1
|
Nguyen TNH, Goux D, Follet-Gueye ML, Bernard S, Padel L, Vicré M, Prud'homme MP, Morvan-Bertrand A. Generation and characterization of two new monoclonal antibodies produced by immunizing mice with plant fructans: New tools for immunolocalization of β-(2 → 1) and β-(2 → 6) fructans. Carbohydr Polym 2024; 327:121682. [PMID: 38171691 DOI: 10.1016/j.carbpol.2023.121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Fructans are water-soluble polymers of fructose in which fructose units are linked by β-(2 → 1) and/or β-(2 → 6) linkages. In plants, they are synthesized in the vacuole but have also been reported in the apoplastic sap under abiotic stress suggesting that they are involved in plasmalemma protection and in plant-microbial interactions. However, the lack of fructan-specific antibodies currently prevents further study of their role and the associated mechanisms of action, which could be elucidated thanks to their immunolocalization. We report the production of two monoclonal antibodies (named BTM9H2 and BTM15A6) using mice immunization with antigenic compounds prepared from a mixture of plant inulins and levans conjugated to serum albumin. Their specificity towards fructans with β-(2 → 1) and/or β-(2 → 6) linkage has been demonstrated by immuno-dot blot tests on a wide range of carbohydrates. The two mAbs were used for immunocytolocalization of fructans by epifluorescence microscopy in various plant species. Fructan epitopes were specifically detected in fructan-accumulating plants, inside cells as well as on the surface of root tips, confirming both extracellular and intracellular localizations. The two mAbs provide new tools to identify the mechanism of extracellular fructan secretion and explore the roles of fructans in stress resistance and plant-microorganism interactions.
Collapse
Affiliation(s)
- Thi Ngoc Hanh Nguyen
- Normandie Univ, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Fédération de Recherche "Normandie Végétal" - FED 4277, 14032 Caen, France; Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Didier Goux
- Normandie Univ, UNICAEN, US EMerode, CMAbio(3), 14032 Caen, France.
| | - Marie-Laure Follet-Gueye
- Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France; Normandie Univ, HeRacLeS-PRIMACEN, INSERM US51, CNRS UAR2026, ComUE Normandie Université, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France.
| | - Sophie Bernard
- Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France; Normandie Univ, HeRacLeS-PRIMACEN, INSERM US51, CNRS UAR2026, ComUE Normandie Université, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France.
| | | | - Maïté Vicré
- Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France.
| | - Marie-Pascale Prud'homme
- Normandie Univ, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Fédération de Recherche "Normandie Végétal" - FED 4277, 14032 Caen, France.
| | - Annette Morvan-Bertrand
- Normandie Univ, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Fédération de Recherche "Normandie Végétal" - FED 4277, 14032 Caen, France.
| |
Collapse
|
2
|
Schärer ML, Lüscher A, Kahmen A. Post-drought compensatory growth in perennial grasslands is determined by legacy effects of the soil and not by plants. THE NEW PHYTOLOGIST 2023; 240:2265-2275. [PMID: 37789694 DOI: 10.1111/nph.19291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Grasslands recovering from drought have repeatedly been shown to outperform non-drought-stressed grasslands in biomass production. The mechanisms that lead to the unexpectedly high biomass production in grasslands recovering from drought are, however, not understood. To disentangle plant-intrinsic and plant-extrinsic (soil) drought legacy effects on grassland recovery from drought, we designed a factorial field experiment where Lolium perenne plants that were exposed to either a 2-month drought or to well-watered control conditions were transplanted into control and drought-stressed soil and rewetted thereafter. Drought and rewetting (DRW) resulted in negative drought legacy effects of formerly drought-stressed plants (DRWp ) compared with control plants (Ctrp ) when decoupled from soil-mediated DRW effects, with DRWp showing less aboveground productivity (-13%), restricted N nutrition, and higher δ13 C compared with Ctrp . However, plants grown on formerly drought-stressed soil (DRWs ) showed enhanced aboveground productivity (+82%), improved N nutrition, and higher δ13 C values relative to plants grown on control soil (Ctrs ), irrespective of the plants' pretreatment. Our study shows that the higher post-drought productivity of perennial grasslands recovering from drought relative to non-drought-stressed controls is induced by soil-mediated DRW legacy effects which improve plant N nutrition and photosynthetic capacity and that these effects countervail negative plant-intrinsic drought legacy effects.
Collapse
Affiliation(s)
- Marie-Louise Schärer
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4057, Basel, Switzerland
- Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Andreas Lüscher
- Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4057, Basel, Switzerland
| |
Collapse
|
3
|
Ingrisch J, Umlauf N, Bahn M. Functional thresholds alter the relationship of plant resistance and recovery to drought. Ecology 2023; 104:e3907. [PMID: 36314950 PMCID: PMC10078541 DOI: 10.1002/ecy.3907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 02/03/2023]
Abstract
The ecological consequences of future droughts are difficult to predict due to a limited understanding of the nonlinear responses of plants to increasing drought intensity, which can change abruptly when critical thresholds of drought intensity are crossed. Drought responses are composed of resistance and postdrought recovery. Although it is well established that higher drought intensity increases the impact and, thus, reduces plant resistance, less is known about how drought intensity affects recovery and how resistance and recovery are related. In this study, we tested the hypothesis that resistance, recovery, and their relationship change abruptly upon crossing critical thresholds of drought intensity. We exposed mesocosms of two monospecific stands of the common grassland species Dactylis glomerata and Plantago lanceolata to a large gradient of drought intensity and quantified the resistance and recovery of multiple measures of plant productivity, including gross-primary productivity, vegetative height, Normalized Difference Vegetation Index, and aboveground biomass production. Drought intensity had nonlinear and contrasting effects on plant productivity during drought and recovery, which differed between the two species. Increasing drought intensity decreased the resistance of plant productivity and caused rapid compensatory growth during postdrought recovery, the degree of which was highly dependent on drought intensity. Across multiple response parameters two thresholds of drought intensity emerged, upon which we observed abrupt changes in plant resistance and recovery, as well as their relationship. We conclude that across gradients of drought intensity resistance and recovery are tightly coupled and that both the magnitude and the direction of drought effects on resistance and recovery can change abruptly upon specific thresholds of stress intensity. These findings highlight the urgent need to account for nonlinear responses of resistance and recovery to drought intensity as critical drivers of productivity in a changing climate.
Collapse
Affiliation(s)
| | - Nikolaus Umlauf
- Department of StatisticsUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
4
|
A joint learning approach for genomic prediction in polyploid grasses. Sci Rep 2022; 12:12499. [PMID: 35864135 PMCID: PMC9304331 DOI: 10.1038/s41598-022-16417-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022] Open
Abstract
Poaceae, among the most abundant plant families, includes many economically important polyploid species, such as forage grasses and sugarcane (Saccharum spp.). These species have elevated genomic complexities and limited genetic resources, hindering the application of marker-assisted selection strategies. Currently, the most promising approach for increasing genetic gains in plant breeding is genomic selection. However, due to the polyploidy nature of these polyploid species, more accurate models for incorporating genomic selection into breeding schemes are needed. This study aims to develop a machine learning method by using a joint learning approach to predict complex traits from genotypic data. Biparental populations of sugarcane and two species of forage grasses (Urochloa decumbens, Megathyrsus maximus) were genotyped, and several quantitative traits were measured. High-quality markers were used to predict several traits in different cross-validation scenarios. By combining classification and regression strategies, we developed a predictive system with promising results. Compared with traditional genomic prediction methods, the proposed strategy achieved accuracy improvements exceeding 50%. Our results suggest that the developed methodology could be implemented in breeding programs, helping reduce breeding cycles and increase genetic gains.
Collapse
|
5
|
Hart EH, Christofides SR, Davies TE, Rees Stevens P, Creevey CJ, Müller CT, Rogers HJ, Kingston-Smith AH. Forage grass growth under future climate change scenarios affects fermentation and ruminant efficiency. Sci Rep 2022; 12:4454. [PMID: 35292703 PMCID: PMC8924208 DOI: 10.1038/s41598-022-08309-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
With an increasing human population access to ruminant products is an important factor in global food supply. While ruminants contribute to climate change, climate change could also affect ruminant production. Here we investigated how the plant response to climate change affects forage quality and subsequent rumen fermentation. Models of near future climate change (2050) predict increases in temperature, CO2, precipitation and altered weather systems which will produce stress responses in field crops. We hypothesised that pre-exposure to altered climate conditions causes compositional changes and also primes plant cells such that their post-ingestion metabolic response to the rumen is altered. This “stress memory” effect was investigated by screening ten forage grass varieties in five differing climate scenarios, including current climate (2020), future climate (2050), or future climate plus flooding, drought or heat shock. While varietal differences in fermentation were detected in terms of gas production, there was little effect of elevated temperature or CO2 compared with controls (2020). All varieties consistently showed decreased digestibility linked to decreased methane production as a result of drought or an acute flood treatment. These results indicate that efforts to breed future forage varieties should target tolerance of acute stress rather than long term climate.
Collapse
Affiliation(s)
- Elizabeth H Hart
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK
| | - Sarah R Christofides
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Teri E Davies
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK
| | - Pauline Rees Stevens
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK
| | | | - Carsten T Müller
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK.
| |
Collapse
|
6
|
Guo T, Tian C, Chen C, Duan Z, Zhu Q, Sun LZ. Growth and carbohydrate dynamic of perennial ryegrass seedlings during PEG-simulated drought and subsequent recovery. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:85-93. [PMID: 32535324 DOI: 10.1016/j.plaphy.2020.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Due to the increasing occurrence of drought events, drought recovery has become equally important as drought resistance for long-term growth and survival of plants. However, information regarding the mechanism that controls growth recovery of herbaceous perennials is not available. In this study, perennial ryegrass (Lolium perenne) was rewatered after eight-day exposure to three drought intensities simulated by polyethylene glycol-6000. The growth, nonstructural carbohydrates (NSC, i.e. sucrose, glucose, fructose and starch), shoot δ13C, and activities of enzymes for sucrose conversion were monitored for 24 days after rewatering, allowing investigation of the dynamic of NSCs and its relation with growth in the recovery phase. In response to drought, growth and NSC content decreased mainly in shoot rather than root, and the total dry matter was negatively correlated to shoot δ13C. After rewatering, the growth of drought-treated groups still lagged behind that of control (CK) group for more than 16 days, but it was no longer correlated to shoot δ13C, suggesting that the limited growth is caused by non-stomatal factors related to photosynthesis. On day 24 after rewatering, the final growth of drought-treated groups caught up or even exceeded that of CK group, and was accompanied by higher dry weight root to shoot ratio (R/S) and root NSC content, which may facilitate water and nutrient acquisition and emergency of new tillers, respectively. During drought and subsequent recovery, the variation of R/S and root NSC content mainly attributed to root acid invertase rather than leaf sucrose phosphate synthase activity.
Collapse
Affiliation(s)
- Tongtian Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Tian
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunyan Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaoyang Duan
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luan Zi Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Ingrisch J, Karlowsky S, Hasibeder R, Gleixner G, Bahn M. Drought and recovery effects on belowground respiration dynamics and the partitioning of recent carbon in managed and abandoned grassland. GLOBAL CHANGE BIOLOGY 2020; 26:4366-4378. [PMID: 32343042 PMCID: PMC7384171 DOI: 10.1111/gcb.15131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/09/2020] [Indexed: 05/23/2023]
Abstract
The supply of soil respiration with recent photoassimilates is an important and fast pathway for respiratory loss of carbon (C). To date it is unknown how drought and land-use change interactively influence the dynamics of recent C in soil-respired CO2 . In an in situ common-garden experiment, we exposed soil-vegetation monoliths from a managed and a nearby abandoned mountain grassland to an experimental drought. Based on two 13 CO2 pulse-labelling campaigns, we traced recently assimilated C in soil respiration during drought, rewetting and early recovery. Independent of grassland management, drought reduced the absolute allocation of recent C to soil respiration. Rewetting triggered a respiration pulse, which was strongly fuelled by C assimilated during drought. In comparison to the managed grassland, the abandoned grassland partitioned more recent C to belowground respiration than to root C storage under ample water supply. Interestingly, this pattern was reversed under drought. We suggest that these different response patterns reflect strategies of the managed and the abandoned grassland to enhance their respective resilience to drought, by fostering their resistance and recovery respectively. We conclude that while severe drought can override the effects of abandonment of grassland management on the respiratory dynamics of recent C, abandonment alters strategies of belowground assimilate investment, with consequences for soil-CO2 fluxes during drought and drought-recovery.
Collapse
Affiliation(s)
| | - Stefan Karlowsky
- Max Planck Institute for BiogeochemistryJenaGermany
- Leibniz‐Institute of Vegetable and Ornamental CropsGroßbeerenGermany
| | | | | | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|