1
|
Parker T, Bolt T, Williams T, Penmetsa RV, Mulube M, Celebioglu B, Palkovic A, Jochua CN, Del Mar Rubio Wilhelmi M, Lo S, Bornhorst G, Tian L, Kamfwa K, Farmer A, Diepenbrock C, Gepts P. Seed color patterns in domesticated common bean are regulated by MYB-bHLH-WD40 transcription factors and temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2765-2781. [PMID: 39152711 DOI: 10.1111/tpj.16947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/19/2024]
Abstract
Seed colors and color patterns are critical for the survival of wild plants and the consumer appeal of crops. In common bean, a major global staple, these patterns are also essential in determining market classes, yet the genetic and environmental control of many pigmentation patterns remains unresolved. In this study, we genetically mapped variation for several important seed pattern loci, including T, Bip, phbw, and Z, which co-segregated with candidate genes PvTTG1, PvMYC1, PvTT8, and PvTT2, respectively. Proteins encoded by these genes are predicted to work together in MYB-bHLH-WD40 (MBW) complexes, propagating flavonoid biosynthesis across the seed coat as observed in Arabidopsis. Whole-genome sequencing of 37 accessions identified mutations, including seven unique parallel mutations in T (PvTTG1) and non-synonymous SNPs in highly conserved residues in bipana (PvMYC1) and z (PvTT2). A 612 bp intron deletion in phbw (PvTT8) eliminated motifs conserved since the Papilionoideae origin and corresponded to a 20-fold reduction in transcript abundance. In multi-location field trials of seven varieties with partial seed coat pigmentation patterning, the pigmented seed coat area correlated positively with ambient temperature, with up to 11-fold increases in the pigmented area from the coolest to the warmest environments. In controlled growth chamber conditions, an increase of 4°C was sufficient to cause pigmentation on an average additional 21% of the seed coat area. Our results shed light on key steps of flavonoid biosynthesis in common bean. They will inform breeding efforts for seed coat color/patterning to improve consumer appeal in this nutritious staple crop.
Collapse
Affiliation(s)
- Travis Parker
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Tayah Bolt
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Troy Williams
- Department of Plant Sciences, University of California, Davis, California, USA
| | - R Varma Penmetsa
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Mwiinga Mulube
- Department of Plant Sciences, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Burcu Celebioglu
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Antonia Palkovic
- Department of Plant Sciences, University of California, Davis, California, USA
| | | | | | - Sassoum Lo
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Gail Bornhorst
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Kelvin Kamfwa
- Department of Plant Sciences, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | | | - Paul Gepts
- Department of Plant Sciences, University of California, Davis, California, USA
| |
Collapse
|
2
|
Dowling CA, Shi J, Toth JA, Quade MA, Smart LB, McCabe PF, Schilling S, Melzer R. A FLOWERING LOCUS T ortholog is associated with photoperiod-insensitive flowering in hemp (Cannabis sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:383-403. [PMID: 38625758 DOI: 10.1111/tpj.16769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Hemp (Cannabis sativa L.) is an extraordinarily versatile crop, with applications ranging from medicinal compounds to seed oil and fibre products. Cannabis sativa is a short-day plant, and its flowering is highly controlled by photoperiod. However, substantial genetic variation exists for photoperiod sensitivity in C. sativa, and photoperiod-insensitive ("autoflower") cultivars are available. Using a bi-parental mapping population and bulked segregant analysis, we identified Autoflower2, a 0.5 Mbp locus significantly associated with photoperiod-insensitive flowering in hemp. Autoflower2 contains an ortholog of the central flowering time regulator FLOWERING LOCUS T (FT) from Arabidopsis thaliana which we termed CsFT1. We identified extensive sequence divergence between alleles of CsFT1 from photoperiod-sensitive and insensitive cultivars of C. sativa, including a duplication of CsFT1 and sequence differences, especially in introns. Furthermore, we observed higher expression of one of the CsFT1 copies found in the photoperiod-insensitive cultivar. Genotyping of several mapping populations and a diversity panel confirmed a correlation between CsFT1 alleles and photoperiod response, affirming that at least two independent loci involved in the photoperiodic control of flowering, Autoflower1 and Autoflower2, exist in the C. sativa gene pool. This study reveals the multiple independent origins of photoperiod insensitivity in C. sativa, supporting the likelihood of a complex domestication history in this species. By integrating the genetic relaxation of photoperiod sensitivity into novel C. sativa cultivars, expansion to higher latitudes will be permitted, thus allowing the full potential of this versatile crop to be reached.
Collapse
Affiliation(s)
- Caroline A Dowling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Jiaqi Shi
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Jacob A Toth
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, USA
| | - Michael A Quade
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, USA
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Susanne Schilling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Romero JM, Serrano-Bueno G, Camacho-Fernández C, Vicente MH, Ruiz MT, Pérez-Castiñeira JR, Pérez-Hormaeche J, Nogueira FTS, Valverde F. CONSTANS, a HUB for all seasons: How photoperiod pervades plant physiology regulatory circuits. THE PLANT CELL 2024; 36:2086-2102. [PMID: 38513610 PMCID: PMC11132886 DOI: 10.1093/plcell/koae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
How does a plant detect the changing seasons and make important developmental decisions accordingly? How do they incorporate daylength information into their routine physiological processes? Photoperiodism, or the capacity to measure the daylength, is a crucial aspect of plant development that helps plants determine the best time of the year to make vital decisions, such as flowering. The protein CONSTANS (CO) constitutes the central regulator of this sensing mechanism, not only activating florigen production in the leaves but also participating in many physiological aspects in which seasonality is important. Recent discoveries place CO in the center of a gene network that can determine the length of the day and confer seasonal input to aspects of plant development and physiology as important as senescence, seed size, or circadian rhythms. In this review, we discuss the importance of CO protein structure, function, and evolutionary mechanisms that embryophytes have developed to incorporate annual information into their physiology.
Collapse
Affiliation(s)
- Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Carolina Camacho-Fernández
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
- Universidad Politécnica de Valencia, Vicerrectorado de Investigación, 46022 Valencia, Spain
| | - Mateus Henrique Vicente
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - M Teresa Ruiz
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - J Román Pérez-Castiñeira
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Javier Pérez-Hormaeche
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
4
|
Jurado M, García-Fernández C, Campa A, Ferreira JJ. Identification of consistent QTL and candidate genes associated with seed traits in common bean by combining GWAS and RNA-Seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:143. [PMID: 38801535 PMCID: PMC11130024 DOI: 10.1007/s00122-024-04638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
KEY MESSAGE Association analysis, colocation study with previously reported QTL, and differential expression analyses allowed the identification of the consistent QTLs and main candidate genes controlling seed traits. Common beans show wide seed variations in shape, size, water uptake, and coat proportion. This study aimed to identify consistent genomic regions and candidate genes involved in the genetic control of seed traits by combining association and differential expression analyses. In total, 298 lines from the Spanish Diversity Panel were genotyped with 4,658 SNP and phenotyped for seven seed traits in three seasons. Thirty-eight significant SNP-trait associations were detected, which were grouped into 23 QTL genomic regions with 1,605 predicted genes. The positions of the five QTL regions associated with seed weight were consistent with previously reported QTL. HCPC analysis using the SNP that tagged these five QTL regions revealed three main clusters with significantly different seed weights. This analysis also separated groups that corresponded well with the two gene pools described: Andean and Mesoamerican. Expression analysis was performed on the seeds of the cultivar 'Xana' in three seed development stages, and 1,992 differentially expressed genes (DEGs) were detected, mainly when comparing the early and late seed development stages (1,934 DEGs). Overall, 91 DEGs related to cell growth, signaling pathways, and transcriptomic factors underlying these 23 QTL were identified. Twenty-two DEGs were located in the five QTL regions associated with seed weight, suggesting that they are the main set of candidate genes controlling this character. The results confirmed that seed weight is the sum of the effects of a complex network of loci, and contributed to the understanding of seed phenotype control.
Collapse
Affiliation(s)
- Maria Jurado
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Carmen García-Fernández
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Ana Campa
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Juan Jose Ferreira
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain.
| |
Collapse
|
5
|
Zhao H, Huang X, Yang Z, Li F, Ge X. Synergistic optimization of crops by combining early maturation with other agronomic traits. TRENDS IN PLANT SCIENCE 2023; 28:1178-1191. [PMID: 37208203 DOI: 10.1016/j.tplants.2023.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Many newly created early maturing varieties exhibit poor stress resistance and low yield, whereas stress-resistant varieties are typically late maturing. For this reason, the polymerization of early maturity and other desired agronomic qualities requires overcoming the negative connection between early maturity, multi-resistance, and yield, which presents a formidable challenge in current breeding techniques. We review the most salient constraints of early maturity breeding in current crop planting practices and the molecular mechanisms of different maturation timeframes in diverse crops from their origin center to production areas. We explore current breeding tactics and the future direction of crop breeding and the issues that must be resolved to accomplish the polymerization of desirable traits in light of the current obstacles and limitations.
Collapse
Affiliation(s)
- Hang Zhao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Zhaoen Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 Xinjiang, China; Hainan Yazhou Bay Seed Lab, Sanya 572000, Hainan, China.
| | - Xiaoyang Ge
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 Xinjiang, China; Hainan Yazhou Bay Seed Lab, Sanya 572000, Hainan, China.
| |
Collapse
|
6
|
Izquierdo P, Kelly JD, Beebe SE, Cichy K. Combination of meta-analysis of QTL and GWAS to uncover the genetic architecture of seed yield and seed yield components in common bean. THE PLANT GENOME 2023:e20328. [PMID: 37082832 DOI: 10.1002/tpg2.20328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Increasing seed yield in common bean could help to improve food security and reduce malnutrition globally due to the high nutritional quality of this crop. However, the complex genetic architecture and prevalent genotype by environment interactions for seed yield makes increasing genetic gains challenging. The aim of this study was to identify the most consistent genomic regions related with seed yield components and phenology reported in the last 20 years in common bean. A meta-analysis of quantitative trait locus (QTL) for seed yield components and phenology (MQTL-YC) was performed for 394 QTL reported in 21 independent studies under sufficient water and drought conditions. In total, 58 MQTL-YC over different genetic backgrounds and environments were identified, reducing threefold on average the confidence interval (CI) compared with the CI for the initial QTL. Furthermore, 40 MQTL-YC identified were co-located with 210 SNP peak positions reported via genome-wide association (GWAS), guiding the identification of candidate genes. Comparative genomics among these MQTL-YC with MQTL-YC reported in soybean and pea allowed the identification of 14 orthologous MQTL-YC shared across species. The integration of MQTL-YC, GWAS, and comparative genomics used in this study is useful to uncover and refine the most consistent genomic regions related with seed yield components for their use in plant breeding.
Collapse
Affiliation(s)
- Paulo Izquierdo
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - James D Kelly
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Stephen E Beebe
- Bean Program, Crops for Health and Nutrition Area, Alliance Bioversity International-CIAT, Cali, Colombia
| | - Karen Cichy
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- USDA-ARS, Sugarbeet and Bean Research Unit, East Lansing, MI, USA
| |
Collapse
|
7
|
Bellucci E, Benazzo A, Xu C, Bitocchi E, Rodriguez M, Alseekh S, Di Vittori V, Gioia T, Neumann K, Cortinovis G, Frascarelli G, Murube E, Trucchi E, Nanni L, Ariani A, Logozzo G, Shin JH, Liu C, Jiang L, Ferreira JJ, Campa A, Attene G, Morrell PL, Bertorelle G, Graner A, Gepts P, Fernie AR, Jackson SA, Papa R. Selection and adaptive introgression guided the complex evolutionary history of the European common bean. Nat Commun 2023; 14:1908. [PMID: 37019898 PMCID: PMC10076260 DOI: 10.1038/s41467-023-37332-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Domesticated crops have been disseminated by humans over vast geographic areas. Common bean (Phaseolus vulgaris L.) was introduced in Europe after 1492. Here, by combining whole-genome profiling, metabolic fingerprinting and phenotypic characterisation, we show that the first common bean cultigens successfully introduced into Europe were of Andean origin, after Francisco Pizarro's expedition to northern Peru in 1529. We reveal that hybridisation, selection and recombination have shaped the genomic diversity of the European common bean in parallel with political constraints. There is clear evidence of adaptive introgression into the Mesoamerican-derived European genotypes, with 44 Andean introgressed genomic segments shared by more than 90% of European accessions and distributed across all chromosomes except PvChr11. Genomic scans for signatures of selection highlight the role of genes relevant to flowering and environmental adaptation, suggesting that introgression has been crucial for the dissemination of this tropical crop to the temperate regions of Europe.
Collapse
Affiliation(s)
- Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
| | - Chunming Xu
- Center for Applied Genetic Technologies, University of Georgia, 30602, Athens, GA, USA
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, 07100, Sassari, Italy
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale-CBV, Università degli Studi di Sassari, 07041, Alghero, Italy
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Plant Biotechnology, 4000, Plovdiv, Bulgaria
| | - Valerio Di Vittori
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476, Potsdam-Golm, Germany
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Germany
| | - Gaia Cortinovis
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giulia Frascarelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Ester Murube
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Emiliano Trucchi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Andrea Ariani
- Department of Plant Sciences, University of California, 95616-8780, Davis, CA, USA
| | - Giuseppina Logozzo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Jin Hee Shin
- Center for Applied Genetic Technologies, University of Georgia, 30602, Athens, GA, USA
| | - Chaochih Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, USA
| | - Liang Jiang
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476, Potsdam-Golm, Germany
| | - Juan José Ferreira
- Regional Agrifood Research and Development Service (SERIDA), 33310, Villaviciosa, Asturias, Spain
| | - Ana Campa
- Regional Agrifood Research and Development Service (SERIDA), 33310, Villaviciosa, Asturias, Spain
| | - Giovanna Attene
- Department of Agriculture, University of Sassari, 07100, Sassari, Italy
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale-CBV, Università degli Studi di Sassari, 07041, Alghero, Italy
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, USA
| | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Germany
| | - Paul Gepts
- Department of Plant Sciences, University of California, 95616-8780, Davis, CA, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Plant Biotechnology, 4000, Plovdiv, Bulgaria
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 30602, Athens, GA, USA
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy.
| |
Collapse
|
8
|
Neupane S, Wright DM, Martinez RO, Butler J, Weller JL, Bett KE. Focusing the GWAS Lens on days to flower using latent variable phenotypes derived from global multienvironment trials. THE PLANT GENOME 2023; 16:e20269. [PMID: 36284473 DOI: 10.1002/tpg2.20269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/25/2022] [Indexed: 05/10/2023]
Abstract
Adaptation constraints within crop species have resulted in limited genetic diversity in some breeding programs and areas where new crops have been introduced, for example, for lentil (Lens culinaris Medik.) in North America. An improved understanding of the underlying genetics involved in phenology-related traits is valuable knowledge to aid breeders in overcoming limitations associated with unadapted germplasm and expanding their genetic diversity by introducing new, exotic material. We used a large, 18 site-year, multienvironment dataset phenotyped for phenology-related traits across nine locations and over 3 yr along with accompanying latent variable phenotypes derived from a photothermal model and principal component analysis (PCA) of days from sowing to flower (DTF) data for a lentil diversity panel (324 accessions), which has also been genotyped with an exome capture array. Genome-wide association studies (GWAS) on DTF across multiple environments helped confirm associations with known flowering-time genes and identify new quantitative trait loci (QTL), which may contain previously unknown flowering time genes. Additionally, the use of latent variable phenotypes, which can incorporate environmental data such as temperature and photoperiod as both GWAS traits and as covariates, strengthened associations, revealed additional hidden associations, and alluded to potential roles of the associated QTL. Our approach can be replicated with other crop species, and the results from our GWAS serve as a resource for further exploration into the complex nature of phenology-related traits across the major growing environments for cultivated lentil.
Collapse
Affiliation(s)
- Sandesh Neupane
- Dep. of Plant Sciences, Univ. of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Derek M Wright
- Dep. of Plant Sciences, Univ. of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Raul O Martinez
- School of Natural Sciences, Univ. of Tasmania, Hobart, TAS, 7001, Australia
| | - Jakob Butler
- School of Natural Sciences, Univ. of Tasmania, Hobart, TAS, 7001, Australia
| | - James L Weller
- School of Natural Sciences, Univ. of Tasmania, Hobart, TAS, 7001, Australia
| | - Kirstin E Bett
- Dep. of Plant Sciences, Univ. of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
9
|
Common bean (Phaseolus vulgaris L.) seed germination improves the essential amino acid profile, flavonoid content and expansion index. CZECH JOURNAL OF FOOD SCIENCES 2023. [DOI: 10.17221/5/2022-cjfs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
10
|
González AM, Lebrón R, Yuste-Lisbona FJ, Gómez-Martín C, Ortiz-Atienza A, Hackenberg M, Oliver JL, Lozano R, Santalla M. Decoding Gene Expression Signatures Underlying Vegetative to Inflorescence Meristem Transition in the Common Bean. Int J Mol Sci 2022; 23:ijms232314783. [PMID: 36499112 PMCID: PMC9739310 DOI: 10.3390/ijms232314783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The tropical common bean (Phaseolus vulgaris L.) is an obligatory short-day plant that requires relaxation of the photoperiod to induce flowering. Similar to other crops, photoperiod-induced floral initiation depends on the differentiation and maintenance of meristems. In this study, the global changes in transcript expression profiles were analyzed in two meristematic tissues corresponding to the vegetative and inflorescence meristems of two genotypes with different sensitivities to photoperiods. A total of 3396 differentially expressed genes (DEGs) were identified, and 1271 and 1533 were found to be up-regulated and down-regulated, respectively, whereas 592 genes showed discordant expression patterns between both genotypes. Arabidopsis homologues of DEGs were identified, and most of them were not previously involved in Arabidopsis floral transition, suggesting an evolutionary divergence of the transcriptional regulatory networks of the flowering process of both species. However, some genes belonging to the photoperiod and flower development pathways with evolutionarily conserved transcriptional profiles have been found. In addition, the flower meristem identity genes APETALA1 and LEAFY, as well as CONSTANS-LIKE 5, were identified as markers to distinguish between the vegetative and reproductive stages. Our data also indicated that the down-regulation of the photoperiodic genes seems to be directly associated with promoting floral transition under inductive short-day lengths. These findings provide valuable insight into the molecular factors that underlie meristematic development and contribute to understanding the photoperiod adaptation in the common bean.
Collapse
Affiliation(s)
- Ana M. González
- Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain
| | - Ricardo Lebrón
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Cristina Gómez-Martín
- Departamento de Genética, Facultad de Ciencias & Laboratorio de Bioinformática, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
| | - Ana Ortiz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Michael Hackenberg
- Departamento de Genética, Facultad de Ciencias & Laboratorio de Bioinformática, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
| | - José L. Oliver
- Departamento de Genética, Facultad de Ciencias & Laboratorio de Bioinformática, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Marta Santalla
- Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain
- Correspondence: ; Tel.: +34-986-596134; Fax: +34-986-851362
| |
Collapse
|
11
|
Maeda AE, Nakamichi N. Plant clock modifications for adapting flowering time to local environments. PLANT PHYSIOLOGY 2022; 190:952-967. [PMID: 35266545 PMCID: PMC9516756 DOI: 10.1093/plphys/kiac107] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/09/2022] [Indexed: 05/25/2023]
Abstract
During and after the domestication of crops from ancestral wild plants, humans selected cultivars that could change their flowering time in response to seasonal daylength. Continuous selection of this trait eventually allowed the introduction of crops into higher or lower latitudes and different climates from the original regions where domestication initiated. In the past two decades, numerous studies have found the causal genes or alleles that change flowering time and have assisted in adapting crop species such as barley (Hordeum vulgare), wheat (Triticum aestivum L.), rice (Oryza sativa L.), pea (Pisum sativum L.), maize (Zea mays spp. mays), and soybean (Glycine max (L.) Merr.) to new environments. This updated review summarizes the genes or alleles that contributed to crop adaptation in different climatic areas. Many of these genes are putative orthologs of Arabidopsis (Arabidopsis thaliana) core clock genes. We also discuss how knowledge of the clock's molecular functioning can facilitate molecular breeding in the future.
Collapse
Affiliation(s)
- Akari E Maeda
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Norihito Nakamichi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Surkova SY, Samsonova MG. Mechanisms of Vernalization-Induced Flowering in Legumes. Int J Mol Sci 2022; 23:ijms23179889. [PMID: 36077286 PMCID: PMC9456104 DOI: 10.3390/ijms23179889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Vernalization is the requirement for exposure to low temperatures to trigger flowering. The best knowledge about the mechanisms of vernalization response has been accumulated for Arabidopsis and cereals. In Arabidopsis thaliana, vernalization involves an epigenetic silencing of the MADS-box gene FLOWERING LOCUS C (FLC), which is a flowering repressor. FLC silencing releases the expression of the main flowering inductor FLOWERING LOCUS T (FT), resulting in a floral transition. Remarkably, no FLC homologues have been identified in the vernalization-responsive legumes, and the mechanisms of cold-mediated transition to flowering in these species remain elusive. Nevertheless, legume FT genes have been shown to retain the function of the main vernalization signal integrators. Unlike Arabidopsis, legumes have three subclades of FT genes, which demonstrate distinct patterns of regulation with respect to environmental cues and tissue specificity. This implies complex mechanisms of vernalization signal propagation in the flowering network, that remain largely elusive. Here, for the first time, we summarize the available information on the genetic basis of cold-induced flowering in legumes with a special focus on the role of FT genes.
Collapse
|
13
|
Williams O, Vander Schoor JK, Butler JB, Ridge S, Sussmilch FC, Hecht VFG, Weller JL. The genetic architecture of flowering time changes in pea from wild to crop. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3978-3990. [PMID: 35383838 PMCID: PMC9238443 DOI: 10.1093/jxb/erac132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Change in phenology has been an important component in crop evolution, and selection for earlier flowering through a reduction in environmental sensitivity has helped broaden adaptation in many species. Natural variation for flowering in domesticated pea (Pisum sativum L.) has been noted and studied for decades, but there has been no clear account of change relative to its wild progenitor. Here we examined the genetic control of differences in flowering time between wild P. sativum ssp. humile and a typical late-flowering photoperiodic P. s. sativum accession in a recombinant inbred population under long and short photoperiods. Our results confirm the importance of the major photoperiod sensitivity locus Hr/PsELF3a and identify two other loci on chromosomes 1 (DTF1) and 3 (DTF3) that contribute to earlier flowering in the domesticated line under both photoperiods. The domesticated allele at a fourth locus on chromosome 6 (DTF6) delays flowering under long days only. Map positions, inheritance patterns, and expression analyses in near-isogenic comparisons imply that DTF1, DTF3, and DTF6 represent gain-of-function alleles of the florigen/antiflorigen genes FTa3, FTa1, and TFL1c/LF, respectively. This echoes similar variation in chickpea and lentil, and suggests a conserved route to reduced photoperiod sensitivity and early phenology in temperate pulses.
Collapse
Affiliation(s)
- Owen Williams
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | | | - Jakob B Butler
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Stephen Ridge
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Frances C Sussmilch
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Valerie F G Hecht
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| |
Collapse
|
14
|
Rajandran V, Ortega R, Vander Schoor JK, Butler JB, Freeman JS, Hecht VFG, Erskine W, Murfet IC, Bett KE, Weller JL. Genetic analysis of early phenology in lentil identifies distinct loci controlling component traits. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3963-3977. [PMID: 35290451 PMCID: PMC9238442 DOI: 10.1093/jxb/erac107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/11/2022] [Indexed: 05/25/2023]
Abstract
Modern-day domesticated lentil germplasm is generally considered to form three broad adaptation groups: Mediterranean, South Asian, and northern temperate, which correspond to the major global production environments. Reproductive phenology plays a key role in lentil adaptation to this diverse ecogeographic variation. Here, we dissect the characteristic earliness of the pilosae ecotype, suited to the typically short cropping season of South Asian environments. We identified two loci, DTF6a and DTF6b, at which dominant alleles confer early flowering, and we show that DTF6a alone is sufficient to confer early flowering under extremely short photoperiods. Genomic synteny confirmed the presence of a conserved cluster of three florigen (FT) gene orthologues among potential candidate genes, and expression analysis in near-isogenic material showed that the early allele is associated with a strong derepression of the FTa1 gene in particular. Sequence analysis revealed a 7.4 kb deletion in the FTa1-FTa2 intergenic region in the pilosae parent, and a wide survey of >350 accessions with diverse origin showed that the dtf6a allele is predominant in South Asian material. Collectively, these results contribute to understanding the molecular basis of global adaptation in lentil, and further emphasize the importance of this conserved genomic region for adaptation in temperate legumes generally.
Collapse
Affiliation(s)
- Vinodan Rajandran
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Raul Ortega
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | | | - Jakob B Butler
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Jules S Freeman
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
- Forest Genetics and Biotechnology, Scion, Private Bag 3020, Rotorua 3046, New Zealand
| | - Valerie F G Hecht
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Willie Erskine
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ian C Murfet
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | | |
Collapse
|
15
|
Jiang X, Yang T, Zhang F, Yang X, Yang C, He F, Long R, Gao T, Jiang Y, Yang Q, Wang Z, Kang J. RAD-Seq-Based High-Density Linkage Maps Construction and Quantitative Trait Loci Mapping of Flowering Time Trait in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:899681. [PMID: 35720570 PMCID: PMC9199863 DOI: 10.3389/fpls.2022.899681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Alfalfa (Medicago sativa L.) is a perennial forage crop known as the "Queen of Forages." To dissect the genetic mechanism of flowering time (FT) in alfalfa, high-density linkage maps were constructed for both parents of an F1 mapping population derived from a cross between Cangzhou (P1) and ZhongmuNO.1 (P2), consisting of 150 progenies. The FT showed a transgressive segregation pattern in the mapping population. A total of 13,773 single-nucleotide polymorphism markers was obtained by using restriction-site associated DNA sequencing and distributed on 64 linkage groups, with a total length of 3,780.49 and 4,113.45 cM and an average marker interval of 0.58 and 0.59 cM for P1 and P2 parent, respectively. Quantitative trait loci (QTL) analyses were performed using the least square means of each year as well as the best linear unbiased prediction values across 4 years. Sixteen QTLs for FT were detected for P1 and 22 QTLs for P2, accounting for 1.40-16.04% of FT variation. RNA-Seq analysis at three flowering stages identified 5,039, 7,058, and 7,996 genes that were differentially expressed between two parents, respectively. Based on QTL mapping, DEGs analysis, and functional annotation, seven candidate genes associated with flowering time were finally detected. This study discovered QTLs and candidate genes for alfalfa FT, making it a useful resource for breeding studies on this essential crop.
Collapse
Affiliation(s)
- Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xijiang Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changfu Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Keller B, Ariza-Suarez D, Portilla-Benavides AE, Buendia HF, Aparicio JS, Amongi W, Mbiu J, Msolla SN, Miklas P, Porch TG, Burridge J, Mukankusi C, Studer B, Raatz B. Improving Association Studies and Genomic Predictions for Climbing Beans With Data From Bush Bean Populations. FRONTIERS IN PLANT SCIENCE 2022; 13:830896. [PMID: 35557726 PMCID: PMC9085748 DOI: 10.3389/fpls.2022.830896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 05/29/2023]
Abstract
Common bean (Phaseolus vulgaris L.) has two major origins of domestication, Andean and Mesoamerican, which contribute to the high diversity of growth type, pod and seed characteristics. The climbing growth habit is associated with increased days to flowering (DF), seed iron concentration (SdFe), nitrogen fixation, and yield. However, breeding efforts in climbing beans have been limited and independent from bush type beans. To advance climbing bean breeding, we carried out genome-wide association studies and genomic predictions using 1,869 common bean lines belonging to five breeding panels representing both gene pools and all growth types. The phenotypic data were collected from 17 field trials and were complemented with 16 previously published trials. Overall, 38 significant marker-trait associations were identified for growth habit, 14 for DF, 13 for 100 seed weight, three for SdFe, and one for yield. Except for DF, the results suggest a common genetic basis for traits across all panels and growth types. Seven QTL associated with growth habits were confirmed from earlier studies and four plausible candidate genes for SdFe and 100 seed weight were newly identified. Furthermore, the genomic prediction accuracy for SdFe and yield in climbing beans improved up to 8.8% when bush-type bean lines were included in the training population. In conclusion, a large population from different gene pools and growth types across multiple breeding panels increased the power of genomic analyses and provides a solid and diverse germplasm base for genetic improvement of common bean.
Collapse
Affiliation(s)
- Beat Keller
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Ariza-Suarez
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Hector Fabio Buendia
- Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Winnyfred Amongi
- Bean Program, International Center for Tropical Agriculture (CIAT), Kampala, Uganda
| | - Julius Mbiu
- Tanzania Agricultural Research Institute (TARI), Dodoma, Tanzania
| | - Susan Nchimbi Msolla
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Phillip Miklas
- Department of Agriculture, Agriculture Research Service (USDA-ARS), Prosser, WA, United States
| | - Timothy G. Porch
- Department of Agriculture, Agriculture Research Service (USDA-ARS), Tropical Agriculture Research Station, Mayaguez, PR, United States
| | - James Burridge
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Clare Mukankusi
- Bean Program, International Center for Tropical Agriculture (CIAT), Kampala, Uganda
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Bodo Raatz
- Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
17
|
McClean PE, Lee R, Howe K, Osborne C, Grimwood J, Levy S, Haugrud AP, Plott C, Robinson M, Skiba RM, Tanha T, Zamani M, Thannhauser TW, Glahn RP, Schmutz J, Osorno JM, Miklas PN. The Common Bean V Gene Encodes Flavonoid 3'5' Hydroxylase: A Major Mutational Target for Flavonoid Diversity in Angiosperms. FRONTIERS IN PLANT SCIENCE 2022; 13:869582. [PMID: 35432409 PMCID: PMC9009181 DOI: 10.3389/fpls.2022.869582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The classic V (violet, purple) gene of common bean (Phaseolus vulgaris) functions in a complex genetic network that controls seed coat and flower color and flavonoid content. V was cloned to understand its role in the network and the evolution of its orthologs in the Viridiplantae. V mapped genetically to a narrow interval on chromosome Pv06. A candidate gene was selected based on flavonoid analysis and confirmed by recombinational mapping. Protein and domain modeling determined V encodes flavonoid 3'5' hydroxylase (F3'5'H), a P450 enzyme required for the expression of dihydromyricetin-derived flavonoids in the flavonoid pathway. Eight recessive haplotypes, defined by mutations of key functional domains required for P450 activities, evolved independently in the two bean gene pools from a common ancestral gene. V homologs were identified in Viridiplantae orders by functional domain searches. A phylogenetic analysis determined F3'5'H first appeared in the Streptophyta and is present in only 41% of Angiosperm reference genomes. The evolutionarily related flavonoid pathway gene flavonoid 3' hydroxylase (F3'H) is found nearly universally in all Angiosperms. F3'H may be conserved because of its role in abiotic stress, while F3'5'H evolved as a major target gene for the evolution of flower and seed coat color in plants.
Collapse
Affiliation(s)
- Phillip E. McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Kevin Howe
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Caroline Osborne
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Shawn Levy
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Amanda Peters Haugrud
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Melanie Robinson
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Ryan M. Skiba
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Tabassum Tanha
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Mariam Zamani
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Theodore W. Thannhauser
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Raymond P. Glahn
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Juan M. Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Phillip N. Miklas
- USDA-ARS, Grain Legumes Genetics and Physiology Research Unit, Prosser, WA, United States
| |
Collapse
|
18
|
Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A. Pathways to de novo domestication of crop wild relatives. PLANT PHYSIOLOGY 2022; 188:1746-1756. [PMID: 34850221 PMCID: PMC8968405 DOI: 10.1093/plphys/kiab554] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
Growing knowledge about crop domestication, combined with increasingly powerful gene-editing toolkits, sets the stage for the continual domestication of crop wild relatives and other lesser-known plant species.
Collapse
Affiliation(s)
- Shaun Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, Minnesota 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
19
|
García-Fernández C, Jurado M, Campa A, Brezeanu C, Geffroy V, Bitocchi E, Papa R, Ferreira JJ. A Core Set of Snap Bean Genotypes Established by Phenotyping a Large Panel Collected in Europe. PLANTS 2022; 11:plants11050577. [PMID: 35270047 PMCID: PMC8912712 DOI: 10.3390/plants11050577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
Snap beans are a group of bean cultivars grown for their edible immature pods. The objective of this work was to characterize the diversity of pod phenotypes in a snap bean panel (SBP), comprising 311 lines collected in Europe, and establish a core set (Core-SBP) with the maximum diversity of pod phenotypes. Phenotyping of the SBP was carried out over two seasons based on 14 quantitative pod dimension traits along with three qualitative traits: pod color, seed coat color, and growth habit. Phenotypes were grouped into 54 classes using a hierarchical method, and a Core-SBP with one line per phenotype class was established. A further field-based evaluation of the Core-SBP revealed higher diversity index values than those obtained for the SBP. The Core-SBP was also genotyped using 24 breeder-friendly DNA markers tagging 21 genomic regions previously associated with pod trait control. Significant marker-trait associations were found for 11 of the 21 analyzed regions as well as the locus fin. The established Core-SBP was a first attempt to classify snap bean cultivars based on pod morphology and constituted a valuable source of characteristics for future breeding programs and genetic analysis.
Collapse
Affiliation(s)
- Carmen García-Fernández
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300 Villaviciosa, Spain; (C.G.-F.); (M.J.); (A.C.)
| | - Maria Jurado
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300 Villaviciosa, Spain; (C.G.-F.); (M.J.); (A.C.)
| | - Ana Campa
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300 Villaviciosa, Spain; (C.G.-F.); (M.J.); (A.C.)
| | - Creola Brezeanu
- Stațiunea de Cercetare Dezvoltare Pentru Legumicultură, 600388 Bacău, Romania;
| | - Valérie Geffroy
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France;
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (E.B.); (R.P.)
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (E.B.); (R.P.)
| | - Juan Jose Ferreira
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300 Villaviciosa, Spain; (C.G.-F.); (M.J.); (A.C.)
- Correspondence:
| |
Collapse
|
20
|
Krishna S, Modha K, Parekh V, Patel R, Chauhan D. Phylogenetic analysis of phytochrome A gene from Lablab purpureus (L.) Sweet. J Genet Eng Biotechnol 2022; 20:9. [PMID: 35024973 PMCID: PMC8758814 DOI: 10.1186/s43141-021-00295-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Phytochromes are the best characterized photoreceptors that perceive Red (R)/Far-Red (FR) signals and mediate key developmental responses in plants. It is well established that photoperiodic control of flowering is regulated by PHY A (phytochrome A) gene. So far, the members of PHY A gene family remains unexplored in Lablab purpureus, and therefore, their functions are still not deciphered. PHYA3 is the homologue of phytochrome A and known to be involved in dominant suppression of flowering under long day conditions by downregulating florigens in Glycine max. The present study is the first effort to identify and characterize any photoreceptor gene (PHYA3, in this study) in Lablab purpureus and decipher its phylogeny with related legumes. RESULTS PHYA3 was amplified in Lablab purpureus cv GNIB-21 (photo-insensitive and determinate) by utilizing primers designed from GmPHYA3 locus of Glycine max. This study was successful in partially characterizing PHYA3 in Lablab purpureus (LprPHYA3) which is 2 kb longer and belongs to exon 1 region of PHYA3 gene. Phylogenetic analysis of the nucleotide and protein sequences of PHYA genes through MEGA X delineated the conservation and evolution of Lablab purpureus PHYA3 (LprPHYA3) probably from PHYA genes of Vigna unguiculata, Glycine max and Vigna angularis. A conserved basic helix-loop-helix motif bHLH69 was predicted having DNA binding property. Domain analysis of GmPHYA protein and predicted partial protein sequence corresponding to exon-1 of LprPHYA3 revealed the presence of conserved domains (GAF and PAS domains) in Lablab purpureus similar to Glycine max. CONCLUSION Partial characterization of LprPHYA3 would facilitate the identification of complete gene in Lablab purpureus utilizing sequence information from phylogenetically related species of Fabaceae. This would allow screening of allelic variants for LprPHYA3 locus and their role in photoperiod responsive flowering. The present study could aid in modulating photoperiod responsive flowering in Lablab purpureus and other related legumes in near future through genome editing.
Collapse
Affiliation(s)
- Stuti Krishna
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396 450, India
| | - Kaushal Modha
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396 450, India.
| | - Vipulkumar Parekh
- Department of Basic Science and Humanities, ASPEE College of Horticulture and Forestry, NAU, Navsari, Gujarat, 396 450, India
| | - Ritesh Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396 450, India
| | - Digvijay Chauhan
- Pulses and Castor Research Station, Navsari Agricultural University, Navsari, Gujarat, 396 450, India
| |
Collapse
|
21
|
Lo S, Parker T, Muñoz-Amatriaín M, Berny-Mier Y Teran JC, Jernstedt J, Close TJ, Gepts P. Genetic, anatomical, and environmental patterns related to pod shattering resistance in domesticated cowpea [Vigna unguiculata (L.) Walp]. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6219-6229. [PMID: 34106233 DOI: 10.1093/jxb/erab259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/06/2021] [Indexed: 05/27/2023]
Abstract
Pod shattering, which causes the explosive release of seeds from the pod, is one of the main sources of yield losses in cowpea in arid and semi-arid areas. Reduction of shattering has therefore been a primary target for selection during domestication and improvement of cowpea, among other species. Using a mini-core diversity panel of 368 cowpea accessions, four regions with a statistically significant association with pod shattering were identified. Two genes (Vigun03g321100 and Vigun11g100600), involved in cell wall biosynthesis, were identified as strong candidates for pod shattering. Microscopic analysis was conducted on a subset of accessions representing the full spectrum of shattering phenotypes. This analysis indicated that the extent of wall fiber deposition was highly correlated with shattering. The results from this study also demonstrate that pod shattering in cowpea is exacerbated by arid environmental conditions. Finally, using a subset of West African landraces, patterns of historical selection for shattering resistance related to precipitation in the environment of origin were identified. Together, these results shed light on sources of resistance to pod shattering, which will, in turn, improve climate resilience of a major global nutritional staple.
Collapse
Affiliation(s)
- Sassoum Lo
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521,USA
- Department of Plant Sciences/MS1, University of California, Davis, CA 95616-8780,USA
| | - Travis Parker
- Department of Plant Sciences/MS1, University of California, Davis, CA 95616-8780,USA
| | - María Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521,USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523,USA
| | | | - Judy Jernstedt
- Department of Plant Sciences/MS1, University of California, Davis, CA 95616-8780,USA
| | - Timothy J Close
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521,USA
| | - Paul Gepts
- Department of Plant Sciences/MS1, University of California, Davis, CA 95616-8780,USA
| |
Collapse
|
22
|
Tian Z, Jahn M, Qin X, Obel HO, Yang F, Li J, Chen J. Genetic and Transcriptomic Analysis Reveal the Molecular Basis of Photoperiod-Regulated Flowering in Xishuangbanna Cucumber ( Cucumis sativus L. var. xishuangbannesis Qi et Yuan). Genes (Basel) 2021; 12:genes12071064. [PMID: 34356080 PMCID: PMC8304308 DOI: 10.3390/genes12071064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Xishuangbanna (XIS) cucumber (Cucumis sativus L. var. xishuangbannesis Qi et Yuan), is a botanical variety of cucumber cultivars native to southwest China that possesses excellent agronomic traits for cucumber improvement. However, breeding utilization of XIS cucumber is limited due to the current poor understanding of its photoperiod-sensitive flowering characteristics. In this study, genetic and transcriptomic analysis were conducted to reveal the molecular basis of photoperiod-regulated flowering in XIS cucumber. A major-effect QTL locus DFF1.1 was identified that controls the days to first flowering (DFF) of XIS cucumbers with a span of 1.38 Mb. Whole-genome re-sequencing data of 9 cucumber varieties with different flowering characteristics in response to photoperiod suggested that CsaNFYA1 was the candidate gene of DFF1.1, which harbored a single non-synonymous mutation in its fifth exon. Transcriptomic analysis revealed the positive roles of auxin and ethylene in accelerating flowering under short-day (SD) light-dark cycles when compared with equal-day/night treatment. Carbohydrate storage and high expression levels of related genes were important reasons explaining early flowering of XIS cucumber under SD conditions. By combining with the RNA-Seq data, the co-expression network suggested that CsaNFYA1 integrated multiple types of genes to regulate the flowering of XIS cucumber. Our findings explain the internal regulatory mechanisms of a photoperiodic flowering pathway. These findings may guide the use of photoperiod shifts to promote flowering of photoperiod-sensitive crops.
Collapse
Affiliation(s)
- Zhen Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Molly Jahn
- Jahn Research Group, USDA/FPL, Madison, WI 53726, USA;
| | - Xiaodong Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Hesbon Ochieng Obel
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Fan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
- Correspondence: ; Tel.: +86-25-8439-6279
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| |
Collapse
|
23
|
Boden SA. Evolution: Replicated mutation of COL2 contributed long-day flowering in common bean. Curr Biol 2021; 31:R384-R386. [PMID: 33905695 DOI: 10.1016/j.cub.2021.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ability to flower without strict daylength constraints has helped spread cultivation of crop plants to new locations. The generation of daylength-insensitive common bean accessions in central and South America involved the repeated selection of mutant alleles for a key transcription factor that suppresses long-day flowering.
Collapse
Affiliation(s)
- Scott A Boden
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
24
|
González AM, Vander Schoor JK, Fang C, Kong F, Wu J, Weller JL, Santalla M. Ancient relaxation of an obligate short-day requirement in common bean through loss of CONSTANS-like gene function. Curr Biol 2021; 31:1643-1652.e2. [PMID: 33609454 DOI: 10.1016/j.cub.2021.01.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 01/24/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is a major global food staple and source of dietary protein that was domesticated independently in Mexico and Andean South America. Its subsequent development as a crop of importance worldwide has been enabled by genetic relaxation of the strict short-day requirement typical of wild forms, but the genetic basis for this change is not well understood. Recently, a loss of photoperiod sensitivity was shown to result from mutations in the phytochrome photoreceptor gene Ppd/PHYA3 that arose independently within the two major domesticated lineages. Here, we define a second major photoperiod sensitivity locus, at which recessive alleles associate with deleterious mutations affecting the CONSTANS-like gene COL2. A wider survey of sequence variation in over 800 diverse lines, including wild, landrace, and domesticated accessions, show that distinct col2 haplotypes are associated with early flowering in Andean and Mesoamerican germplasm. The relative frequencies and distributions of COL2 and PHYA3 haplotypes imply that photoperiod adaptation developed in two phases within each gene pool: an initial reduction in sensitivity through impairment of COL2 function and subsequent complete loss through PHYA3. Gene expression analyses indicate that COL2 functions downstream of PHYA3 to repress expression of FT genes and may function in parallel with PvE1, the bean ortholog of a key legume-specific flowering repressor. Collectively, these results define the molecular basis for a key phenological adaptation, reveal a striking convergence in the naturally replicated evolution of this major crop, and further emphasize the wider evolutionary lability of CONSTANS effects on flowering time control.
Collapse
Affiliation(s)
- Ana M González
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, PO Box 28, 36080 Pontevedra, Spain
| | | | - Chao Fang
- Innovation Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Innovation Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| | - Marta Santalla
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, PO Box 28, 36080 Pontevedra, Spain.
| |
Collapse
|
25
|
Diaz S, Ariza-Suarez D, Izquierdo P, Lobaton JD, de la Hoz JF, Acevedo F, Duitama J, Guerrero AF, Cajiao C, Mayor V, Beebe SE, Raatz B. Genetic mapping for agronomic traits in a MAGIC population of common bean (Phaseolus vulgaris L.) under drought conditions. BMC Genomics 2020; 21:799. [PMID: 33198642 PMCID: PMC7670608 DOI: 10.1186/s12864-020-07213-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/05/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Common bean is an important staple crop in the tropics of Africa, Asia and the Americas. Particularly smallholder farmers rely on bean as a source for calories, protein and micronutrients. Drought is a major production constraint for common bean, a situation that will be aggravated with current climate change scenarios. In this context, new tools designed to understand the genetic basis governing the phenotypic responses to abiotic stress are required to improve transfer of desirable traits into cultivated beans. RESULTS A multiparent advanced generation intercross (MAGIC) population of common bean was generated from eight Mesoamerican breeding lines representing the phenotypic and genotypic diversity of the CIAT Mesoamerican breeding program. This population was assessed under drought conditions in two field trials for yield, 100 seed weight, iron and zinc accumulation, phenology and pod harvest index. Transgressive segregation was observed for most of these traits. Yield was positively correlated with yield components and pod harvest index (PHI), and negative correlations were found with phenology traits and micromineral contents. Founder haplotypes in the population were identified using Genotyping by Sequencing (GBS). No major population structure was observed in the population. Whole Genome Sequencing (WGS) data from the founder lines was used to impute genotyping data for GWAS. Genetic mapping was carried out with two methods, using association mapping with GWAS, and linkage mapping with haplotype-based interval screening. Thirteen high confidence QTL were identified using both methods and several QTL hotspots were found controlling multiple traits. A major QTL hotspot located on chromosome Pv01 for phenology traits and yield was identified. Further hotspots affecting several traits were observed on chromosomes Pv03 and Pv08. A major QTL for seed Fe content was contributed by MIB778, the founder line with highest micromineral accumulation. Based on imputed WGS data, candidate genes are reported for the identified major QTL, and sequence changes were identified that could cause the phenotypic variation. CONCLUSIONS This work demonstrates the importance of this common bean MAGIC population for genetic mapping of agronomic traits, to identify trait associations for molecular breeding tool design and as a new genetic resource for the bean research community.
Collapse
Affiliation(s)
- Santiago Diaz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Daniel Ariza-Suarez
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Paulo Izquierdo
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Juan David Lobaton
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: School of Environmental and Rural Sciences, University of New England, Armidale, SA, Australia
| | - Juan Fernando de la Hoz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Bioinformatics Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fernando Acevedo
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge Duitama
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Alberto F Guerrero
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Cesar Cajiao
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Victor Mayor
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Progeny Breeding, Madrid, Colombia
| | - Stephen E Beebe
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Bodo Raatz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia.
| |
Collapse
|
26
|
Jaudal M, Wen J, Mysore KS, Putterill J. Medicago PHYA promotes flowering, primary stem elongation and expression of flowering time genes in long days. BMC PLANT BIOLOGY 2020; 20:329. [PMID: 32652925 PMCID: PMC7353751 DOI: 10.1186/s12870-020-02540-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/05/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Flowering time is an important trait for productivity in legumes, which include many food and fodder plants. Medicago truncatula (Medicago) is a model temperate legume used to study flowering time pathways. Like Arabidopsis thaliana (Arabidopsis), its flowering is promoted by extended periods of cold (vernalization, V), followed by warm long day (LD) photoperiods. However, Arabidopsis flowering-time genes such as the FLOWERING LOCUS C (FLC)/ MADS AFFECTING FLOWERING (MAF) clade are missing and CONSTANS-LIKE (CO-LIKE) genes do not appear to have a role in Medicago or Pisum sativum (pea). Another photoperiodic regulator, the red/far red photoreceptor PHYTOCHROME A (PHYA), promotes Arabidopsis flowering by stabilizing the CO protein in LD. Interestingly, despite the absence of CO-LIKE function in pea, PsPHYA plays a key role in promoting LD photoperiodic flowering and plant architecture. Medicago has one homolog of PHYA, MtPHYA, but its function is not known. RESULTS Genetic analysis of two MtPHYA Tnt1 insertion mutant alleles indicates that MtPHYA has an important role in promoting Medicago flowering and primary stem elongation in VLD and LD and in perception of far-red wavelengths in seedlings. MtPHYA positively regulates the expression of MtE1-like (MtE1L), a homologue of an important legume-specific flowering time gene, E1 in soybean and other Medicago LD-regulated flowering-time gene homologues, including the three FLOWERING LOCUS T-LIKE (FT-LIKE) genes, MtFTa1, MtFTb1 and MtFTb2 and the two FRUITFULL-LIKE (FUL-LIKE) genes MtFULa and MtFULb. MtPHYA also modulates the expression of the circadian clock genes, GIGANTEA (GI) and TIMING OF CAB EXPRESSION 1a (TOC1a). Genetic analyses indicate that Mtphya-1 Mte1l double mutants flowered at the same time as the single mutants. However, Mtphya-1 Mtfta1 double mutants had a weak additive effect in delaying flowering and in reduction of primary axis lengths beyond what was conferred by either of the single mutants. CONCLUSION MtPHYA has an important role in LD photoperiodic control of flowering, plant architecture and seedling de-etiolation under far-red wavelengths in Medicago. It promotes the expression of LD-induced flowering time genes and modulates clock-related genes. In addition to MtFTa1, MtPHYA likely regulates other targets during LD floral induction in Medicago.
Collapse
Affiliation(s)
- Mauren Jaudal
- The Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK73401, USA
| | | | - Joanna Putterill
- The Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
27
|
Determining the Genetic Control of Common Bean Early-Growth Rate Using Unmanned Aerial Vehicles. REMOTE SENSING 2020. [DOI: 10.3390/rs12111748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vigorous early-season growth rate allows crops to compete more effectively against weeds and to conserve soil moisture in arid areas. These traits are of increasing economic importance due to changing consumer demand, reduced labor availability, and climate-change-related increasing global aridity. Many crop species, including common bean, show genetic variation in growth rate, between varieties. Despite this, the genetic basis of early-season growth has not been well-resolved in the species, in part due to historic phenotyping challenges. Using a range of UAV- and ground-based methods, we evaluated the early-season growth vigor of two populations. These growth data were used to find genetic regions associated with several growth parameters. Our results suggest that early-season growth rate is the result of complex interactions between several genetic and environmental factors. They also highlight the need for high-precision phenotyping provided by UAVs. The quantitative trait loci (QTLs) identified in this study are the first in common bean to be identified remotely using UAV technology. These will be useful for developing crop varieties that compete with weeds and use water more effectively. Ultimately, this will improve crop productivity in the face of changing climatic conditions and will mitigate the need for water and resource-intensive forms of weed control.
Collapse
|
28
|
MacQueen AH, White JW, Lee R, Osorno JM, Schmutz J, Miklas PN, Myers J, McClean PE, Juenger TE. Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean. Genetics 2020; 215:267-284. [PMID: 32205398 PMCID: PMC7198278 DOI: 10.1534/genetics.120.303038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/12/2020] [Indexed: 11/18/2022] Open
Abstract
Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for > 70 years in the United States and Canada, consisting of 20-50 entries each year at 10-20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement.
Collapse
Affiliation(s)
- Alice H MacQueen
- Integrative Biology, The University of Texas at Austin, Texas 78712
| | - Jeffrey W White
- U.S. Arid Land Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Maricopa, Arizona 85239
| | - Rian Lee
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota 58102
| | - Juan M Osorno
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota 58102
| | - Jeremy Schmutz
- Hudson-Alpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Prosser, Washington 99350
| | - Jim Myers
- Department of Horticulture, Oregon State University, Corvallis, Oregon 97331
| | - Phillip E McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota 58102
| | - Thomas E Juenger
- Integrative Biology, The University of Texas at Austin, Texas 78712
| |
Collapse
|
29
|
Berny Mier y Teran JC, Konzen ER, Palkovic A, Tsai SM, Gepts P. Exploration of the Yield Potential of Mesoamerican Wild Common Beans From Contrasting Eco-Geographic Regions by Nested Recombinant Inbred Populations. FRONTIERS IN PLANT SCIENCE 2020; 11:346. [PMID: 32308660 PMCID: PMC7145959 DOI: 10.3389/fpls.2020.00346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/09/2020] [Indexed: 05/29/2023]
Abstract
Genetic analyses and utilization of wild genetic variation for crop improvement in common bean (Phaseolus vulgaris L.) have been hampered by yield evaluation difficulties, identification of advantageous variation, and linkage drag. The lack of adaptation to cultivation conditions and the existence of highly structured populations make association mapping of diversity panels not optimal. Joint linkage mapping of nested populations avoids the later constraint, while populations crossed with a common domesticated parent allow the evaluation of wild variation within a more adapted background. Three domesticated by wild backcrossed-inbred-line populations (BC1S4) were developed using three wild accessions representing the full range of rainfall of the Mesoamerican wild bean distribution crossed to the elite drought tolerant domesticated parent SEA 5. These populations were evaluated under field conditions in three environments, two fully irrigated trials in two seasons and a simulated terminal drought in the second season. The goal was to test if these populations responded differently to drought stress and contained progenies with higher yield than SEA 5, not only under drought but also under water-watered conditions. Results revealed that the two populations derived from wild parents of the lower rainfall regions produced lines with higher yield compared to the domesticated parent in the three environments, i.e., both in the drought-stressed environment and in the well-watered treatments. Several progeny lines produced yields, which on average over the three environments were 20% higher than the SEA 5 yield. Twenty QTLs for yield were identified in 13 unique regions on eight of the 11 chromosomes of common bean. Five of these regions showed at least one wild allele that increased yield over the domesticated parent. The variation explained by these QTLs ranged from 0.6 to 5.4% of the total variation and the additive effects ranged from -164 to 277 kg ha-1, with evidence suggesting allelic series for some QTLs. Our results underscore the potential of wild variation, especially from drought-stressed regions, for bean crop improvement as well the identification of regions for efficient marker-assisted introgression.
Collapse
Affiliation(s)
| | - Enéas R. Konzen
- Cell and Molecular Biology Laboratory, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
| | - Antonia Palkovic
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Siu M. Tsai
- Cell and Molecular Biology Laboratory, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
| | - Paul Gepts
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
30
|
Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H, Zhang D, Zhang L, Wang Z, Yang Y, Yu D, Liu X, Yang Q, Lin X, Tang Y, Zhao X, Yang X, Tian C, Xie Q, Li X, Yuan X, Tian Z, Liu B, Weller JL, Kong F. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 2020; 52:428-436. [PMID: 32231277 DOI: 10.1038/s41588-020-0604-7] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
Adaptive changes in plant phenology are often considered to be a feature of the so-called 'domestication syndrome' that distinguishes modern crops from their wild progenitors, but little detailed evidence supports this idea. In soybean, a major legume crop, flowering time variation is well characterized within domesticated germplasm and is critical for modern production, but its importance during domestication is unclear. Here, we identify sequential contributions of two homeologous pseudo-response-regulator genes, Tof12 and Tof11, to ancient flowering time adaptation, and demonstrate that they act via LHY homologs to promote expression of the legume-specific E1 gene and delay flowering under long photoperiods. We show that Tof12-dependent acceleration of maturity accompanied a reduction in dormancy and seed dispersal during soybean domestication, possibly predisposing the incipient crop to latitudinal expansion. Better understanding of this early phase of crop evolution will help to identify functional variation lost during domestication and exploit its potential for future crop improvement.
Collapse
Affiliation(s)
- Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Tong Su
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyang Nan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Lei Zhang
- Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zhijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqing Yang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingyong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiaoya Lin
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yang Tang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaohui Zhao
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xinquan Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Changen Tian
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qiguang Xie
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaohui Yuan
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Gaudinier A, Blackman BK. Evolutionary processes from the perspective of flowering time diversity. THE NEW PHYTOLOGIST 2020; 225:1883-1898. [PMID: 31536639 DOI: 10.1111/nph.16205] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/30/2019] [Indexed: 05/18/2023]
Abstract
Although it is well appreciated that genetic studies of flowering time regulation have led to fundamental advances in the fields of molecular and developmental biology, the ways in which genetic studies of flowering time diversity have enriched the field of evolutionary biology have received less attention despite often being equally profound. Because flowering time is a complex, environmentally responsive trait that has critical impacts on plant fitness, crop yield, and reproductive isolation, research into the genetic architecture and molecular basis of its evolution continues to yield novel insights into our understanding of domestication, adaptation, and speciation. For instance, recent studies of flowering time variation have reconstructed how, when, and where polygenic evolution of phenotypic plasticity proceeded from standing variation and de novo mutations; shown how antagonistic pleiotropy and temporally varying selection maintain polymorphisms in natural populations; and provided important case studies of how assortative mating can evolve and facilitate speciation with gene flow. In addition, functional studies have built detailed regulatory networks for this trait in diverse taxa, leading to new knowledge about how and why developmental pathways are rewired and elaborated through evolutionary time.
Collapse
Affiliation(s)
- Allison Gaudinier
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
32
|
Parker TA, Berny Mier Y Teran JC, Palkovic A, Jernstedt J, Gepts P. Pod indehiscence is a domestication and aridity resilience trait in common bean. THE NEW PHYTOLOGIST 2020; 225:558-570. [PMID: 31486530 DOI: 10.1111/nph.16164] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/14/2019] [Indexed: 05/05/2023]
Abstract
Plant domestication has strongly modified crop morphology and development. Nevertheless, many crops continue to display atavistic characteristics that were advantageous to their wild ancestors but are deleterious under cultivation, such as pod dehiscence (PD). Here, we provide the first comprehensive assessment of the inheritance of PD in the common bean (Phaseolus vulgaris), a major domesticated grain legume. Using three methods to evaluate the PD phenotype, we identified multiple, unlinked genetic regions controlling PD in a biparental population and two diversity panels. Subsequently, we assessed patterns of orthology among these loci and those controlling the trait in other species. Our results show that different genes were selected in each domestication and ecogeographic race. A chromosome Pv03 dirigent-like gene, involved in lignin biosynthesis, showed a base-pair substitution that is associated with decreased PD. This haplotype may underlie the expansion of Mesoamerican domesticates into northern Mexico, where arid conditions promote PD. The rise in frequency of the decreased-PD haplotype may be a consequence of the markedly different fitness landscape imposed by domestication. Environmental dependency and genetic redundancy can explain the maintenance of atavistic traits under domestication.
Collapse
Affiliation(s)
- Travis A Parker
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Jorge C Berny Mier Y Teran
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Antonia Palkovic
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Judy Jernstedt
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Paul Gepts
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| |
Collapse
|
33
|
González AM, Yuste-Lisbona FJ, Weller J, Vander Schoor JK, Lozano R, Santalla M. Characterization of QTL and Environmental Interactions Controlling Flowering Time in Andean Common Bean ( Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2020; 11:599462. [PMID: 33519852 PMCID: PMC7840541 DOI: 10.3389/fpls.2020.599462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/18/2020] [Indexed: 05/05/2023]
Abstract
Genetic variation for response of flowering time to photoperiod plays an important role in adaptation to environments with different photoperiods, and as consequence is an important contributor to plant productivity and yield. To elucidate the genetic control of flowering time [days to flowering (DTF); growing degree days (GDD)] in common bean, a facultative short-day plant, a quantitative trait loci (QTL) analysis was performed in a recombinant inbred mapping population derived from a cultivated accession and a photoperiod sensitive landrace, grown in different long-day (LD) and short-day (SD) environments by using a multiple-environment QTL model approach. A total of 37 QTL across 17 chromosome regions and 36 QTL-by-QTL interactions were identified for six traits associated with time to flowering and response to photoperiod. The DTF QTL accounted for 28 and 11% on average of the phenotypic variation in the population across LD and SD environments, respectively. Of these, a genomic region on chromosome 4 harboring the major DTF QTL was associated with both flowering time in LD and photoperiod response traits, controlling more than 60% of phenotypic variance, whereas a major QTL on chromosome 9 explained up to 32% of flowering time phenotypic variation in SD. Different epistatic interactions were found in LD and SD environments, and the presence of significant QTL × environment (QE) and epistasis × environment interactions implies that flowering time control may rely on different genes and genetic pathways under inductive and non-inductive conditions. Here, we report the identification of a novel major locus controlling photoperiod sensitivity on chromosome 4, which might interact with other loci for controlling common bean flowering time and photoperiod response. Our results have also demonstrated the importance of these interactions for flowering time control in common bean, and point to the likely complexity of flowering time pathways. This knowledge will help to identify and develop opportunities for adaptation and breeding of this legume crop.
Collapse
Affiliation(s)
- Ana M. González
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, Pontevedra, Spain
| | - Fernando J. Yuste-Lisbona
- Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Jim Weller
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | | | - Rafael Lozano
- Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Marta Santalla
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, Pontevedra, Spain
- *Correspondence: Marta Santalla,
| |
Collapse
|
34
|
Ortega R, Hecht VFG, Freeman JS, Rubio J, Carrasquilla-Garcia N, Mir RR, Penmetsa RV, Cook DR, Millan T, Weller JL. Altered Expression of an FT Cluster Underlies a Major Locus Controlling Domestication-Related Changes to Chickpea Phenology and Growth Habit. FRONTIERS IN PLANT SCIENCE 2019; 10:824. [PMID: 31333691 PMCID: PMC6616154 DOI: 10.3389/fpls.2019.00824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/07/2019] [Indexed: 05/20/2023]
Abstract
Flowering time is a key trait in breeding and crop evolution, due to its importance for adaptation to different environments and for yield. In the particular case of chickpea, selection for early phenology was essential for the successful transition of this species from a winter to a summer crop. Here, we used genetic and expression analyses in two different inbred populations to examine the genetic control of domestication-related differences in flowering time and growth habit between domesticated chickpea and its wild progenitor Cicer reticulatum. A single major quantitative trait locus for flowering time under short-day conditions [Days To Flower (DTF)3A] was mapped to a 59-gene interval on chromosome three containing a cluster of three FT genes, which collectively showed upregulated expression in domesticated relative to wild parent lines. An equally strong association with growth habit suggests a pleiotropic effect of the region on both traits. These results indicate the likely molecular explanation for the characteristic early flowering of domesticated chickpea, and the previously described growth habit locus Hg. More generally, they point to de-repression of this specific gene cluster as a conserved mechanism for achieving adaptive early phenology in temperate legumes.
Collapse
Affiliation(s)
- Raul Ortega
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | | | - Jules S. Freeman
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- Scion, Rotorua, New Zealand
| | - Josefa Rubio
- E. Genomica y Biotecnologia, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Córdoba, Spain
| | | | - Reyazul Rouf Mir
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - R. Varma Penmetsa
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Douglas R. Cook
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Teresa Millan
- Department of Genetics ETSIAM, University of Córdoba, Córdoba, Spain
| | - James L. Weller
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|