1
|
Fossdal CG, Krokene P, Olsen JE, Strimbeck R, Viejo M, Yakovlev I, Mageroy MH. Epigenetic stress memory in gymnosperms. PLANT PHYSIOLOGY 2024; 195:1117-1133. [PMID: 38298164 PMCID: PMC11142372 DOI: 10.1093/plphys/kiae051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
Gymnosperms are long-lived, cone-bearing seed plants that include some of the most ancient extant plant species. These relict land plants have evolved to survive in habitats marked by chronic or episodic stress. Their ability to thrive in these environments is partly due to their phenotypic flexibility, and epigenetic regulation likely plays a crucial part in this plasticity. We review the current knowledge on abiotic and biotic stress memory in gymnosperms and the possible epigenetic mechanisms underlying long-term phenotypic adaptations. We also discuss recent technological improvements and new experimental possibilities that likely will advance our understanding of epigenetic regulation in these ancient and hard-to-study plants.
Collapse
Affiliation(s)
- Carl Gunnar Fossdal
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| | - Paal Krokene
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| | - Jorunn Elisabeth Olsen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Richard Strimbeck
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Marcos Viejo
- Department of Functional Biology, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Igor Yakovlev
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| | - Melissa H Mageroy
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| |
Collapse
|
2
|
Escandón M, Valledor L, Lamelas L, Álvarez JM, Cañal MJ, Meijón M. Multiomics analyses reveal the central role of the nucleolus and its machinery during heat stress acclimation in Pinus radiata. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2558-2573. [PMID: 38318976 DOI: 10.1093/jxb/erae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Global warming is causing rapid changes in mean annual temperature and more severe drought periods. These are major contributors of forest dieback, which is becoming more frequent and widespread. In this work, we investigated how the transcriptome of Pinus radiata changed during initial heat stress response and acclimation. To this end, we generated a high-density dataset employing Illumina technology. This approach allowed us to reconstruct a needle transcriptome, defining 12 164 and 13 590 transcripts as down- and up-regulated, respectively, during a time course stress acclimation experiment. Additionally, the combination of transcriptome data with other available omics layers allowed us to determine the complex inter-related processes involved in the heat stress response from the molecular to the physiological level. Nucleolus and nucleoid activities seem to be a central core in the acclimating process, producing specific RNA isoforms and other essential elements for anterograde-retrograde stress signaling such as NAC proteins (Pra_vml_051671_1 and Pra_vml_055001_5) or helicase RVB. These mechanisms are connected by elements already known in heat stress response (redox, heat-shock proteins, or abscisic acid-related) and with others whose involvement is not so well defined such as shikimate-related, brassinosteriods, or proline proteases together with their potential regulatory elements. This work provides a first in-depth overview about molecular mechanisms underlying the heat stress response and acclimation in P. radiata.
Collapse
Affiliation(s)
- Mónica Escandón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Jóse M Álvarez
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| |
Collapse
|
3
|
Pereira C, Castander-Olarieta A, Montalbán IA, Mendes VM, Correia S, Pedrosa A, Manadas B, Moncaleán P, Canhoto J. Proteomic and Metabolic Analysis of Pinus halepensis Mill. Embryonal Masses Induced under Heat Stress. Int J Mol Sci 2023; 24:ijms24087211. [PMID: 37108380 PMCID: PMC10139065 DOI: 10.3390/ijms24087211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding the physiological and molecular adjustments occurring during tree stress response is of great importance for forest management and breeding programs. Somatic embryogenesis has been used as a model system to analyze various processes occurring during embryo development, including stress response mechanisms. In addition, "priming" plants with heat stress during somatic embryogenesis seems to favor the acquisition of plant resilience to extreme temperature conditions. In this sense, Pinus halepensis somatic embryogenesis was induced under different heat stress treatments (40 °C for 4 h, 50 °C for 30 min, and 60 °C for 5 min) and its effects on the proteome and the relative concentration of soluble sugars, sugar alcohols and amino acids of the embryonal masses obtained were assessed. Heat severely affected the production of proteins, and 27 proteins related to heat stress response were identified; the majority of the proteins with increased amounts in embryonal masses induced at higher temperatures consisted of enzymes involved in the regulation of metabolism (glycolysis, the tricarboxylic acid cycle, amino acid biosynthesis and flavonoids formation), DNA binding, cell division, transcription regulation and the life-cycle of proteins. Finally, significant differences in the concentrations of sucrose and amino acids, such as glutamine, glycine and cysteine, were found.
Collapse
Affiliation(s)
- Cátia Pereira
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | | | | | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLAb, Estrada de Gil Vaz, 7350-478 Elvas, Portugal
| | - Ana Pedrosa
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Paloma Moncaleán
- Department of Forestry Science, NEIKER-BRTA, 01192 Arkaute, Spain
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
4
|
García-Campa L, Valledor L, Pascual J. The Integration of Data from Different Long-Read Sequencing Platforms Enhances Proteoform Characterization in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:511. [PMID: 36771596 PMCID: PMC9920879 DOI: 10.3390/plants12030511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The increasing availability of massive omics data requires improving the quality of reference databases and their annotations. The combination of full-length isoform sequencing (Iso-Seq) with short-read transcriptomics and proteomics has been successfully used for increasing proteoform characterization, which is a main ongoing goal in biology. However, the potential of including Oxford Nanopore Technologies Direct RNA Sequencing (ONT-DRS) data has not been explored. In this paper, we analyzed the impact of combining Iso-Seq- and ONT-DRS-derived data on the identification of proteoforms in Arabidopsis MS proteomics data. To this end, we selected a proteomics dataset corresponding to senescent leaves and we performed protein searches using three different protein databases: AtRTD2 and AtRTD3, built from the homonymous transcriptomes, regarded as the most complete and up-to-date available for the species; and a custom hybrid database combining AtRTD3 with publicly available ONT-DRS transcriptomics data generated from Arabidopsis leaves. Our results show that the inclusion and combination of long-read sequencing data from Iso-Seq and ONT-DRS into a proteogenomic workflow enhances proteoform characterization and discovery in bottom-up proteomics studies. This represents a great opportunity to further investigate biological systems at an unprecedented scale, although it brings challenges to current protein searching algorithms.
Collapse
Affiliation(s)
- Lara García-Campa
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33003 Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, 33003 Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33003 Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, 33003 Oviedo, Spain
| | - Jesús Pascual
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33003 Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, 33003 Oviedo, Spain
| |
Collapse
|
5
|
Wang J, Zhang L, Qi L, Zhang S. Integrated transcriptomic and metabolic analyses provide insights into the maintenance of embryogenic potential and the biosynthesis of phenolic acids and flavonoids involving transcription factors in Larix kaempferi (Lamb.) Carr. FRONTIERS IN PLANT SCIENCE 2022; 13:1056930. [PMID: 36466286 PMCID: PMC9714495 DOI: 10.3389/fpls.2022.1056930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Somatic embryogenesis (SE) techniques have been established for micropropagation or basic research related to plant development in many conifer species. The frequent occurrence of non-embryogenic callus (NEC) during SE has impose constraints on the application of somatic embryogenesis SE in Larix kaempferi (Lamb.) Carr, but the potential regulatory mechanisms are poorly understood. In this study, integrated transcriptomic and metabolomic analyses were performed in embryogenic callus (EC) and NEC originating from a single immature zygotic embryo to better decipher the key molecular and metabolic mechanisms required for embryogenic potential maintenance. The results showed that a total of 13,842 differentially expressed genes (DEGs) were found in EC and NEC, among which many were enriched in plant hormone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis, and the biosynthesis of amino acids pathways. Metabolite profiling showed that 441 differentially accumulated metabolites (DAMs) were identified in EC and NEC. Both EC and NEC had vigorous primary metabolic activities, while most secondary metabolites were upregulated in NEC. Many totipotency-related transcription factor (TF) genes such as BBMs, WUSs, and LEC1 showed higher expression levels in EC compared with NEC, which may result in the higher accumulation of indole 3-acetic acid (IAA) in EC. NEC was characterized by upregulation of genes and metabolites associated with stress responses, such as DEGs involved in jasmonic acid (JA) and ethylene (ETH) biosynthesis and signal transduction pathways, and DEGs and DAMs related to phenylpropanoid and flavonoid biosynthesis. We predicted and analyzed TFs that could target several key co-expressed structural DEGs including two C4H genes, two CcoAOMT genes and three HCT genes involved in phenylpropanoid and flavonoid biosynthesis. Based on the targeted relationship and the co-expression network, two ERFs (Lk23436 and Lk458687), one MYB (Lk34626) and one C2C2-dof (Lk37167) may play an important role in regulating phenolic acid and flavonoid biosynthesis by transcriptionally regulating the expression of these structural genes. This study shows an approach involving integrated transcriptomic and metabolic analyses to obtain insights into molecular events underlying embryogenic potential maintenance and the biosynthesis mechanisms of key metabolites involving TF regulation, which provides valuable information for the improvement of SE efficiency in L. kaempferi.
Collapse
Affiliation(s)
- Junchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lifeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Liwang Qi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
6
|
Roces V, Lamelas L, Valledor L, Carbó M, Cañal MJ, Meijón M. Integrative analysis in Pinus revealed long-term heat stress splicing memory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:998-1013. [PMID: 36151923 PMCID: PMC9828640 DOI: 10.1111/tpj.15990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 05/09/2023]
Abstract
Due to the current climate change, many studies have described main drivers in abiotic stress. Recent findings suggest that alternative splicing (AS) has a critical role in controlling plant responses to high temperature. AS is a mechanism that allows organisms to create an assortment of RNA transcripts and proteins using a single gene. However, the most important roles of AS in stress could not be rigorously addressed because research has been focused on model species, covering only a narrow phylogenetic and lifecycle spectrum. Thus, AS degree of diversification among more dissimilar taxa in heat response is still largely unknown. To fill this gap, the present study employs a systems biology approach to examine how the AS landscape responds to and 'remembers' heat stress in conifers, a group which has received little attention even though their position can solve key evolutionary questions. Contrary to angiosperms, we found that potential intron retention may not be the most prevalent type of AS. Furthermore, our integrative analysis with metabolome and proteome data places splicing as the main source of variation during the response. Finally, we evaluated possible acquired long-term splicing memory in a diverse subset of events, and although this mechanism seems to be conserved in seed plants, AS dynamics are divergent. These discoveries reveal the particular way of remembering past temperature changes in long-lived plants and open the door to include species with unique features to determine the extent of conservation in gene expression regulation.
Collapse
Affiliation(s)
- Víctor Roces
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of AsturiasUniversity of OviedoOviedoAsturiasSpain
| | - Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of AsturiasUniversity of OviedoOviedoAsturiasSpain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of AsturiasUniversity of OviedoOviedoAsturiasSpain
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of AsturiasUniversity of OviedoOviedoAsturiasSpain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of AsturiasUniversity of OviedoOviedoAsturiasSpain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of AsturiasUniversity of OviedoOviedoAsturiasSpain
| |
Collapse
|
7
|
Castander-Olarieta A, Pereira C, Mendes VM, Correia S, Manadas B, Canhoto J, Montalbán IA, Moncaleán P. Thermopriming-associated proteome and sugar content responses in Pinus radiata embryogenic tissue. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111327. [PMID: 35696927 DOI: 10.1016/j.plantsci.2022.111327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Improving the capacity of plants to face adverse environmental conditions requires a deep understanding of the molecular mechanisms governing stress response and adaptation. Proteomics, combined with metabolic analyses, offers a wide resource of information to be used in plant breeding programs. Previous studies have shown that somatic embryogenesis in Pinus spp. is a suitable tool not only to investigate stress response processes but also to modulate the behaviour of somatic plants. Based on this, the objective of this study was to analyse the protein and soluble sugar profiles of Pinus radiata embryonal masses after the application of high temperatures to unravel the mechanisms involved in thermopriming and memory acquisition at early stages of the somatic embryogenesis process. Results confirmed that heat provokes deep readjustments in the life cycle of proteins, together with a significant reduction in the carbon-flux of central-metabolism pathways. Heat-priming also promotes the accumulation of proteins involved in oxidative stress defence, in the synthesis of specific amino acids such as isoleucine, influences cell division, the organization of the cytoskeleton and cell-walls, and modifies the levels of free soluble sugars like glucose or fructose. All this seems to be regulated by proteins linked with epigenetic, transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
| | - Cátia Pereira
- Department of Forestry Science, NEIKER-BRTA, Arkaute, Spain; Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Vera M Mendes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra Correia
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jorge Canhoto
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
8
|
Assessing the Potential of Backpack-Mounted Mobile Laser Scanning Systems for Tree Phenotyping. REMOTE SENSING 2022. [DOI: 10.3390/rs14143344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phenotyping has been a reality for aiding the selection of optimal crops for specific environments for decades in various horticultural industries. However, until recently, phenotyping was less accessible to tree breeders due to the size of the crop, the length of the rotation and the difficulty in acquiring detailed measurements. With the advent of affordable and non-destructive technologies, such as mobile laser scanners (MLS), phenotyping of mature forests is now becoming practical. Despite the potential of MLS technology, few studies included detailed assessments of its accuracy in mature plantations. In this study, we assessed a novel, high-density MLS operated below canopy for its ability to derive phenotypic measurements from mature Pinus radiata. MLS data were co-registered with above-canopy UAV laser scanner (ULS) data and imported to a pipeline that segments individual trees from the point cloud before extracting tree-level metrics. The metrics studied include tree height, diameter at breast height (DBH), stem volume and whorl characteristics. MLS-derived tree metrics were compared to field measurements and metrics derived from ULS alone. Our pipeline was able to segment individual trees with a success rate of 90.3%. We also observed strong agreement between field measurements and MLS-derived DBH (R2 = 0.99, RMSE = 5.4%) and stem volume (R2 = 0.99, RMSE = 10.16%). Additionally, we proposed a new variable height method for deriving DBH to avoid swelling, with an overall accuracy of 52% for identifying the correct method for where to take the diameter measurement. A key finding of this study was that MLS data acquired from below the canopy was able to derive canopy heights with a level of accuracy comparable to a high-end ULS scanner (R2 = 0.94, RMSE = 3.02%), negating the need for capturing above-canopy data to obtain accurate canopy height models. Overall, the findings of this study demonstrate that even in mature forests, MLS technology holds strong potential for advancing forest phenotyping and tree measurement.
Collapse
|
9
|
Changing Temperature Conditions during Somatic Embryo Maturation Result in Pinus pinaster Plants with Altered Response to Heat Stress. Int J Mol Sci 2022; 23:ijms23031318. [PMID: 35163242 PMCID: PMC8835971 DOI: 10.3390/ijms23031318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 12/17/2022] Open
Abstract
Under the global warming scenario, obtaining plant material with improved tolerance to abiotic stresses is a challenge for afforestation programs. In this work, maritime pine (Pinus pinaster Aiton) plants were produced from somatic embryos matured at different temperatures (18, 23, or 28 °C, named after M18, M23, and M28, respectively) and after 2 years in the greenhouse a heat stress treatment (45 °C for 3 h/day for 10 days) was applied. Temperature variation during embryo development resulted in altered phenotypes (leaf histology, proline content, photosynthetic rates, and hormone profile) before and after stress. The thickness of chlorenchyma was initially larger in M28 plants, but was significantly reduced after heat stress, while increased in M18 plants. Irrespective of their origin, when these plants were subjected to a heat treatment, relative water content (RWC) and photosynthetic carbon assimilation rates were not significantly affected, although M18 plants increased net photosynthesis rate after 10 days recovery (tR). M18 plants showed proline contents that increased dramatically (2.4-fold) when subjected to heat stress, while proline contents remained unaffected in M23 and M28 plants. Heat stress significantly increased abscisic acid (ABA) content in the needles of maritime pine plants (1.4-, 3.6- and 1.9-fold in M18, M23, and M28 plants, respectively), while indole-3-acetic acid content only increased in needles from M23 plants. After the heat treatment, the total cytokinin contents of needles decreased significantly, particularly in M18 and M28 plants, although levels of active forms (cytokinin bases) did not change in M18 plants. In conclusion, our results suggest that maturation of maritime pine somatic embryos at lower temperature resulted in plants with better performance when subjected to subsequent high temperature stress, as demonstrated by faster and higher proline increase, lower increases in ABA levels, no reduction in active cytokinin, and a better net photosynthesis rate recovery.
Collapse
|
10
|
Pascual J, Kangasjärvi S. Targeted Mass Spectrometry Analysis of Protein Phosphorylation by Selected Ion Monitoring Coupled to Parallel Reaction Monitoring (tSIM/PRM). Methods Mol Biol 2022; 2526:227-240. [PMID: 35657524 DOI: 10.1007/978-1-0716-2469-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent developments in targeted mass spectrometry-based proteomics have provided new methodological solutions for accurate and quantitative analysis of proteins and their posttranslational control, which has significantly advanced our understanding of stress responses in different plant species. Instrumentation allowing high-resolution, accurate-mass (HR/AM) analysis has provided new acquisition strategies for targeted quantitative proteomic analysis by targeted selected ion monitoring (tSIM) and parallel reaction monitoring (PRM). Here we report a sensitive and accurate method for targeted analysis of protein phosphorylation by tSIM coupled to PRM (tSIM/PRM). The tSIM/PRM method takes advantage of HR/AM mass spectrometers and benefits from the combination of highly sensitive precursor ion quantification by tSIM and highly confident peptide identification by spectral library matching in PRM. The detailed protocol describes tSIM/PRM analysis of Arabidopsis thaliana foliar proteins, from the building of a spectral library to sample preparation, mass spectrometry, and data analysis, and provides a methodological approach for specifying the molecular mechanisms of interest.
Collapse
Affiliation(s)
- Jesús Pascual
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FIN-00014 University of Helsinki, Helsinki, Finland.
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, FIN-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Pereira C, Castander-Olarieta A, Sales E, Montalbán IA, Canhoto J, Moncaleán P. Heat Stress in Pinus halepensis Somatic Embryogenesis Induction: Effect in DNA Methylation and Differential Expression of Stress-Related Genes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112333. [PMID: 34834696 PMCID: PMC8622292 DOI: 10.3390/plants10112333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/13/2023]
Abstract
In the current context of climate change, plants need to develop different mechanisms of stress tolerance and adaptation to cope with changing environmental conditions. Temperature is one of the most important abiotic stresses that forest trees have to overcome. Recent research developed in our laboratory demonstrated that high temperatures during different stages of conifer somatic embryogenesis (SE) modify subsequent phases of the process and the behavior of the resulting ex vitro somatic plants. For this reason, Aleppo pine SE was induced under different heat stress treatments (40 °C for 4 h, 50 °C for 30 min, and 60 °C for 5 min) in order to analyze its effect on the global DNA methylation rates and the differential expression of four stress-related genes at different stages of the SE process. Results showed that a slight decrease of DNA methylation at proliferating embryonal masses (EMs) can correlate with the final efficiency of the process. Additionally, different expression patterns for stress-related genes were found in EMs and needles from the in vitro somatic plants obtained; the DEHYDRATION INDUCED PROTEIN 19 gene was up-regulated in response to heat at proliferating EMs, whereas HSP20 FAMILY PROTEIN and SUPEROXIDE DISMUTASE [Cu-Zn] were down-regulated in needles.
Collapse
Affiliation(s)
- Cátia Pereira
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal;
- Department of Forestry Science, NEIKER-BRTA, 01080 Arkaute, Spain; (A.C.-O.); (I.A.M.)
| | | | - Ester Sales
- Departament of Ciencias Agrarias y del Medio Natural, Instituto Universitario de Ciencias Ambientales, Universidad de Zaragoza, Escuela Politécnica Superior, 22071 Huesca, Spain;
| | - Itziar A. Montalbán
- Department of Forestry Science, NEIKER-BRTA, 01080 Arkaute, Spain; (A.C.-O.); (I.A.M.)
| | - Jorge Canhoto
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal;
- Correspondence: (J.C.); (P.M.)
| | - Paloma Moncaleán
- Department of Forestry Science, NEIKER-BRTA, 01080 Arkaute, Spain; (A.C.-O.); (I.A.M.)
- Correspondence: (J.C.); (P.M.)
| |
Collapse
|
12
|
Urrutia M, Blein‐Nicolas M, Prigent S, Bernillon S, Deborde C, Balliau T, Maucourt M, Jacob D, Ballias P, Bénard C, Sellier H, Gibon Y, Giauffret C, Zivy M, Moing A. Maize metabolome and proteome responses to controlled cold stress partly mimic early-sowing effects in the field and differ from those of Arabidopsis. PLANT, CELL & ENVIRONMENT 2021; 44:1504-1521. [PMID: 33410508 PMCID: PMC8248070 DOI: 10.1111/pce.13993] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/31/2020] [Indexed: 05/21/2023]
Abstract
In Northern Europe, sowing maize one-month earlier than current agricultural practices may lead to moderate chilling damage. However, studies of the metabolic responses to low, non-freezing, temperatures remain scarce. Here, genetically-diverse maize hybrids (Zea mays, dent inbred lines crossed with a flint inbred line) were cultivated in a growth chamber at optimal temperature and then three decreasing temperatures for 2 days each, as well as in the field. Leaf metabolomic and proteomic profiles were determined. In the growth chamber, 50% of metabolites and 18% of proteins changed between 20 and 16°C. These maize responses, partly differing from those of Arabidopsis to short-term chilling, were mapped on genome-wide metabolic maps. Several metabolites and proteins showed similar variation for all temperature decreases: seven MS-based metabolite signatures and two proteins involved in photosynthesis decreased continuously. Several increasing metabolites or proteins in the growth-chamber chilling conditions showed similar trends in the early-sowing field experiment, including trans-aconitate, three hydroxycinnamate derivatives, a benzoxazinoid, a sucrose synthase, lethal leaf-spot 1 protein, an allene oxide synthase, several glutathione transferases and peroxidases. Hybrid groups based on field biomass were used to search for the metabolite or protein responses differentiating them in growth-chamber conditions, which could be of interest for breeding.
Collapse
Affiliation(s)
- Maria Urrutia
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- Present address:
Dtp. Biología Molecular y BioquímicaUniv. MálagaMálagaSpain
| | - Mélisande Blein‐Nicolas
- INRAE, CNRS, AgroParisTech, GQE‐Le MoulonUniv. Paris‐SaclayGif‐sur‐YvetteFrance
- PAPPSO, doi:10.15454/1.5572393176364355E12, GQE‐Le MoulonGif‐sur‐YvetteFrance
| | - Sylvain Prigent
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
| | - Stéphane Bernillon
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Catherine Deborde
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Thierry Balliau
- INRAE, CNRS, AgroParisTech, GQE‐Le MoulonUniv. Paris‐SaclayGif‐sur‐YvetteFrance
- PAPPSO, doi:10.15454/1.5572393176364355E12, GQE‐Le MoulonGif‐sur‐YvetteFrance
| | - Mickaël Maucourt
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Daniel Jacob
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Patricia Ballias
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Camille Bénard
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | | | - Yves Gibon
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Catherine Giauffret
- INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, BioEcoAgroPeronneFrance
| | - Michel Zivy
- INRAE, CNRS, AgroParisTech, GQE‐Le MoulonUniv. Paris‐SaclayGif‐sur‐YvetteFrance
- PAPPSO, doi:10.15454/1.5572393176364355E12, GQE‐Le MoulonGif‐sur‐YvetteFrance
| | - Annick Moing
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| |
Collapse
|
13
|
Abstract
Metabolomics is a technology that generates large amounts of data and contributes to obtaining wide and integral explanations of the biochemical state of a living organism. Plants are continuously affected by abiotic stresses such as water scarcity, high temperatures and high salinity, and metabolomics has the potential for elucidating the response-to-stress mechanisms and develop resistance strategies in affected cultivars. This review describes the characteristics of each of the stages of metabolomic studies in plants and the role of metabolomics in the characterization of the response of various plant species to abiotic stresses.
Collapse
|
14
|
Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. FORESTS 2021. [DOI: 10.3390/f12030364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Quercus (oak), family Fagaceae, comprises around 500 species, being one of the most important and dominant woody angiosperms in the Northern Hemisphere. Nowadays, it is threatened by environmental cues, which are either of biotic or abiotic origin. This causes tree decline, dieback, and deforestation, which can worsen in a climate change scenario. In the 21st century, biotechnology should take a pivotal role in facing this problem and proposing sustainable management and conservation strategies for forests. As a non-domesticated, long-lived species, the only plausible approach for tree breeding is exploiting the natural diversity present in this species and the selection of elite, more resilient genotypes, based on molecular markers. In this direction, it is important to investigate the molecular mechanisms of the tolerance or resistance to stresses, and the identification of genes, gene products, and metabolites related to this phenotype. This research is being performed by using classical biochemistry or the most recent omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) approaches, which should be integrated with other physiological and morphological techniques in the Systems Biology direction. This review is focused on the current state-of-the-art of such approaches for describing and integrating the latest knowledge on biotic and abiotic stress responses in Quercus spp., with special reference to Quercus ilex, the system on which the authors have been working for the last 15 years. While biotic stress factors mainly include fungi and insects such as Phytophthora cinnamomi, Cerambyx welensii, and Operophtera brumata, abiotic stress factors include salinity, drought, waterlogging, soil pollutants, cold, heat, carbon dioxide, ozone, and ultraviolet radiation. The review is structured following the Central Dogma of Molecular Biology and the omic cascade, from DNA (genomics, epigenomics, and DNA-based markers) to metabolites (metabolomics), through mRNA (transcriptomics) and proteins (proteomics). An integrated view of the different approaches, challenges, and future directions is critically discussed.
Collapse
|
15
|
Abstract
The evolution of next-generation sequencing and high-throughput technologies has created new opportunities and challenges in data science. Currently, a classic proteomics analysis can be complemented by going a step beyond the individual analysis of the proteome by using integrative approaches. These integrations can be focused either on inferring relationships among proteins themselves, with other molecular levels, phenotype, or even environmental data, giving the researcher new tools to extract and determine the most relevant information in biological terms. Furthermore, it is also important the employ of visualization methods that allow a correct and deep interpretation of data.To carry out these analyses, several bioinformatics and biostatistical tools are required. In this chapter, different workflows that enable the creation of interaction networks are proposed. Resulting networks reduce the complexity of original datasets, depicting complex statistical relationships (through PLS analysis and variants), functional networks (STRING, shinyGO), and a combination of both approaches. Recently developed methods for integrating different omics levels, such as coinertial analyses or DIABLO, are also described. Finally, the use of Cytoscape or Gephi was described for the representation and mining of the different networks.This approach constitutes a new way of acquiring a deeper knowledge of the function of proteins, such as the search for specific connections of each group to identify differentially connected modules, which may reflect involved protein complexes and key pathways.
Collapse
|
16
|
Valledor L, Guerrero S, García-Campa L, Meijón M. Proteometabolomic characterization of apical bud maturation in Pinus pinaster. TREE PHYSIOLOGY 2021; 41:508-521. [PMID: 32870277 DOI: 10.1093/treephys/tpaa111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 05/03/2023]
Abstract
Bud maturation is a physiological process that implies a set of morphophysiological changes that lead to the transition of growth patterns from young to mature. This transition defines tree growth and architecture, and in consequence traits such as biomass production and wood quality. In Pinus pinaster Aiton, a conifer of great timber value, bud maturation is closely related to polycyclism (multiple growth periods per year). This process causes a lack of apical dominance, and consequently increased branching that reduces its timber quality and value. However, despite its importance, little is known about bud maturation. In this work, proteomics and metabolomics were employed to study apical and basal sections of young and mature buds in P. pinaster. Proteins and metabolites in samples were described and quantified using (n)UPLC-LTQ-Orbitrap. The datasets were analyzed employing an integrative statistical approach, which allowed the determination of the interactions between proteins and metabolites and the different bud sections and ages. Specific dynamics of proteins and metabolites such as histones H3 and H4, ribosomal proteins L15 and L12, chaperonin TCP1, 14-3-3 protein gamma, gibberellins A1, A3 and A8, strigolactones and abscisic acid, involved in epigenetic regulation, proteome remodeling, hormonal signaling and abiotic stress pathways showed their potential role during bud maturation. Candidates and pathways were validated employing interaction databases and targeted transcriptomics. These results increase our understanding of the molecular processes behind bud maturation, a key step towards improving timber production and natural pine forests management in a future scenario of climate change. However, further studies are necessary using different P. pinaster populations that show contrasting wood quality and stress tolerance in order to generalize the results.
Collapse
Affiliation(s)
- Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, C/Catedrático Rodrigo Uría, University of Oviedo, Oviedo 33071, Asturias, Spain
| | - Sara Guerrero
- Plant Physiology, Department of Organisms and Systems Biology, C/Catedrático Rodrigo Uría, University of Oviedo, Oviedo 33071, Asturias, Spain
| | - Lara García-Campa
- Plant Physiology, Department of Organisms and Systems Biology, C/Catedrático Rodrigo Uría, University of Oviedo, Oviedo 33071, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, C/Catedrático Rodrigo Uría, University of Oviedo, Oviedo 33071, Asturias, Spain
| |
Collapse
|
17
|
Pérez-Oliver MA, Haro JG, Pavlović I, Novák O, Segura J, Sales E, Arrillaga I. Priming Maritime Pine Megagametophytes during Somatic Embryogenesis Improved Plant Adaptation to Heat Stress. PLANTS 2021; 10:plants10030446. [PMID: 33652929 PMCID: PMC7996847 DOI: 10.3390/plants10030446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
In the context of global climate change, forest tree research should be addressed to provide genotypes with increased resilience to high temperature events. These improved plants can be obtained by heat priming during somatic embryogenesis (SE), which would produce an epigenetic-mediated transgenerational memory. Thereby, we applied 37 °C or 50 °C to maritime pine (Pinus pinaster) megagametophytes and the obtained embryogenic masses went through the subsequent SE phases to produce plants that were further subjected to heat stress conditions. A putative transcription factor WRKY11 was upregulated in priming-derived embryonal masses, and also in the regenerated P37 and P50 plants, suggesting its role in establishing an epigenetic memory in this plant species. In vitro-grown P50 plants also showed higher cytokinin content and SOD upregulation, which points to a better responsiveness to heat stress. Heat exposure of two-year-old maritime pine plants induced upregulation of HSP70 in those derived from primed embryogenic masses, that also showed better osmotic adjustment and higher increases in chlorophyll, soluble sugars and starch contents. Moreover, ϕPSII of P50 plants was less affected by heat exposure. Thus, our results suggest that priming at 50 °C at the SE induction phase is a promising strategy to improve heat resilience in maritime pine.
Collapse
Affiliation(s)
- María Amparo Pérez-Oliver
- Plant Biology Department, Faculty of Pharmacy, Biotechnology and Biomedicine (BiotecMed) Institute, Universidad de Valencia, Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain; (M.A.P.-O.); (J.G.H.); (J.S.)
| | - Juan Gregorio Haro
- Plant Biology Department, Faculty of Pharmacy, Biotechnology and Biomedicine (BiotecMed) Institute, Universidad de Valencia, Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain; (M.A.P.-O.); (J.G.H.); (J.S.)
| | - Iva Pavlović
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (I.P.); (O.N.)
- Laboratory for Chemical Biology, Division of MoLecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (I.P.); (O.N.)
| | - Juan Segura
- Plant Biology Department, Faculty of Pharmacy, Biotechnology and Biomedicine (BiotecMed) Institute, Universidad de Valencia, Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain; (M.A.P.-O.); (J.G.H.); (J.S.)
| | - Ester Sales
- Agrarian and Environmental Sciences Department, Institute of Environmental Sciences (IUCA), University of Zaragoza, High Polytechnic School, Ctra. Cuarte s/n, 22071 Huesca, Spain;
| | - Isabel Arrillaga
- Plant Biology Department, Faculty of Pharmacy, Biotechnology and Biomedicine (BiotecMed) Institute, Universidad de Valencia, Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain; (M.A.P.-O.); (J.G.H.); (J.S.)
- Correspondence:
| |
Collapse
|
18
|
Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramšak Ž, Bazargani MM, Bajaj P, Jegadeesan S, Li W, Sun X, Gruden K, Varshney RK, Weckwerth W. Physiological and Proteomic Signatures Reveal Mechanisms of Superior Drought Resilience in Pearl Millet Compared to Wheat. FRONTIERS IN PLANT SCIENCE 2021; 11:600278. [PMID: 33519854 DOI: 10.3389/fpls.2020.600278.pmid:33519854;pmcid:pmc7838129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/17/2020] [Indexed: 05/24/2023]
Abstract
Presently, pearl millet and wheat are belonging to highly important cereal crops. Pearl millet, however, is an under-utilized crop, despite its superior resilience to drought and heat stress in contrast to wheat. To investigate this in more detail, we performed comparative physiological screening and large scale proteomics of drought stress responses in drought-tolerant and susceptible genotypes of pearl millet and wheat. These chosen genotypes are widely used in breeding and farming practices. The physiological responses demonstrated large differences in the regulation of root morphology and photosynthetic machinery, revealing a stay-green phenotype in pearl millet. Subsequent tissue-specific proteome analysis of leaves, roots and seeds led to the identification of 12,558 proteins in pearl millet and wheat under well-watered and stress conditions. To allow for this comparative proteome analysis and to provide a platform for future functional proteomics studies we performed a systematic phylogenetic analysis of all orthologues in pearl millet, wheat, foxtail millet, sorghum, barley, brachypodium, rice, maize, Arabidopsis, and soybean. In summary, we define (i) a stay-green proteome signature in the drought-tolerant pearl millet phenotype and (ii) differential senescence proteome signatures in contrasting wheat phenotypes not capable of coping with similar drought stress. These different responses have a significant effect on yield and grain filling processes reflected by the harvest index. Proteome signatures related to root morphology and seed yield demonstrated the unexpected intra- and interspecies-specific biochemical plasticity for stress adaptation for both pearl millet and wheat genotypes. These quantitative reference data provide tissue- and phenotype-specific marker proteins of stress defense mechanisms which are not predictable from the genome sequence itself and have potential value for marker-assisted breeding beyond genome assisted breeding.
Collapse
Affiliation(s)
- Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Gert Bachmann
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Luis Valledor
- Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
| | - Živa Ramšak
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Weimin Li
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Xiaoliang Sun
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Kristina Gruden
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
do Nascimento AMM, Polesi LG, Back FP, Steiner N, Guerra MP, Castander-Olarieta A, Moncaleán P, Montalbán IA. The Chemical Environment at Maturation Stage in Pinus spp. Somatic Embryogenesis: Implications in the Polyamine Profile of Somatic Embryos and Morphological Characteristics of the Developed Plantlets. FRONTIERS IN PLANT SCIENCE 2021; 12:771464. [PMID: 34899795 PMCID: PMC8663641 DOI: 10.3389/fpls.2021.771464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/28/2021] [Indexed: 05/13/2023]
Abstract
Changes in the chemical environment at the maturation stage in Pinus spp. somatic embryogenesis will be a determinant factor in the conversion of somatic embryos to plantlets. Furthermore, the study of biochemical and morphological aspects of the somatic embryos could enable the improvement of somatic embryogenesis in Pinus spp. In the present work, the influence of different amino acid combinations, carbohydrate sources, and concentrations at the maturation stage of Pinus radiata D. Don and Pinus halepensis Mill. was analyzed. In P. radiata, the maturation medium supplemented with 175 mM of sucrose and an increase in the amino acid mixture (1,100 mgL-1 of L-glutamine, 1,050 mgL-1 of L-asparagine, 350 mgL-1 of L-arginine, and 35 mgL-1 of L-proline) promoted bigger embryos, with a larger stem diameter and an increase in the number of roots in the germinated somatic embryos, improving the acclimatization success of this species. In P. halepensis, the maturation medium supplemented with 175 mM of maltose improved the germination of somatic embryos. The increase in the amount of amino acids in the maturation medium increased the levels of putrescine in the germinated somatic embryos of P. halepensis. We detected significant differences in the amounts of polyamines between somatic plantlets of P. radiata and P. halepensis; putrescine was less abundant in both species. For the first time, in P. radiata and P. halepensis somatic embryogenesis, we detected the presence of cadaverine, and its concentration changed according to the species.
Collapse
Affiliation(s)
| | - Luiza Giacomolli Polesi
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Franklin Panato Back
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Neusa Steiner
- Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Miguel Pedro Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Paloma Moncaleán
- Neiker-BRTA, Centro de Arkaute, Campus Agroalimentario de Arkaute, Arkaute, Spain
- *Correspondence: Paloma Moncaleán,
| | - Itziar Aurora Montalbán
- Neiker-BRTA, Centro de Arkaute, Campus Agroalimentario de Arkaute, Arkaute, Spain
- Itziar Aurora Montalbán,
| |
Collapse
|
20
|
Castander-Olarieta A, Pereira C, Montalbán IA, Mendes VM, Correia S, Suárez-Álvarez S, Manadas B, Canhoto J, Moncaleán P. Proteome-Wide Analysis of Heat-Stress in Pinus radiata Somatic Embryos Reveals a Combined Response of Sugar Metabolism and Translational Regulation Mechanisms. FRONTIERS IN PLANT SCIENCE 2021; 12:631239. [PMID: 33912202 PMCID: PMC8072280 DOI: 10.3389/fpls.2021.631239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis is the process by which bipolar structures with no vascular connection with the surrounding tissue are formed from a single or a group of vegetative cells, and in conifers it can be divided into five different steps: initiation, proliferation, maturation, germination and acclimatization. Somatic embryogenesis has long been used as a model to study the mechanisms regulating stress response in plants, and recent research carried out in our laboratory has demonstrated that high temperatures during initial stages of conifer somatic embryogenesis modify subsequent phases of the process, as well as the behavior of the resulting plants ex vitro. The development of high-throughput techniques has facilitated the study of the molecular response of plants to numerous stress factors. Proteomics offers a reliable image of the cell status and is known to be extremely susceptible to environmental changes. In this study, the proteome of radiata pine somatic embryos was analyzed by LC-MS after the application of high temperatures during initiation of embryonal masses [(23°C, control; 40°C (4 h); 60°C (5 min)]. At the same time, the content of specific soluble sugars and sugar alcohols was analyzed by HPLC. Results confirmed a significant decrease in the initiation rate of embryonal masses under 40°C treatments (from 44 to 30.5%) and an increasing tendency in the production of somatic embryos (from 121.87 to 170.83 somatic embryos per gram of embryogenic tissue). Besides, heat provoked a long-term readjustment of the protein synthesis machinery: a great number of structural constituents of ribosomes were increased under high temperatures, together with the down-regulation of the enzyme methionine-tRNA ligase. Heat led to higher contents of heat shock proteins and chaperones, transmembrane transport proteins, proteins related with post-transcriptional regulation (ARGONAUTE 1D) and enzymes involved in the synthesis of fatty acids, specific compatible sugars (myo-inositol) and cell-wall carbohydrates. On the other hand, the protein adenosylhomocysteinase and enzymes linked with the glycolytic pathway, nitrogen assimilation and oxidative stress response were found at lower levels.
Collapse
Affiliation(s)
| | - Cátia Pereira
- Department of Forestry Science, NEIKER, Arkaute, Spain
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Vera M. Mendes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra Correia
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jorge Canhoto
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paloma Moncaleán
- Department of Forestry Science, NEIKER, Arkaute, Spain
- *Correspondence: Paloma Moncaleán,
| |
Collapse
|
21
|
Castander-Olarieta A, Pereira C, Sales E, Meijón M, Arrillaga I, Cañal MJ, Goicoa T, Ugarte MD, Moncaleán P, Montalbán IA. Induction of Radiata Pine Somatic Embryogenesis at High Temperatures Provokes a Long-Term Decrease in DNA Methylation/Hydroxymethylation and Differential Expression of Stress-Related Genes. PLANTS 2020; 9:plants9121762. [PMID: 33322106 PMCID: PMC7762990 DOI: 10.3390/plants9121762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Based on the hypothesis that embryo development is a crucial stage for the formation of stable epigenetic marks that could modulate the behaviour of the resulting plants, in this study, radiata pine somatic embryogenesis was induced at high temperatures (23 °C, eight weeks, control; 40 °C, 4 h; 60 °C, 5 min) and the global methylation and hydroxymethylation levels of emerging embryonal masses and somatic plants were analysed using LC-ESI-MS/ MS-MRM. In this context, the expression pattern of six genes previously described as stress-mediators was studied throughout the embryogenic process until plant level to assess whether the observed epigenetic changes could have provoked a sustained alteration of the transcriptome. Results indicated that the highest temperatures led to hypomethylation of both embryonal masses and somatic plants. Moreover, we detected for the first time in a pine species the presence of 5-hydroxymethylcytosine, and revealed its tissue specificity and potential involvement in heat-stress responses. Additionally, a heat shock protein-coding gene showed a down-regulation tendency along the process, with a special emphasis given to embryonal masses at first subculture and ex vitro somatic plants. Likewise, the transcripts of several proteins related with translation, oxidative stress response, and drought resilience were differentially expressed.
Collapse
Affiliation(s)
| | - Cátia Pereira
- Department of Forestry Science, NEIKER, 01192 Arkaute, Spain; (A.C.-O.); (C.P.)
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ester Sales
- Departament of Ciencias Agrarias y del Medio Natural, Instituto Universitario de Ciencias Ambientales, Universidad de Zaragoza, Escuela Politécnica Superior, 22071 Huesca, Spain;
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, 33006 Oviedo, Spain; (M.M.); (M.J.C.)
| | - Isabel Arrillaga
- Departamento de Biología Vegetal, Facultad de Farmacia, Instituto BiotecMed, Universidad de Valencia, 46100 Burjassot, Spain;
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, 33006 Oviedo, Spain; (M.M.); (M.J.C.)
| | - Tomás Goicoa
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra, 31006 Pamplona, Spain; (T.G.); (M.D.U.)
- INAMAT2 (Institute for Advanced Materials and Mathematics), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - María Dolores Ugarte
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra, 31006 Pamplona, Spain; (T.G.); (M.D.U.)
- INAMAT2 (Institute for Advanced Materials and Mathematics), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Paloma Moncaleán
- Department of Forestry Science, NEIKER, 01192 Arkaute, Spain; (A.C.-O.); (C.P.)
- Correspondence: (P.M.); (I.A.M.)
| | - Itziar A. Montalbán
- Department of Forestry Science, NEIKER, 01192 Arkaute, Spain; (A.C.-O.); (C.P.)
- Correspondence: (P.M.); (I.A.M.)
| |
Collapse
|
22
|
Birami B, Nägele T, Gattmann M, Preisler Y, Gast A, Arneth A, Ruehr NK. Hot drought reduces the effects of elevated CO 2 on tree water-use efficiency and carbon metabolism. THE NEW PHYTOLOGIST 2020; 226:1607-1621. [PMID: 32017113 DOI: 10.1111/nph.16471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/28/2020] [Indexed: 05/15/2023]
Abstract
Trees are increasingly exposed to hot droughts due to CO2 -induced climate change. However, the direct role of [CO2 ] in altering tree physiological responses to drought and heat stress remains ambiguous. Pinus halepensis (Aleppo pine) trees were grown from seed under ambient (421 ppm) or elevated (867 ppm) [CO2 ]. The 1.5-yr-old trees, either well watered or drought treated for 1 month, were transferred to separate gas-exchange chambers and the temperature gradually increased from 25°C to 40°C over a 10 d period. Continuous whole-tree shoot and root gas-exchange measurements were supplemented by primary metabolite analysis. Elevated [CO2 ] reduced tree water loss, reflected in lower stomatal conductance, resulting in a higher water-use efficiency throughout amplifying heat stress. Net carbon uptake declined strongly, driven by increases in respiration peaking earlier in the well-watered (31-32°C) than drought (33-34°C) treatments unaffected by growth [CO2 ]. Further, drought altered the primary metabolome, whereas the metabolic response to [CO2 ] was subtle and mainly reflected in enhanced root protein stability. The impact of elevated [CO2 ] on tree stress responses was modest and largely vanished with progressing heat and drought. We therefore conclude that increases in atmospheric [CO2 ] cannot counterbalance the impacts of hot drought extremes in Aleppo pine.
Collapse
Affiliation(s)
- Benjamin Birami
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, 82467, Germany
| | - Thomas Nägele
- Department of Biology I, Plant Evolutionary Cell Biology, Ludwig-Maximilian University Munich, Planegg, 82152, Germany
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, 1090, Austria
| | - Marielle Gattmann
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, 82467, Germany
| | - Yakir Preisler
- Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Andreas Gast
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, 82467, Germany
| | - Almut Arneth
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, 82467, Germany
| | - Nadine K Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, 82467, Germany
| |
Collapse
|
23
|
Transcriptome analysis of heat stressed seedlings with or without pre-heat treatment in Cryptomeria japonica. Mol Genet Genomics 2020; 295:1163-1172. [PMID: 32472284 DOI: 10.1007/s00438-020-01689-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
With global warming as a major environment concern over the coming years, heat tolerance is an important trait for forest tree survival during the predicted future warmer weather conditions. Cryptomeria japonica is a coniferous species widely distributed throughout Japan, and thus, can adapt to a wide range of air temperatures. To elucidate genes involved in heat response in Cryptomeria japonica, transcriptome analysis was conducted for seedlings under heat shock conditions. To test whether heat acclimation affects levels of gene expression, half of the seedlings were pretreated with moderately high temperatures prior to heat shock. De novo assembly of the transcriptome generated 107,924 unigenes and the analysis of differentially expressed genes was conducted using these unigenes. A total of 5217 differentially expressed genes were identified. Most genes upregulated by heat shock, regardless of pre-heat treatment, were conserved to heat response genes of angiosperm species, such as heat shock factors (Hsf) and heat shock proteins (Hsp). Pre-heating of seedlings affected expression levels of several Hsfs and their induction was lower in pre-heated seedlings than in seedlings without pre-heat treatment. This suggests a conserved role of Hsfs in heat response and heat acclimation in seed plants. On the other hand, many unknown genes were upregulated in only seedlings without pre-heat treatment after heat exposure. Notably, expression of gypsy/Ty3 type retrotransposons was dramatically induced. These findings provide valuable information to develop a better understanding of the molecular mechanisms of heat response and acclimation in C. japonica.
Collapse
|
24
|
Lamelas L, Valledor L, Escandón M, Pinto G, Cañal MJ, Meijón M. Integrative analysis of the nuclear proteome in Pinus radiata reveals thermopriming coupled to epigenetic regulation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2040-2057. [PMID: 31781741 PMCID: PMC7094079 DOI: 10.1093/jxb/erz524] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
Despite it being an important issue in the context of climate change, for most plant species it is not currently known how abiotic stresses affect nuclear proteomes and mediate memory effects. This study examines how Pinus radiata nuclei respond, adapt, 'remember', and 'learn' from heat stress. Seedlings were heat-stressed at 45 °C for 10 d and then allowed to recover. Nuclear proteins were isolated and quantified by nLC-MS/MS, the dynamics of tissue DNA methylation were examined, and the potential acquired memory was analysed in recovered plants. In an additional experiment, the expression of key gene genes was also quantified. Specific nuclear heat-responsive proteins were identified, and their biological roles were evaluated using a systems biology approach. In addition to heat-shock proteins, several clusters involved in regulation processes were discovered, such as epigenomic-driven gene regulation, some transcription factors, and a variety of RNA-associated functions. Nuclei exhibited differential proteome profiles across the phases of the experiment, with histone H2A and methyl cycle enzymes in particular being accumulated in the recovery step. A thermopriming effect was possibly linked to H2A abundance and over-accumulation of spliceosome elements in recovered P. radiata plants. The results suggest that epigenetic mechanisms play a key role in heat-stress tolerance and priming mechanisms.
Collapse
Affiliation(s)
- Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Escandón
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Gloria Pinto
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
25
|
Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramšak Ž, Bazargani MM, Bajaj P, Jegadeesan S, Li W, Sun X, Gruden K, Varshney RK, Weckwerth W. Physiological and Proteomic Signatures Reveal Mechanisms of Superior Drought Resilience in Pearl Millet Compared to Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:600278. [PMID: 33519854 PMCID: PMC7838129 DOI: 10.3389/fpls.2020.600278] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/17/2020] [Indexed: 05/20/2023]
Abstract
Presently, pearl millet and wheat are belonging to highly important cereal crops. Pearl millet, however, is an under-utilized crop, despite its superior resilience to drought and heat stress in contrast to wheat. To investigate this in more detail, we performed comparative physiological screening and large scale proteomics of drought stress responses in drought-tolerant and susceptible genotypes of pearl millet and wheat. These chosen genotypes are widely used in breeding and farming practices. The physiological responses demonstrated large differences in the regulation of root morphology and photosynthetic machinery, revealing a stay-green phenotype in pearl millet. Subsequent tissue-specific proteome analysis of leaves, roots and seeds led to the identification of 12,558 proteins in pearl millet and wheat under well-watered and stress conditions. To allow for this comparative proteome analysis and to provide a platform for future functional proteomics studies we performed a systematic phylogenetic analysis of all orthologues in pearl millet, wheat, foxtail millet, sorghum, barley, brachypodium, rice, maize, Arabidopsis, and soybean. In summary, we define (i) a stay-green proteome signature in the drought-tolerant pearl millet phenotype and (ii) differential senescence proteome signatures in contrasting wheat phenotypes not capable of coping with similar drought stress. These different responses have a significant effect on yield and grain filling processes reflected by the harvest index. Proteome signatures related to root morphology and seed yield demonstrated the unexpected intra- and interspecies-specific biochemical plasticity for stress adaptation for both pearl millet and wheat genotypes. These quantitative reference data provide tissue- and phenotype-specific marker proteins of stress defense mechanisms which are not predictable from the genome sequence itself and have potential value for marker-assisted breeding beyond genome assisted breeding.
Collapse
Affiliation(s)
- Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- *Correspondence: Palak Chaturvedi,
| | - Gert Bachmann
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Luis Valledor
- Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
| | - Živa Ramšak
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Weimin Li
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Xiaoliang Sun
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Kristina Gruden
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
- Wolfram Weckwerth,
| |
Collapse
|
26
|
Castander-Olarieta A, Montalbán IA, De Medeiros Oliveira E, Dell’Aversana E, D’Amelia L, Carillo P, Steiner N, Fraga HPDF, Guerra MP, Goicoa T, Ugarte MD, Pereira C, Moncaleán P. Effect of Thermal Stress on Tissue Ultrastructure and Metabolite Profiles During Initiation of Radiata Pine Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2019; 9:2004. [PMID: 30705684 PMCID: PMC6344425 DOI: 10.3389/fpls.2018.02004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/27/2018] [Indexed: 05/22/2023]
Abstract
Climate change will inevitably lead to environmental variations, thus plant drought tolerance will be a determinant factor in the success of plantations and natural forestry recovery. Some metabolites, such as soluble carbohydrates and amino acids, have been described as being the key to both embryogenesis efficiency and abiotic stress response, contributing to phenotypic plasticity and the adaptive capacity of plants. For this reason, our main objectives were to evaluate if the temperature during embryonal mass initiation in radiata pine was critical to the success of somatic embryogenesis, to alter the morphological and ultrastructural organization of embryonal masses at cellular level and to modify the carbohydrate, protein, or amino acid contents. The first SE initiation experiments were carried out at moderate and high temperatures for periods of different durations prior to transfer to the control temperature of 23°C. Cultures initiated at moderate temperatures (30°C, 4 weeks and 40°C, 4 days) showed significantly lower initiation and proliferation rates than those at the control temperature or pulse treatment at high temperatures (50°C, 5 min). No significant differences were observed either for the percentage of embryogenic cell lines that produced somatic embryos, or for the number of somatic embryos per gram of embryonal mass. Based on the results from the first experiments, initiation was carried out at 40°C 4 h; 50°C, 30 min; and a pulse treatment of 60°C, 5 min. No significant differences were found for the initiation or number of established lines or for the maturation of somatic embryos. However, large morphological differences were observed in the mature somatic embryos. At the same time, changes observed at cellular level suggested that strong heat shock treatments may trigger the programmed cell death of embryogenic cells, leading to an early loss of embryogenic potential, and the formation of supernumerary suspensor cells. Finally, among all the differences observed in the metabolic profile, it is worth highlighting the accumulation of tyrosine and isoleucine, both amino acids involved in the synthesis of abiotic stress response-related secondary metabolites.
Collapse
Affiliation(s)
| | | | | | - Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Luisa D’Amelia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Neusa Steiner
- Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Miguel Pedro Guerra
- Laboratório de Fisiología do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tomás Goicoa
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra, Pamplona, Spain
| | - María Dolores Ugarte
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra, Pamplona, Spain
| | - Catia Pereira
- Department of Life Sciences, Universidade de Coimbra, Coimbra, Portugal
| | | |
Collapse
|
27
|
Valledor L, Carbó M, Lamelas L, Escandón M, Colina FJ, Cañal MJ, Meijón M. When the Tree Let Us See the Forest: Systems Biology and Natural Variation Studies in Forest Species. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/124_2018_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
López-Hidalgo C, Guerrero-Sánchez VM, Gómez-Gálvez I, Sánchez-Lucas R, Castillejo-Sánchez MA, Maldonado-Alconada AM, Valledor L, Jorrín-Novo JV. A Multi-Omics Analysis Pipeline for the Metabolic Pathway Reconstruction in the Orphan Species Quercus ilex. FRONTIERS IN PLANT SCIENCE 2018; 9:935. [PMID: 30050544 PMCID: PMC6050436 DOI: 10.3389/fpls.2018.00935] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/11/2018] [Indexed: 05/19/2023]
Abstract
Holm oak (Quercus ilex) is the most important and representative species of the Mediterranean forest and of the Spanish agrosilvo-pastoral "dehesa" ecosystem. Despite its environmental and economic interest, Holm oak is an orphan species whose biology is very little known, especially at the molecular level. In order to increase the knowledge on the chemical composition and metabolism of this tree species, the employment of a holistic and multi-omics approach, in the Systems Biology direction would be necessary. However, for orphan and recalcitrant plant species, specific analytical and bioinformatics tools have to be developed in order to obtain adequate quality and data-density before to coping with the study of its biology. By using a plant sample consisting of a pool generated by mixing equal amounts of homogenized tissue from acorn embryo, leaves, and roots, protocols for transcriptome (NGS-Illumina), proteome (shotgun LC-MS/MS), and metabolome (GC-MS) studies have been optimized. These analyses resulted in the identification of around 62629 transcripts, 2380 protein species, and 62 metabolites. Data are compared with those reported for model plant species, whose genome has been sequenced and is well annotated, including Arabidopsis, japonica rice, poplar, and eucalyptus. RNA and protein sequencing favored each other, increasing the number and confidence of the proteins identified and correcting erroneous RNA sequences. The integration of the large amount of data reported using bioinformatics tools allows the Holm oak metabolic network to be partially reconstructed: from the 127 metabolic pathways reported in KEGG pathway database, 123 metabolic pathways can be visualized when using the described methodology. They included: carbohydrate and energy metabolism, amino acid metabolism, lipid metabolism, nucleotide metabolism, and biosynthesis of secondary metabolites. The TCA cycle was the pathway most represented with 5 out of 10 metabolites, 6 out of 8 protein enzymes, and 8 out of 8 enzyme transcripts. On the other hand, gaps, missed pathways, included metabolism of terpenoids and polyketides and lipid metabolism. The multi-omics resource generated in this work will set the basis for ongoing and future studies, bringing the Holm oak closer to model species, to obtain a better understanding of the molecular mechanisms underlying phenotypes of interest (productive, tolerant to environmental cues, nutraceutical value) and to select elite genotypes to be used in restoration and reforestation programs, especially in a future climate change scenario.
Collapse
Affiliation(s)
- Cristina López-Hidalgo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department Biochemistry and Molecular Biology, Universidad de Córdoba, Córdoba, Spain
| | - Victor M. Guerrero-Sánchez
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department Biochemistry and Molecular Biology, Universidad de Córdoba, Córdoba, Spain
| | - Isabel Gómez-Gálvez
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department Biochemistry and Molecular Biology, Universidad de Córdoba, Córdoba, Spain
| | - Rosa Sánchez-Lucas
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department Biochemistry and Molecular Biology, Universidad de Córdoba, Córdoba, Spain
| | | | - Ana M. Maldonado-Alconada
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department Biochemistry and Molecular Biology, Universidad de Córdoba, Córdoba, Spain
| | - Luis Valledor
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | - Jesus V. Jorrín-Novo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department Biochemistry and Molecular Biology, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
29
|
Escandón M, Meijón M, Valledor L, Pascual J, Pinto G, Cañal MJ. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata. FRONTIERS IN PLANT SCIENCE 2018; 9:485. [PMID: 29719546 PMCID: PMC5914196 DOI: 10.3389/fpls.2018.00485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/29/2018] [Indexed: 05/19/2023]
Abstract
The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.
Collapse
Affiliation(s)
- Mónica Escandón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
- *Correspondence: Mónica Escandón, ; María Jesús Cañal,
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
- Plant Biotechnology Unit, University Institute of Biotechnology of Asturias (IUBA), Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
- Plant Biotechnology Unit, University Institute of Biotechnology of Asturias (IUBA), Oviedo, Spain
| | - Jesús Pascual
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Gloria Pinto
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
- Plant Biotechnology Unit, University Institute of Biotechnology of Asturias (IUBA), Oviedo, Spain
- *Correspondence: Mónica Escandón, ; María Jesús Cañal,
| |
Collapse
|