1
|
Li S, Zhao Y, Tan S, Li Z. Non-coding RNAs and leaf senescence: Small molecules with important roles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108399. [PMID: 38277833 DOI: 10.1016/j.plaphy.2024.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Non-coding RNAs (ncRNAs) are a special class of functional RNA molecules that are not translated into proteins. ncRNAs have emerged as pivotal regulators of diverse developmental processes in plants. Recent investigations have revealed the association of ncRNAs with the regulation of leaf senescence, a complex and tightly regulated developmental process. However, a comprehensive review of the involvement of ncRNAs in the regulation of leaf senescence is still lacking. This manuscript aims to summarize the molecular mechanisms underlying ncRNAs-mediated leaf senescence and the potential applications of ncRNAs to manipulate the onset and progression of leaf senescence. Various classes of ncRNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are discussed in terms of their regulatory mechanisms in leaf senescence. Furthermore, we explore the interactions between ncRNA and the key regulators of senescence, including transcription factors as well as core components in phytohormone signaling pathways. We also discuss the possible challenges and approaches related to ncRNA-mediated leaf senescence. This review contributes to a further understanding of the intricate regulatory network involving ncRNAs in leaf senescence.
Collapse
Affiliation(s)
- Shichun Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Liu P, Liu R, Xu Y, Zhang C, Niu Q, Lang Z. DNA cytosine methylation dynamics and functional roles in horticultural crops. HORTICULTURE RESEARCH 2023; 10:uhad170. [PMID: 38025976 PMCID: PMC10660380 DOI: 10.1093/hr/uhad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/20/2023] [Indexed: 12/01/2023]
Abstract
Methylation of cytosine is a conserved epigenetic modification that maintains the dynamic balance of methylation in plants under the regulation of methyltransferases and demethylases. In recent years, the study of DNA methylation in regulating the growth and development of plants and animals has become a key area of research. This review describes the regulatory mechanisms of DNA cytosine methylation in plants. It summarizes studies on epigenetic modifications of DNA methylation in fruit ripening, development, senescence, plant height, organ size, and under biotic and abiotic stresses in horticultural crops. The review provides a theoretical basis for understanding the mechanisms of DNA methylation and their relevance to breeding, genetic improvement, research, innovation, and exploitation of new cultivars of horticultural crops.
Collapse
Affiliation(s)
- Peipei Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ruie Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaping Xu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Caixi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingfeng Niu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaobo Lang
- Institute of Advanced Biotechnology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Du K, Jiang S, Chen H, Xia Y, Guo R, Ling A, Liao T, Wu W, Kang X. Spatiotemporal miRNA and transcriptomic network dynamically regulate the developmental and senescence processes of poplar leaves. HORTICULTURE RESEARCH 2023; 10:uhad186. [PMID: 37899951 PMCID: PMC10611553 DOI: 10.1093/hr/uhad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023]
Abstract
Poplar is an important afforestation and urban greening species. Poplar leaf development occurs in stages, from young to mature and then from mature to senescent; these are accompanied by various phenotypic and physiological changes. However, the associated transcriptional regulatory network is relatively unexplored. We first used principal component analysis to classify poplar leaves at different leaf positions into two stages: developmental maturity (the stage of maximum photosynthetic capacity); and the stage when photosynthetic capacity started to decline and gradually changed to senescence. The two stages were then further subdivided into five intervals by gene expression clustering analysis: young leaves, the period of cell genesis and functional differentiation (L1); young leaves, the period of development and initial formation of photosynthetic capacity (L3-L7); the period of maximum photosynthetic capacity of functional leaves (L9-L13); the period of decreasing photosynthetic capacity of functional leaves (L15-L27); and the period of senescent leaves (L29). Using a weighted co-expression gene network analysis of regulatory genes, high-resolution spatiotemporal transcriptional regulatory networks were constructed to reveal the core regulators that regulate leaf development. Spatiotemporal transcriptome data of poplar leaves revealed dynamic changes in genes and miRNAs during leaf development and identified several core regulators of leaf development, such as GRF5 and MYB5. This in-depth analysis of transcriptional regulation during leaf development provides a theoretical basis for exploring the biological basis of the transcriptional regulation of leaf development and the molecular design of breeding for delaying leaf senescence.
Collapse
Affiliation(s)
- Kang Du
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shenxiu Jiang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hao Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yufei Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ruihua Guo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Aoyu Ling
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ting Liao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Wenqi Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Cao J, Liu H, Tan S, Li Z. Transcription Factors-Regulated Leaf Senescence: Current Knowledge, Challenges and Approaches. Int J Mol Sci 2023; 24:9245. [PMID: 37298196 PMCID: PMC10253112 DOI: 10.3390/ijms24119245] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
Leaf senescence is a complex biological process regulated at multiple levels, including chromatin remodeling, transcription, post-transcription, translation, and post-translational modifications. Transcription factors (TFs) are crucial regulators of leaf senescence, with NAC and WRKY families being the most studied. This review summarizes the progress made in understanding the regulatory roles of these families in leaf senescence in Arabidopsis and various crops such as wheat, maize, sorghum, and rice. Additionally, we review the regulatory functions of other families, such as ERF, bHLH, bZIP, and MYB. Unraveling the mechanisms of leaf senescence regulated by TFs has the potential to improve crop yield and quality through molecular breeding. While significant progress has been made in leaf senescence research in recent years, our understanding of the molecular regulatory mechanisms underlying this process is still incomplete. This review also discusses the challenges and opportunities in leaf senescence research, with suggestions for possible strategies to address them.
Collapse
Affiliation(s)
| | | | | | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.C.); (H.L.); (S.T.)
| |
Collapse
|
5
|
Qi X, Wan C, Zhang X, Sun W, Liu R, Wang Z, Wang Z, Ling F. Effects of histone methylation modification on low temperature seed germination and growth of maize. Sci Rep 2023; 13:5196. [PMID: 36997660 PMCID: PMC10063631 DOI: 10.1038/s41598-023-32451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Low temperature is a limiting factor of seed germination and plant growth. Although there is a lot information on the response of maize to low temperatures, there is still poorly description of how histone methylation affects maize germination and growth development at low temperatures. In this study, the germination rate and physiological indexes of wild-type maize inbred lines B73 (WT), SDG102 silencing lines (AS), SDG102 overexpressed lines (OE) at germination stage and seedling stage were measured under low temperature stress (4 ℃), and transcriptome sequencing was applied to analyze the differences of gene expression in panicle leaves among different materials. The results showed that the germination rate of WT and OE maize seeds at 4 ℃ was significantly lower than 25 ℃. The content of MDA, SOD and POD of 4 ℃ seeding leaves higher than contrast. Transcriptome sequencing results showed that there were 409 different expression genes (DEGs) between WT and AS, and the DEGs were mainly up-regulated expression in starch and sucrose metabolism and phenylpropanoid biosynthesis. There were 887 DEGs between WT and OE, which were mainly up-regulated in the pathways of plant hormone signal transduction, porphyrin and chlorophyll metabolism. This result could provide a theoretical basis for analyzing the growth and development of maize from the perspective of histone methylation modification.
Collapse
Affiliation(s)
- Xin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Chang Wan
- Institute of Grassland and Ecology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xing Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Weifeng Sun
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Rui Liu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhennan Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China.
| | - Fenglou Ling
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Shkryl Y, Yugay Y, Vasyutkina E, Chukhlomina E, Rusapetova T, Bulgakov V. The RolB/RolC homolog from sweet potato promotes early flowering and triggers premature leaf senescence in transgenic Arabidopsis thaliana plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:50-60. [PMID: 36323197 DOI: 10.1016/j.plaphy.2022.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Expression of the root oncogenic loci (rol) genes from Agrobacterium rhizogenes provokes multiple divergent effects on physiological properties in transgenic plants and cell cultures. Recently, the homolog of the rolB and rolC oncogenes, named Ib-rolB/C, has been identified in the genome of a naturally transgenic food crop, i.e. sweet potato. In this study, we revealed that the Ipomoea batatas genome contains two full-length copies of Ib-rolB/C. The expression level of Ib-rolB/C in leaves of sweet potato showed a clear age-dependent pattern and increased as leaves senesce. Moreover, dark-induced senescence strongly up-regulates transcription of the Ib-rolB/C gene. Though Ib-rolB/C shares homology with its counterparts in A. rhizogenes, this gene was not capable to induce hairy roots or tumors in kalanchoe and tobacco plants. The Ib-rolB/C gene induced early-flowering phenotype, altered leaf morphology, and promoted premature leaf senescence in transgenic Arabidopsis thaliana plants. At the same time, Ib-rolB/C did not affect root morphology and biomass. Our results suggest that Ib-RolB/RolC participates in both age- and dark-triggered leaf senescence programs.
Collapse
Affiliation(s)
- Yury Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | - Yulia Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Elena Vasyutkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Ekaterina Chukhlomina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Tatiana Rusapetova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Victor Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| |
Collapse
|
7
|
Zhang Y, Li Y, Zhang Y, Zhang Z, Zhang D, Wang X, Lai B, Huang D, Gu L, Xie Y, Miao Y. Genome-wide H3K9 acetylation level increases with age-dependent senescence of flag leaf in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4696-4715. [PMID: 35429161 DOI: 10.1093/jxb/erac155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Flag leaf senescence is an important biological process that drives the remobilization of nutrients to the growing organs of rice. Leaf senescence is controlled by genetic information via gene expression and histone modification, but the precise mechanism is as yet unclear. Here, we analysed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes by RNA-seq during flag leaf aging in rice (Oryza sativa). We found that genome-wide H3K9 acetylation levels increased with age-dependent senescence in rice flag leaf, and there was a positive correlation between the density and breadth of H3K9ac with gene expression and transcript elongation. During flag leaf aging, we observed 1249 up-regulated differentially expressed genes (DEGs) and 996 down-regulated DEGs, showing a strong relationship between temporal changes in gene expression and gain/loss of H3K9ac. We produced a landscape of H3K9 acetylation-modified gene expression targets that include known senescence-associated genes, metabolism-related genes, as well as miRNA biosynthesis-related genes. Our findings reveal a complex regulatory network of metabolism- and senescence-related pathways mediated by H3K9ac, and elucidate patterns of H3K9ac-mediated regulation of gene expression during flag leaf aging in rice.
Collapse
Affiliation(s)
- Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyun Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyu Zhang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaonan Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binfan Lai
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dandan Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakun Xie
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Lan W, Ma W, Zheng S, Qiu Y, Zhang H, Lu H, Zhang Y, Miao Y. Ubiquitome profiling reveals a regulatory pattern of UPL3 with UBP12 on metabolic-leaf senescence. Life Sci Alliance 2022; 5:e202201492. [PMID: 35926874 PMCID: PMC9354775 DOI: 10.26508/lsa.202201492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The HECT-type UPL3 ligase plays critical roles in plant development and stress protection, but understanding of its regulation remains limited. Here, the multi-omics analyses of ubiquitinated proteins in <i>upl3</i> mutants were performed. A landscape of UPL3-dependent ubiquitinated proteins is constructed: Preferential ubiquitination of proteins related to carbon fixation represented the largest set of proteins with increased ubiquitination in the <i>upl3</i> plant, including most of carbohydrate metabolic enzymes, BRM, and variant histone, whereas a small set of proteins with reduced ubiquitination caused by the <i>upl3</i> mutation were linked to cysteine/methionine synthesis, as well as hexokinase 1 (HXK1) and phosphoenolpyruvate carboxylase 2 (PPC2). Notably, ubiquitin hydrolase 12 (UBP12), BRM, HXK1, and PPC2 were identified as the UPL3-interacting partners in vivo and in vitro. Characterization of <i>brm</i>, <i>upl3</i>, <i>ppc2</i>, <i>gin2</i>, and <i>ubp12</i> mutant plants and proteomic and transcriptomic analysis suggested that UPL3 fine-tunes carbohydrate metabolism, mediating cellular senescence by interacting with UBP12, BRM, HXK1, and PPC2. Our results highlight a regulatory pattern of UPL3 with UBP12 as a hub of regulator on proteolysis-independent regulation and proteolysis-dependent degradation.
Collapse
Affiliation(s)
- Wei Lan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weibo Ma
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhao Qiu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haisen Lu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Huang D, Lan W, Ma W, Huang R, Lin W, Li M, Chen CY, Wu K, Miao Y. WHIRLY1 recruits the histone deacetylase HDA15 repressing leaf senescence and flowering in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1411-1429. [PMID: 35510566 DOI: 10.1111/jipb.13272] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence is controlled by a complex regulatory network in which robustness is ensured by the activity of transcription factors and epigenetic regulators. However, how these coordinate the process of leaf senescence remains poorly understood. We found that WHIRLY1 interacts with Histone Deacetylase (HDA)15, a Reduced Potassium Dependence3 (RPD3)/HDA1-type HDA, by using green fluorescent protein-nanotrap-mass spectrum assays. The development-dependent interaction between WHIRLY1 and HDA15 was further confirmed by bimolecular fluorescence complementation assays and co-immunoprecipitation assays in Arabidopsis. Multi-omics genome-wide transcriptome and H3K9 acetylome enrichment analysis showed that HDA15 delays leaf senescence and flowering by repressing the expression of the positive regulators of leaf senescence and flowering, such as LOX2 and LARP1C, and reducing H3K9ac levels at these loci; WHIRLY1 and HDA15 co-target to the region near the transcription start site of a subset of nutrient recycling-related genes (e.g., Glutathione S-transferases 10, non-coding RNA, and photosystem II protein D1 synthesizer attenuator PDIL1-2), as well as WRKY53 and ELF4, and co-repress their expression by removing H3K9 acetylation. Our study revealed a key transcription regulatory node of nutrient recycling and senescence-associated genes involved in leaf senescence and flowering via the recruitment of HDA15 by the single-stranded DNA/RNA-binding protein WHIRLY1.
Collapse
Affiliation(s)
- Dongmei Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Lan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weibo Ma
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rulin Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenfang Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengsi Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chia-Yang Chen
- Institute of Botany, College of Life Sciences, Taiwan University, Taibei, 106, China
| | - Keqiang Wu
- Institute of Botany, College of Life Sciences, Taiwan University, Taibei, 106, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
10
|
Zhou Y, Zhang X, Chen J, Guo X, Wang H, Zhen W, Zhang J, Hu Z, Zhang X, Botella JR, Ito T, Guo S. Overexpression of AHL9 accelerates leaf senescence in Arabidopsis thaliana. BMC PLANT BIOLOGY 2022; 22:248. [PMID: 35590269 PMCID: PMC9118680 DOI: 10.1186/s12870-022-03622-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Leaf senescence, the final stage of leaf growth and development, is regulated by numerous internal factors and environmental cues. Ethylene is one of the key senescence related hormones, but the underlying molecular mechanism of ethylene-induced leaf senescence remains poorly understood. RESULTS In this study, we identified one AT-hook like (AHL) protein, AHL9, as a positive regulator of leaf senescence in Arabidopsis thaliana. Overexpression of AHL9 significantly accelerates age-related leaf senescence and promotes dark-induced leaf chlorosis. The early senescence phenotype observed in AHL9 overexpressing lines is inhibited by the ethylene biosynthesis inhibitor aminooxyacetic acid suggesting the involvement of ethylene in the AHL9-associated senescence. RNA-seq and quantitative reverse transcription PCR (qRT-PCR) data identified numerous senescence-associated genes differentially expressed in leaves of AHL9 overexpressing transgenic plants. CONCLUSIONS Our investigation demonstrates that AHL9 functions in accelerating the leaf senescence process via ethylene synthesis or signalling.
Collapse
Affiliation(s)
- Yusen Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaomin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jing Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaopeng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hongyan Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Weibo Zhen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xuebing Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Toshiro Ito
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
11
|
Miryeganeh M. Epigenetic Mechanisms of Senescence in Plants. Cells 2022; 11:251. [PMID: 35053367 PMCID: PMC8773728 DOI: 10.3390/cells11020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
Senescence is a major developmental transition in plants that requires a massive reprogramming of gene expression and includes various layers of regulations. Senescence is either an age-dependent or a stress-induced process, and is under the control of complex regulatory networks that interact with each other. It has been shown that besides genetic reprogramming, which is an important aspect of plant senescence, transcription factors and higher-level mechanisms, such as epigenetic and small RNA-mediated regulators, are also key factors of senescence-related genes. Epigenetic mechanisms are an important layer of this multilevel regulatory system that change the activity of transcription factors (TFs) and play an important role in modulating the expression of senescence-related gene. They include chromatin remodeling, DNA methylation, histone modification, and the RNA-mediated control of transcription factors and genes. This review provides an overview of the known epigenetic regulation of plant senescence, which has mostly been studied in the form of leaf senescence, and it also covers what has been reported about whole-plant senescence.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0412, Japan
| |
Collapse
|
12
|
Zhang Z, Liu C, Li K, Li X, Xu M, Guo Y. CLE14 functions as a "brake signal" to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis. MOLECULAR PLANT 2022; 15:179-188. [PMID: 34530165 DOI: 10.1016/j.molp.2021.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Leaf senescence is an important developmental process in the plant life cycle and has a significant impact on agriculture. When facing harsh environmental conditions, monocarpic plants often initiate early leaf senescence as an adaptive mechanism to ensure a complete life cycle. Upon initiation, the senescence process is fine-tuned through the coordination of both positive and negative regulators. Here, we report that the small secreted peptide CLAVATA3/ESR-RELATED 14 (CLE14) functions in the suppression of leaf senescence by regulating ROS homeostasis in Arabidopsis. Expression of the CLE14-encoding gene in leaves was significantly induced by age, high salinity, abscisic acid (ABA), salicylic acid, and jasmonic acid. CLE14 knockout plants displayed accelerated progression of both natural and salinity-induced leaf senescence, whereas increased CLE14 expression or treatments with synthetic CLE14 peptides delayed senescence. CLE14 peptide treatments also delayed ABA-induced senescence in detached leaves. Further analysis showed that overexpression of CLE14 led to reduced ROS levels in leaves, where higher expression of ROS scavenging genes was detected. Moreover, CLE14 signaling resulted in transcriptional activation of JUB1, a NAC family transcription factor previously identified as a negative regulator of senescence. Notably, the delay of leaf senescence, reduction in H2O2 level, and activation of ROS scavenging genes by CLE14 peptides were dependent on JUB1. Collectively, these results suggest that the small peptide CLE14 serves as a novel "brake signal" to regulate age-dependent and stress-induced leaf senescence through JUB1-mediated ROS scavenging.
Collapse
Affiliation(s)
- Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Cheng Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Kui Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Mengmeng Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
13
|
Hassan MA, Yang M, Rasheed A, Tian X, Reynolds M, Xia X, Xiao Y, He Z. Quantifying senescence in bread wheat using multispectral imaging from an unmanned aerial vehicle and QTL mapping. PLANT PHYSIOLOGY 2021; 187:2623-2636. [PMID: 34601616 PMCID: PMC8644761 DOI: 10.1093/plphys/kiab431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/23/2021] [Indexed: 05/21/2023]
Abstract
Environmental stresses from climate change can alter source-sink relations during plant maturation, leading to premature senescence and decreased yields. Elucidating the genetic control of natural variations for senescence in wheat (Triticum aestivum) can be accelerated using recent developments in unmanned aerial vehicle (UAV)-based imaging techniques. Here, we describe the use of UAVs to quantify senescence in wheat using vegetative indices (VIs) derived from multispectral images. We detected senescence with high heritability, as well as its impact on grain yield (GY), in a doubled-haploid population and parent cultivars at various growth time points (TPs) after anthesis in the field. Selecting for slow senescence using a combination of different UAV-based VIs was more effective than using a single ground-based vegetation index. We identified 28 quantitative trait loci (QTL) for vegetative growth, senescence, and GY using a 660K single-nucleotide polymorphism array. Seventeen of these new QTL for VIs from UAV-based multispectral imaging were mapped on chromosomes 2B, 3A, 3D, 5A, 5D, 5B, and 6D; these QTL have not been reported previously using conventional phenotyping methods. This integrated approach allowed us to identify an important, previously unreported, senescence-related locus on chromosome 5D that showed high phenotypic variation (up to 18.1%) for all UAV-based VIs at all TPs during grain filling. This QTL was validated for slow senescence by developing kompetitive allele-specific PCR markers in a natural population. Our results suggest that UAV-based high-throughput phenotyping is advantageous for temporal assessment of the genetics underlying for senescence in wheat.
Collapse
Affiliation(s)
- Muhammad Adeel Hassan
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Mengjiao Yang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing 100081, China
- Deparment of Plant Science, Quaid-i-Azam University Islamabad 44000, Pakistan
| | - Xiuling Tian
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Matthew Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Mexico DF 06600, Mexico
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yonggui Xiao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Author for communication:
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing 100081, China
| |
Collapse
|
14
|
Rankenberg T, Geldhof B, van Veen H, Holsteens K, Van de Poel B, Sasidharan R. Age-Dependent Abiotic Stress Resilience in Plants. TRENDS IN PLANT SCIENCE 2021; 26:692-705. [PMID: 33509699 DOI: 10.1016/j.tplants.2020.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/13/2023]
Abstract
Developmental age is a strong determinant of stress responses in plants. Differential susceptibility to various environmental stresses is widely observed at both the organ and whole-plant level. While it is clear that age determines stress susceptibility, the causes, regulatory mechanisms, and functions are only now beginning to emerge. Compared with concepts on age-related biotic stress resilience, advancements in the abiotic stress field are relatively limited. In this review, we focus on current knowledge of ontogenic resistance to abiotic stresses, highlighting examples at the organ (leaf) and plant level, preceded by an overview of the relevant concepts in plant aging. We also discuss age-related abiotic stress resilience mechanisms, speculate on their functional relevance, and outline outstanding questions.
Collapse
Affiliation(s)
- Tom Rankenberg
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium.
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
15
|
Guo Y, Ren G, Zhang K, Li Z, Miao Y, Guo H. Leaf senescence: progression, regulation, and application. MOLECULAR HORTICULTURE 2021; 1:5. [PMID: 37789484 PMCID: PMC10509828 DOI: 10.1186/s43897-021-00006-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
Leaf senescence, the last stage of leaf development, is a type of postmitotic senescence and is characterized by the functional transition from nutrient assimilation to nutrient remobilization which is essential for plants' fitness. The initiation and progression of leaf senescence are regulated by a variety of internal and external factors such as age, phytohormones, and environmental stresses. Significant breakthroughs in dissecting the molecular mechanisms underpinning leaf senescence have benefited from the identification of senescence-altered mutants through forward genetic screening and functional assessment of hundreds of senescence-associated genes (SAGs) via reverse genetic research in model plant Arabidopsis thaliana as well as in crop plants. Leaf senescence involves highly complex genetic programs that are tightly tuned by multiple layers of regulation, including chromatin and transcription regulation, post-transcriptional, translational and post-translational regulation. Due to the significant impact of leaf senescence on photosynthesis, nutrient remobilization, stress responses, and productivity, much effort has been made in devising strategies based on known senescence regulatory mechanisms to manipulate the initiation and progression of leaf senescence, aiming for higher yield, better quality, or improved horticultural performance in crop plants. This review aims to provide an overview of leaf senescence and discuss recent advances in multi-dimensional regulation of leaf senescence from genetic and molecular network perspectives. We also put forward the key issues that need to be addressed, including the nature of leaf age, functional stay-green trait, coordination between different regulatory pathways, source-sink relationship and nutrient remobilization, as well as translational researches on leaf senescence.
Collapse
Affiliation(s)
- Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 Shandong China
| | - Guodong Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 Zhejiang China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 Guangdong China
| |
Collapse
|
16
|
Feng X, Liu L, Li Z, Sun F, Wu X, Hao D, Hao H, Jing HC. Potential interaction between autophagy and auxin during maize leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3554-3568. [PMID: 33684202 PMCID: PMC8446287 DOI: 10.1093/jxb/erab094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 05/04/2023]
Abstract
Leaf senescence is important for crop yield as delaying it can increase the average yield. In this study, population genetics and transcriptomic profiling were combined to dissect its genetic basis in maize. To do this, the progenies of an elite maize hybrid Jidan27 and its parental lines Si-287 (early senescence) and Si-144 (stay-green), as well as 173 maize inbred lines were used. We identified two novel loci and their candidate genes, Stg3 (ZmATG18b) and Stg7 (ZmGH3.8), which are predicted to be members of autophagy and auxin pathways, respectively. Genomic variations in the promoter regions of these two genes were detected, and four allelic combinations existed in the examined maize inbred lines. The Stg3Si-144/Stg7Si-144 allelic combination with lower ZmATG18b expression and higher ZmGH3.8 expression could distinctively delay leaf senescence, increase ear weight and the improved hybrid of NIL-Stg3Si-144/Stg7Si-144 × Si-144 significantly reduced ear weight loss under drought stress, while opposite effects were observed in the Stg3Si-287/Stg7Si-287 combination with a higher ZmATG18b expression and lower ZmGH3.8 expression. Thus, we identify a potential interaction between autophagy and auxin which could modulate the timing of maize leaf senescence.
Collapse
Affiliation(s)
- Xue Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Dongyun Hao
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130124, China
| | - Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Correspondence: or
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Correspondence: or
| |
Collapse
|
17
|
Dvořák Tomaštíková E, Hafrén A, Trejo-Arellano MS, Rasmussen SR, Sato H, Santos-González J, Köhler C, Hennig L, Hofius D. Polycomb Repressive Complex 2 and KRYPTONITE regulate pathogen-induced programmed cell death in Arabidopsis. PLANT PHYSIOLOGY 2021; 185:2003-2021. [PMID: 33566101 PMCID: PMC8133635 DOI: 10.1093/plphys/kiab035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 05/10/2023]
Abstract
The Polycomb Repressive Complex 2 (PRC2) is well-known for its role in controlling developmental transitions by suppressing the premature expression of key developmental regulators. Previous work revealed that PRC2 also controls the onset of senescence, a form of developmental programmed cell death (PCD) in plants. Whether the induction of PCD in response to stress is similarly suppressed by the PRC2 remained largely unknown. In this study, we explored whether PCD triggered in response to immunity- and disease-promoting pathogen effectors is associated with changes in the distribution of the PRC2-mediated histone H3 lysine 27 trimethylation (H3K27me3) modification in Arabidopsis thaliana. We furthermore tested the distribution of the heterochromatic histone mark H3K9me2, which is established, to a large extent, by the H3K9 methyltransferase KRYPTONITE, and occupies chromatin regions generally not targeted by PRC2. We report that effector-induced PCD caused major changes in the distribution of both repressive epigenetic modifications and that both modifications have a regulatory role and impact on the onset of PCD during pathogen infection. Our work highlights that the transition to pathogen-induced PCD is epigenetically controlled, revealing striking similarities to developmental PCD.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
- Present address: Institute of Experimental Botany, Czech Academy of Sciences; Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Minerva S Trejo-Arellano
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
- Present address: Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Sheena Ricafranca Rasmussen
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Hikaru Sato
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
- Author for communication:
| |
Collapse
|
18
|
Jiang L, Yoshida T, Stiegert S, Jing Y, Alseekh S, Lenhard M, Pérez-Alfocea F, Fernie AR. Multi-omics approach reveals the contribution of KLU to leaf longevity and drought tolerance. PLANT PHYSIOLOGY 2021; 185:352-368. [PMID: 33721894 PMCID: PMC8133585 DOI: 10.1093/plphys/kiaa034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2020] [Indexed: 05/05/2023]
Abstract
KLU, encoded by a cytochrome P450 CYP78A family gene, generates an important-albeit unknown-mobile signal that is distinct from the classical phytohormones. Multiple lines of evidence suggest that KLU/KLU-dependent signaling functions in several vital developmental programs, including leaf initiation, leaf/floral organ growth, and megasporocyte cell fate. However, the interactions between KLU/KLU-dependent signaling and the other classical phytohormones, as well as how KLU influences plant physiological responses, remain poorly understood. Here, we applied in-depth, multi-omics analysis to monitor transcriptome and metabolome dynamics in klu-mutant and KLU-overexpressing Arabidopsis plants. By integrating transcriptome sequencing data and primary metabolite profiling alongside phytohormone measurements, our results showed that cytokinin signaling, with its well-established function in delaying leaf senescence, was activated in KLU-overexpressing plants. Consistently, KLU-overexpressing plants exhibited significantly delayed leaf senescence and increased leaf longevity, whereas the klu-mutant plants showed early leaf senescence. In addition, proline biosynthesis and catabolism were enhanced following KLU overexpression owing to increased expression of genes associated with proline metabolism. Furthermore, KLU-overexpressing plants showed enhanced drought-stress tolerance and reduced water loss. Collectively, our work illustrates a role for KLU in positively regulating leaf longevity and drought tolerance by synergistically activating cytokinin signaling and promoting proline metabolism. These data promote KLU as a potential ideal genetic target to improve plant fitness.
Collapse
Affiliation(s)
- Liang Jiang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sofia Stiegert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
| | - Yue Jing
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Michael Lenhard
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
| | - Francisco Pérez-Alfocea
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
- Author for communication:
| |
Collapse
|
19
|
Lu H, Yuan G, Strauss SH, Tschaplinski TJ, Tuskan GA, Chen JG, Yang X. Reconfiguring Plant Metabolism for Biodegradable Plastic Production. BIODESIGN RESEARCH 2020; 2020:9078303. [PMID: 37849903 PMCID: PMC10530661 DOI: 10.34133/2020/9078303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/11/2020] [Indexed: 10/19/2023] Open
Abstract
For decades, plants have been the subject of genetic engineering to synthesize novel, value-added compounds. Polyhydroxyalkanoates (PHAs), a large class of biodegradable biopolymers naturally synthesized in eubacteria, are among the novel products that have been introduced to make use of plant acetyl-CoA metabolic pathways. It was hoped that renewable PHA production would help address environmental issues associated with the accumulation of nondegradable plastic wastes. However, after three decades of effort synthesizing PHAs, and in particular the simplest form polyhydroxybutyrate (PHB), and seeking to improve their production in plants, it has proven very difficult to reach a commercially profitable rate in a normally growing plant. This seems to be due to the growth defects associated with PHA production and accumulation in plant cells. Here, we review major breakthroughs that have been made in plant-based PHA synthesis using traditional genetic engineering approaches and discuss challenges that have been encountered. Then, from the point of view of plant synthetic biology, we provide perspectives on reprograming plant acetyl-CoA pathways for PHA production, with the goal of maximizing PHA yield while minimizing growth inhibition. Specifically, we suggest genetic elements that can be considered in genetic circuit design, approaches for nuclear genome and plastome modification, and the use of multiomics and mathematical modeling in understanding and restructuring plant metabolic pathways.
Collapse
Affiliation(s)
- Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
20
|
Yuan L, Wang D, Cao L, Yu N, Liu K, Guo Y, Gan S, Chen L. Regulation of Leaf Longevity by DML3-Mediated DNA Demethylation. MOLECULAR PLANT 2020; 13:1149-1161. [PMID: 32561358 DOI: 10.1016/j.molp.2020.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/25/2019] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Leaf senescence is driven by the expression of senescence-associated genes (SAGs). Development-specific genes often undergo DNA demethylation in their promoter and other regions, which regulates gene expression. Whether and how DNA demethylation regulates the expression of SAGs and thus leaf senescence remain elusive. Whole-genome bisulfite sequencing (WGBS) analyses of wild-type (WT) and demeter-like 3 (dml3) Arabidopsis leaves at three developmental stages revealed hypermethylation during leaf senescence in dml3 compared with WT, and 20 556 differentially methylated regions (DMRs) were identified by comparing the methylomes of dml3 and WT in the CG, CHG, and CHH contexts. Furthermore, we identified that 335 DMR-associated genes (DMGs), such as NAC016 and SEN1, are upregulated during leaf senescence, and found an inverse correlation between the DNA methylation levels (especially in the promoter regions) and the transcript abundances of the related SAGs in WT. In contrast, in dml3 the promoters of SAGs were hypermethylated and their transcript levels were remarkably reduced, and leaf senescence was significantly delayed. Collectively, our study unraveled a novel epigenetic regulatory mechanism underlying leaf senescence in which DML3 is expressed at the onset of and during senescence to demethylate promoter, gene body or 3' UTR regions to activate a set of SAGs.
Collapse
Affiliation(s)
- Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dan Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liwen Cao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ningning Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ke Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Susheng Gan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Ostrowska-Mazurek A, Kasprzak P, Kubala S, Zaborowska M, Sobieszczuk-Nowicka E. Epigenetic Landmarks of Leaf Senescence and Crop Improvement. Int J Mol Sci 2020; 21:ijms21145125. [PMID: 32698545 PMCID: PMC7404090 DOI: 10.3390/ijms21145125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023] Open
Abstract
This review synthesizes knowledge on epigenetic regulation of leaf senescence and discusses the possibility of using this knowledge to improve crop quality. This control level is implemented by different but interacting epigenetic mechanisms, including DNA methylation, covalent histone modifications, and non-covalent chromatin remodeling. The genetic and epigenetic changes may act alone or together and regulate the gene expression, which may result in heritable (stress memory) changes and may lead to crop survival. In the review, the question also arises whether the mitotically stable epigenetic information can be used for crop improvement. The barley crop model for early and late events of dark-induced leaf senescence (DILS), where the point of no return was defined, revealed differences in DNA and RNA modifications active in DILS compared to developmental leaf senescence. This suggests the possibility of a yet-to-be-discovered epigenetic-based switch between cell survival and cell death. Conclusions from the analyzed research contributed to the hypothesis that chromatin-remodeling mechanisms play a role in the control of induced leaf senescence. Understanding this mechanism in crops might provide a tool for further exploitation toward sustainable agriculture: so-called epibreeding.
Collapse
Affiliation(s)
- Agnieszka Ostrowska-Mazurek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.O.-M.); (P.K.)
| | - Piotr Kasprzak
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.O.-M.); (P.K.)
| | - Szymon Kubala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland; (S.K.); (M.Z.)
| | - Magdalena Zaborowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland; (S.K.); (M.Z.)
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.O.-M.); (P.K.)
- Correspondence: ; Tel.: +48-61-829-5892
| |
Collapse
|
22
|
Lee S, Kim MH, Lee JH, Jeon J, Kwak JM, Kim YJ. Glycosyltransferase-Like RSE1 Negatively Regulates Leaf Senescence Through Salicylic Acid Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:551. [PMID: 32499801 PMCID: PMC7242760 DOI: 10.3389/fpls.2020.00551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/14/2020] [Indexed: 06/01/2023]
Abstract
Leaf senescence is a developmental process designed for nutrient recycling and relocation to maximize growth competence and reproductive capacity of plants. Thus, plants integrate developmental and environmental signals to precisely control senescence. To genetically dissect the complex regulatory mechanism underlying leaf senescence, we identified an early leaf senescence mutant, rse1. RSE1 encodes a putative glycosyltransferase. Loss-of-function mutations in RSE1 resulted in precocious leaf yellowing and up-regulation of senescence marker genes, indicating enhanced leaf senescence. Transcriptome analysis revealed that salicylic acid (SA) and defense signaling cascades were up-regulated in rse1 prior to the onset of leaf senescence. We found that SA accumulation was significantly increased in rse1. The rse1 phenotypes are dependent on SA-INDUCTION DEFICIENT 2 (SID2), supporting a role of SA in accelerated leaf senescence in rse1. Furthermore, RSE1 protein was localized to the cell wall, implying a possible link between the cell wall and RSE1 function. Together, we show that RSE1 negatively modulates leaf senescence through an SID2-dependent SA signaling pathway.
Collapse
Affiliation(s)
- Seulbee Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
| | - Myung-Hee Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
| | - Jae Ho Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jieun Jeon
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - June M. Kwak
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Yun Ju Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
| |
Collapse
|
23
|
Zhang Z, Li W, Gao X, Xu M, Guo Y. DEAR4, a Member of DREB/CBF Family, Positively Regulates Leaf Senescence and Response to Multiple Stressors in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:367. [PMID: 32296455 PMCID: PMC7136848 DOI: 10.3389/fpls.2020.00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/13/2020] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a programmed developmental process regulated by various endogenous and exogenous factors. Here we report the characterization of the senescence-regulating role of DEAR4 (AT4G36900) from the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) family in Arabidopsis. The expression of DEAR4 is associated with leaf senescence and can be induced by ABA, JA, darkness, drought and salt stress. Transgenic plants over-expressing DEAR4 showed a dramatically enhanced leaf senescence phenotype under normal and dark conditions while the dear4 knock-down mutant displayed delayed senescence. DEAR4 over-expressing plants showed decreased seed germination rate under ABA and salt stress conditions as well as decreased drought tolerance, indicating that DEAR4 was involved in both senescence and stress response processes. Furthermore, we found that DEAR4 protein displayed transcriptional repressor activities in yeast cells. DEAR4 could directly repress the expression of a subset of COLD-REGULATED (COR) and RESPONSIVE TO DEHYDRATION (RD) genes which have been shown to be involved in leaf longevity and stress response. Also we found that DERA4 could induce the production of Reactive oxygen species (ROS), the common signal of senescence and stress responses, which gives us the clue that DEAR4 may play an integrative role in senescence and stress response via regulating ROS production.
Collapse
|
24
|
Gao X, Wu X, Liu G, Zhang Z, Chao J, Li Z, Guo Y, Sun Y. Characterization and Mapping of a Novel Premature Leaf Senescence Mutant in Common Tobacco ( Nicotiana tabacum L.). PLANTS 2019; 8:plants8100415. [PMID: 31618834 PMCID: PMC6843228 DOI: 10.3390/plants8100415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022]
Abstract
As the last stage of plant development, leaf senescence has a great impact on plant’s life cycle. Genetic manipulation of leaf senescence has been used as an efficient approach in improving the yield and quality of crop plants. Here we describe an ethyl methane sulfonate (EMS) mutagenesis induced premature leaf senescence mutant yellow leaf 1 (yl1) in common tobacco (Nicotiana tabacum L.). The yl1 plants displayed early leaf yellowing. Physiological parameters and marker genes expression indicated that the yl1 phenotype was caused by premature leaf senescence. Genetic analyses indicated that the yl1 phenotype was controlled by a single recessive gene that was subsequently mapped to a specific interval of tobacco linkage group 11 using simple sequence repeat (SSR) markers. Exogenous plant hormone treatments of leaves showed that the yl1 mutant was more sensitive to ethylene and jasmonic acid than the wild type. No similar tobacco premature leaf senescence mutants have been reported. This study laid a foundation for finding the gene controlling the mutation phenotype and revealing the molecular regulation mechanism of tobacco leaf senescence in the next stage.
Collapse
Affiliation(s)
- Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Plant Genetic, Gembloux Agro-Bio Tech, University of Liege, Gembloux B-5030, Belgium.
| | - Xinru Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zhiyuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
25
|
Koyama T. A hidden link between leaf development and senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:105-110. [PMID: 30348308 DOI: 10.1016/j.plantsci.2018.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/04/2018] [Accepted: 08/13/2018] [Indexed: 05/21/2023]
Abstract
Leaf senescence is the final step of leaf development and is usually accompanied by visible color changes from green to yellow or brown. Unlike the senescence of the whole body of animals and unicellular organisms, which is often associated with death, leaf senescence in plants requires highly integrative processes towards cell death with nutrient recycling and storage. Since leaf senescence plays pivotal roles in the production of plant biomass and grain yield, the mechanisms of degradation and relocation of macromolecules as well as the regulation of signaling and biosynthetic pathways have received much attention. The importance of the plant hormone ethylene in the onset of leaf senescence has been clearly documented. However, research has increasingly demonstrated that the function of ethylene in the regulation of leaf senescence is dependent on leaf development. This review raises the issue of how ethylene requires developmental regulators and focuses on the developmental aspect of leaf senescence. It also emphasizes the remarkable impact that developmental regulators have on regulating the onset of leaf senescence.
Collapse
Affiliation(s)
- Tomotsugu Koyama
- Bioorganic Research Institute Suntory Foundation for Life Sciences, Japan.
| |
Collapse
|
26
|
Raines C, Ingram J. JXB at SEB Florence 2018. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3797-3799. [PMID: 29905802 PMCID: PMC6054182 DOI: 10.1093/jxb/ery218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Christine Raines
- Department of Biological Sciences, University of Essex, Colchester, UK
| | | |
Collapse
|