1
|
Wamhoff D, Gündel A, Wagner S, Ortleb S, Borisjuk L, Winkelmann T. Anatomical limitations in adventitious root formation revealed by magnetic resonance imaging, infrared spectroscopy, and histology of rose genotypes with contrasting rooting phenotypes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4784-4801. [PMID: 38606898 PMCID: PMC11350080 DOI: 10.1093/jxb/erae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Adventitious root (AR) formation is one of the most important developmental processes in vegetative propagation. Although genotypic differences in rose rooting ability are well known, the causal factors are not well understood. The rooting of two contrasting genotypes, 'Herzogin Friederike' and 'Mariatheresia', was compared following a multiscale approach. Using magnetic resonance imaging, we non-invasively monitored the inner structure of stem cuttings during initiation and progression of AR formation for the first time. Spatially resolved Fourier-transform infrared spectroscopy characterized the chemical composition of the tissues involved in AR formation. The results were validated through light microscopy and complemented by immunolabelling. The outcome demonstrated similarity of both genotypes in root primordia formation, which did not result in root protrusion through the shoot cortex in the difficult-to-root genotype 'Mariatheresia'. The biochemical composition of the contrasting genotypes highlighted main differences in cell wall-associated components. Further spectroscopic analysis of 15 contrasting rose genotypes confirmed the biochemical differences between easy- and difficult-to-root groups. Collectively, our data indicate that it is not the lack of root primordia limiting AR formation in these rose genotypes, but the firmness of the outer stem tissue and/or cell wall modifications that pose a mechanical barrier and prevent root extension and protrusion.
Collapse
Affiliation(s)
- David Wamhoff
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Hannover, Germany
| | - André Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
- Stockholm University, Department of Ecology, Environment and Plant Sciences, Svante Arrhenius Väg 21 A Frescati Backe Stockholm SE-106 91, Sweden
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
2
|
Tuomainen TV, Toljamo A, Kokko H, Nissi MJ. Non-invasive assessment and visualization of Phytophthora cactorum infection in strawberry crowns using quantitative magnetic resonance imaging. Sci Rep 2024; 14:2129. [PMID: 38267614 PMCID: PMC10808117 DOI: 10.1038/s41598-024-52520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Phytophthora cactorum is an oomycete species that causes enormous losses on horticultural crops, including strawberries. The purpose of this work was to investigate the alterations caused by P. cactorum inoculation in hydroponically grown strawberry plantlets (Fragaria × ananassa Duch.) using quantitative magnetic resonance imaging (qMRI). It was observed that with MRI, spatial and temporal progression of the infection could be observed in the crown using quantitative MR parameters, namely relaxation time maps. Relaxation times are numeric subject-specific properties that describe the MR signal behavior in an examined anatomical region. Elevated [Formula: see text] relaxation time values were observed inside the infected plant crowns with respect to the healthy references. The [Formula: see text] and [Formula: see text] values of healthy plants were small in the crown region and further diminished during the development of the plant. Furthermore, elevated [Formula: see text] relaxation time values were seen in regions where P. cactorum progression was observed in corresponding plant dissection photographs. Quantitative susceptibility maps (QSM) were calculated to estimate the local magnetic field inhomogeneities. The QSM suggests magnetic susceptibility differences near the center of the pith. This study provides novel non-invasive information on the structure and development of strawberry plants and the effects caused by the P. cactorum infection.
Collapse
Affiliation(s)
- Teemu Valtteri Tuomainen
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 8, 70210, Kuopio, Finland
| | - Anna Toljamo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 8, 70210, Kuopio, Finland
| | - Harri Kokko
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 8, 70210, Kuopio, Finland
| | - Mikko Johannes Nissi
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 8, 70210, Kuopio, Finland.
| |
Collapse
|
3
|
Borisjuk L, Horn P, Chapman K, Jakob PM, Gündel A, Rolletschek H. Seeing plants as never before. THE NEW PHYTOLOGIST 2023; 238:1775-1794. [PMID: 36895109 DOI: 10.1111/nph.18871] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 05/04/2023]
Abstract
Imaging has long supported our ability to understand the inner life of plants, their development, and response to a dynamic environment. While optical microscopy remains the core tool for imaging, a suite of novel technologies is now beginning to make a significant contribution to visualize plant metabolism. The purpose of this review was to provide the scientific community with an overview of current imaging methods, which rely variously on either nuclear magnetic resonance (NMR), mass spectrometry (MS) or infrared (IR) spectroscopy, and to present some examples of their application in order to illustrate their utility. In addition to providing a description of the basic principles underlying these technologies, the review discusses their various advantages and limitations, reveals the current state of the art, and suggests their potential application to experimental practice. Finally, a view is presented as to how the technologies will likely develop, how these developments may encourage the formulation of novel experimental strategies, and how the enormous potential of these technologies can contribute to progress in plant science.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Patrick Horn
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Kent Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Peter M Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| |
Collapse
|
4
|
Beuchat G, Xue X, Chen LQ. Review: The Next Steps in Crop Improvement: Adoption of Emerging Strategies to Identify Bottlenecks in Sugar Flux. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110675. [PMID: 33218639 DOI: 10.1016/j.plantsci.2020.110675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 05/24/2023]
Abstract
Sugar allocation in plants is the fundamental process that transports sugar from source to sink tissues and has a dramatic impact on crop yields. Controlling sugar allocation is required to increase crop yields, as well as biomass for biofuel production. Successful examples have demonstrated that genetic engineering of sugar partitioning offers a promising strategy to achieve this goal. However, improvement has thus far been limited by gaps in understanding of the underlying mechanisms controlling the allocation of sugars. The dynamics of sugar partitioning are minimally predictable under different conditions, between species, or in response to abiotic stresses. Here, we discuss four methodologies that have not been sufficiently exploited for the identification of bottlenecks in sugar flux. Furthermore, we suggest how these strategies can be used and combined to provide the insight needed to maximize crop yields or biomass, especially under conditions of environmental stress.
Collapse
Affiliation(s)
- Gabriel Beuchat
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xueyi Xue
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Hesse L, Bunk K, Leupold J, Speck T, Masselter T. Structural and functional imaging of large and opaque plant specimens. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3659-3678. [PMID: 31188449 DOI: 10.1093/jxb/erz186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/08/2019] [Indexed: 05/20/2023]
Abstract
Three- and four-dimensional imaging techniques are a prerequisite for spatially resolving the form-structure-function relationships in plants. However, choosing the right imaging method is a difficult and time-consuming process as the imaging principles, advantages and limitations, as well as the appropriate fields of application first need to be compared. The present study aims to provide an overview of three imaging methods that allow for imaging opaque, large and thick (>5 mm, up to several centimeters), hierarchically organized plant samples that can have complex geometries. We compare light microscopy of serial thin sections followed by 3D reconstruction (LMTS3D) as an optical imaging technique, micro-computed tomography (µ-CT) based on ionizing radiation, and magnetic resonance imaging (MRI) which uses the natural magnetic properties of a sample for image acquisition. We discuss the most important imaging principles, advantages, and limitations, and suggest fields of application for each imaging technique (LMTS, µ-CT, and MRI) with regard to static (at a given time; 3D) and dynamic (at different time points; quasi 4D) structural and functional plant imaging.
Collapse
Affiliation(s)
- Linnea Hesse
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| | - Katharina Bunk
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Germany
| | - Tom Masselter
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| |
Collapse
|
6
|
Hesse L, Leupold J, Poppinga S, Wick M, Strobel K, Masselter T, Speck T. Resolving Form–Structure–Function Relationships in Plants with MRI for Biomimetic Transfer. Integr Comp Biol 2019; 59:1713-1726. [DOI: 10.1093/icb/icz051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
In many biomimetic approaches, a deep understanding of the form–structure–function relationships in living and functionally intact organisms, which act as biological role models, is essential. This knowledge is a prerequisite for the identification of parameters that are relevant for the desired technical transfer of working principles. Hence, non-invasive and non-destructive techniques for static (3D) and dynamic (4D) high-resolution plant imaging and analysis on multiple hierarchical levels become increasingly important. In this study we demonstrate that magnetic resonance imaging (MRI) can be used to resolve the plants inner tissue structuring and functioning on the example of four plant concept generators with sizes larger than 5 mm used in current biomimetic research projects: Dragon tree (Dracaena reflexa var. angustifolia), Venus flytrap (Dionaea muscipula), Sugar pine (Pinus lambertiana) and Chinese witch hazel (Hamamelis mollis). Two different MRI sequences were applied for high-resolution 3D imaging of the differing material composition (amount, distribution, and density of various tissues) and condition (hydrated, desiccated, and mechanically stressed) of the four model organisms. Main aim is to better understand their biomechanics, development, and kinematics. The results are used as inspiration for developing novel design and fabrication concepts for bio-inspired technical fiber-reinforced branchings and smart biomimetic actuators.
Collapse
Affiliation(s)
- Linnea Hesse
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | | | | | - Tom Masselter
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS—FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|