1
|
Zhang S, Gan P, Xie H, Li C, Tang T, Hu Q, Zhu Z, Zhang Z, Zhang J, Zhu Y, Hu Q, Hu J, Guan H, Zhao S, Wu J. Virulence effectors encoded in the rice yellow dwarf phytoplasma genome participate in pathogenesis. PLANT PHYSIOLOGY 2024; 197:kiae601. [PMID: 39509327 DOI: 10.1093/plphys/kiae601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
Bacteria-like phytoplasmas alternate between plant and insect hosts, secreting proteins that disrupt host development. In this study, we sequenced the complete genome of "Candidatus Phytoplasma oryzae" strain HN2022, associated with rice yellow dwarf (RYD) disease, using PacBio HiFi technology. The strain was classified within the 16Sr XI-B subgroup. Through SignalP v5.0 for prediction and subsequent expression analysis of secreted proteins in Nicotiana benthamiana and rice (Oryza sativa L.), we identified the key virulence effector proteins RY348 and RY378. RY348, a homolog of Secreted Aster Yellows Phytoplasma Effector 54 (SAP54), targets and degrades the MADS-box transcription factors MADS1 and MADS15, causing pollen sterility. Meanwhile, RY378 impacts the strigolactone and auxin signaling pathways, substantially increasing tillering. These findings offer insights into the interactions between plants and phytoplasmas.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Gan
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiting Xie
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Chuan Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianxin Tang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiong Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihong Zhu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongkai Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Qun Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongxin Guan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shanshan Zhao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Deng M, Ma F, Zhai L, Zhang X, Zhang N, Zheng Y, Chen W, Zhou W, Pang K, Zhou J, Sun Q, Sun J. The effector SJP3 interferes with pistil development by sustaining SHORT VEGETATIVE PHASE 3 expression in jujube. PLANT PHYSIOLOGY 2024; 196:1923-1938. [PMID: 39189604 DOI: 10.1093/plphys/kiae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/28/2024]
Abstract
Jujube witches' broom (JWB) is a phytoplasma disease that causes severe damage to jujube (Ziziphus jujuba) crops worldwide. Diseased jujube plants show enhanced vegetative growth after floral reversion, including leafy flower structures (phyllody) and the fourth whorl converting into a vegetative shoot. In previous research, secreted JWB protein 3 (SJP3) was identified as an inducer of phyllody. However, the molecular mechanisms of SJP3-mediated pistil reversion remain unknown. Here, the effector SJP3 was found to interact with the MADS-box protein SHORT VEGETATIVE PHASE 3 (ZjSVP3). ZjSVP3 was expressed in young leaves and during the initial flower bud differentiation of healthy jujube-bearing shoots but was constitutively expressed in JWB phytoplasma-infected flowers until the later stage of floral development. The SJP3 effector showed the same expression pattern in the diseased buds and promoted ZjSVP3 accumulation in SJP3 transgenic jujube calli. The N-terminal domains of ZjSVP3 contributed to its escape from protein degradation in the presence of SJP3. Heterologous expression of ZjSVP3 in Nicotiana benthamiana produced typical pistil abnormalities, including trichome-enriched style and stemlike structures within the leaflike ovary, which were consistent with those in the mildly malformed lines overexpressing SJP3. Furthermore, ectopic expression of ZjSVP3 directly bound to the zinc finger protein 8 (ZjZFP8) and MADS-box gene SHATTERPROOF 1 (ZjSHP1) promoters to regulate their expression, resulting in abnormal pistil development. Overall, effector SJP3-mediated derepression of ZjSVP3 sustained its expression to interfere with pistil development, providing insight into the mechanisms of pistil reversion caused by JWB phytoplasma in specific perennial woody plant species.
Collapse
Affiliation(s)
- Mingsheng Deng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Fuli Ma
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Liping Zhai
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Xinyue Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Ning Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Yunyan Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Wei Chen
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Wenmin Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Kaixue Pang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Junyong Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Jun Sun
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| |
Collapse
|
3
|
Calia G, Cestaro A, Schuler H, Janik K, Donati C, Moser M, Bottini S. Definition of the effector landscape across 13 phytoplasma proteomes with LEAPH and EffectorComb. NAR Genom Bioinform 2024; 6:lqae087. [PMID: 39081684 PMCID: PMC11287381 DOI: 10.1093/nargab/lqae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
'Candidatus Phytoplasma' genus, a group of fastidious phloem-restricted bacteria, can infect a wide variety of both ornamental and agro-economically important plants. Phytoplasmas secrete effector proteins responsible for the symptoms associated with the disease. Identifying and characterizing these proteins is of prime importance for expanding our knowledge of the molecular bases of the disease. We faced the challenge of identifying phytoplasma's effectors by developing LEAPH, a machine learning ensemble predictor composed of four models. LEAPH was trained on 479 proteins from 53 phytoplasma species, described by 30 features. LEAPH achieved 97.49% accuracy, 95.26% precision and 98.37% recall, ensuring a low false-positive rate and outperforming available state-of-the-art methods. The application of LEAPH to 13 phytoplasma proteomes yields a comprehensive landscape of 2089 putative pathogenicity proteins. We identified three classes according to different secretion models: 'classical', 'classical-like' and 'non-classical'. Importantly, LEAPH identified 15 out of 17 known experimentally validated effectors belonging to the three classes. Furthermore, to help the selection of novel candidates for biological validation, we applied the Self-Organizing Maps algorithm and developed a Shiny app called EffectorComb. LEAPH and the EffectorComb app can be used to boost the characterization of putative effectors at both computational and experimental levels, and can be employed in other phytopathological models.
Collapse
Affiliation(s)
- Giulia Calia
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, 39100 Bolzano, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
- INRAE, Institut Sophia Agrobiotech, Université Côte d’Azur, CNRS, 06903 Sophia-Antipolis, France
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy
| | - Hannes Schuler
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, 39100 Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bolzano, 39100 Bolzano, Italy
| | - Katrin Janik
- Institute for Plant Health, Molecular Biology and Microbiology, Laimburg Research Centre, 47141 Pfatten-Vadena, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Mirko Moser
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Silvia Bottini
- INRAE, Institut Sophia Agrobiotech, Université Côte d’Azur, CNRS, 06903 Sophia-Antipolis, France
| |
Collapse
|
4
|
Suzuki M, Kitazawa Y, Iwabuchi N, Maejima K, Matsuyama J, Matsumoto O, Oshima K, Namba S, Yamaji Y. Target degradation specificity of phytoplasma effector phyllogen is regulated by the recruitment of host proteasome shuttle protein. MOLECULAR PLANT PATHOLOGY 2024; 25:e13410. [PMID: 38105442 PMCID: PMC10799209 DOI: 10.1111/mpp.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Phytoplasmas infect a wide variety of plants and can cause distinctive symptoms including the conversion of floral organs into leaf-like organs, known as phyllody. Phyllody is induced by an effector protein family called phyllogens, which interact with floral MADS-box transcription factors (MTFs) responsible for determining the identity of floral organs. The MTF/phyllogen complex then interacts with the proteasomal shuttle protein RADIATION SENSITIVE23 (RAD23), which facilitates delivery of the MTF/phyllogen complex to the host proteasome for MTF degradation. Previous studies have indicated that the MTF degradation specificity of phyllogens is determined by their ability to bind to MTFs. However, in the present study, we discovered a novel mechanism determining the degradation specificity through detailed functional analyses of a phyllogen homologue of rice yellow dwarf phytoplasma (PHYLRYD ). PHYLRYD degraded a narrower range of floral MTFs than other phyllody-inducing phyllogens, resulting in compromised phyllody phenotypes in plants. Interestingly, PHYLRYD was able to bind to some floral MTFs that PHYLRYD was unable to efficiently degrade. However, the complex of PHYLRYD and the non-degradable MTF could not interact with RAD23. These results indicate that the MTF degradation specificity of PHYLRYD is correlated with the ability to form the MTF/PHYLRYD /RAD23 ternary complex, rather than the ability to bind to MTF. This study elucidated that phyllogen target specificity is regulated by both the MTF-binding ability and RAD23 recruitment ability of the MTF/phyllogen complex.
Collapse
Affiliation(s)
- Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Juri Matsuyama
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Oki Matsumoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kenro Oshima
- Faculty of Bioscience, Hosei UniversityTokyoJapan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
5
|
Chen P, Zhang Y, Li Y, Yang Q, Li Q, Chen L, Chen Y, Ye X, Tan B, Zheng X, Cheng J, Wang W, Li J, Feng J. Jujube Witches' Broom Phytoplasma Effector Zaofeng3, a Homologous Effector of SAP54, Induces Abnormal Floral Organ Development and Shoot Proliferation. PHYTOPATHOLOGY 2024; 114:200-210. [PMID: 37435950 DOI: 10.1094/phyto-10-21-0448-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Plant-pathogenic phytoplasmas secrete specific virulence proteins into a host plant to modulate plant function for their own benefit. Identification of phytoplasmal effectors is a key step toward clarifying the pathogenic mechanisms of phytoplasma. In this study, Zaofeng3, also known as secreted jujube witches' broom phytoplasma protein 3 (SJP3), was a homologous effector of SAP54 and induced a variety of abnormal phenotypes, such as phyllody, malformed floral organs, witches' broom, and dwarfism in Arabidopsis thaliana. Zaofeng3 can also induce small leaves, dwarfism, and witches' broom in Ziziphus jujuba. Further experiments showed that the three complete α-helix domains predicted in Zaofeng3 were essential for induction of disease symptoms in jujube. Yeast two-hybrid library screening showed that Zaofeng3 mainly interacts with proteins involved in flower morphogenesis and shoot proliferation. Bimolecular fluorescence complementation assays confirmed that Zaofeng3 interacted with these proteins in the whole cell. Overexpression of zaofeng3 in jujube shoot significantly altered the expression patterns of ZjMADS19, ZjMADS47, ZjMADS48, ZjMADS77, and ZjTCP7, suggesting that overexpressing zaofeng3 might induce floral organ malformation and witches' broom by altering the expression of the transcriptional factors involved in jujube morphogenesis.
Collapse
Affiliation(s)
- Peng Chen
- College of Landscape Architecture and Art, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Yu Zhang
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Yonghua Li
- College of Landscape Architecture and Art, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Qiqi Yang
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Qicheng Li
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Lichuan Chen
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Yun Chen
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Jidong Li
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| |
Collapse
|
6
|
Gupta S, Handa A, Brakta A, Negi G, Tiwari RK, Lal MK, Kumar R. First report of ' Candidatus Phytoplasma asteris' associated with yellowing, scorching and decline of almond trees in India. PeerJ 2023; 11:e15926. [PMID: 37663297 PMCID: PMC10470454 DOI: 10.7717/peerj.15926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/30/2023] [Indexed: 09/05/2023] Open
Abstract
The almond, a commercially important tree nut crop worldwide, is native to the Mediterranean region. Stone fruit trees are affected by at least 14 'Candidatus Phytoplasma' species globally, among which 'Candidatus Phytoplasma asteris' is one of the most widespread phytoplasma infecting Prunus dulcis, causing aster yellows disease. Recently, almond plantations of Nauni region were consistently affected by phytoplasma, as evidenced by visible symptoms, fluorescent microscopic studies and molecular characterization. During several surveys from May to September 2020-2022, almond aster yellows phytoplasma disease showing symptoms such as chlorosis, inward rolling, reddening, scorching and decline with an incidence as high as 40%. Leaf samples were collected from symptomatic almond trees and the presence of phytoplasma was confirmed through fluorescent microscopic studies by employing DAPI (4, 6-diamino-2-phenylindole) that showed distinctive light blue flourescent phytoplasma bodies in phloem sieve tube elements. The presence of phytoplasma in symptomatic almond trees was further confirmed using nested PCR with specific primer pairs followed by amplification of 16S rDNA and 16S-23S rDNA intergenic spacer (IS) fragments. Sequencing and BLAST analysis of expected amplicon of the 16S rDNA gene confirmed that the almond phytoplasma in Himachal Pradesh was identical to the aster yellows group phytoplasma. Phylogenetic analysis of 16S rDNA almond phytoplasma also grouped 'Prunus dulcis' aster yellows phytoplasma within 16SrI-B subgroup showed 94% nucleotide identity with 'Prunus dulcis' phytoplasma PAEs3 and 'Prunus dulcis' phytoplasma PAE28 from Iran. This research presents the first host report of 'Candidatus Phytoplasma asteris' infecting almonds in India, expanding the knowledge of the diversity and distribution of phytoplasma strains affecting almond trees globally.
Collapse
Affiliation(s)
- Shivani Gupta
- Plant Virology Laboratory, Department of Plant Pathology, College of Horticulture, Dr. YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Anil Handa
- Plant Virology Laboratory, Department of Plant Pathology, College of Horticulture, Dr. YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Ajay Brakta
- Plant Virology Laboratory, Department of Plant Pathology, College of Horticulture, Dr. YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Gulshan Negi
- Plant Virology Laboratory, Department of Plant Pathology, College of Horticulture, Dr. YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | | | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
7
|
Tokuda R, Iwabuchi N, Kitazawa Y, Nijo T, Suzuki M, Maejima K, Oshima K, Namba S, Yamaji Y. Potential mobile units drive the horizontal transfer of phytoplasma effector phyllogen genes. Front Genet 2023; 14:1132432. [PMID: 37252660 PMCID: PMC10210161 DOI: 10.3389/fgene.2023.1132432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Abstract
Phytoplasmas are obligate intracellular plant pathogenic bacteria that can induce phyllody, which is a type of abnormal floral organ development. Phytoplasmas possess phyllogens, which are effector proteins that cause phyllody in plants. Phylogenetic comparisons of phyllogen and 16S rRNA genes have suggested that phyllogen genes undergo horizontal transfer between phytoplasma species and strains. However, the mechanisms and evolutionary implications of this horizontal gene transfer are unclear. Here, we analyzed synteny in phyllogen flanking genomic regions from 17 phytoplasma strains that were related to six 'Candidatus' species, including three strains newly sequenced in this study. Many of the phyllogens were flanked by multicopy genes within potential mobile units (PMUs), which are putative transposable elements found in phytoplasmas. The multicopy genes exhibited two distinct patterns of synteny that correlated with the linked phyllogens. The low level of sequence identities and partial truncations found among these phyllogen flanking genes indicate that the PMU sequences are deteriorating, whereas the highly conserved sequences and functions (e.g., inducing phyllody) of the phyllogens suggest that the latter are important for phytoplasma fitness. Furthermore, although their phyllogens were similar, PMUs in strains related to 'Ca. P. asteris' were often located in different regions of the genome. These findings strongly indicate that PMUs drive the horizontal transfer of phyllogens among phytoplasma species and strains. These insights improve our understanding of how symptom-determinant genes have been shared among phytoplasmas.
Collapse
Affiliation(s)
- Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takamichi Nijo
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Kitazawa Y, Iwabuchi N, Maejima K, Matsumoto O, Suzuki M, Matsuyama J, Koinuma H, Oshima K, Namba S, Yamaji Y. Random mutagenesis-based screening of the interface of phyllogen, a bacterial phyllody-inducing effector, for interaction with plant MADS-box proteins. FRONTIERS IN PLANT SCIENCE 2023; 14:1058059. [PMID: 37056494 PMCID: PMC10086140 DOI: 10.3389/fpls.2023.1058059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
To understand protein function deeply, it is important to identify how it interacts physically with its target. Phyllogen is a phyllody-inducing effector that interacts with the K domain of plant MADS-box transcription factors (MTFs), which is followed by proteasome-mediated degradation of the MTF. Although several amino acid residues of phyllogen have been identified as being responsible for the interaction, the exact interface of the interaction has not been elucidated. In this study, we comprehensively explored interface residues based on random mutagenesis using error-prone PCR. Two novel residues, at which mutations enhanced the affinity of phyllogen to MTF, were identified. These residues, and all other known interaction-involved residues, are clustered together at the surface of the protein structure of phyllogen, indicating that they constitute the interface of the interaction. Moreover, in silico structural prediction of the protein complex using ColabFold suggested that phyllogen interacts with the K domain of MTF via the putative interface. Our study facilitates an understanding of the interaction mechanisms between phyllogen and MTF.
Collapse
Affiliation(s)
- Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Oki Matsumoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Juri Matsuyama
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Bertaccini A. Plants and Phytoplasmas: When Bacteria Modify Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111425. [PMID: 35684198 PMCID: PMC9182842 DOI: 10.3390/plants11111425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 05/14/2023]
Abstract
Plant pathogen presence is very dangerous for agricultural ecosystems and causes huge economic losses. Phytoplasmas are insect-transmitted wall-less bacteria living in plants, only in the phloem tissues and in the emolymph of their insect vectors. They are able to manipulate several metabolic pathways of their hosts, very often without impairing their life. The molecular diversity described (49 'Candidatus Phytoplasma' species and about 300 ribosomal subgroups) is only in some cases related to their associated symptomatology. As for the other plant pathogens, it is necessary to verify their identity and recognize the symptoms associated with their presence to appropriately manage the diseases. However, the never-ending mechanism of patho-adaptation and the copresence of other pathogens makes this management difficult. Reducing the huge impact of phytoplasma-associated diseases in all the main crops and wild species is, however, relevant, in order to reduce their effects that are jeopardizing plant biodiversity.
Collapse
Affiliation(s)
- Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
10
|
Yadav R, Kalia S, Rangan P, Pradheep K, Rao GP, Kaur V, Pandey R, Rai V, Vasimalla CC, Langyan S, Sharma S, Thangavel B, Rana VS, Vishwakarma H, Shah A, Saxena A, Kumar A, Singh K, Siddique KHM. Current Research Trends and Prospects for Yield and Quality Improvement in Sesame, an Important Oilseed Crop. FRONTIERS IN PLANT SCIENCE 2022; 13:863521. [PMID: 35599863 PMCID: PMC9120847 DOI: 10.3389/fpls.2022.863521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/16/2022] [Indexed: 06/04/2023]
Abstract
Climate change is shifting agricultural production, which could impact the economic and cultural contexts of the oilseed industry, including sesame. Environmental threats (biotic and abiotic stresses) affect sesame production and thus yield (especially oil content). However, few studies have investigated the genetic enhancement, quality improvement, or the underlying mechanisms of stress tolerance in sesame. This study reveals the challenges faced by farmers/researchers growing sesame crops and the potential genetic and genomic resources for addressing the threats, including: (1) developing sesame varieties that tolerate phyllody, root rot disease, and waterlogging; (2) investigating beneficial agro-morphological traits, such as determinate growth, prostrate habit, and delayed response to seed shattering; (3) using wild relatives of sesame for wide hybridization; and (4) advancing existing strategies to maintain sesame production under changing climatic conditions. Future research programs need to add technologies and develop the best research strategies for economic and sustainable development.
Collapse
Affiliation(s)
- Rashmi Yadav
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, India
| | - Parimalan Rangan
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - K. Pradheep
- National Bureau of Plant Genetic Resources, Thrissur, India
| | - Govind Pratap Rao
- Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Vikender Kaur
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Renu Pandey
- Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Vandna Rai
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | - Sapna Langyan
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Sanjula Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, India
| | - Boopathi Thangavel
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | | | | | - Anshuman Shah
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Abhishek Saxena
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Ashok Kumar
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Kuldeep Singh
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Kadambot H. M. Siddique
- The UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia (UWA), Perth, WA, Australia
| |
Collapse
|
11
|
Kitazawa Y, Iwabuchi N, Maejima K, Sasano M, Matsumoto O, Koinuma H, Tokuda R, Suzuki M, Oshima K, Namba S, Yamaji Y. A phytoplasma effector acts as a ubiquitin-like mediator between floral MADS-box proteins and proteasome shuttle proteins. THE PLANT CELL 2022; 34:1709-1723. [PMID: 35234248 PMCID: PMC9048881 DOI: 10.1093/plcell/koac062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 06/01/2023]
Abstract
Plant pathogenic bacteria have developed effectors to manipulate host cell functions to facilitate infection. A certain number of effectors use the conserved ubiquitin-proteasome system in eukaryotic to proteolyze targets. The proteasome utilization mechanism is mainly mediated by ubiquitin interaction with target proteins destined for degradation. Phyllogens are a family of protein effectors produced by pathogenic phytoplasmas that transform flowers into leaves in diverse plants. Here, we present a noncanonical mechanism for phyllogen action that involves the proteasome and is ubiquitin-independent. Phyllogens induce proteasomal degradation of floral MADS-box transcription factors (MTFs) in the presence of RADIATION-SENSITIVE23 (RAD23) shuttle proteins, which recruit ubiquitinated proteins to the proteasome. Intracellular localization analysis revealed that phyllogen induced colocalization of MTF with RAD23. The MTF/phyllogen/RAD23 ternary protein complex was detected not only in planta but also in vitro in the absence of ubiquitin, showing that phyllogen directly mediates interaction between MTF and RAD23. A Lys-less nonubiquitinated phyllogen mutant induced degradation of MTF or a Lys-less mutant of MTF. Furthermore, the method of sequential formation of the MTF/phyllogen/RAD23 protein complex was elucidated, first by MTF/phyllogen interaction and then RAD23 recruitment. Phyllogen recognized both the evolutionarily conserved tetramerization region of MTF and the ubiquitin-associated domain of RAD23. Our findings indicate that phyllogen functionally mimics ubiquitin as a mediator between MTF and RAD23.
Collapse
Affiliation(s)
- Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Momoka Sasano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Oki Matsumoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo 184-8584, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
12
|
Huang W, MacLean AM, Sugio A, Maqbool A, Busscher M, Cho ST, Kamoun S, Kuo CH, Immink RGH, Hogenhout SA. Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell 2021; 184:5201-5214.e12. [PMID: 34536345 DOI: 10.1016/j.cell.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 05/27/2023]
Abstract
Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.
Collapse
Affiliation(s)
- Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Allyson M MacLean
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Akiko Sugio
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Marco Busscher
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen 6708 PB, the Netherlands; Plant Developmental Systems, Bioscience, Wageningen University and Research, Wageningen 6708 PB, the Netherlands
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen 6708 PB, the Netherlands; Plant Developmental Systems, Bioscience, Wageningen University and Research, Wageningen 6708 PB, the Netherlands
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
13
|
Huang W, MacLean AM, Sugio A, Maqbool A, Busscher M, Cho ST, Kamoun S, Kuo CH, Immink RGH, Hogenhout SA. Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell 2021; 184:5201-5214.e12. [PMID: 34536345 PMCID: PMC8525514 DOI: 10.1016/j.cell.2021.08.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.
Collapse
Affiliation(s)
- Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Allyson M MacLean
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Akiko Sugio
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Marco Busscher
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen 6708 PB, the Netherlands; Plant Developmental Systems, Bioscience, Wageningen University and Research, Wageningen 6708 PB, the Netherlands
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen 6708 PB, the Netherlands; Plant Developmental Systems, Bioscience, Wageningen University and Research, Wageningen 6708 PB, the Netherlands
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
14
|
Al-Subhi AM, Al-Sadi AM, Al-Yahyai RA, Chen Y, Mathers T, Orlovskis Z, Moro G, Mugford S, Al-Hashmi KS, Hogenhout SA. Witches' Broom Disease of Lime Contributes to Phytoplasma Epidemics and Attracts Insect Vectors. PLANT DISEASE 2021; 105:2637-2648. [PMID: 33349007 DOI: 10.1094/pdis-10-20-2112-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An insect-transmitted phytoplasma causing Witches' Broom Disease of Lime (WBDL) is responsible for the drastic decline in lime production in several countries. However, it is unclear how WBDL phytoplasma (WBDLp) induces witches' broom symptoms and if these symptoms contribute to the spread of phytoplasma. Here we show that the gene encoding SAP11 of WBDLp (SAP11WBDL) is present in all WBDLp isolates collected from diseased trees. SAP11WBDL interacts with acid lime (Citrus aurantifolia) TCP transcription factors, specifically members of the TB1/CYC class that have a role in suppressing axillary branching in plants. Sampling of WBDLp-infected lime trees revealed that WBDLp titers and SAP11WBDL expression levels were higher in symptomatic leaves compared with asymptomatic sections of the same trees. Moreover, the witches' brooms were found to attract the vector leafhopper. Defense genes that have a role in plant defense responses to bacteria and insects are more downregulated in witches' brooms compared with asymptomatic sections of trees. These findings suggest that witches' broom-affected parts of the trees contribute to WBDL epidemics by supporting higher phytoplasma titers and attracting insect vectors.
Collapse
Affiliation(s)
- A M Al-Subhi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khod 123, Oman
| | - A M Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khod 123, Oman
| | - R A Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khod 123, Oman
| | - Y Chen
- John Innes Centre, Department of Crop Genetics, Norwich NR4 7UH, United Kingdom
| | - T Mathers
- John Innes Centre, Department of Crop Genetics, Norwich NR4 7UH, United Kingdom
| | - Z Orlovskis
- John Innes Centre, Department of Crop Genetics, Norwich NR4 7UH, United Kingdom
| | - G Moro
- John Innes Centre, Department of Crop Genetics, Norwich NR4 7UH, United Kingdom
| | - S Mugford
- John Innes Centre, Department of Crop Genetics, Norwich NR4 7UH, United Kingdom
| | - K S Al-Hashmi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khod 123, Oman
| | - S A Hogenhout
- John Innes Centre, Department of Crop Genetics, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
15
|
Garcion C, Béven L, Foissac X. Comparison of Current Methods for Signal Peptide Prediction in Phytoplasmas. Front Microbiol 2021; 12:661524. [PMID: 33841387 PMCID: PMC8026896 DOI: 10.3389/fmicb.2021.661524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Although phytoplasma studies are still hampered by the lack of axenic cultivation methods, the availability of genome sequences allowed dramatic advances in the characterization of the virulence mechanisms deployed by phytoplasmas, and highlighted the detection of signal peptides as a crucial step to identify effectors secreted by phytoplasmas. However, various signal peptide prediction methods have been used to mine phytoplasma genomes, and no general evaluation of these methods is available so far for phytoplasma sequences. In this work, we compared the prediction performance of SignalP versions 3.0, 4.0, 4.1, 5.0 and Phobius on several sequence datasets originating from all deposited phytoplasma sequences. SignalP 4.1 with specific parameters showed the most exhaustive and consistent prediction ability. However, the configuration of SignalP 4.1 for increased sensitivity induced a much higher rate of false positives on transmembrane domains located at N-terminus. Moreover, sensitive signal peptide predictions could similarly be achieved by the transmembrane domain prediction ability of TMHMM and Phobius, due to the relatedness between signal peptides and transmembrane regions. Beyond the results presented herein, the datasets assembled in this study form a valuable benchmark to compare and evaluate signal peptide predictors in a field where experimental evidence of secretion is scarce. Additionally, this study illustrates the utility of comparative genomics to strengthen confidence in bioinformatic predictions.
Collapse
Affiliation(s)
- Christophe Garcion
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Laure Béven
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Xavier Foissac
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| |
Collapse
|
16
|
Iwabuchi N, Kitazawa Y, Maejima K, Koinuma H, Miyazaki A, Matsumoto O, Suzuki T, Nijo T, Oshima K, Namba S, Yamaji Y. Functional variation in phyllogen, a phyllody-inducing phytoplasma effector family, attributable to a single amino acid polymorphism. MOLECULAR PLANT PATHOLOGY 2020; 21:1322-1336. [PMID: 32813310 PMCID: PMC7488466 DOI: 10.1111/mpp.12981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 05/08/2023]
Abstract
Flower malformation represented by phyllody is a common symptom of phytoplasma infection induced by a novel family of phytoplasma effectors called phyllogens. Despite the accumulation of functional and structural phyllogen information, the molecular mechanisms of phyllody have not yet been integrated with their evolutionary aspects due to the limited data on their homologs across diverse phytoplasma lineages. Here, we developed a novel universal PCR-based approach to identify 25 phytoplasma phyllogens related to nine "Candidatus Phytoplasma" species, including four species whose phyllogens have not yet been identified. Phylogenetic analyses showed that the phyllogen family consists of four groups (phyl-A, -B, -C, and -D) and that the evolutionary relationships of phyllogens were significantly distinct from those of phytoplasmas, suggesting that phyllogens were transferred horizontally among phytoplasma strains and species. Although phyllogens belonging to the phyl-A, -C, and -D groups induced phyllody, the phyl-B group lacked the ability to induce phyllody. Comparative functional analyses of phyllogens revealed that a single amino acid polymorphism in phyl-B group phyllogens prevented interactions between phyllogens and A- and E-class MADS domain transcription factors (MTFs), resulting in the inability to degrade several MTFs and induce phyllody. Our finding of natural variation in the function of phytoplasma effectors provides new insights into molecular mechanisms underlying the aetiology of phytoplasma diseases.
Collapse
Affiliation(s)
- Nozomu Iwabuchi
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kensaku Maejima
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Akio Miyazaki
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Ouki Matsumoto
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takumi Suzuki
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takamichi Nijo
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | | | - Shigetou Namba
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
17
|
Mukhi N, Gorenkin D, Banfield MJ. Exploring folds, evolution and host interactions: understanding effector structure/function in disease and immunity. THE NEW PHYTOLOGIST 2020; 227:326-333. [PMID: 32239533 DOI: 10.1111/nph.16563] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Over the past decade, tremendous progress has been made in plant pathology, broadening our understanding of how pathogens colonize their hosts. To manipulate host cell physiology and subvert plant immune responses, pathogens secrete an array of effector proteins. A co-evolutionary arms-race drives the pathogen to constantly reinvent its effector repertoire to undermine plant immunity. In turn, hosts develop novel immune receptors to maintain effector recognition and mount defences. Understanding how effectors promote disease and how they are perceived by the plant's defence network persist as major subjects in the study of plant-pathogen interactions. Here, we focus on recent advances (over roughly the last two years) in understanding structure/function relationships in effectors from bacteria and filamentous plant pathogens. Structure/function studies of bacterial effectors frequently uncover diverse catalytic activities, while structure-informed similarity searches have enabled cataloguing of filamentous pathogen effectors. We also suggest how such advances have informed the study of plant-pathogen interactions.
Collapse
Affiliation(s)
- Nitika Mukhi
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Danylo Gorenkin
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
18
|
Ma F, Huang J, Yang J, Zhou J, Sun Q, Sun J. Identification, expression and miRNA targeting of auxin response factor genes related to phyllody in the witches’ broom disease of jujube. Gene 2020; 746:144656. [DOI: 10.1016/j.gene.2020.144656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022]
|
19
|
Singh A, Lakhanpaul S. Detection, characterization and evolutionary aspects of S54LP of SP (SAP54 Like Protein of Sesame Phyllody): a phytoplasma effector molecule associated with phyllody development in sesame ( Sesamum indicum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:445-458. [PMID: 32205922 PMCID: PMC7078397 DOI: 10.1007/s12298-020-00764-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 05/05/2023]
Abstract
SAP54, an effector protein secreted by phytoplasmas has been reported to induce phyllody. S54LP of SP (SAP54 Like Protein of Sesame Phyllody), a SAP54 ortholog from phyllody and witches' broom affected sesame (Sesamum indicum L.) was amplified, cloned and sequenced. Comparative sequence and phylogenetic analysis of diverse phytoplasma strains was carried out to delineate the evolution of S54LP of SP. The degree of polymorphism across SAP54 orthologs and the evolutionary forces acting on this effector protein were ascertained. Site-specific selection across SAP54 orthologs was estimated using Fixed Effects Likelihood (FEL) approach. Nonsynonymous substitutions were detected in the SAP54 orthologs' sequences from phytoplasmas belonging to same (sub) group. Phylogenetic analysis based on S54LP of SP grouped phytoplasmas belonging to same 16SrDNA (sub) groups into different clusters. Analysis of selection forces acting on SAP54 orthologs from nine different phytoplasma (sub)groups, affecting plant species belonging to twelve different families across ten countries showed the orthologs to be under purifying (negative) selection. One amino acid residue was found to be under pervasive diversifying (positive) selection and a total of three amino acid sites were found to be under pervasive purifying (negative) selection. The location of these amino acids in the signal peptide and mature protein was studied with an aim to understand their role in protein-protein interaction. Asparagine residues (at positions 68 and 84) were found to be under pervasive purifying selection suggesting their functional importance in the effector protein. Our study suggests lack of coevolution between SAP54 and 16SrDNA. Signal peptide appears to evolve at a rate slightly higher than the mature protein. Overall, SAP54 and its orthologs are evolving under purifying selection confirming their functional importance in phytoplasma virulence.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Botany, University of Delhi, Delhi, 110007 India
| | | |
Collapse
|
20
|
Bartlett M. Looking back to look forward: protein-protein interactions and the evolution of development. THE NEW PHYTOLOGIST 2020; 225:1127-1133. [PMID: 31494948 DOI: 10.1111/nph.16179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The evolutionary modification of development was fundamental in generating extant plant diversity. Similarly, the modification of development is a path forward to engineering the plants of the future, provided we know enough about what to modify. Understanding how extant diversity was generated will reveal productive pathways forward for modifying development. Here, I discuss four examples of developmental pathways that have been remodeled by changes to protein-protein interactions. These are cases where changes to developmental pathways have been paralleled by recent changes, selected for or engineered by humans. Extant plant diversity represents a vast treasure trove of molecular solutions to ecological problems. Mining this treasure trove will allow for the intentional modification of plant development for solving future problems.
Collapse
Affiliation(s)
- Madelaine Bartlett
- University of Massachusetts Amherst, 611 North Pleasant Street, 221 Morrill 2, Amherst, MA, 01003, USA
| |
Collapse
|
21
|
Pecher P, Moro G, Canale MC, Capdevielle S, Singh A, MacLean A, Sugio A, Kuo CH, Lopes JRS, Hogenhout SA. Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize. PLoS Pathog 2019; 15:e1008035. [PMID: 31557268 PMCID: PMC6802841 DOI: 10.1371/journal.ppat.1008035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/21/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Phytoplasmas are insect-transmitted bacterial pathogens that colonize a wide range of plant species, including vegetable and cereal crops, and herbaceous and woody ornamentals. Phytoplasma-infected plants often show dramatic symptoms, including proliferation of shoots (witch's brooms), changes in leaf shapes and production of green sterile flowers (phyllody). Aster Yellows phytoplasma Witches' Broom (AY-WB) infects dicots and its effector, secreted AYWB protein 11 (SAP11), was shown to be responsible for the induction of shoot proliferation and leaf shape changes of plants. SAP11 acts by destabilizing TEOSINTE BRANCHED 1-CYCLOIDEA-PROLIFERATING CELL FACTOR (TCP) transcription factors, particularly the class II TCPs of the CYCLOIDEA/TEOSINTE BRANCHED 1 (CYC/TB1) and CINCINNATA (CIN)-TCP clades. SAP11 homologs are also present in phytoplasmas that cause economic yield losses in monocot crops, such as maize, wheat and coconut. Here we show that a SAP11 homolog of Maize Bushy Stunt Phytoplasma (MBSP), which has a range primarily restricted to maize, destabilizes specifically TB1/CYC TCPs. SAP11MBSP and SAP11AYWB both induce axillary branching and SAP11AYWB also alters leaf development of Arabidopsis thaliana and maize. However, only in maize, SAP11MBSP prevents female inflorescence development, phenocopying maize tb1 lines, whereas SAP11AYWB prevents male inflorescence development and induces feminization of tassels. SAP11AYWB promotes fecundity of the AY-WB leafhopper vector on A. thaliana and modulates the expression of A. thaliana leaf defence response genes that are induced by this leafhopper, in contrast to SAP11MBSP. Neither of the SAP11 effectors promote fecundity of AY-WB and MBSP leafhopper vectors on maize. These data provide evidence that class II TCPs have overlapping but also distinct roles in regulating development and defence in a dicot and a monocot plant species that is likely to shape SAP11 effector evolution depending on the phytoplasma host range.
Collapse
Affiliation(s)
- Pascal Pecher
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
| | - Gabriele Moro
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
| | - Maria Cristina Canale
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
- Luiz de Queiroz College of Agriculture, Department of Entomology and Acarology, University of São Paulo, Piracicaba, Brazil
| | - Sylvain Capdevielle
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
| | - Archana Singh
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
| | - Allyson MacLean
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
| | - Akiko Sugio
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Joao R. S. Lopes
- Luiz de Queiroz College of Agriculture, Department of Entomology and Acarology, University of São Paulo, Piracicaba, Brazil
| | - Saskia A. Hogenhout
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Mittelberger C, Stellmach H, Hause B, Kerschbamer C, Schlink K, Letschka T, Janik K. A Novel Effector Protein of Apple Proliferation Phytoplasma Disrupts Cell Integrity of Nicotiana spp. Protoplasts. Int J Mol Sci 2019; 20:E4613. [PMID: 31540359 PMCID: PMC6770106 DOI: 10.3390/ijms20184613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/19/2023] Open
Abstract
Effector proteins play an important role in the virulence of plant pathogens such as phytoplasma, which are the causative agents of hundreds of different plant diseases. The plant hosts comprise economically relevant crops such as apples (Malus × domestica), which can be infected by 'Candidatus Phytoplasma mali' (P. mali), a highly genetically dynamic plant pathogen. As the result of the genetic and functional analyses in this study, a new putative P. mali effector protein was revealed. The so-called "Protein in Malus Expressed 2" (PME2), which is expressed in apples during P. mali infection but not in the insect vector, shows regional genetic differences. In a heterologous expression assay using Nicotiana benthamiana and Nicotiana occidentalis mesophyll protoplasts, translocation of both PME2 variants in the cell nucleus was observed. Overexpression of the effector protein affected cell integrity in Nicotiana spp. protoplasts, indicating a potential role of this protein in pathogenic virulence. Interestingly, the two genetic variants of PME2 differ regarding their potential to manipulate cell integrity. However, the exact function of PME2 during disease manifestation and symptom development remains to be further elucidated. Aside from the first description of the function of a novel effector of P. mali, the results of this study underline the necessity for a more comprehensive description and understanding of the genetic diversity of P. mali as an indispensable basis for a functional understanding of apple proliferation disease.
Collapse
Affiliation(s)
- Cecilia Mittelberger
- Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer/Ora (BZ), Italy.
| | - Hagen Stellmach
- Jasmonate Function & Mycorrhiza, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Bettina Hause
- Jasmonate Function & Mycorrhiza, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Christine Kerschbamer
- Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer/Ora (BZ), Italy.
| | - Katja Schlink
- Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer/Ora (BZ), Italy.
| | - Thomas Letschka
- Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer/Ora (BZ), Italy.
| | - Katrin Janik
- Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer/Ora (BZ), Italy.
| |
Collapse
|
23
|
Crystal structure of phyllogen, a phyllody-inducing effector protein of phytoplasma. Biochem Biophys Res Commun 2019; 513:952-957. [PMID: 31010685 DOI: 10.1016/j.bbrc.2019.04.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 11/20/2022]
Abstract
Phytoplasmas are plant pathogenic bacteria that often induce unique phyllody symptoms in which the floral organs are transformed into leaf-like structures. Recently, a novel family of bacterial effector genes, called phyllody-inducing genes (phyllogens), was identified as being involved in the induction of phyllody by degrading floral MADS-domain transcription factors (MTFs). However, the structural characteristics of phyllogens are unknown. In this study, we elucidated the crystal structure of PHYL1OY, a phyllogen of 'Candidatus Phytoplasma asteris' onion yellows strain, at a resolution of 2.4 Å. The structure of PHYL1 consisted of two α-helices connected by a random loop in a coiled-coil manner. In both α-helices, the distributions of hydrophobic residues were conserved among phyllogens. Amino acid insertion mutations into either α-helix resulted in the loss of phyllody-inducing activity and the ability of the phyllogen to degrade floral MTF. In contrast, the same insertion in the loop region did not affect either activity, indicating that both conserved α-helices are important for the function of phyllogens. This is the first report on the crystal structure of an effector protein of phytoplasmas.
Collapse
|
24
|
Dermastia M. Plant Hormones in Phytoplasma Infected Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:477. [PMID: 31057582 PMCID: PMC6478762 DOI: 10.3389/fpls.2019.00477] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 05/21/2023]
Abstract
Phytoplasmas are bacterial plant pathogens that need a plant host and an insect vector for their spread and survival. In plants, the physiological responses that phytoplasmas trigger result in symptom development through effects on hormonal, nutritional, and stress signaling pathways, and the interactions between these. In this review, recent advances on the involvement of plant hormones together with their known and deduced roles in plants infected with phytoplasmas are discussed. Several studies have directly, or in many cases indirectly, addressed plant hormone systems in phytoplasma-infected plants. These have provided accumulating evidence that phytoplasmas extensively affect plant hormone pathways. Phytoplasmas thus, with disturbing complex plant hormone networks, suppress plant immunity and modify plant structure, while optimizing their nutrient acquisition and facilitating their colonization of the plants, and their dissemination among plants by their insect vectors.
Collapse
Affiliation(s)
- Marina Dermastia
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
25
|
Yusa A, Neriya Y, Hashimoto M, Yoshida T, Fujimoto Y, Hosoe N, Keima T, Tokumaru K, Maejima K, Netsu O, Yamaji Y, Namba S. Functional conservation of EXA1 among diverse plant species for the infection by a family of plant viruses. Sci Rep 2019; 9:5958. [PMID: 30976020 PMCID: PMC6459814 DOI: 10.1038/s41598-019-42400-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Since the propagation of plant viruses depends on various host susceptibility factors, deficiency in them can prevent viral infection in cultivated and model plants. Recently, we identified the susceptibility factor Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana, and revealed that EXA1-mediated resistance was effective against three potexviruses. Although EXA1 homolog genes are found in tomato and rice, little is known about which viruses depend on EXA1 for their infection capability and whether the function of EXA1 homologs in viral infection is conserved across multiple plant species, including crops. To address these questions, we generated knockdown mutants using virus-induced gene silencing in two Solanaceae species, Nicotiana benthamiana and tomato. In N. benthamiana, silencing of an EXA1 homolog significantly compromised the accumulation of potexviruses and a lolavirus, a close relative of potexviruses, whereas transient expression of EXA1 homologs from tomato and rice complemented viral infection. EXA1 dependency for potexviral infection was also conserved in tomato. These results indicate that EXA1 is necessary for effective accumulation of potexviruses and a lolavirus, and that the function of EXA1 in viral infection is conserved among diverse plant species.
Collapse
Affiliation(s)
- Akira Yusa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Laboratory of Plant Pathology, School of Agriculture, Utsunomiya University, Mine-machi 350, Utsunomiya, Tochigi, 321-8505, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tetsuya Yoshida
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuji Fujimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoi Hosoe
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Keima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kai Tokumaru
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Osamu Netsu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
26
|
NAMBA S. Molecular and biological properties of phytoplasmas. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:401-418. [PMID: 31406061 PMCID: PMC6766451 DOI: 10.2183/pjab.95.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phytoplasmas, a large group of plant-pathogenic, phloem-inhabiting bacteria were discovered by Japanese scientists in 1967. They are transmitted from plant to plant by phloem-feeding insect hosts and cause a variety of symptoms and considerable damage in more than 1,000 plant species. In the first quarter century following the discovery of phytoplasmas, their tiny cell size and the difficulty in culturing them hampered their biological classification and restricted research to ecological studies such as detection by electron microscopy and identification of insect vectors. In the 1990s, however, tremendous advances in molecular biology and related technologies encouraged investigation of phytoplasmas at the molecular level. In the last quarter century, molecular biology has revealed important properties of phytoplasmas. This review summarizes the history and current status of phytoplasma research, focusing on their discovery, molecular classification, diagnosis of phytoplasma diseases, reductive evolution of their genomes, characteristic features of their plasmids, molecular mechanisms of insect transmission, virulence factors, and chemotherapy.
Collapse
Affiliation(s)
- Shigetou NAMBA
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Correspondence should be addressed: S. Namba, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (e-mail: )
| |
Collapse
|
27
|
Tomkins M, Kliot A, Marée AF, Hogenhout SA. A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:39-48. [PMID: 29547737 DOI: 10.1016/j.pbi.2018.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 05/13/2023]
Abstract
Members of the Candidatus genus Phytoplasma are small bacterial pathogens that hijack their plant hosts via the secretion of virulence proteins (effectors) leading to a fascinating array of plant phenotypes, such as witch's brooms (stem proliferations) and phyllody (retrograde development of flowers into vegetative tissues). Phytoplasma depend on insect vectors for transmission, and interestingly, these insect vectors were found to be (in)directly attracted to plants with these phenotypes. Therefore, phytoplasma effectors appear to reprogram plant development and defence to lure insect vectors, similarly to social engineering malware, which employs tricks to lure people to infected computers and webpages. A multi-layered mechanistic modelling approach will enable a better understanding of how phytoplasma effector-mediated modulations of plant host development and insect vector behaviour contribute to phytoplasma spread, and ultimately to predict the long reach of phytoplasma effector genes.
Collapse
Affiliation(s)
- Melissa Tomkins
- Department of Computational and Systems Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Adi Kliot
- Department of Crop Genetics, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Athanasius Fm Marée
- Department of Computational and Systems Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Saskia A Hogenhout
- Department of Crop Genetics, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|