1
|
Zhang Y, Qin J, Hou J, Liu C, Geng S, Qin M, Li W, Dai Z, Wu Z, Lei Z, Zhou Z. Identification of the Brassinazole-Resistant ( BZR) Gene Family in Wheat ( Triticum aestivum L.) and the Molecular Cloning and Functional Characterization of TaBZR2.1. Int J Mol Sci 2024; 25:12545. [PMID: 39684257 DOI: 10.3390/ijms252312545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Brassinazole-resistant (BZR) transcription factors are important transcription factors in Brassinosteroid (BR)-responsive gene expression. However, limited knowledge exists regarding the BZR genes in wheat and a limited number of BZR family genes have been previously reported in wheat. In this study, the synteny analyses of the TaBZR genes suggested that gene duplication events have played an essential role in the TaBZR family during evolution. The results of RT-qPCR and transcriptome data analyses exhibited remarkable expression patterns in the BZR genes in different tissues and under different treatments. The yeast two-hybrid (Y2H) screen result showed that the TaBZR2.1 protein interacts with Argonaute 4 (AGO4). Taken together, our results not only provide us a basis for understanding the molecular characteristics and expression patterns of the TaBZR family genes but also offered the functional characterization of TaBZR2.1 in wheat.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jingzi Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shenghui Geng
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ziju Dai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
2
|
Ji Y, Hewavithana T, Sharpe AG, Jin L. Understanding grain development in the Poaceae family by comparing conserved and distinctive pathways through omics studies in wheat and maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1393140. [PMID: 39100085 PMCID: PMC11295249 DOI: 10.3389/fpls.2024.1393140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
The Poaceae family, commonly known as the grass family, encompasses a diverse group of crops that play an essential role in providing food, fodder, biofuels, environmental conservation, and cultural value for both human and environmental well-being. Crops in Poaceae family are deeply intertwined with human societies, economies, and ecosystems, making it one of the most significant plant families in the world. As the major reservoirs of essential nutrients, seed grain of these crops has garnered substantial attention from researchers. Understanding the molecular and genetic processes that controls seed formation, development and maturation can provide insights for improving crop yield, nutritional quality, and stress tolerance. The diversity in photosynthetic pathways between C3 and C4 plants introduces intriguing variations in their physiological and biochemical processes, potentially affecting seed development. In this review, we explore recent studies performed with omics technologies, such as genomics, transcriptomics, proteomics and metabolomics that shed light on the mechanisms underlying seed development in wheat and maize, as representatives of C3 and C4 plants respectively, providing insights into their unique adaptations and strategies for reproductive success.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thulani Hewavithana
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew G. Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lingling Jin
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Xu H, Wang Z, Wang F, Hu X, Ma C, Jiang H, Xie C, Gao Y, Ding G, Zhao C, Qin R, Cui D, Sun H, Cui F, Wu Y. Genome-wide association study and genomic selection of spike-related traits in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:131. [PMID: 38748046 DOI: 10.1007/s00122-024-04640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/27/2024] [Indexed: 06/09/2024]
Abstract
KEY MESSAGE Identification of 337 stable MTAs for wheat spike-related traits improved model accuracy, and favorable alleles of MTA259 and MTA64 increased grain weight and yield per plant. Wheat (Triticum aestivum L.) is one of the three primary global, staple crops. Improving spike-related traits in wheat is crucial for optimizing spike and plant morphology, ultimately leading to increased grain yield. Here, we performed a genome-wide association study using a dataset of 24,889 high-quality unique single-nucleotide polymorphisms (SNPs) and phenotypic data from 314 wheat accessions across eight diverse environments. In total, 337 stable and significant marker-trait associations (MTAs) related to spike-related traits were identified. MTA259 and MTA64 were consistently detected in seven and six environments, respectively. The presence of favorable alleles associated with MTA259 and MTA64 significantly reduced wheat spike exsertion length and spike length, while enhancing thousand kernel weight and yield per plant. Combined gene expression and network analyses identified TraesCS6D03G0692300 and TraesCS6D03G0692700 as candidate genes for MTA259 and TraesCS2D03G0111700 and TraesCS2D03G0112500 for MTA64. The identified MTAs significantly improved the prediction accuracy of each model compared with using all the SNPs, and the random forest model was optimal for genome selection. Additionally, the eight stable and major MTAs, including MTA259, MTA64, MTA66, MTA94, MTA110, MTA165, MTA180, and MTA164, were converted into cost-effective and efficient detection markers. This study provided valuable genetic resources and reliable molecular markers for wheat breeding programs.
Collapse
Affiliation(s)
- Huiyuan Xu
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Zixu Wang
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Faxiang Wang
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Xinrong Hu
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Chengxue Ma
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Huijiao Jiang
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Chang Xie
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Yuhang Gao
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Guangshuo Ding
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Chunhua Zhao
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Ran Qin
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Dezhou Cui
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Key Laboratory of Wheat Biology and Genetics and Breeding in Northern Huang-Huai River Plain, Ministry of Agriculture and Rural Affairs/Shandong Technology Innovation Center of Wheat/Jinan Key Laboratory of Wheat Genetic Improvement, Jinan, Shandong, China
| | - Han Sun
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
| | - Fa Cui
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
| | - Yongzhen Wu
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
| |
Collapse
|
4
|
Wu L, Li G, Li D, Dong C, Zhang X, Zhang L, Yang Z, Kong X, Xia C, Chen J, Liu X. Identification and functional analysis of a chromosome 2D fragment harboring TaFPF1 gene with the potential for yield improvement using a late heading wheat mutant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:92. [PMID: 38568320 DOI: 10.1007/s00122-024-04593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
KEY MESSAGE A chromosome fragment influencing wheat heading and grain size was identified using mapping of m406 mutant. The study of TaFPF1 in this fragment provides more insights into wheat yield improvement. In recent years, wheat production has faced formidable challenges driven by rapid population growth and climate change, emphasizing the importance of improving specific agronomic traits such as heading date, spike length, and grain size. To identify potential genes for improving these traits, we screened a wheat EMS mutant library and identified a mutant, designated m406, which exhibited a significantly delayed heading date compared to the wild-type. Intriguingly, the mutant also displayed significantly longer spike and larger grain size. Genetic analysis revealed that a single recessive gene was responsible for the delayed heading. Surprisingly, a large 46.58 Mb deletion at the terminal region of chromosome arm 2DS in the mutant was identified through fine mapping and fluorescence in situ hybridization. Thus, the phenotypes of the mutant m406 are controlled by a group of linked genes. This deletion encompassed 917 annotated high-confidence genes, including the previously studied wheat genes Ppd1 and TaDA1, which could affect heading date and grain size. Multiple genes in this region probably contribute to the phenotypes of m406. We further investigated the function of TaFPF1 using gene editing. TaFPF1 knockout mutants showed delayed heading and increased grain size. Moreover, we identified the direct upstream gene of TaFPF1 and investigated its relationship with other important flowering genes. Our study not only identified more genes affecting heading and grain development within this deleted region but also highlighted the potential of combining these genes for improvement of wheat traits.
Collapse
Affiliation(s)
- Lifen Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, Sichuan, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhao Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueying Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, Sichuan, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jingtang Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Xu Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Li Z, Luo Q, Deng Y, Du K, Li X, Ren T. Identification and Validation of a Stable Major-Effect Quantitative Trait Locus for Kernel Number per Spike on Chromosome 2D in Wheat ( Triticum aestivum L.). Int J Mol Sci 2023; 24:14289. [PMID: 37762591 PMCID: PMC10531874 DOI: 10.3390/ijms241814289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
A recombinant inbred line population including 371 lines was developed by a high kernel number per spike (KNPS) genotype T1208 and a low KNPS genotype Chuannong18 (CN18). A genetic linkage map consisting of 11,583 markers was constructed by the Wheat55K SNP Array. The quantitative trait loci (QTLs) related to KNPS were detected in three years. Eight, twenty-seven, and four QTLs were identified using the ICIM-BIP, ICIM-MET, and ICIM-EPI methods, respectively. One QTL, QKnps.sau-2D.1, which was mapped on chromosome 2D, can explain 18.10% of the phenotypic variation (PVE) on average and be considered a major and stable QTL for KNPS. This QTL was located in a 0.89 Mb interval on chromosome 2D and flanked by the markers AX-109283238 and AX-111606890. Moreover, KASP-AX-111462389, a Kompetitive Allele-Specific PCR (KASP) marker which closely linked to QKnps.sau-2D.1, was designed. The genetic effect of QKnps.sau-2D.1 on KNPS was successfully confirmed in two RIL populations. The results also showed that the significant increase of KNPS and 1000-kernel weight (TKW) was caused by QKnps.sau-2D.1 overcoming the disadvantage due to the decrease of spike number (SN) and finally lead to a significant increase of grain yield. In addition, within the interval in which QKnps.sau-2D.1 is located in Chinese Spring reference genomes, only fifteen genes were found, and two genes that might associate with KNPS were identified. QKnps.sau-2D.1 may provide a new resource for the high-yield breeding of wheat in the future.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Y.D.); (K.D.); (X.L.)
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Qinyi Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Y.D.); (K.D.); (X.L.)
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Yawen Deng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Y.D.); (K.D.); (X.L.)
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Ke Du
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Y.D.); (K.D.); (X.L.)
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Xinli Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Y.D.); (K.D.); (X.L.)
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Tianheng Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Y.D.); (K.D.); (X.L.)
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
6
|
Sahoo B, Nayak I, Parameswaran C, Kesawat MS, Sahoo KK, Subudhi HN, Balasubramaniasai C, Prabhukarthikeyan SR, Katara JL, Dash SK, Chung SM, Siddiqui MH, Alamri S, Samantaray S. A Comprehensive Genome-Wide Investigation of the Cytochrome 71 ( OsCYP71) Gene Family: Revealing the Impact of Promoter and Gene Variants (Ser33Leu) of OsCYP71P6 on Yield-Related Traits in Indica Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3035. [PMID: 37687282 PMCID: PMC10490456 DOI: 10.3390/plants12173035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The cytochrome P450 (CYP450) gene family plays a critical role in plant growth and developmental processes, nutrition, and detoxification of xenobiotics in plants. In the present research, a comprehensive set of 105 OsCYP71 family genes was pinpointed within the genome of indica rice. These genes were categorized into twelve distinct subfamilies, where members within the same subgroup exhibited comparable gene structures and conserved motifs. In addition, 105 OsCYP71 genes were distributed across 11 chromosomes, and 36 pairs of OsCYP71 involved in gene duplication events. Within the promoter region of OsCYP71, there exists an extensive array of cis-elements that are associated with light responsiveness, hormonal regulation, and stress-related signaling. Further, transcriptome profiling revealed that a majority of the genes exhibited responsiveness to hormones and were activated across diverse tissues and developmental stages in rice. The OsCYP71P6 gene is involved in insect resistance, senescence, and yield-related traits in rice. Hence, understanding the association between OsCYP71P6 genetic variants and yield-related traits in rice varieties could provide novel insights for rice improvement. Through the utilization of linear regression models, a total of eight promoters were identified, and a specific gene variant (Ser33Leu) within OsCYP71P6 was found to be linked to spikelet fertility. Additionally, different alleles of the OsCYP71P6 gene identified through in/dels polymorphism in 131 rice varieties were validated for their allelic effects on yield-related traits. Furthermore, the single-plant yield, spikelet number, panicle length, panicle weight, and unfilled grain per panicle for the OsCYP71P6-1 promoter insertion variant were found to contribute 20.19%, 13.65%, 5.637%, 8.79%, and 36.86% more than the deletion variant, respectively. These findings establish a robust groundwork for delving deeper into the functions of OsCYP71-family genes across a range of biological processes. Moreover, these findings provide evidence that allelic variation in the promoter and amino acid substitution of Ser33Leu in the OsCYP71P6 gene could potentially impact traits related to rice yield. Therefore, the identified promoter variants in the OsCYP71P6 gene could be harnessed to amplify rice yields.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
- Department of Botany, Ravenshaw University, Cuttack 753006, India;
| | - Itishree Nayak
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
- Department of Botany, Utkal University, Bhubaneswar 751004, India
| | - C. Parameswaran
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri University, Cuttack 754006, India
| | | | - H. N. Subudhi
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Cayalvizhi Balasubramaniasai
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | | | - Jawahar Lal Katara
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Sushanta Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Sang-Min Chung
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea;
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Sanghamitra Samantaray
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| |
Collapse
|
7
|
Zhang Y, Miao H, Xiao Y, Wang C, Zhang J, Shi X, Xie S, Wang C, Li T, Deng P, Chen C, Zhang H, Ji W. An intron-located single nucleotide variation of TaGS5-3D is related to wheat grain size through accumulating intron retention transcripts. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:193. [PMID: 37606787 DOI: 10.1007/s00122-023-04439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE Thirty-three stable QTL for 13 yield-related traits across ten environments were identified in the PD34/MY47 RIL population, and a candidate gene TaGS5-3D in Qmt.nwafu.3D was preliminarily identified to affect grain-related traits through accumulation of specific transcripts. Dissecting the genetic basis of yield-related traits is pivotal for improvement of wheat yield potential. In this study, a recombinant inbred line (RIL) population genotyped by SNP markers was used to detect quantitative trait loci (QTL) related to yield-related traits in ten environments. A total of 102 QTL were detected, including 33 environmentally stable QTL and 69 putative QTL. Among them, Qmt.nwafu.3D was identified as a pleiotropic QTL in the physical interval of 149.77-154.11 Mb containing a potential candidate gene TaGS5-3D. An SNP (T > C) was detected in its ninth intron, and TaGS5-3D-C was validated as a superior allele associated with larger grains using a CAPS marker. Interestingly, we found that TaGS5-3D-C was closely related to significantly up-regulated expression of intron-retained transcript (TaGS5-3D-PD34.1), while TaGS5-3D-T was related to dominant expression of normal splicing transcript (TaGS5-3D-MY47.1). Our results indicated that alternative splicing associated with the SNP T/C could be involved in the regulation of grain-related traits, laying a foundation for the functional analysis of TaGS5-3D and its greater potential application in high-yield wheat breeding.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Hanxiao Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yi Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Junjie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xiaoxi Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Songfeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| |
Collapse
|
8
|
Zhou J, Li W, Yang Y, Xie X, Liu J, Liu Y, Tang H, Deng M, Xu Q, Jiang Q, Chen G, Qi P, Jiang Y, Chen G, He Y, Ren Y, Tang L, Gou L, Zheng Y, Wei Y, Ma J. A promising QTL QSns.sau-MC-3D.1 likely superior to WAPO1 for the number of spikelets per spike of wheat shows no adverse effects on yield-related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:181. [PMID: 37550493 DOI: 10.1007/s00122-023-04429-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
KEY MESSAGE A likely new locus QSns.sau-MC-3D.1 associated with SNS showing no negative effect on yield-related traits compared to WAPO1 was identified and validated in various genetic populations under multiple environments. The number of spikelets per spike (SNS) is one of the crucial factors determining wheat yield. Thus, improving our understanding of the genes that regulate SNS could help develop wheat varieties with higher yield. In this study, a recombinant inbred line (RIL) population (MC) containing 198 lines derived from a cross between msf and Chuannong 16 (CN16) was used to construct a genetic linkage map using the GenoBaits Wheat 16 K Panel. The genetic map contained 5,991 polymorphic SNP markers spanning 2,813.25 cM. A total of twelve QTL for SNS were detected, and two of them, i.e., QSns.sau-MC-3D.1 and QSns.sau-MC-7A, were stably expressed. QSns.sau-MC-3D.1 had high LOD values ranging from 4.99 to 11.06 and explained 9.71-16.75% of the phenotypic variation. Comparison of QSns.sau-MC-3D.1 with previously reported SNS QTL suggested that it is likely a novel one, and two kompetitive allele-specific PCR (KASP) markers were further developed. The positive effect of QSns.sau-MC-3D.1 was also validated in three biparental populations and a diverse panel containing 388 Chinese wheat accessions. Genetic analysis indicated that WHEAT ORTHOLOG OFAPO1 (WAPO1) was a candidate gene for QSns.sau-MC-7A. Pyramiding of QSns.sau-MC-3D.1 and WAP01 had a great additive effect increasing SNS by 7.10%. Correlation analysis suggested that QSns.sau-MC-3D.1 was likely independent of effective tiller number, plant height, spike length, anthesis date, and thousand kernel weight. However, the H2 haplotype of WAPO1 may affect effective tiller number and plant height. These results indicated that utilization of QSns.sau-MC-3D.1 should be given priority for wheat breeding. Geographical distribution analysis showed that the positive allele of QSns.nsau-MC-3D.1 was dominant in most wheat-producing regions of China, and it has been positively selected among modern cultivars released in China since the 1940s. Gene prediction, qRT-PCR analysis, and sequence alignment suggested that TraesCS3D03G0216800 may be the candidate gene of QSns.nsau-MC-3D.1. Taken together, these results enrich our understanding of the genetic basis of wheat SNS and will be useful for fine mapping and cloning of the gene underlying QSns.sau-MC-3D.1.
Collapse
Affiliation(s)
- Jieguang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaoyao Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xinlin Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiajun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanling Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yuanjiang He
- Mianyang Academy of Agricultural Science, Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang, China
| | - Yong Ren
- Mianyang Academy of Agricultural Science, Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang, China
| | - Liwei Tang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Lulu Gou
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
9
|
Markusch H, Michl-Holzinger P, Obermeyer S, Thorbecke C, Bruckmann A, Babl S, Längst G, Osakabe A, Berger F, Grasser KD. Elongation factor 1 is a component of the Arabidopsis RNA polymerase II elongation complex and associates with a subset of transcribed genes. THE NEW PHYTOLOGIST 2023; 238:113-124. [PMID: 36627730 DOI: 10.1111/nph.18724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Elongation factors modulate the efficiency of mRNA synthesis by RNA polymerase II (RNAPII) in the context of chromatin, thus contributing to implement proper gene expression programmes. The zinc-finger protein elongation factor 1 (ELF1) is a conserved transcript elongation factor (TEF), whose molecular function so far has not been studied in plants. Using biochemical approaches, we examined the interaction of Arabidopsis ELF1 with DNA and histones in vitro and with the RNAPII elongation complex in vivo. In addition, cytological assays demonstrated the nuclear localisation of the protein, and by means of double-mutant analyses, interplay with genes encoding other elongation factors was explored. The genome-wide distribution of ELF1 was addressed by chromatin immunoprecipitation. ELF1 isolated from Arabidopsis cells robustly copurified with RNAPII and various other elongation factors including SPT4-SPT5, SPT6, IWS1, FACT and PAF1C. Analysis of a CRISPR-Cas9-mediated gene editing mutant of ELF1 revealed distinct genetic interactions with mutants deficient in other elongation factors. Moreover, ELF1 associated with genomic regions actively transcribed by RNAPII. However, ELF1 occupied only c. 33% of the RNAPII transcribed loci with preference for inducible rather than constitutively expressed genes. Collectively, these results establish that Arabidopsis ELF1 shares several characteristic attributes with RNAPII TEFs.
Collapse
Affiliation(s)
- Hanna Markusch
- Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Philipp Michl-Holzinger
- Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Simon Obermeyer
- Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Claudia Thorbecke
- Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Astrid Bruckmann
- Institute for Biochemistry I, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Sabrina Babl
- Institute for Biochemistry III, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Gernot Längst
- Institute for Biochemistry III, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Akihisa Osakabe
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| |
Collapse
|
10
|
Ma F, Xu Y, Wang R, Tong Y, Zhang A, Liu D, An D. Identification of major QTLs for yield-related traits with improved genetic map in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1138696. [PMID: 37008504 PMCID: PMC10063875 DOI: 10.3389/fpls.2023.1138696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Introduction Identification of stable major quantitative trait loci (QTLs) for yield-related traits is important for yield potential improvement in wheat breeding. Methods In the present study, we genotyped a recombinant inbred line (RIL) population using the Wheat 660K SNP array and constructed a high-density genetic map. The genetic map showed high collinearity with the wheat genome assembly. Fourteen yield-related traits were evaluated in six environments for QTL analysis. Results and Discussion A total of 12 environmentally stable QTLs were identified in at least three environments, explaining up to 34.7% of the phenotypic variation. Of these, QTkw-1B.2 for thousand kernel weight (TKW), QPh-2D.1 (QSl-2D.2/QScn-2D.1) for plant height (PH), spike length (SL) and spikelet compactness (SCN), QPh-4B.1 for PH, and QTss-7A.3 for total spikelet number per spike (TSS) were detected in at least five environments. A set of Kompetitive Allele Specific PCR (KASP) markers were converted based on the above QTLs and used to genotype a diversity panel comprising of 190 wheat accessions across four growing seasons. QPh-2D.1 (QSl-2D.2/QScn-2D.1), QPh-4B.1 and QTss-7A.3 were successfully validated. Compared with previous studies, QTkw-1B.2 and QPh-4B.1 should be novel QTLs. These results provided a solid foundation for further positional cloning and marker-assisted selection of the targeted QTLs in wheat breeding programs.
Collapse
Affiliation(s)
- Feifei Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yunfeng Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Ruifang Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Aimin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
11
|
Halder J, Gill HS, Zhang J, Altameemi R, Olson E, Turnipseed B, Sehgal SK. Genome-wide association analysis of spike and kernel traits in the U.S. hard winter wheat. THE PLANT GENOME 2023; 16:e20300. [PMID: 36636831 DOI: 10.1002/tpg2.20300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
A better understanding of the genetic control of spike and kernel traits that have higher heritability can help in the development of high-yielding wheat varieties. Here, we identified the marker-trait associations (MTAs) for various spike- and kernel-related traits in winter wheat (Triticum aestivum L.) through genome-wide association studies (GWAS). An association mapping panel comprising 297 hard winter wheat accessions from the U.S. Great Plains was evaluated for eight spike- and kernel-related traits in three different environments. A GWAS using 15,590 single-nucleotide polymorphisms (SNPs) identified a total of 53 MTAs for seven spike- and kernel-related traits, where the highest number of MTAs were identified for spike length (16) followed by the number of spikelets per spike (15) and spikelet density (11). Out of 53 MTAs, 14 were considered to represent stable quantitative trait loci (QTL) as they were identified in multiple environments. Five multi-trait MTAs were identified for various traits including the number of spikelets per spike (NSPS), spikelet density (SD), kernel width (KW), and kernel area (KA) that could facilitate the pyramiding of yield-contributing traits. Further, a significant additive effect of accumulated favorable alleles on the phenotype of four spike-related traits suggested that breeding lines and cultivars with a higher number of favorable alleles could be a valuable resource for breeders to improve yield-related traits. This study improves the understanding of the genetic basis of yield-related traits in hard winter wheat and provides reliable molecular markers that will facilitate marker-assisted selection (MAS) in wheat breeding programs.
Collapse
Affiliation(s)
- Jyotirmoy Halder
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Harsimardeep S Gill
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Jinfeng Zhang
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Rami Altameemi
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Eric Olson
- Dep. of Plant, Soil and Microbial Sciences, Michigan State Univ., East Lansing, MI, 48824, USA
| | - Brent Turnipseed
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Sunish K Sehgal
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| |
Collapse
|
12
|
Li C, Zhuang L, Li T, Hou J, Liu H, Jian C, Li H, Zhao J, Liu Y, Xi W, Hao P, Liu S, Si X, Wang X, Zhang X, Hao C. Conservatively transmitted alleles of key agronomic genes provide insights into the genetic basis of founder parents in bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2023; 23:100. [PMID: 36805674 PMCID: PMC9938602 DOI: 10.1186/s12870-023-04098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Founder parents play extremely important roles in wheat breeding. Studies into the genetic basis of founder parents and the transmission rules of favorable alleles are of great significance in improving agronomically important traits in wheat. RESULTS Here, a total of 366 founder parents, widely grown cultivars, and derivatives of four representative founder parents were genotyped based on efficient kompetitive allele-specific PCR (KASP) markers in 87 agronomically important genes controlling yield, quality, adaptability, and stress resistance. Genetic composition analysis of founder parents and widely grown cultivars showed a consistently high frequency of favorable alleles for yield-related genes. This analysis further showed that other alleles favorable for resistance, strong gluten, dwarf size, and early heading date were also subject to selective pressure over time. By comparing the transmission of alleles from four representative founder parents to their derivatives during different breeding periods, it was found that the genetic composition of the representative founder parents was optimized as breeding progressed over time, with the number and types of favorable alleles carried gradually increasing and becoming enriched. There are still a large number of favorable alleles in wheat founder parents that have not been fully utilized in breeding selection. Eighty-seven agronomically important genes were used to construct an enrichment map that shows favorable alleles of four founder parents, providing an important theoretical foundation for future identification of candidate wheat founder parents. CONCLUSIONS These results reveal the genetic basis of founder parents and allele transmission for 87 agronomically important genes and shed light on breeding strategies for the next generation of elite founder parents in wheat.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lei Zhuang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chao Jian
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jing Zhao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Wei Xi
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Pingan Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shujuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xuemei Si
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
13
|
Li H, Liu H, Hao C, Li T, Liu Y, Wang X, Yang Y, Zheng J, Zhang X. The auxin response factor TaARF15-A1 negatively regulates senescence in common wheat (Triticum aestivum L.). PLANT PHYSIOLOGY 2023; 191:1254-1271. [PMID: 36282536 PMCID: PMC9922429 DOI: 10.1093/plphys/kiac497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 05/06/2023]
Abstract
Auxin plays an important role in regulating leaf senescence. Auxin response factors (ARFs) are crucial components of the auxin signaling pathway; however, their roles in leaf senescence in cereal crops are unknown. In this study, we identified TaARF15-A1 as a negative regulator of senescence in wheat (Triticum aestivum L.) by analyzing TaARF15-A1 overexpression (OE) and RNA interference lines and CRISPR/Cas9-based arf15 mutants. OE of TaARF15-A1 delayed senescence, whereas knockdown lines and knockout mutants showed accelerated leaf senescence and grain ripening. RNA-seq analysis revealed that TaARF15-A1 delays leaf senescence by negatively regulating senescence-promoting processes and positively modulating senescence-delaying genes including senescence-associated phytohormone biosynthesis and metabolism genes as well as transcription factors (TFs). We also demonstrated that TaARF15-A1 physically interacts with TaMYC2, a core jasmonic acid (JA) signaling TF that positively modulates wheat senescence. Furthermore, TaARF15-A1 suppressed the expression of TaNAM-1 (TaNAM-A1 and TaNAM-D1) via protein-protein interaction and competition with TaMYC2 for binding to its promoter to regulate senescence. Finally, we identified two haplotypes of TaARF15-A1 in global wheat collections. Association analysis revealed that TaARF15-A1-HapI has undergone strong selection during wheat breeding in China, likely owing to its earlier maturity. Thus, we identify TaARF15-A1 as a negative regulator of senescence in common wheat and present another perspective on the crosstalk between auxin and JA signaling pathways in regulating plant senescence.
Collapse
Affiliation(s)
- Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050000, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaolu Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yuxin Yang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Zhong X, Li M, Zhang M, Feng Y, Zhang H, Tian H. Genome-wide analysis of the laccase gene family in wheat and relationship with arbuscular mycorrhizal colonization. PLANTA 2022; 257:15. [PMID: 36528718 DOI: 10.1007/s00425-022-04048-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
We identified 156 laccase genes belonging to 11 subfamilies in the wheat genome, and the natural variation of laccase genes significantly affected the development of wheat-arbuscular mycorrhizal symbiosis. Laccases (LACs) have a variety of functions in plant lignification, cell elongation and stress responses. This study aimed to reveal the phylogeny, chromosomal spatial distribution, coexpression and evolution of LAC genes in the wheat genome and to investigate the possible roles of LAC genes during arbuscular mycorrhizal (AM) symbiosis. The genomic characteristics of LAC genes were analyzed by using bioinformatics analysis methods, and the polymorphisms of LAC genes were analyzed by using a diverse wheat panel composed of 289 wheat cultivars. We identified 156 LAC genes belonging to 11 subfamilies in the wheat genome, and segmental duplication dominated the amplification of the LAC gene family in the wheat genome. LACs are dominantly located in the R2 region of wheat chromosomes. Some LACs are collinear with the characterized LACs in Arabidopsis thaliana or rice. A number of genes encoding transcription factors, kinases, and phosphatases were coexpressed with LAC genes in wheat. TaLACs may be potential targets for some miRNAs. Most TaLACs are mainly expressed in the roots and stems of plants. The expression of TaLACs could be regulated by the inoculation of Fusarium graminearum or AM fungi. The polymorphisms of TaLACs mainly accumulate by random drift instead of by selection. Through candidate gene association analysis, we found that the natural variations in TaLACs significantly affected root colonization by AM fungi. The present study provides useful information for further study of the biological functions of LAC genes in wheat, especially the roles of LAC genes during the development of AM symbiosis.
Collapse
Affiliation(s)
- Xiong Zhong
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengjiao Li
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingming Zhang
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Feng
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Zhang
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Tian
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Liu H, Shi Z, Ma F, Xu Y, Han G, Zhang J, Liu D, An D. Identification and validation of plant height, spike length and spike compactness loci in common wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2022; 22:568. [PMID: 36471256 PMCID: PMC9724413 DOI: 10.1186/s12870-022-03968-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plant height (PH), spike length (SL) and spike compactness (SCN) are important agronomic traits in wheat due to their strong correlations with lodging and yield. Thus, dissection of their genetic basis is essential for the improvement of plant architecture and yield potential in wheat breeding. The objective of this study was to map quantitative trait loci (QTL) for PH, SL and SCN in a recombinant inbred line (RIL) population derived from the cross 'PuBing3228 × Gao8901' (PG-RIL) and to evaluate the potential values of these QTL to improve yield. RESULTS In the current study, Five, six and ten stable QTL for PH, SL, and SCN, respectively, were identified in at least two individual environments. Five major QTL QPh.cas-5A.3, QPh.cas-6A, QSl.cas-6B.2, QScn.cas-2B.2 and QScn.cas-6B explained 5.58-25.68% of the phenotypic variation. Notably, two, three and three novel stable QTL for PH, SL and SCN were identified in this study, which could provide further insights into the genetic factors that shape PH and spike morphology in wheat. Conditional QTL analysis revealed that QTL for SCN were mainly affected by SL. Moreover, a Kompetitive Allele Specific PCR (KASP) marker tightly linked to stable major QTL QPh.cas-5A.3 was developed and verified using the PG-RIL population and a natural population. CONCLUSIONS Twenty-one stable QTL related to PH, SL, and SCN were identified. These stable QTL and the user-friendly marker KASP8750 will facilitate future studies involving positional cloning and marker-assisted selection in breeding.
Collapse
Affiliation(s)
- Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050022, China
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050022, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feifei Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050022, China
| | - Yunfeng Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050022, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050022, China
| | - Jinpeng Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China.
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050022, China.
- The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
16
|
Zhang Y, Miao H, Wang C, Zhang J, Zhang X, Shi X, Xie S, Li T, Deng P, Wang C, Chen C, Zhang H, Ji W. Genetic identification of the pleiotropic gene Tasg-D1/2 affecting wheat grain shape by regulating brassinolide metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111392. [PMID: 35868348 DOI: 10.1016/j.plantsci.2022.111392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Improving yield potential is a major goal of wheat breeding that depends on identifying key genetic loci. In this study, two residual heterozygous line RHL351- and RHL78-derived populations were employed for genetic linkage map construction and QTL detection. Two genetic populations indicated a robust grain-size QTL between Marker6 and Marker10. It covered a 95.54-99.38 Mb physical interval and was named Qpleio.nwafu.3D, containing the candidate gene Tasg (TraesCS3D02G137200). Intriguingly, RNA-seq analysis and sequencing revealed two different allelic variants in Tasg, named Tasg-D1 (G>A) and Tasg-D2 (C>G), respectively. Although the relationship between Tasg-D1 and grain size had been demonstrated previously, here we provided the first genetic evidence that C/G allelic variation in Tasg-D2 was associated with grain shape and size through a newly developed dCAPS marker. In addition, transcriptome comparison indicated that Tasg-D1/2 might primarily contribute to significant expression differences in brassinolide (BR) metabolism-related genes rather than those related to BR responses in developing grains and spikes. Our study provided new evidence and a breeder-friendly dCAPS marker for improving grain size through the selection of Tasg, as well as a basis to understand Tasg function in the future.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Hanxiao Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Junjie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiaoxi Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Songfeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
17
|
Chou CH, Lin HS, Wen CH, Tung CW. Patterns of genetic variation and QTLs controlling grain traits in a collection of global wheat germplasm revealed by high-quality SNP markers. BMC PLANT BIOLOGY 2022; 22:455. [PMID: 36131260 PMCID: PMC9494784 DOI: 10.1186/s12870-022-03844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Establish a molecular breeding program involved assembling a diverse germplasm collection and generating accurate genotypes to characterize their genetic potential and associate them with agronomic traits. In this study, we acquired over eight hundred wheat accessions from international gene banks and assessed their genetic relatedness using high-quality SNP genotypes. Understanding the scope of genomic variation in this collection allows the breeders to utilize the genetic resources efficiently while improving wheat yield and quality. RESULTS A wheat diversity panel comprising 39 durum wheat, 60 spelt wheat, and 765 bread wheat accessions was genotyped on iSelect 90 K wheat SNP arrays. A total of 57,398 SNP markers were mapped to IWGSC RefSeq v2.1 assembly, over 30,000 polymorphic SNPs in the A, B, D genomes were used to analyze population structure and diversity, the results revealed the separation of the three species and the differentiation of CIMMYT improved breeding lines and landraces or widely grown cultivars. In addition, several chromosomal regions under selection were detected. A subset of 280 bread wheat accessions was evaluated for grain traits, including grain length, width, surface area, and color. Genome-wide association studies (GWAS) revealed that several chromosomal regions were significantly linked to known quantitative trait loci (QTL) controlling grain-related traits. One of the SNP peaks at the end of chromosome 7A was in strong linkage disequilibrium (LD) with WAPO-A1, a gene that governs yield components. CONCLUSIONS Here, the most updated and accurate physical positions of SNPs on 90 K genotyping array are provided for the first time. The diverse germplasm collection and associated genotypes are available for the wheat researchers to use in their molecular breeding program. We expect these resources to broaden the genetic basis of original breeding and pre-breeding materials and ultimately identify molecular markers associated with important agronomic traits which are evaluated in diverse environmental conditions.
Collapse
Affiliation(s)
- Chia-Hui Chou
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Hsun-Shih Lin
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chen-Hsin Wen
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
| |
Collapse
|
18
|
Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
|
19
|
Majeed U, Hou J, Hao C, Zhang X. TaNAC020 homoeologous genes are associated with higher thousand kernel weight and kernel length in Chinese wheat. Front Genet 2022; 13:956921. [PMID: 36092915 PMCID: PMC9458977 DOI: 10.3389/fgene.2022.956921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
NAC proteins constitute one of the largest plant-specific transcription factor (TF) families and play significant roles in plant growth and development. In the present study, three TaNAC020 homoeologous genes located on chromosomes 7A, 7B, and 7D were isolated from wheat (Triticum aestivum L.). TaNAC020s were predominantly expressed in developing grains. The developed transgenic rice lines for TaNAC020-B showed higher starch density and lower amylose contents than those of the wild type (WT). Sequence polymorphism studies showed seven and eight SNPs in TaNAC020-A/B, making three and two haplotypes, respectively. No sequence polymorphism was identified in TaNAC020-D. Association analysis revealed that HAP-2 of TaNAC020-A and TaNAC020-B was the favored haplotype for higher thousand kernel weight and length. Geographic distribution and allelic frequency showed that our favored haplotype experienced strong selection in China, and likewise, diversity increased in TaNAC020s during wheat polyploidization. The results obtained in this study demonstrate that TaNAC020s positively influence starch synthesis and accumulation and are one of the key regulators of the kernel (seed) size and kernel number and have the potential for utilization in wheat breeding to improve grain yield. Molecular markers developed in this study stand instrumental in marker-assisted selection for genetic improvement and germplasm enhancement in wheat.
Collapse
|
20
|
Geyer M, Mohler V, Hartl L. Genetics of the Inverse Relationship between Grain Yield and Grain Protein Content in Common Wheat. PLANTS 2022; 11:plants11162146. [PMID: 36015449 PMCID: PMC9413592 DOI: 10.3390/plants11162146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Grain protein content (GPC) is one of the most important criteria to determine the quality of common wheat (Triticum aestivum). One of the major obstacles for bread wheat production is the negative correlation between GPC and grain yield (GY). Previous studies demonstrated that the deviation from this inverse relationship is highly heritable. However, little is known about the genetics controlling these deviations in common wheat. To fill this gap, we performed quantitative trait locus (QTL) analysis for GY, GPC, and four derived GY-GPC indices using an eight-way multiparent advanced generation intercross population comprising 394 lines. Interval mapping was conducted using phenotypic data from up to nine environments and genotypic data from a 20k single-nucleotide polymorphism array. The four indices were highly heritable (0.76–0.88) and showed distinct correlations to GY and GPC. Interval mapping revealed that GY, GPC, and GY-GPC indices were controlled by 6, 12, and 12 unique QTL, of which each explained only a small amount of phenotypic variance (R2 ≤ 10%). Ten of the 12 index QTL were independent of loci affecting GY and GPC. QTL regions harboured several candidate genes, including Rht-1, WAPO-A1, TaTEF-7A, and NRT2.6-7A. The study confirmed the usefulness of indices to mitigate the inverse GY-GPC relationship in breeding, though the selection method should reflect their polygenic inheritance.
Collapse
|
21
|
Paul S, Duhan JS, Jaiswal S, Angadi UB, Sharma R, Raghav N, Gupta OP, Sheoran S, Sharma P, Singh R, Rai A, Singh GP, Kumar D, Iquebal MA, Tiwari R. RNA-Seq Analysis of Developing Grains of Wheat to Intrigue Into the Complex Molecular Mechanism of the Heat Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:904392. [PMID: 35720556 PMCID: PMC9201344 DOI: 10.3389/fpls.2022.904392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Heat stress is one of the significant constraints affecting wheat production worldwide. To ensure food security for ever-increasing world population, improving wheat for heat stress tolerance is needed in the presently drifting climatic conditions. At the molecular level, heat stress tolerance in wheat is governed by a complex interplay of various heat stress-associated genes. We used a comparative transcriptome sequencing approach to study the effect of heat stress (5°C above ambient threshold temperature of 20°C) during grain filling stages in wheat genotype K7903 (Halna). At 7 DPA (days post-anthesis), heat stress treatment was given at four stages: 0, 24, 48, and 120 h. In total, 115,656 wheat genes were identified, including 309 differentially expressed genes (DEGs) involved in many critical processes, such as signal transduction, starch synthetic pathway, antioxidant pathway, and heat stress-responsive conserved and uncharacterized putative genes that play an essential role in maintaining the grain filling rate at the high temperature. A total of 98,412 Simple Sequences Repeats (SSR) were identified from de novo transcriptome assembly of wheat and validated. The miRNA target prediction from differential expressed genes was performed by psRNATarget server against 119 mature miRNA. Further, 107,107 variants including 80,936 Single nucleotide polymorphism (SNPs) and 26,171 insertion/deletion (Indels) were also identified in de novo transcriptome assembly of wheat and wheat genome Ensembl version 31. The present study enriches our understanding of known heat response mechanisms during the grain filling stage supported by discovery of novel transcripts, microsatellite markers, putative miRNA targets, and genetic variant. This enhances gene functions and regulators, paving the way for improved heat tolerance in wheat varieties, making them more suitable for production in the current climate change scenario.
Collapse
Affiliation(s)
- Surinder Paul
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, India
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
- ICAR, National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, India
| | | | - Sarika Jaiswal
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa B. Angadi
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ruchika Sharma
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Nishu Raghav
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Om Prakash Gupta
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sonia Sheoran
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Rajender Singh
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Rai
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Dinesh Kumar
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
- Department of Biotechnology, Central University of Haryana, Gurgaon, India
| | - Mir Asif Iquebal
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratan Tiwari
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
22
|
Ahmed HGMD, Zeng Y, Iqbal M, Rashid MAR, Raza H, Ullah A, Ali M, Yar MM, Shah AN. Genome-wide association mapping of bread wheat genotypes for sustainable food security and yield potential under limited water conditions. PLoS One 2022; 17:e0263263. [PMID: 35358203 PMCID: PMC8970394 DOI: 10.1371/journal.pone.0263263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Determining the genetic basis of yield and water deficient tolerance in wheat is vital for wheat breeding programs. Herein, a genome-wide association study (GWAS) was performed for water deficient and yield-related attributes on wheat genotypes with high-density Illumina 90K Infinium SNP array. Major yield and drought-related attributes were phenotyped on a panel of Pakistani and foreign accessions grown in non-stressed and water deficient stressed environments during two crop cycles. Among all accessions, highly significant variations were shown in studied environments for examined characters. Water deficient conditions, reduced the wheat yield and had strong and positive correlation among relative water content and grain yield per plant. Population structure analyses based on 90,000 SNP data, classify the accessions into 4 sub-populations. Marker-trait association analyses (MTA) revealed that 134 significant SNPs were linked with yield and drought tolerance attributes. Pleotropic loci RAC875_s117925_244 and RAC875_c16333_340 located on chromosome 5A and 2A respectively, were significantly linked with relative water contents (RWC), cell membrane thermo-stability (CMT), grain per spike (GPS), spikelet per spike (SPS) and grain yield per plant (GYP). The markers Ra_c58279_684, BobWhite_c23828_341 and IAAV3414 located on chromosomes 2A, 6B and 7B respectively, showed pleotropic effects for RWC, GPS and GYP under both environments. The current experiment not only validated several MTAs reported in other studies but also discovered novel MTAs which significant under drought-stressed conditions. A total of 171 candidate genes were recognized that could be cloned and functionally characterized for the respective associated traits. For RWC and CMT, total 11 and 3 associated SNPs were mapped on coding DNA sequence (CDS) of the identified candidate genes. Isolation and characterization of the candidate genes herein mapped SNPs will be useful in discovering novel genes underpinning drought tolerance in bread wheat to fulfill the wheat demand and sustainable food security under limited water conditions.
Collapse
Affiliation(s)
- Hafiz Ghulam Muhu-Din Ahmed
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- * E-mail: (HGMDA); (YZ)
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- * E-mail: (HGMDA); (YZ)
| | - Muhammad Iqbal
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Humayun Raza
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aziz Ullah
- Department of Plant Breeding and Genetics, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Ali
- Department of Environmental Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Majid Yar
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| |
Collapse
|
23
|
Wen S, Zhang M, Tu K, Fan C, Tian S, Bi C, Chen Z, Zhao H, Wei C, Shi X, Yu J, Sun Q, You M. A Major Quantitative Trait Loci Cluster Controlling Three Components of Yield and Plant Height Identified on Chromosome 4B of Common Wheat. FRONTIERS IN PLANT SCIENCE 2022; 12:799520. [PMID: 35087558 PMCID: PMC8786729 DOI: 10.3389/fpls.2021.799520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Wheat yield is not only affected by three components of yield, but also affected by plant height (PH). Identification and utilization of the quantitative trait loci (QTL) controlling these four traits is vitally important for breeding high-yielding wheat varieties. In this work, we conducted a QTL analysis using the recombinant inbred lines (RILs) derived from a cross between two winter wheat varieties of China, "Nongda981" (ND981) and "Nongda3097" (ND3097), exhibiting significant differences in spike number per unit area (SN), grain number per spike (GNS), thousand grain weight (TGW), and PH. A total of 11 environmentally stable QTL for these four traits were detected. Among them, four major and stable QTLs (QSn.cau-4B-1.1, QGns.cau-4B-1, QTgw.cau-4B-1.1, and QPh.cau-4B-1.2) explaining the highest phenotypic variance for SN, GNS, TGW, and PH, respectively, were mapped on the same genomic region of chromosome 4B and were considered a QTL cluster. The QTL cluster spanned a genetic distance of about 12.3 cM, corresponding to a physical distance of about 8.7 Mb. Then, the residual heterozygous line (RHL) was used for fine mapping of the QTL cluster. Finally, QSn.cau-4B-1.1, QGns.cau-4B-1, and QPh.cau-4B-1.2 were colocated to the physical interval of about 1.4 Mb containing 31 annotated high confidence genes. QTgw.cau-4B-1.1 was divided into two linked QTL with opposite effects. The elite NILs of the QTL cluster increased SN and PH by 55.71-74.82% and 14.73-23.54%, respectively, and increased GNS and TGW by 29.72-37.26% and 5.81-11.24% in two environments. Collectively, the QTL cluster for SN, GNS, TGW, and PH provides a theoretical basis for improving wheat yield, and the fine-mapping result will be beneficial for marker-assisted selection and candidate genes cloning.
Collapse
Affiliation(s)
- Shaozhe Wen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Minghu Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Keling Tu
- Department of Plant Genetics and Breeding, College of Agriculture and Biotechnology, China Agricultural University, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Beijing, China
| | - Chaofeng Fan
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Tian
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chan Bi
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zelin Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Huanhuan Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chaoxiong Wei
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Xintian Shi
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jiazheng Yu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Mingshan You
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Singh A, Mathan J, Yadav A, K. Goyal A, Chaudhury A. Molecular and Transcriptional Regulation of Seed Development in Cereals: Present Status and Future Prospects. CEREAL GRAINS - VOLUME 1 2021. [DOI: 10.5772/intechopen.99318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Cereals are a rich source of vitamins, minerals, carbohydrates, fats, oils and protein, making them the world’s most important source of nutrition. The influence of rising global population, as well as the emergence and spread of disease, has the major impact on cereal production. To meet the demand, there is a pressing need to increase cereal production. Optimal seed development is a key agronomical trait that contributes to crop yield. The seed development and maturation is a complex process that includes not only embryo and endosperm development, but also accompanied by huge physiological, biochemical, metabolic, molecular and transcriptional changes. This chapter discusses the growth of cereal seed and highlights the novel biological insights, with a focus on transgenic and new molecular breeding, as well as biotechnological intervention strategies that have improved crop yield in two major cereal crops, primarily wheat and rice, over the last 21 years (2000–2021).
Collapse
|
25
|
Nehe AS, Foulkes MJ, Ozturk I, Rasheed A, York L, Kefauver SC, Ozdemir F, Morgounov A. Root and canopy traits and adaptability genes explain drought tolerance responses in winter wheat. PLoS One 2021; 16:e0242472. [PMID: 33819270 PMCID: PMC8021186 DOI: 10.1371/journal.pone.0242472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/16/2021] [Indexed: 01/12/2023] Open
Abstract
Bread wheat (Triticum aestivum L) is one of the three main staple crops worldwide contributing 20% calories in the human diet. Drought stress is the main factor limiting yields and threatening food security, with climate change resulting in more frequent and intense drought. Developing drought-tolerant wheat cultivars is a promising way forward. The use of holistic approaches that include high-throughput phenotyping and genetic markers in selection could help in accelerating genetic gains. Fifty advanced breeding lines were selected from the CIMMYT Turkey winter wheat breeding program and studied under irrigated and semiarid conditions in two years. High-throughput phenotyping was done for wheat crown root traits and canopy senescence dynamics using vegetation indices (green area using RGB images and Normalized Difference Vegetation Index using spectral reflectance). In addition, genotyping by KASP markers for adaptability genes was done. Overall, under semiarid conditions yield reduced by 3.09 t ha-1 (-46.8%) compared to irrigated conditions. Genotypes responded differently under drought stress and genotypes 39 (VORONA/HD24-12//GUN/7/VEE#8//…/8/ALTAY), 18 (BiII98) and 29 (NIKIFOR//KROSHKA) were the most drought tolerant. Root traits including shallow nodal root angle under irrigated conditions and root number per shoot under semiarid conditions were correlated with increased grain yield. RGB based vegetation index measuring canopy green area at anthesis was better correlated with GY than NDVI was with GY under drought. The markers for five established functional genes (PRR73.A1 –flowering time, TEF-7A –grain size and weight, TaCwi.4A - yield under drought, Dreb1- drought tolerance, and ISBW11.GY.QTL.CANDIDATE- grain yield) were associated with different drought-tolerance traits in this experiment. We conclude that–genotypes 39, 18 and 29 could be used for drought tolerance breeding. The trait combinations of canopy green area at anthesis, and root number per shoot along with key drought adaptability makers (TaCwi.4A and Dreb1) could be used in screening drought tolerance wheat breeding lines.
Collapse
Affiliation(s)
- A. S. Nehe
- International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey
- * E-mail:
| | - M. J. Foulkes
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - I. Ozturk
- International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey
| | - A. Rasheed
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing, China
| | - L. York
- Noble Research Institute, Ardmore, Oklahoma, United States of America
| | - S. C. Kefauver
- Integrative Crop Ecophysiology Group, University of Barcelona, Barcelona, Spain
| | - F. Ozdemir
- Bahri Dagdas International Agricultural Research Institute, Konya, Turkey
| | | |
Collapse
|
26
|
Soriano JM, Sansaloni C, Ammar K, Royo C. Labelling Selective Sweeps Used in Durum Wheat Breeding from a Diverse and Structured Panel of Landraces and Cultivars. BIOLOGY 2021; 10:biology10040258. [PMID: 33805192 PMCID: PMC8064341 DOI: 10.3390/biology10040258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Evaluation of the genetic diversity of a crop species is a critical step for breeding. Landraces are essential to avoid genetic erosion, and Mediterranean landraces are an important group of genetic resources due to their high genetic variability, adaptation to local conditions in rainfed environments, and their resilience to pests and pathogens. This study uses a genome-wide association approach employing eigenvectors to identify selective sweeps among Mediterranean durum wheat landraces and a world panel of modern cultivars. Abstract A panel of 387 durum wheat genotypes including Mediterranean landraces and modern cultivars was characterized with 46,161 diversity arrays technology (DArTseq) markers. Analysis of population structure uncovered the existence of five subpopulations (SP) related to the pattern of migration of durum wheat from the domestication area to the west of the Mediterranean basin (SPs 1, 2, and 3) and further improved germplasm (SPs 4 and 5). The total genetic diversity (HT) was 0.40 with a genetic differentiation (GST) of 0.08 and a mean gene flow among SPs of 6.02. The lowest gene flow was detected between SP 1 (presumably the ancient genetic pool of the panel) and SPs 4 and 5. However, gene flow from SP 2 to modern cultivars was much higher. The highest gene flow was detected between SP 3 (western Mediterranean germplasm) and SP 5 (North American and European cultivars). A genome wide association study (GWAS) approach using the top ten eigenvectors as phenotypic data revealed the presence of 89 selective sweeps, represented as quantitative trait loci (QTL) hotspots, widely distributed across the durum wheat genome. A principal component analysis (PCoA) using 147 markers with −log10p > 5 identified three regions located on chromosomes 2A, 2B and 3A as the main drivers for differentiation of Mediterranean landraces. Gene flow between SPs offers clues regarding the putative use of Mediterranean old durum germplasm by the breeding programs represented in the structure analysis. EigenGWAS identified selective sweeps among landraces and modern cultivars. The analysis of the corresponding genomic regions in the ‘Zavitan’, ‘Svevo’ and ‘Chinese Spring’ genomes discovered the presence of important functional genes including Ppd, Vrn, Rht, and gene models involved in important biological processes including LRR-RLK, MADS-box, NAC, and F-box.
Collapse
Affiliation(s)
- Jose Miguel Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), 25198 Lleida, Spain;
- Correspondence:
| | - Carolina Sansaloni
- Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), El Batán, Texcoco 56237, Mexico; (C.S.); (K.A.)
| | - Karim Ammar
- Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), El Batán, Texcoco 56237, Mexico; (C.S.); (K.A.)
| | - Conxita Royo
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), 25198 Lleida, Spain;
| |
Collapse
|
27
|
Royo C, Ammar K, Villegas D, Soriano JM. Agronomic, Physiological and Genetic Changes Associated With Evolution, Migration and Modern Breeding in Durum Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:674470. [PMID: 34305973 PMCID: PMC8296143 DOI: 10.3389/fpls.2021.674470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 05/04/2023]
Abstract
A panel of 172 Mediterranean durum wheat landraces and 200 modern cultivars was phenotyped during three years for 21 agronomic and physiological traits and genotyped with 46,161 DArTseq markers. Modern cultivars showed greater yield, number of grains per spike (NGS) and harvest index (HI), but similar number of spikes per unit area (NS) and grain weight than the landraces. Modern cultivars had earlier heading but longer heading-anthesis and grain-filling periods than the landraces. They had greater RUE (Radiation Use Efficiency) up to anthesis and lower canopy temperature at anthesis than the landraces, but the opposite was true during the grain-filling period. Landraces produced more biomass at both anthesis and maturity. The 120 genotypes with a membership coefficient q > 0.8 to the five genetic subpopulations (SP) that structured the panel were related with the geographic distribution and evolutionary history of durum wheat. SP1 included landraces from eastern countries, the domestication region of the "Fertile Crescent." SP2 and SP3 consisted of landraces from the north and the south Mediterranean shores, where durum wheat spread during its migration westward. Decreases in NS, grain-filling duration and HI, but increases in early soil coverage, days to heading, biomass at anthesis, grain-filling rate, plant height and peduncle length occurred during this migration. SP4 grouped modern cultivars gathering the CIMMYT/ICARDA genetic background, and SP5 contained modern north-American cultivars. SP4 was agronomically distant from the landraces, but SP5 was genetically and agronomically close to SP1. GWAS identified 2,046 marker-trait associations (MTA) and 144 QTL hotspots integrating 1,927 MTAs. Thirty-nine haplotype blocks (HB) with allelic differences among SPs and associated with 16 agronomic traits were identified within 13 QTL hotspots. Alleles in chromosomes 5A and 7A detected in landraces were associated with decreased yield. The late heading and short grain-filling period of SP2 and SP3 were associated with a hotspot on chromosome 7B. The heavy grains of SP3 were associated with hotspots on chromosomes 2A and 7A. The greater NGS and HI of modern cultivars were associated with allelic variants on chromosome 7A. A hotspot on chromosome 3A was associated with the high NGS, earliness and short stature of SP4.
Collapse
Affiliation(s)
- Conxita Royo
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
- *Correspondence: Conxita Royo ;
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Dolors Villegas
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | - Jose M. Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| |
Collapse
|
28
|
Liu H, Zhang X, Xu Y, Ma F, Zhang J, Cao Y, Li L, An D. Identification and validation of quantitative trait loci for kernel traits in common wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2020; 20:529. [PMID: 33225903 PMCID: PMC7682089 DOI: 10.1186/s12870-020-02661-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/23/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Kernel weight and morphology are important traits affecting cereal yields and quality. Dissecting the genetic basis of thousand kernel weight (TKW) and its related traits is an effective method to improve wheat yield. RESULTS In this study, we performed quantitative trait loci (QTL) analysis using recombinant inbred lines derived from the cross 'PuBing3228 × Gao8901' (PG-RIL) to dissect the genetic basis of kernel traits. A total of 17 stable QTLs related to kernel traits were identified, notably, two stable QTLs QTkw.cas-1A.2 and QTkw.cas-4A explained the largest portion of the phenotypic variance for TKW and kernel length (KL), and the other two stable QTLs QTkw.cas-6A.1 and QTkw.cas-7D.2 contributed more effects on kernel width (KW). Conditional QTL analysis revealed that the stable QTLs for TKW were mainly affected by KW. The QTLs QTkw.cas-7D.2 and QKw.cas-7D.1 associated with TKW and KW were delimited to the physical interval of approximately 3.82 Mb harboring 47 candidate genes. Among them, the candidate gene TaFT-D1 had a 1 bp insertions/deletion (InDel) within the third exon, which might be the reason for diversity in TKW and KW between the two parents. A Kompetitive Allele-Specific PCR (KASP) marker of TaFT-D1 allele was developed and verified by PG-RIL and a natural population consisted of 141 cultivar/lines. It was found that the favorable TaFT-D1 (G)-allele has been positively selected during Chinese wheat breeding. Thus, these results can be used for further positional cloning and marker-assisted selection in wheat breeding programs. CONCLUSIONS Seventeen stable QTLs related to kernel traits were identified. The stable QTLs for thousand kernel weight were mainly affected by kernel width. TaFT-D1 could be the candidate gene for QTLs QTkw.cas-7D.2 and QKw.cas-7D.1.
Collapse
Affiliation(s)
- Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Xiaotao Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfeng Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Feifei Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinpeng Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanwei Cao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
- The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
29
|
Shoaib M, Yang W, Shan Q, Sun L, Wang D, Sajjad M, Li X, Sun J, Liu D, Zhan K, Zhang A. TaCKX gene family, at large, is associated with thousand-grain weight and plant height in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3151-3163. [PMID: 32852585 DOI: 10.1007/s00122-020-03661-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
KEY MESSAGE We used SMRT sequencing and explored the haplotypes of TaCKX genes, linked with thousand-grain weight and plant height, and developed the functionally validated markers, which can be used in the marker-assisted breeding program. Cytokinin oxidase/dehydrogenase (CKX) enzymes catalyze the permanent degradation of cytokinins. Identification of the TaCKX alleles associated with yield traits and the development of functional markers is the first step in using these alleles in marker-assisted breeding program. To identify the alleles, we sequenced the genome fragments, containing TaCKX genes from 48 wheat genotypes, by PacBio® sequencing. Six out of 22 TaCKX genes were found polymorphic, forming 14 distinct haplotypes. Functional markers were developed and validated for all the polymorphic TaCKX genes. Four specific haplotypes, i.e., TaCKX2A_2, TaCKX4A_2, TaCKX5A_3, and TaCKX9A_2, were found significantly associated with high thousand-grain weight (TGW) and short plant height (PH) in Chinese wheat micro-core collection (MCC) and GWAS open population (GWAS-OP), whereas TaCKX1B_2 in GWAS-OP and TaCKX11A_3 in MCC were significantly associated with high TGW and short PH. The mean values of TGW and PH for cumulative favorable haplotypes from chromosome 3A, i.e., TaCKX2A_2, TaCKX4A_2, and TaCKX5A_3, were significantly higher as compared to the cumulative unfavored haplotypes, and the change was additive in manner. Frequency distribution analysis revealed that since the 1960s, the frequency of the favorable haplotypes and TGW has gradually increased in Chinese wheat cultivars. Expression profiling in the seed tissue excised at 2, 4, 6, and 8 days after anthesis depicted that the favorable haplotypes are significantly less expressive as compared to the unfavored haplotypes. We conclude that the functional markers developed in this study can be used to select the favorable haplotypes of TaCKX genes in wheat marker-assisted breeding programs.
Collapse
Affiliation(s)
- Muhammad Shoaib
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Qiangqiang Shan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- The Collaborative Innovation Center for Grain Crops in Henan, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Linhe Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongzhi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhammad Sajjad
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlaikalan, Islamabad, 45550, Pakistan
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kehui Zhan
- The Collaborative Innovation Center for Grain Crops in Henan, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
30
|
Zheng X, Liu C, Qiao L, Zhao J, Han R, Wang X, Ge C, Zhang W, Zhang S, Qiao L, Zheng J, Hao C. The MYB transcription factor TaPHR3-A1 is involved in phosphate signaling and governs yield-related traits in bread wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5808-5822. [PMID: 32725154 DOI: 10.1093/jxb/eraa355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Improved inorganic phosphate (Pi) use efficiency in crops will be important for sustainable agriculture. Exploring molecular mechanisms that regulate Pi uptake could provide useful information for breeding wheat with improved Pi use efficiency. Here, a TaPHR3-A1 (Gene ID: TraesCS7A02G415800) ortholog of rice OsPHR3 that functions in transcriptional regulation of Pi signaling was cloned from wheat chromosome 7A. Ectopic expression of TaPHR3-A1 in Arabidopsis and rice produced enhanced vegetative growth and more seeds. Overexpression in transgenic rice led to increased biomass, grain number, and primary panicle branching by 61.23, 42.12, and 36.34% compared with the wild type. Transgenic wheat lines with down-regulation of TaPHR3-A1 exhibited retarded growth and root hair development at the seedling stage, and showed yield-related effects at the adult stage when grown in both low- and sufficient Pi conditions, indicating that TaPHR3-A1 positively regulated tolerance to low Pi. Introgression lines further confirmed the effect of TaPHR3-A1 in improving grain number. The Chinese wheat mini core collection and a recombinant inbred line analysis demonstrated that the favorable allele TaPHR3-A1-A associated with higher grain number was positively selected in breeding. A TaPHR3-A1-derived cleaved amplified polymorphic sequence marker effectively identified haplotype TaPHR3-A1-A. Our results suggested that TaPHR3-A1 was a functional regulatory factor for Pi uptake and provided useful information for marker-assisted selection for high yield in wheat.
Collapse
Affiliation(s)
- Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat & Maize, Jinan, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat & Maize, Jinan, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat & Maize, Jinan, China
| | - Chuan Ge
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Wenyun Zhang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Shuwei Zhang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Linyi Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Chenyang Hao
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Yu M, Chen H, Mao SL, Dong KM, Hou DB, Chen GY. Contribution of photosynthetic- and yield-related traits towards grain yield in wheat at the individual quantitative trait locus level. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1827979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Ma Yu
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
- Department of Genetic Resources, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hua Chen
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Shuang-Lin Mao
- Department of Genetic Resources, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
- New Crop Variety Approval Office, Sichuan Seed Station, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, Sichuan, PR China
| | - Kai-Mi Dong
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Da-Bin Hou
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Guo-Yue Chen
- Department of Genetic Resources, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
32
|
Wu Y, Li M, He Z, Dreisigacker S, Wen W, Jin H, Zhai S, Li F, Gao F, Liu J, Wang R, Zhang P, Wan Y, Cao S, Xia X. Development and validation of high-throughput and low-cost STARP assays for genes underpinning economically important traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2431-2450. [PMID: 32451598 DOI: 10.1007/s00122-020-03609-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/13/2020] [Indexed: 05/12/2023]
Abstract
We developed and validated 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for 46 genes of important wheat quality, biotic and abiotic stress resistance, grain yield, and adaptation-related traits for marker-assisted selection in wheat breeding. Development of high-throughput, low-cost, gene-specific molecular markers is important for marker-assisted selection in wheat breeding. In this study, we developed 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for wheat quality, tolerance to biotic and abiotic stresses, grain yield, and adaptation-related traits. The STARP assays were validated by (1) comparison of the assays with corresponding diagnostic STS/CAPS markers on 40 diverse wheat cultivars and (2) characterization of allelic effects based on the phenotypic and genotypic data of three segregating populations and 305 diverse wheat accessions from China and 13 other countries. The STARP assays showed the advantages of high-throughput, accuracy, flexibility, simple assay design, low operational costs, and platform compatibility. The state-of-the-art assays of this study provide a robust and reliable molecular marker toolkit for wheat breeding programs.
Collapse
Affiliation(s)
- Yuying Wu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Ming Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Susanne Dreisigacker
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, 201 Dalian Road, Zunyi, 563099, Guizhou, China
| | - Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Street, Harbin, 150086, Heilongjiang, China
| | - Shengnan Zhai
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Faji Li
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Fengmei Gao
- Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Street, Harbin, 150086, Heilongjiang, China
| | - Jindong Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfei Road, Shenzhen, 518120, Guangdong, China
| | - Rongge Wang
- Farm of Seed Production of Gaoyi County, Gaoyi, 051330, Hebei, China
| | - Pingzhi Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, 40 Nongke South Street, Hefei, 230001, Anhui, China
| | - Yingxiu Wan
- Crop Research Institute, Anhui Academy of Agricultural Sciences, 40 Nongke South Street, Hefei, 230001, Anhui, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
33
|
Hussain Q, Shi J, Scheben A, Zhan J, Wang X, Liu G, Yan G, King GJ, Edwards D, Wang H. Genetic and signalling pathways of dry fruit size: targets for genome editing-based crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1124-1140. [PMID: 31850661 PMCID: PMC7152616 DOI: 10.1111/pbi.13318] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/20/2019] [Accepted: 12/08/2019] [Indexed: 05/24/2023]
Abstract
Fruit is seed-bearing structures specific to angiosperm that form from the gynoecium after flowering. Fruit size is an important fitness character for plant evolution and an agronomical trait for crop domestication/improvement. Despite the functional and economic importance of fruit size, the underlying genes and mechanisms are poorly understood, especially for dry fruit types. Improving our understanding of the genomic basis for fruit size opens the potential to apply gene-editing technology such as CRISPR/Cas to modulate fruit size in a range of species. This review examines the genes involved in the regulation of fruit size and identifies their genetic/signalling pathways, including the phytohormones, transcription and elongation factors, ubiquitin-proteasome and microRNA pathways, G-protein and receptor kinases signalling, arabinogalactan and RNA-binding proteins. Interestingly, different plant taxa have conserved functions for various fruit size regulators, suggesting that common genome edits across species may have similar outcomes. Many fruit size regulators identified to date are pleiotropic and affect other organs such as seeds, flowers and leaves, indicating a coordinated regulation. The relationships between fruit size and fruit number/seed number per fruit/seed size, as well as future research questions, are also discussed.
Collapse
Affiliation(s)
- Quaid Hussain
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Armin Scheben
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaPerthWAAustralia
| | - Jiepeng Zhan
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Guihua Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Guijun Yan
- UWA School of Agriculture and EnvironmentThe UWA Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Graham J. King
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreNSWAustralia
| | - David Edwards
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaPerthWAAustralia
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| |
Collapse
|
34
|
Rasheed A, Takumi S, Hassan MA, Imtiaz M, Ali M, Morgunov AI, Mahmood T, He Z. Appraisal of wheat genomics for gene discovery and breeding applications: a special emphasis on advances in Asia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1503-1520. [PMID: 31897516 DOI: 10.1007/s00122-019-03523-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
We discussed the most recent efforts in wheat functional genomics to discover new genes and their deployment in breeding with special emphasis on advances in Asian countries. Wheat research community is making significant progress to bridge genotype-to-phenotype gap and then applying this knowledge in genetic improvement. The advances in genomics and phenomics have intrigued wheat researchers in Asia to make best use of this knowledge in gene and trait discovery. These advancements include, but not limited to, map-based gene cloning, translational genomics, gene mapping, association genetics, gene editing and genomic selection. We reviewed more than 57 homeologous genes discovered underpinning important traits and multiple strategies used for their discovery. Further, the complementary advancements in wheat phenomics and analytical approaches to understand the genetics of wheat adaptability, resilience to climate extremes and resistance to pest and diseases were discussed. The challenge to build a gold standard reference genome sequence of bread wheat is now achieved and several de novo reference sequences from the cultivars representing different gene pools will be available soon. New pan-genome sequencing resources of wheat will strengthen the foundation required for accelerated gene discovery and provide more opportunities to practice the knowledge-based breeding.
Collapse
Affiliation(s)
- Awais Rasheed
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT), CAAS, 12 Zhongguancun South Street, Beijing, 100081, China.
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Muhammad Adeel Hassan
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Muhammad Imtiaz
- International Maize and Wheat Improvement Center (CIMMYT) Pakistan office, c/o National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Mohsin Ali
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Alex I Morgunov
- International Maize and Wheat Improvement Center (CIMMYT), Yenimahalle, Ankara, 06170, Turkey
| | - Tariq Mahmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
35
|
Liu H, Li H, Hao C, Wang K, Wang Y, Qin L, An D, Li T, Zhang X. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1330-1342. [PMID: 31733093 PMCID: PMC7152612 DOI: 10.1111/pbi.13298] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/29/2019] [Accepted: 11/05/2019] [Indexed: 05/18/2023]
Abstract
Kernel size is an important trait determining cereal yields. In this study, we cloned and characterized TaDA1, a conserved negative regulator of kernel size in wheat (Triticum aestivum). The overexpression of TaDA1 decreased the size and weight of wheat kernels, while its down-regulation using RNA interference (RNAi) had the opposite effect. Three TaDA1-A haplotypes were identified in Chinese wheat core collections, and a haplotype association analysis showed that TaDA1-A-HapI was significantly correlated with the production of larger kernels and higher kernel weights in modern Chinese cultivars. The haplotype effect resulted from a difference in TaDA1-A expression levels between genotypes, with TaDA1-A-HapI resulting in lower TaDA1-A expression levels. This favourable haplotype was found having been positively selected during wheat breeding over the last century. Furthermore, we demonstrated that TaDA1-A physically interacts with TaGW2-B. The additive effects of TaDA1-A and TaGW2-B on kernel weight were confirmed not only by the phenotypic enhancement arising from the simultaneous down-regulation of TaDA1 and TaGW2 expression, but also by the combinational haplotype effects estimated from multi-environment field data from 348 wheat cultivars. A comparative proteome analysis of developing transgenic and wild-type grains indicated that TaDA1 and TaGW2 are involved in partially overlapping but relatively independent protein regulatory networks. Thus, we have identified an important gene controlling kernel size in wheat and determined its interaction with other genes regulating kernel weight, which could have beneficial applications in wheat breeding.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Center for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangHebeiChina
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ke Wang
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yamei Wang
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Lin Qin
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Diaoguo An
- Center for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangHebeiChina
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Agronomy CollegeGansu Agriculture UniversityLanzhou, GansuChina
| |
Collapse
|
36
|
Chen Z, Cheng X, Chai L, Wang Z, Bian R, Li J, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:149-162. [PMID: 31570967 DOI: 10.1007/s00122-019-03447-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/21/2019] [Indexed: 05/26/2023]
Abstract
Thirty environmentally stable QTL controlling grain size and/or plant height were identified, among which QTgw.cau-7D was delimited into the physical interval of approximately 4.4 Mb. Grain size and plant height (PHT) are important agronomic traits in wheat breeding. To dissect the genetic basis of these traits, we conducted a quantitative trait locus (QTL) analysis using recombinant inbred lines (RILs). In total, 30 environmentally stable QTL for thousand grain weight (TGW), grain length (GL), grain width (GW) and PHT were detected. Notably, one major pleiotropic QTL on chromosome arm 3DS explained the highest phenotypic variance for TGW, GL and PHT, and two stable QTL (QGw.cau-4B and QGw.cau-7D) on chromosome arms 4BS and 7DS contributed greater effects for GW. Furthermore, the stable QTL controlling grain size (QTgw.cau-7D and QGw.cau-7D) were delimited into the physical interval of approximately 4.4 Mb harboring 56 annotated genes. The elite NILs of QTgw.cau-7D increased TGW by 12.79-21.75% and GW by 4.10-8.47% across all three environments. Collectively, these results provide further insight into the genetic basis of TGW, GL, GW and PHT, and the fine-mapped QTgw.cau-7D will be an attractive target for positional cloning and marker-assisted selection in wheat breeding programs.
Collapse
Affiliation(s)
- Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Xuejiao Cheng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Lingling Chai
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhihui Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Ruolin Bian
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Jiang Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Aiju Zhao
- Hebei Crop Genetic Breeding Laboratory, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
- National Plant Gene Research Centre, Beijing, 100193, China.
| |
Collapse
|
37
|
Positional cloning of PmCH1357 reveals the origin and allelic variation of the Pm2 gene for powdery mildew resistance in wheat. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Giancaspro A, Giove SL, Zacheo SA, Blanco A, Gadaleta A. Genetic Variation for Protein Content and Yield-Related Traits in a Durum Population Derived From an Inter-Specific Cross Between Hexaploid and Tetraploid Wheat Cultivars. FRONTIERS IN PLANT SCIENCE 2019; 10:1509. [PMID: 31824537 PMCID: PMC6883369 DOI: 10.3389/fpls.2019.01509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/30/2019] [Indexed: 05/18/2023]
Abstract
Wheat grain protein content (GPC) and yield components are complex quantitative traits influenced by a multi-factorial system consisting of both genetic and environmental factors. Although seed storage proteins represent less than 15% of mature kernels, they are crucial in determining end-use properties of wheat, as well as the nutritional value of derived products. Yield and GPC are negatively correlated, and this hampers breeding programs of commercially valuable wheat varieties. The goal of this work was the evaluation of genetic variability for quantity and composition of seed storage proteins, together with yield components [grain yield per spike (GYS) and thousand-kernel weight (TKW)] in a durum wheat population obtained by an inter-specific cross between a common wheat accession and the durum cv. Saragolla. Quantitative trait loci (QTL) analysis was conducted and closely associated markers identified on a genetic map composed of 4,366 SNP markers previously obtained in the same durum population genotyped with the 90K iSelect SNP assay. A total of 22 QTL were detected for traits related to durum wheat quality. Six genomic regions responsible for GPC control were mapped on chromosomes 2B, 3A, 4A, 4B, 5B, and 7B, with major QTL on chromosomes 2B, 4A, and 5B. Nine loci were detected for GYS: two on chromosome 5B and 7A and one on chromosomes 2A, 2B, 4A, 4B, 7B, with the strongest QTL on 2B. Eight QTL were identified for TKW, three of which located on chromosome 3A, two on 1B and one on 4B, 5A, and 5B. Only small overlapping was found among QTL for GYS, TKW, and GPC, and increasing alleles coming from both parents on different chromosomes. Good candidate genes were identified in the QTL confidence intervals for GYS and TKW.
Collapse
Affiliation(s)
| | | | | | | | - Agata Gadaleta
- Department of Agricultural and Environmental Sciences (DiSAAT), Research Unit of “Genetics and Plant Biotechnology”, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
39
|
TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Sci Rep 2019; 9:13853. [PMID: 31554871 PMCID: PMC6761172 DOI: 10.1038/s41598-019-50331-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
We dissected the genetic basis of total spikelet number (TSN) along with other traits, viz. spike length (SL) and flowering time (FT) in a panel of 518 elite European winter wheat varieties. Genome-wide association studies (GWAS) based on 39,908 SNP markers revealed highly significant quantitative trait loci (QTL) for TSN on chromosomes 2D, 7A, and 7B, for SL on 5A, and FT on 2D, with 2D-QTL being the functional marker for the gene Ppd-D1. The physical region of the 7A-QTL for TSN revealed the presence of a wheat ortholog (TaAPO-A1) to APO1–a rice gene that positively controls the spikelet number on the panicles. Interspecific analyses of the TaAPO-A1 orthologs showed that it is a highly conserved gene important for floral development and present in a wide range of terrestrial plants. Intraspecific studies of the TaAPO-A1 across wheat genotypes revealed a polymorphism in the conserved F-box domain, defining two haplotypes. A KASP marker developed on the polymorphic site showed a highly significant association of TaAPO-A1 with TSN, explaining 23.2% of the total genotypic variance. Also, the TaAPO-A1 alleles showed weak but significant differences for SL and grain yield. Our results demonstrate the importance of wheat sequence resources to identify candidate genes for important traits based on genetic analyses.
Collapse
|
40
|
Yu K, Liu D, Chen Y, Wang D, Yang W, Yang W, Yin L, Zhang C, Zhao S, Sun J, Liu C, Zhang A. Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling. JOURNAL OF EXPERIMENTAL BOTANY 2019. [PMID: 31226200 DOI: 10.1101/377820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding the genetic architecture of grain size is a prerequisite to manipulating grain development and improving the potential crop yield. In this study, we conducted a whole genome-wide quantitative trait locus (QTL) mapping of grain-size-related traits by constructing a high-density genetic map using 109 recombinant inbred lines of einkorn wheat. We explored the candidate genes underlying QTLs through homologous analysis and RNA sequencing. The high-density genetic map spanned 1873 cM and contained 9937 single nucleotide polymorphism markers assigned to 1551 bins on seven chromosomes. Strong collinearity and high genome coverage of this map were revealed by comparison with physical maps of wheat and barley. Six grain size-related traits were surveyed in five environments. In total, 42 QTLs were identified; these were assigned to 17 genomic regions on six chromosomes and accounted for 52.3-66.7% of the phenotypic variation. Thirty homologous genes involved in grain development were located in 12 regions. RNA sequencing identified 4959 genes differentially expressed between the two parental lines. Twenty differentially expressed genes involved in grain size development and starch biosynthesis were mapped to nine regions that contained 26 QTLs, indicating that the starch biosynthesis pathway plays a vital role in grain development in einkorn wheat. This study provides new insights into the genetic architecture of grain size in einkorn wheat; identification of the underlying genes enables understanding of grain development and wheat genetic improvement. Furthermore, the map facilitates quantitative trait mapping, map-based cloning, genome assembly, and comparative genomics in wheat taxa.
Collapse
Affiliation(s)
- Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- Science and Technology Department, State Tobacco Monopoly Administration, Beijing, China
| | - Dongzhi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Wei Yang
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Lixin Yin
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Chi Zhang
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shancen Zhao
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chunming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Wang H, Wang S, Chang X, Hao C, Sun D, Jing R. Identification of TaPPH-7A haplotypes and development of a molecular marker associated with important agronomic traits in common wheat. BMC PLANT BIOLOGY 2019; 19:296. [PMID: 31286893 PMCID: PMC6615193 DOI: 10.1186/s12870-019-1901-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/20/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Premature senescence of flag leaf severely affects wheat yield and quality. Chlorophyll (Chl) degradation is the most obvious symptom during leaf senescence and catalyzed by a series of enzymes. Pheophytin pheophorbide hydrolase (Pheophytinase, PPH) gene encodes a Chl degradation hydrolase. RESULTS In this study, the coding, genomic and promoter sequences of wheat TaPPH-A gene were cloned. The corresponding lengths were 1467 bp, 4479 bp and 3666 bp, respectively. Sequence structure analysis showed that TaPPH-A contained five exons and four introns. After the multiple sequences alignment of TaPPH-A genome from 36 accessions in a wheat diversity panel, four SNPs and one 2-bp InDel were observed, which formed two haplotypes, TaPPH-7A-1 and TaPPH-7A-2. Based on the SNP at 1299 bp (A/G), a molecular marker TaPPH-7A-dCAPS was developed to distinguish allelic variation (A/G). Using the molecular markers, 13 SSR, and 116 SNP markers, a linkage map of chromosome 7A were integrated. TaPPH-A was mapped on the chromosome region flanked by Xwmc9 (0.94 cM) and AX-95634545 (1.04 cM) on 7A in a DH population. Association analysis between TaPPH-7A allelic variation and agronomic traits found that TaPPH-7A was associated with TGW in 11 of 12 environments and Chl content at grain-filling stage under drought stress using Population 1 consisted of 323 accessions. The accessions possessed TaPPH-7A-1 (A) had higher TGW and Chl content than those possessed TaPPH-7A-2 (G), thus TaPPH-7A-1 (A) was a favorable allelic variation. By analyzing the frequency of favorable allelic variation TaPPH-7A-1 (A) in Population 2 with 157 landraces and Population 3 with 348 modern cultivars, we found it increased from pre-1950 (0) to 1960s (54.5%), then maintained a relatively stable level about 56% from 1960s to 1990s. CONCLUSION These results suggested the favorable allelic variation TaPPH-7A-1 (A) should be valuable in enhancing grain yield by improving the source (chlorophyll content) and sink (the developing grain) simultaneously. Furthermore, the newly developed molecular marker TaPPH-7A-dCAPS could be integrated into a breeding kit of screening high TGW wheat for marker-assisted selection.
Collapse
Affiliation(s)
- Huiyan Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801 China
| | - Shuguang Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801 China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chenyang Hao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Daizhen Sun
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801 China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
42
|
Gao Y, Ma J, Zheng JC, Chen J, Chen M, Zhou YB, Fu JD, Xu ZS, Ma YZ. The Elongation Factor GmEF4 Is Involved in the Response to Drought and Salt Tolerance in Soybean. Int J Mol Sci 2019; 20:E3001. [PMID: 31248195 PMCID: PMC6627591 DOI: 10.3390/ijms20123001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 11/23/2022] Open
Abstract
Growing evidence indicates that elongation factor 1α (EF1α) is involved in responses to various abiotic stresses in several plant species. Soybean EF1α proteins include three structural domains: one GTP-binding domain and two oligonucleotide binding domains that are also called as domain 2 and domain 3. In this study, 10 EF1α genes were identified in the soybean genome. We predicted structures of different domains and analyzed gene locations, gene structures, phylogenetic relationships, various cis-elements, and conserved domains of soybean EF1αs. The expression patterns of 10 EF1α genes were analyzed by quantitative real-time PCR (qRT-PCR). Under drought stress, soybean EF1α genes were upregulated in varying degrees. In particular, GmEF4 was upregulated under drought and salt treatments. Compared to the drought- and salt-treated empty vector (EV)-control plants, drought- and salt-treated GmEF4-overexpressing (OE) plants had significantly delayed leaf wilting, longer root, higher biomass, higher proline (Pro) content, and lower H2O2, O2-, and malondialdehyde (MDA) contents. Thus, this study provides a foundation for further functional genomics research about this important family under abiotic stress.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China.
| | - Jia-Cheng Zheng
- Anhui Science and Technology University, Fengyang 233100, Anhui, China.
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
43
|
Genome-Wide Analyses Reveal Footprints of Divergent Selection and Drought Adaptive Traits in Synthetic-Derived Wheats. G3-GENES GENOMES GENETICS 2019; 9:1957-1973. [PMID: 31018942 PMCID: PMC6553533 DOI: 10.1534/g3.119.400010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Crop-wild introgressions have long been exploited without knowing the favorable recombination points. Synthetic hexaploid wheats are one of the most exploited genetic resources for bread wheat improvement. However, despite some QTL with major effects, much less is known about genome-wide patterns of introgressions and their effects on phenotypes. We used two genome-wide association approaches: SNP-GWAS and haplotype-GWAS to identify SNPs and haplotypes associated with productivity under water-limited conditions in a synthetic-derived wheat (SYN-DER) population. Haplotype-GWAS further enriched and identified 20 more genomic regions associated with drought adaptability that did not overlap with SNP-GWAS. Since GWAS is biased to the phenotypes in the study and may fail to detect important genetic diversity during breeding, we used five complementary analytical approaches (t-test, Tajima’s D, nucleotide diversity (π), Fst, and EigenGWAS) to identify divergent selections in SYN-DER compared to modern bread wheat. These approaches consistently pinpointed 89 ‘selective sweeps’, out of which 30 selection loci were identified on D-genome. These key selections co-localized with important functional genes of adaptive traits such as TaElf3-D1 (1D) for earliness per se (Eps), TaCKX-D1 (3D), TaGS1a (6D) and TaGS-D1 (7D) for grain size, weight and morphology, TaCwi-D1 (5D) influencing drought tolerance, and Vrn-D3 (7D) for vernalization. Furthermore, 55 SNPs and 23 haplotypes of agronomic and physiological importance such as grain yield, relative water content and thousand grain weight in SYN-DER, were among the top 5% of divergent selections contributed by synthetic hexaploid wheats. These divergent selections associated with improved agronomic performance carry new alleles that have been introduced to wheat. Our results demonstrated that GWAS and selection sweep analyses are powerful approaches for investigating favorable introgressions under strong selection pressure and the use of crop-wild hybridization to assist the improvement of wheat yield and productivity under moisture limiting environments.
Collapse
|
44
|
Wang Y, Hou J, Liu H, Li T, Wang K, Hao C, Liu H, Zhang X. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1497-1511. [PMID: 30753656 PMCID: PMC6411380 DOI: 10.1093/jxb/erz032] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/16/2019] [Indexed: 05/19/2023]
Abstract
BRITTLE1 (BT1), responsible for unidirectional transmembrane transport of ADP-glucose, plays a pivotal role in starch synthesis of cereal grain. In this study, we isolated three TaBT1 homoeologous genes located on chromosomes 6A, 6B, and 6D in common wheat. TaBT1 was mainly expressed in developing grains, and knockdown of TaBT1 in common wheat produced a decrease in grain size, thousand kernel weight (TKW), and grain total starch content. High diversity was detected at the TaBT1-6B locus, with 24 polymorphic sites forming three haplotypes (Hap1, Hap2, and Hap3). Association analysis revealed that Hap1 and Hap2 were preferred haplotypes in modern breeding, for their significant correlations with higher TKW. Furthermore, β-glucuronidase (GUS) staining and enzyme activity assays in developing grains of transgenic rice with exogenous promoters indicated that the promoters of Hap1 and Hap2 showed stronger driving activity than that of Hap3. Evolutionary analysis revealed that BT1 underwent strong selection during wheat polyploidization. In addition, the frequency distribution of TaBT1-6B haplotypes revealed that Hap1 and Hap2 were preferred in global modern wheat cultivars. Our findings suggest that TaBT1 has an important effect on starch synthesis and TKW, and provide two valuable molecular markers for marker assisted selection (MAS) in wheat high-yield breeding.
Collapse
Affiliation(s)
- Yamei Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hong Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ke Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Correspondence:
| |
Collapse
|
45
|
Liu H, Li T, Wang Y, Zheng J, Li H, Hao C, Zhang X. TaZIM-A1 negatively regulates flowering time in common wheat (Triticum aestivum L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:359-376. [PMID: 30226297 DOI: 10.1111/jipb.12720] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/11/2018] [Indexed: 05/13/2023]
Abstract
Flowering time is a critical determinant of regional adaptation for crops and has strong effects on crop yields. Here, we report that TaZIM-A1, an atypical GATA-like transcription factor, is a negative regulator of flowering in wheat. TaZIM-A1 possessed weak transcriptional repression activity, with its CCT domain functioning as the major inhibitory region. TaZIM-A1 expression exhibited a typical circadian oscillation pattern under various light regimes. Overexpression of TaZIM-A1 caused a delay in flowering time and a decrease in thousand-kernel weight (TKW) in wheat under long-day conditions. Moreover, TaZIM-A1 directly bound to the promoters of TaCO-1 and TaFT-1 and downregulated their expression. Sequence analysis of a collection of common wheat cultivars identified three and two haplotypes for TaZIM-A1 and TaZIM-B1, respectively. Association analysis revealed that TaZIM-A1-HapI/-HapIII and TaZIM-B1-HapI have undergone strong positive selection during modern wheat breeding, likely due to their association with earlier heading and higher TKW. Diagnostic markers were developed for these haplotypes that can be used for wheat cultivar improvement, via marker-assisted breeding.
Collapse
Affiliation(s)
- Hong Liu
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yamei Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Zheng
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Zhang
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
46
|
Zhang R, Geng S, Qin Z, Tang Z, Liu C, Liu D, Song G, Li Y, Zhang S, Li W, Gao J, Han X, Li G. The genome-wide transcriptional consequences of the nullisomic-tetrasomic stocks for homoeologous group 7 in bread wheat. BMC Genomics 2019; 20:29. [PMID: 30630423 PMCID: PMC6327598 DOI: 10.1186/s12864-018-5421-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
Background Hexaploid bread wheat (Triticum aestivum L) arose by two polyploidisation events from three diploid species with homoeologous genomes. Nullisomic-tetrasomic (nulli-tetra or NT) lines are aneuploid wheat plants lacking two and adding two of six homoeologous chromosomes. These plants can grow normally, but with significantly morphological variations because the adding two chromosomes or the remaining four chromosomes compensate for those absent. Despite these interesting phenomena, detailed molecular mechanisms underlying dosage deletion and compensation in these useful genetic materials have not been determined. Results By sequencing the transcriptomes of leaves in two-week-old seedlings, we showed that the profiles of differentially expressed genes between NT stocks for homoeologous group 7 and the parent hexaploid Chinese Spring (CS) occurred throughout the whole genome with a subgenome and chromosome preference. The deletion effect of nulli-chromosomes was compensated partly by the tetra-chromosomes via the dose level of expressed genes, according to the types of homoeologous genes. The functions of differentially regulated genes primarily focused on carbon metabolic process, photosynthesis process, hormone metabolism, and responding to stimulus, and etc., which might be related to the defective phenotypes that included reductions in plant height, flag leaf length, spikelet number, and kernels per spike. Conclusions The perturbation of the expression levels of transcriptional genes among the NT stocks for homoeologous group 7 demonstrated the gene dosage effect of the subgenome at the genome-wide level. The gene dosage deletion and compensation can be used as a model to elucidate the functions of the subgenomes in modern polyploid plants. Electronic supplementary material The online version of this article (10.1186/s12864-018-5421-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rongzhi Zhang
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China.
| | - Shuaifeng Geng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhengrui Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zongxiang Tang
- Agronomy College, Sichuan Agricultural University, Wenjiang, Chengdu, 610054, China
| | - Cheng Liu
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Dongfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guoqi Song
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Yulian Li
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Shujuan Zhang
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Wei Li
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Jie Gao
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Xiaodong Han
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Genying Li
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China.
| |
Collapse
|
47
|
Sehgal D, Mondal S, Guzman C, Garcia Barrios G, Franco C, Singh R, Dreisigacker S. Validation of Candidate Gene-Based Markers and Identification of Novel Loci for Thousand-Grain Weight in Spring Bread Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:1189. [PMID: 31616457 PMCID: PMC6775465 DOI: 10.3389/fpls.2019.01189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/29/2019] [Indexed: 05/14/2023]
Abstract
Increased thousand-grain weight (TGW) is an important breeding target for indirectly improving grain yield (GY). Fourteen reported candidate genes known to enhance TGW were evaluated in two independent and existing datasets of wheat at CIMMYT, the Elite Yield Trial (EYT) from 2015 to 2016 (EYT2015-16) and the Wheat Association Mapping Initiative (WAMI) panel, to study their allele effects on TGW and to verify their suitability for marker-assisted selection. Of these, significant associations were detected for only one gene (TaGs3-D1) in the EYT2015-16 and two genes (TaTGW6 and TaSus1) in WAMI. The reported favorable alleles of TaGs3-D1 and TaTGW6 genes decreased TGW in the datasets. A haplotype-based genome wide association study was implemented to identify the genetic determinants of TGW on a large set of CIMMYT germplasm (4,302 lines comprising five EYTs), which identified 15 haplotype blocks to be significantly associated with TGW. Four of them, identified on chromosomes 4A, 6A, and 7A, were associated with TGW in at least three EYTs. The locus on chromosome 6A (Hap-6A-13) had the largest effect on TGW and additionally GY with increases of up to 2.60 g and 258 kg/ha, respectively. Discovery of novel TGW loci described in our study expands the opportunities for developing diagnostic markers and for multi-gene pyramiding to derive new allele combinations for enhanced TGW and GY in CIMMYT wheat.
Collapse
Affiliation(s)
| | | | - Carlos Guzman
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | | | | | - Ravi Singh
- Department of Bioscience, CIMMYT, Texcoco, Mexico
| | - Susanne Dreisigacker
- Department of Bioscience, CIMMYT, Texcoco, Mexico
- *Correspondence: Susanne Dreisigacker,
| |
Collapse
|
48
|
Würschum T, Leiser WL, Langer SM, Tucker MR, Longin CFH. Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2071-2084. [PMID: 29959471 DOI: 10.1007/s00122-018-3133-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 05/24/2023]
Abstract
Phenotypic and genetic analysis of six spike and kernel characteristics in wheat revealed geographic patterns as well as long-term trends arising from breeding progress, particularly in regard to spikelet fertility, i.e. the number of kernels per spikelet, a grain yield component that appears to underlie the increase in the number of kernels per spike. Wheat is a staple crop of global relevance that faces continuous demands for improved grain yield. In this study, we evaluated a panel of 407 winter wheat cultivars for six characteristics of spike and kernel development. All traits showed a large genotypic variation and had high heritabilities. We observed geographic patterns for some traits in addition to long-term trends showing a continuous increase in the number of kernels per spike. This breeding progress is likely due to the increase in spikelet fertility, i.e. the number of kernels per spikelet. While the number of kernels per spike and spikelet fertility were significantly positively correlated, both traits showed a significant negative correlation with thousand-kernel weight. Genome-wide association mapping identified only small- and moderate-effect QTL and an effect of the phenology loci Rht-D1 and Ppd-D1 on some of the traits. The allele frequencies of some QTL matched the observed geographic patterns. The quantitative inheritance of all traits with contributions of additional small-effect QTL was substantiated by genomic prediction. Taken together, our results suggest that some of the examined traits were already the basis of grain yield progress in wheat in the past decades. A more targeted exploitation of the available variation, potentially coupled with genomic approaches, may assist wheat breeding in continuing to increase yield levels globally.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Simon M Langer
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
- Bayer AG, European Wheat Breeding Center, Am Schwabeplan 8, 06466, Gatersleben, Germany
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
49
|
Li F, Wen W, He Z, Liu J, Jin H, Cao S, Geng H, Yan J, Zhang P, Wan Y, Xia X. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1903-1924. [PMID: 29858949 DOI: 10.1007/s00122-018-3122-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/24/2018] [Indexed: 05/19/2023]
Abstract
We identified 21 new and stable QTL, and 11 QTL clusters for yield-related traits in three bread wheat populations using the wheat 90 K SNP assay. Identification of quantitative trait loci (QTL) for yield-related traits and closely linked molecular markers is important in order to identify gene/QTL for marker-assisted selection (MAS) in wheat breeding. The objectives of the present study were to identify QTL for yield-related traits and dissect the relationships among different traits in three wheat recombinant inbred line (RIL) populations derived from crosses Doumai × Shi 4185 (D × S), Gaocheng 8901 × Zhoumai 16 (G × Z) and Linmai 2 × Zhong 892 (L × Z). Using the available high-density linkage maps previously constructed with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, 65, 46 and 53 QTL for 12 traits were identified in the three RIL populations, respectively. Among them, 34, 23 and 27 were likely to be new QTL. Eighteen common QTL were detected across two or three populations. Eleven QTL clusters harboring multiple QTL were detected in different populations, and the interval 15.5-32.3 cM around the Rht-B1 locus on chromosome 4BS harboring 20 QTL is an important region determining grain yield (GY). Thousand-kernel weight (TKW) is significantly affected by kernel width and plant height (PH), whereas flag leaf width can be used to select lines with large kernel number per spike. Eleven candidate genes were identified, including eight cloned genes for kernel, heading date (HD) and PH-related traits as well as predicted genes for TKW, spike length and HD. The closest SNP markers of stable QTL or QTL clusters can be used for MAS in wheat breeding using kompetitive allele-specific PCR or semi-thermal asymmetric reverse PCR assays for improvement of GY.
Collapse
Affiliation(s)
- Faji Li
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang, China
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Weie Wen
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang, China
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jindong Liu
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Hui Jin
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- Sino-Russia Agricultural Scientific and Technological Cooperation Center, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Street, Harbin, 150086, Heilongjiang, China
| | - Shuanghe Cao
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Hongwei Geng
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang, China
| | - Jun Yan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), 38 Huanghe Street, Anyang, 455000, Henan, China
| | - Pingzhi Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, 40 Nongke South Street, Hefei, 230001, Anhui, China
| | - Yingxiu Wan
- Crop Research Institute, Anhui Academy of Agricultural Sciences, 40 Nongke South Street, Hefei, 230001, Anhui, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
50
|
Liu K, Sun X, Ning T, Duan X, Wang Q, Liu T, An Y, Guan X, Tian J, Chen J. Genetic dissection of wheat panicle traits using linkage analysis and a genome-wide association study. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1073-1090. [PMID: 29470622 DOI: 10.1007/s00122-018-3059-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/19/2018] [Indexed: 05/18/2023]
Abstract
Coincident regions on chromosome 4B for GW, on 5A for SD and TSS, and on 3A for SL and GNS were detected through an integration of a linkage analysis and a genome-wide association study (GWAS). In addition, six stable QTL clusters on chromosomes 2D, 3A, 4B, 5A and 6A were identified with high PVE% on a composite map. The panicle traits of wheat, such as grain number per spike and 1000-grain weight, are closely correlated with grain yield. Superior and effective alleles at loci related to panicles developments play a crucial role in the progress of molecular improvement in wheat yield breeding. Here, we revealed several notable allelic variations of seven panicle-related traits through an integration of genome-wide association mapping and a linkage analysis. The linkage analysis was performed using a recombinant inbred line (RIL) population (173 lines of F8:9) with a high-density genetic map constructed with 90K SNP arrays, Diversity Arrays Technology (DArT) and simple sequence repeat (SSR) markers in five environments. Thirty-five additive quantitative trait loci (QTL) were discovered, including eleven stable QTLs on chromosomes 1A, 2D, 4B, 5B, 6B, and 6D. The marker interval between EX_C101685 and RAC875_C27536 on chromosome 4B exhibited pleiotropic effects for GW, SL, GNS, FSN, SSN, and TSS, with the phenotypic variation explained (PVE) ranging from 5.40 to 37.70%. In addition, an association analysis was conducted using a diverse panel of 205 elite wheat lines with a composite map (24,355 SNPs) based on the Illumina Infinium assay in four environments. A total of 73 significant marker-trait associations (MTAs) were detected for panicle traits, which were distributed across all wheat chromosomes except for 4D, 5D, and 6D. Consensus regions between RAC875_C27536_611 and Tdurum_contig4974_355 on chromosome 4B for GW in multiple environments, between QTSS5A.7-43 and BS00021805_51 on 5A for SD and TSS, and between QSD3A.2-164 and RAC875_c17479_359 on 3A for SL and GNS in multiple environments were detected through linkage analysis and a genome-wide association study (GWAS). In addition, six stable QTL clusters on chromosomes 2D, 3A, 4B, 5A, and 6A were identified with high PVE% on a composite map. This study provides potentially valuable information on the dissection of yield-component traits and valuable genetic alleles for molecular-design breeding or functional gene exploration.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xiaoxiao Sun
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Tangyuan Ning
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xixian Duan
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Qiaoling Wang
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Tongtong Liu
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yuling An
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xin Guan
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jichun Tian
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Jiansheng Chen
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|