agriculture, Bahauddin Zakariya University, Multan, Pakistan
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Muhammad Nadeem Shah
- North Florida Research and Education Centre (NFREC), University of Florida, 155 Research Road, Quincy, FL, 32351, USA
| | - Izhar Ullah
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
50
|
Cell Wall Integrity Signaling in Fruit Ripening. Int J Mol Sci 2023; 24:ijms24044054. [PMID: 36835462 PMCID: PMC9961072 DOI: 10.3390/ijms24044054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Plant cell walls are essential structures for plant growth and development as well as plant adaptation to environmental stresses. Thus, plants have evolved signaling mechanisms to monitor the changes in the cell wall structure, triggering compensatory changes to sustain cell wall integrity (CWI). CWI signaling can be initiated in response to environmental and developmental signals. However, while environmental stress-associated CWI signaling has been extensively studied and reviewed, less attention has been paid to CWI signaling in relation to plant growth and development under normal conditions. Fleshy fruit development and ripening is a unique process in which dramatic alternations occur in cell wall architecture. Emerging evidence suggests that CWI signaling plays a pivotal role in fruit ripening. In this review, we summarize and discuss the CWI signaling in relation to fruit ripening, which will include cell wall fragment signaling, calcium signaling, and NO signaling, as well as Receptor-Like Protein Kinase (RLKs) signaling with an emphasis on the signaling of FERONIA and THESEUS, two members of RLKs that may act as potential CWI sensors in the modulation of hormonal signal origination and transduction in fruit development and ripening.
Collapse
|