1
|
Davies KM, Andre CM, Kulshrestha S, Zhou Y, Schwinn KE, Albert NW, Chagné D, van Klink JW, Landi M, Bowman JL. The evolution of flavonoid biosynthesis. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230361. [PMID: 39343026 PMCID: PMC11528363 DOI: 10.1098/rstb.2023.0361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 10/01/2024] Open
Abstract
The flavonoid pathway is characteristic of land plants and a central biosynthetic component enabling life in a terrestrial environment. Flavonoids provide tolerance to both abiotic and biotic stresses and facilitate beneficial relationships, such as signalling to symbiont microorganisms, or attracting pollinators and seed dispersal agents. The biosynthetic pathway shows great diversity across species, resulting principally from repeated biosynthetic gene duplication and neofunctionalization events during evolution. Such events may reflect a selection for new flavonoid structures with novel functions that enable occupancy of varied ecological niches. However, the biochemical and genetic diversity of the pathway also likely resulted from evolution along parallel trends across land plant lineages, producing variant compounds with similar biological functions. Analyses of the wide range of whole-plant genome sequences now available, particularly for archegoniate plants, have enabled proposals on which genes were ancestral to land plants and which arose within the land plant lineages. In this review, we discuss the emerging proposals for how the flavonoid pathway may have evolved and diversified. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Kevin M. Davies
- Private Bag 11600, The New Zealand Institute for Plant and Food Research Limited, Palmerston North4442, New Zealand
| | - Christelle M. Andre
- Private Bag 92169, Auckland Mail Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland, 1142, New Zealand
| | - Samarth Kulshrestha
- Private Bag 11600, The New Zealand Institute for Plant and Food Research Limited, Palmerston North4442, New Zealand
| | - Yanfei Zhou
- Private Bag 11600, The New Zealand Institute for Plant and Food Research Limited, Palmerston North4442, New Zealand
| | - Kathy E. Schwinn
- Private Bag 11600, The New Zealand Institute for Plant and Food Research Limited, Palmerston North4442, New Zealand
| | - Nick W. Albert
- Private Bag 11600, The New Zealand Institute for Plant and Food Research Limited, Palmerston North4442, New Zealand
| | - David Chagné
- Private Bag 11600, The New Zealand Institute for Plant and Food Research Limited, Palmerston North4442, New Zealand
| | - John W. van Klink
- Department of Chemistry, Otago University, The New Zealand Institute for Plant and Food Research Limited, Dunedin9054, New Zealand
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa56124, Italy
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Victoria3800, Australia
| |
Collapse
|
2
|
Salami M, Heidari B, Batley J, Wang J, Tan XL, Richards C, Tan H. Integration of genome-wide association studies, metabolomics, and transcriptomics reveals phenolic acid- and flavonoid-associated genes and their regulatory elements under drought stress in rapeseed flowers. FRONTIERS IN PLANT SCIENCE 2024; 14:1249142. [PMID: 38273941 PMCID: PMC10808681 DOI: 10.3389/fpls.2023.1249142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/03/2023] [Indexed: 01/27/2024]
Abstract
Introduction Biochemical and metabolic processes help plants tolerate the adverse effects of drought. In plants accumulating bioactive compounds, understanding the genetic control of the biosynthesis of biochemical pathways helps the discovery of candidate gene (CG)-metabolite relationships. Methods The metabolic profile of flowers in 119 rapeseed (Brassica napus) accessions was assessed over two irrigation treatments, one a well-watered (WW) condition and the other a drought stress (DS) regime. We integrated information gained from 52,157 single-nucleotide polymorphism (SNP) markers, metabolites, and transcriptomes to identify linked SNPs and CGs responsible for the genetic control of flower phenolic compounds and regulatory elements. Results In a genome-wide association study (GWAS), of the SNPs tested, 29,310 SNPs were qualified to assess the population structure and linkage disequilibrium (LD), of which several SNPs for radical scavenging activity (RSA) and total flavanol content (TFLC) were common between the two irrigation conditions and pleiotropic SNPs were found for chlorogenic and coumaric acids content. The principal component analysis (PCA) and stepwise regression showed that chlorogenic acid and epicatechin in WW and myricetin in DS conditions were the most important components for RSA. The hierarchical cluster analysis (HCA) showed that vanillic acid, myricetin, gallic acid, and catechin were closely associated in both irrigation conditions. Analysis of GWAS showed that 60 CGs were identified, of which 18 were involved in stress-induced pathways, phenylpropanoid pathway, and flavonoid modifications. Of the CGs, PAL1, CHI, UGT89B1, FLS3, CCR1, and CYP75B137 contributed to flavonoid biosynthetic pathways. The results of RNA sequencing (RNA-seq) revealed that the transcript levels of PAL, CHI, and CYP75B137 known as early flavonoid biosynthesis-related genes and FLS3, CCR1, and UGT89B1 related to the later stages were increased during drought conditions. The transcription factors (TFs) NAC035 and ERF119 related to flavonoids and phenolic acids were upregulated under drought conditions. Discussion These findings expand our knowledge on the response mechanisms to DS, particularly regarding the regulation of key phenolic biosynthetic genes in rapeseed. Our data also provided specific linked SNPs for marker-assisted selection (MAS) programs and CGs as resources toward realizing metabolomics-associated breeding of rapeseed.
Collapse
Affiliation(s)
- Maryam Salami
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Christopher Richards
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| | - Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Feng S, Yao YT, Wang BB, Li YM, Li L, Bao AK. Flavonoids are involved in salt tolerance through ROS scavenging in the halophyte Atriplex canescens. PLANT CELL REPORTS 2023; 43:5. [PMID: 38127154 DOI: 10.1007/s00299-023-03087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 12/23/2023]
Abstract
KEY MESSAGE The content of flavonoids could increase in A. canescens under saline conditions. Overexpression of AcCHI in transgenic A. thaliana promotes flavonoid biosynthesis, thereby functioning in the tolerance of transgenic plants to salt and osmotic stress by maintaining ROS homeostasis. Atriplex canescens is a halophytic forage shrub with excellent adaptation to saline environment. Our previous study showed that a large number of genes related to the biosynthesis of flavonoids in A. canescens were significantly up-regulated by NaCl treatments. However, it remains unclear whether flavonoids are involved in A. canescens response to salinity. In this study, we found that the accumulation of flavonoids significantly increased in either the leaves or roots of A. canescens seedling under 100 and 300 mM NaCl treatments. Correspondingly, AcCHS, AcCHI and AcF3H, which encode three key enzymes (chalcone synthases (CHS), chalcone isomerase (CHI), and flavanone 3-hydroxylase (F3H), respectively) of flavonoids biosynthesis, were significantly induced in the roots or leaves of A. canescens by 100 or 300 mM NaCl. Then, we generated the transgenic Arabidopsis thaliana overexpressing AcCHI and found that transgenic plants accumulated more flavonoids through enhancing the pathway of flavonoids biosynthesis. Furthermore, overexpression of AcCHI conferred salt and osmotic stress tolerance in transgenic A. thaliana. Contrasted with wild-type A. thaliana, transgenic lines grew better with greater biomass, less H2O2 content as well as lower relative plasma permeability in either salt or osmotic stress conditions. In conclusion, our results indicate that flavonoids play an important role in A. canescens response to salt stress through reactive oxygen species (ROS) scavenging and the key enzyme gene AcCHI in flavonoids biosynthesis pathway of A. canescens has the potential to improve the stress tolerance of forages and crops.
Collapse
Affiliation(s)
- Shan Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yu-Ting Yao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Bei-Bei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Meng Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Li Li
- Institute of Grassland, Xinjiang Academy of Animal Science, Urumqi, 830000, Xinjiang, China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Zhang X, Xu J, Si L, Cao K, Wang Y, Li H, Wang J. Cloning, Identification, and Functional Analysis of the Chalcone Isomerase Gene from Astragalus sinicus. Genes (Basel) 2023; 14:1400. [PMID: 37510305 PMCID: PMC10379301 DOI: 10.3390/genes14071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Astragalus sinicus is an important winter-growing cover crop. It is widely utilized, not only as a cover crop for its benefits in fertilizing the soil but also as a landscape ground cover plant. Anthocyanins are involved in the pigmentation of plants in leaves and flowers, which is a crucial characteristic trait for A. sinicus. The formation of anthocyanins depends significantly on the enzyme chalcone isomerase (CHI). However, research on the CHI gene of A. sinicus remains unexplored. The rapid amplification of cDNA ends (RACE) approach was used in this research to clone the CHI sequence from A. sinicus (AsiCHI). The expression profiles of the AsiCHI gene in multiple tissues of A. sinicus were subsequently examined by qRT-PCR (Quantitative Real-Time PCR). Furthermore, the function of the AsiCHI was identified by the performance of ectopic expression in Arabidopsis (Arabidopsis thaliana). The outcomes revealed that the full-length cDNA of the AsiCHI gene (GeneBank: OQ870547) measured 972 bp in length and included an open reading frame of 660 bp. The encoded protein contains 219 amino acids with a molecular weight of 24.14 kDa and a theoretical isoelectric point of 5.11. In addition, the remarkable similarity between the AsiCHI protein and the CHI proteins of other Astragalus species was demonstrated by the sequence alignment and phylogenetic analysis. Moreover, the highest expression level of AsiCHI was observed in leaves and showed a positive correlation with anthocyanin content. The functional analysis further revealed that the overexpression of AsiCHI enhanced the anthocyanidin accumulation in the transgenic lines. This study provided a better understanding of AsiCHI and elucidated its role in anthocyanin production.
Collapse
Affiliation(s)
- Xian Zhang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Xu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linlin Si
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kai Cao
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuge Wang
- College of Science, Northeastern University, Boston, MA 02115, USA;
| | - Hua Li
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianhong Wang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
5
|
Wolf-Saxon ER, Moorman CC, Castro A, Ruiz A, Mallari JP, Burke JR. Regulatory ligand binding in plant chalcone isomerase-like (CHIL) proteins. J Biol Chem 2023:104804. [PMID: 37172720 DOI: 10.1016/j.jbc.2023.104804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Chalcone isomerase-like (CHIL) is a noncatalytic protein that enhances flavonoid content in green plants by serving as a metabolite binder and a rectifier of chalcone synthase (CHS). Rectification of CHS catalysis occurs through direct protein-protein interactions between CHIL and CHS, which alter CHS kinetics and product profiles, favoring naringenin chalcone production. These discoveries raise questions about how CHIL proteins interact structurally with metabolites and how CHIL-ligand interactions affect interactions with CHS. Using differential scanning fluorimetry (DSF) on a CHIL protein from Vitis Vinifera (VvCHIL), we report positive thermostability effects are induced by the binding of naringenin chalcone and negative thermostability effects are induced by the binding of naringenin. Naringenin chalcone further causes positive changes to CHIL-CHS binding, while naringenin causes negative changes to CHIL-CHS binding. These results suggest that CHILs may act as sensors for ligand-mediated pathway feedback by influencing CHS function. The protein X-ray crystal structure of VvCHIL compared with the protein X-ray crystal structure of a CHIL from Physcomitrella patens, reveals key amino acid differences at a ligand binding site of VvCHIL that can be substituted to nullify the destabilizing effect caused by naringenin. Together these results support a role for CHIL proteins as metabolite sensors that modulate the committed step of the flavonoid pathway.
Collapse
Affiliation(s)
- Emma R Wolf-Saxon
- Department of Chemistry and Biochemistry, California State University San Bernardino, San Bernardino, California 92407, USA
| | - Chad C Moorman
- Department of Chemistry and Biochemistry, California State University San Bernardino, San Bernardino, California 92407, USA
| | - Anthony Castro
- Department of Chemistry and Biochemistry, California State University San Bernardino, San Bernardino, California 92407, USA
| | - Alfredo Ruiz
- Department of Chemistry and Biochemistry, California State University San Bernardino, San Bernardino, California 92407, USA
| | - Jeremy P Mallari
- Department of Chemistry and Biochemistry, California State University San Bernardino, San Bernardino, California 92407, USA
| | - Jason R Burke
- Department of Chemistry and Biochemistry, California State University San Bernardino, San Bernardino, California 92407, USA.
| |
Collapse
|
6
|
Lan HN, Liu RY, Liu ZH, Li X, Li BZ, Yuan YJ. Biological valorization of lignin to flavonoids. Biotechnol Adv 2023; 64:108107. [PMID: 36758651 DOI: 10.1016/j.biotechadv.2023.108107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Lignin is the most affluent natural aromatic biopolymer on the earth, which is the promising renewable source for valuable products to promote the sustainability of biorefinery. Flavonoids are a class of plant polyphenolic secondary metabolites containing the benzene ring structure with various biological activities, which are largely applied in health food, pharmaceutical, and medical fields. Due to the aromatic similarity, microbial conversion of lignin derived aromatics to flavonoids could facilitate flavonoid biosynthesis and promote the lignin valorization. This review thereby prospects a novel valorization route of lignin to high-value natural products and demonstrates the potential advantages of microbial bioconversion of lignin to flavonoids. The biodegradation of lignin polymers is summarized to identify aromatic monomers as momentous precursors for flavonoid synthesis. The biosynthesis pathways of flavonoids in both plants and strains are introduced and compared. After that, the key branch points and important intermediates are clearly discussed in the biosynthesis pathways of flavonoids. Moreover, the most significant enzyme reactions including Claisen condensation, cyclization and hydroxylation are demonstrated in the biosynthesis pathways of flavonoids. Finally, current challenges and potential future strategies are also discussed for transforming lignin into various flavonoids. The holistic microbial conversion routes of lignin to flavonoids could make a sustainable production of flavonoids and improve the feasibility of lignin valorization.
Collapse
Affiliation(s)
- Hai-Na Lan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruo-Ying Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xia Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
7
|
Fu J, Wang PY, Ni R, Zhang JZ, Zhu TT, Tan H, Zhang J, Lou HX, Cheng AX. Molecular identification of a flavone synthase I/flavanone 3β-hydroxylase bifunctional enzyme from fern species Psilotum nudum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111599. [PMID: 36682585 DOI: 10.1016/j.plantsci.2023.111599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The enzyme flavone synthase Is (FNS Is) converts flavanones to flavones, whereas flavanone 3β-hydroxylases (F3Hs) catalyze the formation of dihydroflavonols, a precursor of flavonols and anthocyanins. Canonical F3Hs have been characterized in seed plants, which are evolutionarily related to liverwort FNS Is. However, as important evolutionary lineages between liverworts and seed plants, ferns FNS Is and F3Hs have not been identified. In the present study, we characterized a bifunctional enzyme PnFNS I/F3H from the fern Psilotum nudum. We found that PnFNS I/F3H catalyzed the conversion of naringenin to apigenin and dihydrokaempferol. In addition, it catalyzed five different flavanones to generate the corresponding flavones. Site-directed mutagenesis results indicated that the P228-Y228 mutant protein displayed the FNS I/F2H activity (catalyzing naringenin to generate apigenin and 2-hydroxynaringenin), thus having similar functions as liverwort FNS I/F2H. Moreover, the overexpression of PnFNS I/F3H in Arabidopsis tt6 and dmr6 mutants increased the content of flavones and flavonols in plants, further indicating that PnFNS I/F3H showed FNS I and F3H activities in planta. This is the first study to characterize a bifunctional enzyme FNS I/F3H in ferns. The functional transition from FNS I/F3H to FNS I/F2H will be helpful in further elucidating the relationship between angiosperm F3Hs and liverwort FNS Is.
Collapse
Affiliation(s)
- Jie Fu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Piao-Yi Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Rong Ni
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Jiao-Zhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Ting-Ting Zhu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Hui Tan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Jing Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Ai-Xia Cheng
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
8
|
A Cinnamate 4-HYDROXYLASE1 from Safflower Promotes Flavonoids Accumulation and Stimulates Antioxidant Defense System in Arabidopsis. Int J Mol Sci 2023; 24:ijms24065393. [PMID: 36982470 PMCID: PMC10049626 DOI: 10.3390/ijms24065393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
C4H (cinnamate 4-hydroxylase) is a pivotal gene in the phenylpropanoid pathway, which is involved in the regulation of flavonoids and lignin biosynthesis of plants. However, the molecular mechanism of C4H-induced antioxidant activity in safflower still remains to be elucidated. In this study, a CtC4H1 gene was identified from safflower with combined analysis of transcriptome and functional characterization, regulating flavonoid biosynthesis and antioxidant defense system under drought stress in Arabidopsis. The expression level of CtC4H1 was shown to be differentially regulated in response to abiotic stresses; however, a significant increase was observed under drought exposure. The interaction between CtC4H1 and CtPAL1 was detected using a yeast two-hybrid assay and then verified using a bimolecular fluorescence complementation (BiFC) analysis. Phenotypic and statistical analysis of CtC4H1 overexpressed Arabidopsis demonstrated slightly wider leaves, long and early stem development as well as an increased level of total metabolite and anthocyanin contents. These findings imply that CtC4H1 may regulate plant development and defense systems in transgenic plants via specialized metabolism. Furthermore, transgenic Arabidopsis lines overexpressing CtC4H1 exhibited increased antioxidant activity as confirmed using a visible phenotype and different physiological indicators. In addition, the low accumulation of reactive oxygen species (ROS) in transgenic Arabidopsis exposed to drought conditions has confirmed the reduction of oxidative damage by stimulating the antioxidant defensive system, resulting in osmotic balance. Together, these findings have provided crucial insights into the functional role of CtC4H1 in regulating flavonoid biosynthesis and antioxidant defense system in safflower.
Collapse
|
9
|
Tao H, Zhao Y, Li L, He Y, Zhang X, Zhu Y, Hong G. Comparative metabolomics of flavonoids in twenty vegetables reveal their nutritional diversity and potential health benefits. Food Res Int 2023; 164:112384. [PMID: 36737968 DOI: 10.1016/j.foodres.2022.112384] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Vegetables are rich in flavonoids and are widely consumed in our daily life. However, comprehensive information on flavonoids components in vegetable varieties and the distribution of flavonoids with health-promoting effects in different vegetables are rarely investigated. Here, we analyzed the constitution of flavonoids among 20 vegetables by widely-targeted metabolome analysis. A total of 403 flavonoids were detected and classified as flavonoid, flavonols, anthocyanins, isoflavones, flavonoid carbonoside, dihydroflavone, chalcones, flavanols, dihydroflavonol, tannin, proanthocyanidins, and other flavonoids. Interestingly, we found that the content and types of flavonoids in bean sprouts and hot pepper were relatively abundant, whereas those were lower in carrot, lettuce, and Zizania latifolia. Then, we characterized the representative flavonoids including flavonoid, flavonols, chalcones, and isoflavones, and related them to the health-promoting effects of vegetables. Finally, we examined the relevance of the flavonoids to antioxidant capacity. Both bean sprouts and hot pepper possessed higher antioxidant enzyme activity, which were responsible for their great antioxidant capacity. Our study established a database of major flavonoids components in vegetables and further provides a new hint for the selection and breeding of vegetables based on their health-promoting effects.
Collapse
Affiliation(s)
- Han Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China.
| |
Collapse
|
10
|
Zhu TT, Sun CJ, Liu XY, Zhang JZ, Hou XB, Ni R, Zhang J, Cheng AX, Lou HX. Interaction of PKR with STCS1: an indispensable step in the biosynthesis of lunularic acid in Marchantia polymorpha. THE NEW PHYTOLOGIST 2023; 237:515-531. [PMID: 36062450 DOI: 10.1111/nph.18408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Unlike bibenzyls derived from the vascular plants, lunularic acid (LA), a key precursor for macrocyclic bisbibenzyl synthesis in nonvascular liverworts, exhibits the absence of one hydroxy group within the A ring. It was hypothesized that both polyketide reductase (PKR) and stilbenecarboxylate synthase 1 (STCS1) were involved in the LA biosynthesis, but the underlined mechanisms have not been clarified. This study used bioinformatics analysis with molecular, biochemical and physiological approaches to characterize STCS1s and PKRs involved in the biosynthesis of LA. The results indicated that MpSTCS1s from Marchantia polymorpha catalyzed both C2→C7 aldol-type and C6→C1 Claisen-type cyclization using dihydro-p-coumaroyl-coenzyme A (CoA) and malonyl-CoA as substrates to yield a C6-C2-C6 skeleton of dihydro-resveratrol following decarboxylation and the C6-C3-C6 type of phloretin in vitro. The protein-protein interaction of PKRs with STCS1 (PPI-PS) was revealed and proved essential for LA accumulation when transiently co-expressed in Nicotiana benthamiana. Moreover, replacement of the active domain of STCS1 with an 18-amino-acid fragment from the chalcone synthase led to the PPI-PS greatly decreasing and diminishing the formation of LA. The replacement also increased the chalcone formation in STCS1s. Our results highlight a previously unrecognized PPI in planta that is indispensable for the formation of LA.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chun-Jing Sun
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xin-Yan Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiao-Zhen Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xu-Ben Hou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Rong Ni
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jing Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
11
|
Ni R, Liu XY, Zhang JZ, Fu J, Tan H, Zhu TT, Zhang J, Wang HL, Lou HX, Cheng AX. Identification of a flavonoid C-glycosyltransferase from fern species Stenoloma chusanum and the application in synthesizing flavonoid C-glycosides in Escherichia coli. Microb Cell Fact 2022; 21:210. [PMID: 36242071 PMCID: PMC9563126 DOI: 10.1186/s12934-022-01940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flavonoid C-glycosides have many beneficial effects and are widely used in food and medicine. However, plants contain a limited number of flavonoid C-glycosides, and it is challenging to create these substances chemically. RESULTS To screen more robust C-glycosyltransferases (CGTs) for the biosynthesis of flavonoid C-glycosides, one CGT enzyme from Stenoloma chusanum (ScCGT1) was characterized. Biochemical analyses revealed that ScCGT1 showed the C-glycosylation activity for phloretin, 2-hydroxynaringenin, and 2-hydroxyeriodictyol. Structure modeling and mutagenesis experiments indicated that the glycosylation of ScCGT1 may be initiated by the synergistic action of conserved residue His26 and Asp14. The P164T mutation increased C-glycosylation activity by forming a hydrogen bond with the sugar donor. Furthermore, when using phloretin as a substrate, the extracellular nothofagin production obtained from the Escherichia coli strain ScCGT1-P164T reached 38 mg/L, which was 2.3-fold higher than that of the wild-type strain. Finally, it is proved that the coupling catalysis of CjFNS I/F2H and ScCGT1-P164T could convert naringenin into vitexin and isovitexin. CONCLUSION This is the first time that C-glycosyltransferase has been characterized from fern species and provides a candidate gene and strategy for the efficient production of bioactive C-glycosides using enzyme catalysis and metabolic engineering.
Collapse
Affiliation(s)
- Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xin-Yan Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jiao-Zhen Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hui Tan
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jing Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hai-Long Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
12
|
Ni R, Niu M, Fu J, Tan H, Zhu TT, Zhang J, Lou HX, Zhang P, Li JX, Cheng AX. Molecular and structural characterization of a promiscuous chalcone synthase from the fern species Stenoloma chusanum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1935-1951. [PMID: 35920566 DOI: 10.1111/jipb.13335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The key enzymes involved in the flavonoid biosynthesis pathway have been extensively studied in seed plants, but relatively less in ferns. In this study, two 4-Coumarate: coenzyme A ligases (Sc4CL1 and Sc4CL2) and one novel chalcone synthase (ScCHS1) were functionally characterized by mining the Stenoloma chusanum transcriptome database. Recombinant Sc4CLs were able to esterify various hydroxycinnamic acids to corresponding acyl-coenzyme A (CoA). ScCHS1 could catalyze p-coumaroyl-CoA, cinnamoyl-CoA, caffeoyl-CoA, and feruloyl-CoA to form naringenin, pinocembrin, eriodictyol, and homoeriodictyol, respectively. Moreover, enzymatic kinetics studies revealed that the optimal substrates of ScCHS1 were feruloyl-CoA and caffeoyl-CoA, rather than p-coumaroyl-CoA, which was substantially different from the common CHSs. Crystallographic and site-directed mutagenesis experiments indicated that the amino acid residues, Leu87, Leu97, Met165, and Ile200, located in the substrate-binding pocket near the B-ring of products, could exert a significant impact on the unique catalytic activity of ScCHS1. Furthermore, overexpression of ScCHS1 in tt4 mutants could partially rescue the mutant phenotypes. Finally, ScCHS1 and Sc4CL1 were used to synthesize flavanones and flavones with multi-substituted hydroxyl and methoxyl B-ring in Escherichia coli, which can effectively eliminate the need for the cytochrome P450 hydroxylation/O-methyltransferase from simple phenylpropanoid acids. In summary, the identification of these important Stenoloma enzymes provides a springboard for the future production of various flavonoids in E. coli.
Collapse
Affiliation(s)
- Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Meng Niu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Hui Tan
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Jing Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Xu Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|
13
|
Liu S, Li T, Fang S, Zhang P, Yi D, Cong B, Zhang Z, Zhao L. Metabolic profiling and gene expression analyses provide insights into cold adaptation of an Antarctic moss Pohlia nutans. FRONTIERS IN PLANT SCIENCE 2022; 13:1006991. [PMID: 36176693 PMCID: PMC9514047 DOI: 10.3389/fpls.2022.1006991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Antarctica is the coldest, driest, and most windy continent on earth. The major terrestrial vegetation consists of cryptogams (mosses and lichens) and two vascular plant species. However, the molecular mechanism of cold tolerance and relevant regulatory networks were largely unknown in these Antarctic plants. Here, we investigated the global alterations in metabolites and regulatory pathways of an Antarctic moss (Pohlia nutans) under cold stress using an integrated multi-omics approach. We found that proline content and several antioxidant enzyme activities were significantly increased in P. nutans under cold stress, but the contents of chlorophyll and total flavonoids were markedly decreased. A total of 559 metabolites were detected using ultra high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). We observed 39 and 71 differentially changed metabolites (DCMs) after 24 h and 60 h cold stress, indicating that several major pathways were differentially activated for producing fatty acids, alkaloids, flavonoids, terpenoids, and phenolic acids. In addition, the quantitative transcriptome sequencing was conducted to uncover the global transcriptional profiles of P. nutans under cold stress. The representative differentially expressed genes (DEGs) were identified and summarized to the function including Ca2+ signaling, ABA signaling, jasmonate signaling, fatty acids biosynthesis, flavonoid biosynthesis, and other biological processes. The integrated dataset analyses of metabolome and transcriptome revealed that jasmonate signaling, auxin signaling, very-long-chain fatty acids and flavonoid biosynthesis pathways might contribute to P. nutans acclimating to cold stress. Overall, these observations provide insight into Antarctic moss adaptations to polar habitats and the impact of global climate change on Antarctic plants.
Collapse
Affiliation(s)
- Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Tingting Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Shuo Fang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, China
| | - Dan Yi
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Bailin Cong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Zhaohui Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| |
Collapse
|
14
|
Lin L, Wang S, Zhang J, Song X, Zhang D, Cheng W, Cui M, Long Y, Xing Z. Integrative analysis of transcriptome and metabolome reveals the effect of DNA methylation of chalcone isomerase gene in promoter region on Lithocarpus polystachyus Rehd flavonoids. Synth Syst Biotechnol 2022; 7:928-940. [PMID: 35664927 PMCID: PMC9149025 DOI: 10.1016/j.synbio.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/26/2022] [Accepted: 05/16/2022] [Indexed: 11/01/2022] Open
Abstract
Metabolite biosynthesis is regulated by gene expression, which is altered by DNA methylation in the promoter region. Chalcone isomerase (CHI) gene encodes a key enzyme in the Lithocarpus polystachyus Rehd flavonoid pathway, and the expression of L. polystachyus CHI (LpCHI) is closely related to the synthesis of flavonoid metabolites. In this study, we analyzed the DNA methylation site of the LpCHI promoter and its effect on gene expression and metabolite accumulation. The proportions of three types of LpCHI promoter DNA methylation are 7.5%, 68.75%, 18.75%, determined by bisulfite sequencing. Transcriptome sequencing shows that LpCHI is strongly up-regulated in LpCHI promoter methylation Type A but down-regulated in LpCHI promoter methylation Type B and Type C. The expression of LpCHI shows no significant difference between Type B and Type C. Moreover, nine kinds of differentially expressed transcription factors (DETFs) bind to seven CpG-sites of the LpCHI promoter region to regulate LpCHI expression. The results of metabolomics show that differentially accumulated flavonoids are higher in LpCHI promoter methylation Type A than in LpCHI promoter methylation Type B and Type C. Additionally, a positive correlation was found between the LpCHI expression and flavonoids accumulation. These results show that the effect of CpG site-specificity on gene transcription is great than that of overall promoter DNA methylation on gene transcription. The mechanisms of flavonoid genes regulating metabolite accumulation are further revealed.
Collapse
|
15
|
Wang J, Jiang Y, Sun T, Zhang C, Liu X, Li Y. Genome-Wide Classification and Evolutionary Analysis Reveal Diverged Patterns of Chalcone Isomerase in Plants. Biomolecules 2022; 12:biom12070961. [PMID: 35883518 PMCID: PMC9313115 DOI: 10.3390/biom12070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Flavonoids as a class of important secondary metabolites are widely present in land plants, and chalcone isomerase (CHI) is the key rate-limiting enzyme that participates in catalyzing the stereospecific isomerization of chalcones to yield their corresponding flavanones. However, the phylogenetic dynamics and functional divergence of CHI family genes during the evolutionary path of green plants remains poorly understood. Here, a total of 122 CHI genes were identified by performing a genome-wide survey of 15 representative green plants from the most ancestral basal plant chlorophyte algae to higher angiosperm plants. Phylogenetic, orthologous groups (OG) classification, and genome structure analysis showed that the CHI family genes have evolved into four distinct types (types I–IV) containing eight OGs after gene duplication, and further studies indicated type III CHIs consist of three subfamilies (FAP1, FAP2, and FAP3). The phylogeny showed FAP3 CHIs as an ancestral out-group positioned on the outer layers of the main branch, followed by type IV CHIs, which are placed in an evolutionary intermediate between FAP3 CHIs and bona fide CHIs (including type I and type II). The results imply a potential intrinsic evolutionary connection between CHIs existing in the green plants. The amino acid substitutions occurring in several residues have potentially affected the functional divergence between CHI proteins. This is supported by the analysis of transcriptional divergence and cis-acting element analysis. Evolutionary dynamics analyses revealed that the differences in the total number of CHI family genes in each plant are primarily attributed to the lineage-specific expansion by natural selective forces. The current studies provide a deeper understanding of the phylogenetic relationships and functional diversification of CHI family genes in green plants, which will guide further investigation on molecular characteristics and biological functions of CHIs.
Collapse
|
16
|
Zhang J, Li B, Gao X, Pan X, Wu Y. Integrating Transcriptomic and Metabolomic Analyses to Explore the Effect of Color Under Fruit Calyx on That of Fruit Apex in Eggplant (Solanum melongena L.). Front Genet 2022; 13:889461. [PMID: 35812728 PMCID: PMC9259842 DOI: 10.3389/fgene.2022.889461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
Fruit color is an important commercial characteristic of eggplant (Solanum melongena L.), which affects both the profits of growers and consumer choice. Two eggplant inbred lines were discovered: “Z,” which is a light purple color under the fruit calyx, with purple on the fruit apex; and “L,” fruits of which are green under the calyx and at the apex. To determine the molecular mechanisms underlying the effect of fruit peel color under the calyx on that at the fruit apex, we conducted a combined transcriptomic and metabolomic analyses of the Z and L inbred eggplant lines. Transcriptome analysis of peel samples from three fruit regions (under the calyx, the apex, and the middle surface) of each line was conducted by RNA sequencing, and generated a total of 791,512,404 clean reads from 18 samples (three biological replicates). Differentially expressed genes (DEGs; n = 424) were identified in comparisons of peel samples from the three sites of L line fruits. Gene ontology analysis showed that “catalytic activity” was extremely significantly enriched. Further, DEGs (n = 8) were enriched in the Kyoto Encyclopedia of Genes and Genomes pathway “flavonoid biosynthesis.” Levels of CHI, LDOX, F3′5′H, and dihydroflavonol reductase were higher in the Z line than the L line. In addition, metabolome analysis showed that, 10 differentially accumulated metabolites were detected between peel samples from the apex of L and Z line fruit. The most significant DAM was delphinidin-3-O-rutinoside (Z line content, 34.89 μg/g vs. L line content 0.01 μg/g). Combined transcriptomic and metabolomic analyses indicated that DFR and F3′5′H were closely related to content of the metabolites, cyanidin and delphinidin, and that some downstream metabolites differed significantly between the L and Z lines. Content levels of delphinidin-3-O-rutinoside, delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside were markedly down-regulated in the L line. Altogether, increased CHI levels could up-regulate the downstream genes, LDOX, F3′5′H, and DFR, which further lead to increasing the content of delphindin. Thus, the uniform purple color was presented at the apex of fruits in Z plants. These findings not only identify key candidate genes, but will also improve understanding of the genetics and the efficiency of breeding for eggplant fruit color.
Collapse
|
17
|
Liu X, Li L, Zhao GR. Systems Metabolic Engineering of Escherichia coli Coculture for De Novo Production of Genistein. ACS Synth Biol 2022; 11:1746-1757. [PMID: 35507680 DOI: 10.1021/acssynbio.1c00590] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genistein is a plant-derived isoflavone possessing various bioactivities to prevent aging, carcinogenesis, and neurodegenerative and inflammation diseases. As a typical complex flavonoid, its microbial production from sugar remains to be completed. Here, we use systems metabolic engineering stategies to design and develop a three-strain commensalistic Escherichia coli coculture that for the first time realized the de novo production of genistein. First, we reconstituted the naringenin module by screening and incorporating chalcone isomerase-like protein, an auxiliary component to rectify the chalcone synthase promiscuity. Furthermore, we devised and constructed the genistein module by N-terminal modifications of plant P450 enzyme 2-hydroxyisoflavanone synthase and cytochrome P450 enzyme reductase. When naringenin-producing strain was cocultivated with p-coumaric acid-overproducing strain (a phenylalanine-auxotroph), two-strain coculture worked as commensalism through a unidirectional nutrient flow, which favored the efficient production of naringenin with a titer of 206.5 mg/L from glucose. A three-strain commensalistic coculture was subsequently engineered, which produced the highest titer to date of 60.8 mg/L genistein from a glucose and glycerol mixture. The commensalistic coculture is a flexible and versatile platform for the production of flavonoids, indicating a promising future for production of complex natural products in engineered E. coli.
Collapse
Affiliation(s)
- Xue Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen 518055, China
| | - Lingling Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen 518055, China
| | - Guang-Rong Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
18
|
Xu H, Lan Y, Xing J, Li Y, Liu L, Wang Y. AfCHIL, a Type IV Chalcone Isomerase, Enhances the Biosynthesis of Naringenin in Metabolic Engineering. FRONTIERS IN PLANT SCIENCE 2022; 13:891066. [PMID: 35665193 PMCID: PMC9158529 DOI: 10.3389/fpls.2022.891066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Naringenin is an essential precursor for all flavonoids, and effectively promoting naringenin production is crucial in metabolic engineering. The interaction between plant metabolic enzymes ensures metabolic flux. The effect can effectively improve the natural product synthesis of engineering microbial systems. In this study, chalcone isomerase genes in Allium fistulosum have been identified. The expression of AfCHIL is closely related to the accumulation of anthocyanins, and the expression of AfCHIL and AfCHS was highly synchronized. Yeast two-hybrid and firefly luciferase complementation imaging assay further confirmed AfCHIL physically interacted with AfCHS/AfCHI. The bioconversion experiment confirmed that AfCHIL reduced the derailment produced by AfCHS and increased the yield of naringenin. In addition, a system of biosynthesis naringenin involved in AfCHS was constructed, and these results suggested that the potential function between CHS with CHIL advanced naringenin production effectively. In conclusion, this study illustrated the function of AfCHIs in Allium fistulosum and provided new insight into improving the synthesis efficiency of naringenin.
Collapse
Affiliation(s)
- Huanhuan Xu
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yanping Lan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiayi Xing
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Department of Horticulture, College of Agronomy, Shihezi University, Shihezi, China
| | - Yi Li
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Lecheng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yongqin Wang
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
19
|
Lam PY, Wang L, Lui ACW, Liu H, Takeda-Kimura Y, Chen MX, Zhu FY, Zhang J, Umezawa T, Tobimatsu Y, Lo C. Deficiency in flavonoid biosynthesis genes CHS, CHI, and CHIL alters rice flavonoid and lignin profiles. PLANT PHYSIOLOGY 2022; 188:1993-2011. [PMID: 34963002 PMCID: PMC8969032 DOI: 10.1093/plphys/kiab606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 05/24/2023]
Abstract
Lignin is a complex phenylpropanoid polymer deposited in the secondary cell walls of vascular plants. Unlike most gymnosperm and eudicot lignins that are generated via the polymerization of monolignols, grass lignins additionally incorporate the flavonoid tricin as a natural lignin monomer. The biosynthesis and functions of tricin-integrated lignin (tricin-lignin) in grass cell walls and its effects on the utility of grass biomass remain largely unknown. We herein report a comparative analysis of rice (Oryza sativa) mutants deficient in the early flavonoid biosynthetic genes encoding CHALCONE SYNTHASE (CHS), CHALCONE ISOMERASE (CHI), and CHI-LIKE (CHIL), with an emphasis on the analyses of disrupted tricin-lignin formation and the concurrent changes in lignin profiles and cell wall digestibility. All examined CHS-, CHI-, and CHIL-deficient rice mutants were largely depleted of extractable flavones, including tricin, and nearly devoid of tricin-lignin in the cell walls, supporting the crucial roles of CHS and CHI as committed enzymes and CHIL as a noncatalytic enhancer in the conserved biosynthetic pathway leading to flavone and tricin-lignin formation. In-depth cell wall structural analyses further indicated that lignin content and composition, including the monolignol-derived units, were differentially altered in the mutants. However, regardless of the extent of the lignin alterations, cell wall saccharification efficiencies of all tested rice mutants were similar to that of the wild-type controls. Together with earlier studies on other tricin-depleted grass mutant and transgenic plants, our results reflect the complexity in the metabolic consequences of tricin pathway perturbations and the relationships between lignin profiles and cell wall properties.
Collapse
Affiliation(s)
| | | | - Andy C W Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
- Research Unit for Realization of Sustainable Society, Kyoto University, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
20
|
Martín JF, Liras P. Comparative Molecular Mechanisms of Biosynthesis of Naringenin and Related Chalcones in Actinobacteria and Plants: Relevance for the Obtention of Potent Bioactive Metabolites. Antibiotics (Basel) 2022; 11:antibiotics11010082. [PMID: 35052959 PMCID: PMC8773403 DOI: 10.3390/antibiotics11010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Naringenin and its glycosylated derivative naringin are flavonoids that are synthesized by the phenylpropanoid pathway in plants. We found that naringenin is also formed by the actinobacterium Streptomyces clavuligerus, a well-known microorganism used to industrially produce clavulanic acid. The production of naringenin in S. clavuligerus involves a chalcone synthase that uses p-coumaric as a starter unit and a P450 monoxygenase, encoded by two adjacent genes (ncs-ncyP). The p-coumaric acid starter unit is formed by a tyrosine ammonia lyase encoded by an unlinked, tal, gene. Deletion and complementation studies demonstrate that these three genes are required for biosynthesis of naringenin in S. clavuligerus. Other actinobacteria chalcone synthases use caffeic acid, ferulic acid, sinapic acid or benzoic acid as starter units in the formation of different antibiotics and antitumor agents. The biosynthesis of naringenin is restricted to a few Streptomycess species and the encoding gene cluster is present also in some Saccharotrix and Kitasatospora species. Phylogenetic comparison of S. clavuligerus naringenin chalcone synthase with homologous proteins of other actinobacteria reveal that this protein is closely related to chalcone synthases that use malonyl-CoA as a starter unit for the formation of red-brown pigment. The function of the core enzymes in the pathway, such as the chalcone synthase and the tyrosine ammonia lyase, is conserved in plants and actinobacteria. However, S. clavuligerus use a P450 monooxygenase proposed to complete the cyclization step of the naringenin chalcone, whereas this reaction in plants is performed by a chalcone isomerase. Comparison of the plant and S. clavuligerus chalcone synthases indicates that they have not been transmitted between these organisms by a recent horizontal gene transfer phenomenon. We provide a comprehensive view of the molecular genetics and biochemistry of chalcone synthases and their impact on the development of antibacterial and antitumor compounds. These advances allow new bioactive compounds to be obtained using combinatorial strategies. In addition, processes of heterologous expression and bioconversion for the production of naringenin and naringenin-derived compounds in yeasts are described.
Collapse
|
21
|
Xu RX, Ni R, Gao S, Fu J, Xiong RL, Zhu TT, Lou HX, Cheng AX. Molecular cloning and characterization of two distinct caffeoyl CoA O-methyltransferases (CCoAOMTs) from the liverwort Marchantia paleacea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111102. [PMID: 34895539 DOI: 10.1016/j.plantsci.2021.111102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Caffeoyl CoA O-methyltransferases (CCoAOMTs) catalyze the transfer of a methyl group from S-adenosylmethionine to a hydroxyl moiety of caffeoyl-CoA as part of the lignin biosynthetic pathway. CCoAOMT-like proteins also catalyze to a variety of flavonoids, coumarins, and phenylpropanoids. Several CCoAOMTs that prefer flavonoids as substrates have been characterized from liverworts. Here, we cloned two CCoAOMT genes, MpalOMT2 and MpalOMT3, from the liverwort Marchantia paleacea. MpalOMT3 has a second ATG codon downstream and the truncated version that lacks 11 amino acids was named MpalOMT3-Tr. Phylogenetic analysis placed MpalOMT3 at the root of the clade with true CCoAOMTs from vascular plants and placed MpalOMT2 between the CCoAOMT and CCoAOMT-like proteins. Recombinant OMTs methylated caffeoyl CoA, phenylpropanoids, and flavonoids containing two or three vicinal hydroxyl groups. MpalOMT3 showed higher catalytic activity for phenylpropanoids than MpalOMT2, but MpalOMT2 showed more promiscuous towards eriodictyol and myricetin. The lignin content in Arabidopsis thaliana stems increased with constitutive heterologous expression of MpalOMT3-Tr, but not MpalOMT2. Subcellular localization experiments indicated that the N-terminus of MpalOMT3 probably served as a chloroplast transit peptide and inhibited its enzymatic activity. Combining the phylogenetic analysis and functional characterization, we conclude that the liverwort M. paleacea harbors true CCoAOMT and CCoAOMT-like genes.
Collapse
Affiliation(s)
- Rui-Xue Xu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Shuai Gao
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Rui-Lin Xiong
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
22
|
Tanaka M, Koeduka T, Matsui K. Green Leaf Volatile-Burst in Selaginella moellendorffii. FRONTIERS IN PLANT SCIENCE 2021; 12:731694. [PMID: 34777416 PMCID: PMC8578206 DOI: 10.3389/fpls.2021.731694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/06/2021] [Indexed: 05/30/2023]
Abstract
Green leaf volatiles (GLVs) consist of six-carbon volatile aldehydes, alcohols, and their esters. They are formed from polyunsaturated fatty acids and are involved in the defense of plants against herbivores and pathogens. GLVs generally have low concentrations in intact healthy plant tissues, but the biosynthetic pathway to form GLVs is quickly activated by mechanical damage to tissues, an event called the GLV-burst. Most seed plants have the ability to implement GLV-burst; however, this potential in non-seed plants has not been extensively researched. In this study, we examined the GLV-burst capacity of monilophytes, lycophytes, and bryophytes, and confirmed that monilophytes and lycophytes showed substantial GLV-burst ability, while bryophytes did not, with a few exceptions. When the genome sequence of a model lycophyte, Selaginella moellendorffii was reviewed, 10 genes were found that showed high similarity with the non-canonical cytochrome P450 enzymes, CYP74s, specialized in oxylipin formation. Recombinant proteins expressed with Escherichia coli showed that one of them had the ability to encode allene oxide synthase, and another encoded hydroperoxide lyase (HPL), preferring linolenic acid 13-hydroperoxide, and it was inferred that this gene was responsible for GLV-burst in S. moellendorffii. Based on the phylogenetic tree constructed with CYP74s of non-seed and seed plants, we hypothesized that HPL was acquired independently in the lycophyte and seed plants through diversification of CYP74 genes.
Collapse
|
23
|
Dastmalchi M. Elusive partners: a review of the auxiliary proteins guiding metabolic flux in flavonoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:314-329. [PMID: 34318549 DOI: 10.1111/tpj.15446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Flavonoids are specialized metabolites widely distributed across the plant kingdom. They are involved in the growth and survival of plants, conferring the ability to filter ultra-violet rays, conduct symbiotic partnerships, and respond to stress. While many branches of flavonoid biosynthesis have been resolved, recent discoveries suggest missing auxiliary components. These overlooked elements can guide metabolic flux, enhance production, mediate stereoselectivity, transport intermediates, and exert regulatory functions. This review describes several families of auxiliary proteins from across the plant kingdom, including examples from specialized metabolism. In flavonoid biosynthesis, we discuss the example of chalcone isomerase-like (CHIL) proteins and their non-catalytic role. CHILs mediate the cyclization of tetraketides, forming the chalcone scaffold by interacting with chalcone synthase (CHS). Loss of CHIL activity leads to derailment of the CHS-catalyzed reaction and a loss of pigmentation in fruits and flowers. Similarly, members of the pathogenesis-related 10 (PR10) protein family have been found to differentially bind flavonoid intermediates, guiding the composition of anthocyanins. This role comes within a larger body of PR10 involvement in specialized metabolism, from outright catalysis (e.g., (S)-norcoclaurine synthesis) to controlling stereochemistry (e.g., enhancing cis-trans cyclization in catnip). Both CHILs and PR10s hail from larger families of ligand-binding proteins with a spectrum of activity, complicating the characterization of their enigmatic roles. Strategies for the discovery of auxiliary proteins are discussed, as well as mechanistic models for their function. Targeting such unanticipated components will be crucial in manipulating plants or engineering microbial systems for natural product synthesis.
Collapse
Affiliation(s)
- Mehran Dastmalchi
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| |
Collapse
|
24
|
Park SI, Park HL, Bhoo SH, Lee SW, Cho MH. Biochemical and Molecular Characterization of the Rice Chalcone Isomerase Family. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102064. [PMID: 34685873 PMCID: PMC8540780 DOI: 10.3390/plants10102064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Chalcone isomerase (CHI) is a key enzyme in flavonoid biosynthesis. In plants, CHIs occur in multigene families, and they are divided into four types, types I-IV. Type I and II CHIs are bona fide CHIs with CHI activity, and type III and IV CHIs are non-catalytic members with different functions. Rice contains seven CHI family genes (OsCHIs). Molecular analysis suggested that OsCHI3 is a type I CHI, and the other OsCHIs were classified into types III and IV. To elucidate their biochemical functions, OsCHI1, OsCHI3, OsCHI6, and OsCHI7 were expressed in Escherichia coli, and the recombinant OsCHI proteins were purified. An activity assay of recombinant OsCHIs showed that OsCHI3 catalyzed the isomerization of naringenin chalcone and isoliquiritigenin, whereas the other recombinant OsCHIs had no CHI activity. OsCHI3 also exhibited a strong preference to naringenin chalcone compared to isoliquiritigenin, which agrees well with the catalytic properties of type I CHIs. These results ascertain OsCHI3 to be a bona fide CHI in rice. OsCHI3 and the other OsCHIs were expressed constitutively throughout the rice growth period and different tissues. OsCHI3 expression was induced immediately in response to ultra-violet (UV) stress, suggesting its involvement in the biosynthesis of sakuranetin, a flavonoid phytoalexin in rice.
Collapse
|
25
|
Chao N, Wang RF, Hou C, Yu T, Miao K, Cao FY, Fang RJ, Liu L. Functional characterization of two chalcone isomerase (CHI) revealing their responsibility for anthocyanins accumulation in mulberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:65-73. [PMID: 33578286 DOI: 10.1016/j.plaphy.2021.01.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Mulberry (Morus sp., Moraceae) is an important economic crop plant and mulberry fruits are rich in anthocyanidins. Chalcone isomerase (CHI) catalyzes the conversion of chalcones to flavanones providing precursors for biosynthesis of anthocyanidins. In this study, bona fide CHIs were cloned and characterized from different Morus species with differently colored fruits (Morus multicaulis, Mm and Morus alba variety LvShenZi, LSZ). Enzymatic assay of MmCHI1 and MmCHI2 showed that they can utilize naringenin chalcone as substrate. The catalytic efficiency of MmCHI2 and LSZCHI2 are approximately 200 and 120-fold greater than that of MmCHI1 respectively. Phylogenetic analysis showed the two mulberry CHIs belonged to different sub-clade of Type I CHI1 named type IA (CHI2) and type IB (CHI1). Type IB CHIs are mulberry specific. MmCHI1 and MmCHI2 had similar expression profiles and showed preferred expression in fruits. In addition, both mulberry CHI1 and CHI2 played roles in the response to excess zinc stress and sclerotiniose pathogen infection. Both MmCHI1 and MmCHI2 expression levels showed positive close relationship with anthocyanins content during fruit ripening process. The co-expression of MmCHI1 and MmCHI2 was observed during fruit ripening process and in transgenic mulberry. VIGS (virus induced gene silence) targeting on MmCHI1 and MmCHI2 showed significant down-regulation of MmCHI2 instead of MmCHI1 would result in significant (about 50%) decrease in anthocyanins content. MmCHI2 is the dominant CHI for anthocyanins accumulation in mulberry. The results presented in this work provided insight on bona fide CHIs in mulberry and reveal their roles in anthocyanins accumulation.
Collapse
Affiliation(s)
- Nan Chao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Ru-Feng Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Chong Hou
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Ting Yu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Ke Miao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Fang-Yuan Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Rong-Jun Fang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Li Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
26
|
Niu M, Fu J, Ni R, Xiong RL, Zhu TT, Lou HX, Zhang P, Li J, Cheng AX. Functional and Structural Investigation of Chalcone Synthases Based on Integrated Metabolomics and Transcriptome Analysis on Flavonoids and Anthocyanins Biosynthesis of the Fern Cyclosorus parasiticus. FRONTIERS IN PLANT SCIENCE 2021; 12:757516. [PMID: 34777436 PMCID: PMC8580882 DOI: 10.3389/fpls.2021.757516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 05/03/2023]
Abstract
The biosynthesis of flavonoids and anthocyanidins has been exclusively investigated in angiosperms but largely unknown in ferns. This study integrated metabolomics and transcriptome to analyze the fronds from different development stages (S1 without spores and S2 with brown spores) of Cyclosorus parasiticus. About 221 flavonoid and anthocyanin metabolites were identified between S1 and S2. Transcriptome analysis revealed several genes encoding the key enzymes involved in the biosynthesis of flavonoids, and anthocyanins were upregulated in S2, which were validated by qRT-PCR. Functional characterization of two chalcone synthases (CpCHS1 and CpCHS2) indicated that CpCHS1 can catalyze the formation of pinocembrin, naringenin, and eriodictyol, respectively; however, CpCHS2 was inactive. The crystallization investigation of CpCHS1 indicated that it has a highly similar conformation and shares a similar general catalytic mechanism to other plants CHSs. And by site-directed mutagenesis, we found seven residues, especially Leu199 and Thr203 that are critical to the catalytic activity for CpCHS1.
Collapse
Affiliation(s)
- Meng Niu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Rui-Lin Xiong
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianxu Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Jianxu Li
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
- Ai-Xia Cheng
| |
Collapse
|
27
|
Zhu J, Zhao W, Li R, Guo D, Li H, Wang Y, Mei W, Peng S. Identification and Characterization of Chalcone Isomerase Genes Involved in Flavonoid Production in Dracaena cambodiana. FRONTIERS IN PLANT SCIENCE 2021; 12:616396. [PMID: 33719287 PMCID: PMC7947852 DOI: 10.3389/fpls.2021.616396] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/29/2021] [Indexed: 05/20/2023]
Abstract
Dragon's blood is a traditional medicine in which flavonoids are the main bioactive compounds; however, the underlying formation mechanism of dragon's blood remains largely poorly understood. Chalcone isomerase (CHI) is the key enzyme in the flavonoid biosynthesis pathway. However, CHI family genes are not well understood in Dracaena cambodiana Pierre ex Gagnep, an important source plant of dragon's blood. In this study, 11 CHI family genes were identified from D. cambodiana, and they were classified into three types. Evolutionary and transcriptional profiling analysis revealed that DcCHI1 and DcCHI4 might be involved in flavonoid production. Both DcCHI1 and DcCHI4 displayed low expression levels in stem under normal growth conditions and were induced by methyl jasmonate (MeJA), 6-benzyl aminopurine (6-BA, synthetic cytokinin), ultraviolet-B (UV-B), and wounding. The recombinant proteins DcCHI1 and DcCHI4 were expressed in Escherichia coli and purified by His-Bind resin chromatography. Enzyme activity assay indicated that DcCHI1 catalyzed the formation of naringenin from naringenin chalcone, while DcCHI4 lacked this catalytic activity. Overexpression of DcCHI1 or DcCHI4 enhanced the flavonoid production in D. cambodiana and tobacco. These findings implied that DcCHI1 and DcCHI4 play important roles in flavonoid production. Thus, our study will not only contribute to better understand the function and expression regulation of CHI family genes involved in flavonoid production in D. cambodiana but also lay the foundation for developing the effective inducer of dragon's blood.
Collapse
Affiliation(s)
- Jiahong Zhu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Rongshuang Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dong Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huiliang Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ying Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenli Mei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Wenli Mei,
| | - Shiqing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- *Correspondence: Shiqing Peng,
| |
Collapse
|
28
|
Waki T, Takahashi S, Nakayama T. Managing enzyme promiscuity in plant specialized metabolism: A lesson from flavonoid biosynthesis: Mission of a "body double" protein clarified. Bioessays 2020; 43:e2000164. [PMID: 33179351 DOI: 10.1002/bies.202000164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022]
Abstract
Specificities of enzymes involved in plant specialized metabolism, including flavonoid biosynthesis, are generally promiscuous. This enzyme promiscuity has served as an evolutionary basis for new enzyme functions and metabolic pathways in land plants adapting to environmental challenges. This phenomenon may lead, however, to inefficiency in specialized metabolism and adversely affect metabolite-mediated plant survival. How plants manage enzyme promiscuity for efficient specialized metabolism is, thus, an open question. Recent studies of flavonoid biosynthesis addressing this issue have revealed a conserved strategy, namely, a homolog of chalcone isomerase with no catalytic activity binds to chalcone synthase, a key flavonoid pathway enzyme, to narrow (or rectify) the enzyme's highly promiscuous product specificity. Reducing promiscuity via specific protein-protein interactions among metabolic enzymes and proteins may be a solution adopted by land plants to achieve efficient operation of specialized metabolism, while the intrinsic promiscuity of enzymes has likely been retained incidentally.
Collapse
Affiliation(s)
- Toshiyuki Waki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
29
|
Adaptive Evolution of Chalcone Isomerase Superfamily in Fagaceae. Biochem Genet 2020; 59:491-505. [PMID: 33135088 DOI: 10.1007/s10528-020-10012-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Chalcone Isomerase (CHI) catalyzes the biosynthesis of flavonoids and secondary metabolism in plants. Currently, there is no systematic analysis of CHIs gene family in Fagaceae which is available. In this study, twenty-two CHI proteins were identified in five species of the Fagaceae family. The CHI superfamily in Fagaceae can be classified into three subfamilies and five groups using phylogenetic analysis, analysis of physicochemical properties, and structural prediction. Results indicated that serine (Ser) and isoleucine (Ile) residues determine the substrate preferred by active Type I Fagaceae CHI, and the chalcone isomerase-like (CHIL) of Fagaceae had active site residues. Adaptive analysis of CHIs showed that CHIs are subject to selection pressure. The active CHI gene of Fagaceae was located in the cytoplasm, and it had the typical gene structure of CHI and contains four exons. All the twenty-two identified CHIs had the conserved domain motif 3, and the different groups had their own structural characteristics. In the process of fatty acid binding protein (FAP) evolution to CHIL and CHI, the physical and chemical properties of proteins also had significant differences in addition to changes in protein functions.
Collapse
|
30
|
Wang PY, Ni R, Zhu TT, Sun CJ, Lou HX, Zhang X, Cheng AX. Isolation and functional characterization of four microbial type terpene synthases from ferns. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:716-724. [PMID: 32862021 DOI: 10.1016/j.plaphy.2020.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Typical plant terpene synthases (TPSs) are responsible for the production of terpenes, a major class of plant secondary metabolites. However, various nonseed plants also harbor genes encoding microbial terpene synthase-like (MTPSL) enzymes. Here, a scan of 31 ferns transcriptomes revealed 40 sequences putatively encoding MTPSLs. Two groups of sequences were recognized based on the key conserved motifs. Four representative genes were isolated from each of the four species Adiantum capillus-veneris, Cyclosorus parasiticus, Drynaria bonii and Microlepia platyphylla. Following their heterologous expression in E. coli, the recombinant proteins were tested for monoterpene synthase and sesquiterpene synthase activity. These enzymatic products were typical monoterpenes and sesquiterpenes that have been previous shown to be generated by classical plant TPSs when provided with GPP and FPP as substrates. Subcellular localization experiments in the leaf epidermis of Nicotiana benthamiana and onion (Allium cepa) inner epidermal cells indicated that AcMTPSL1 and DbMTPSL were deposited in both the cytoplasm and nucleus, whereas CpMTPSL1 and MpMTPSL were localized in the cytoplasm, chloroplasts and nucleus. AcMTPSL1 was up-regulated in plants exposed to methyl jasmonate treatment, suggesting a role for this gene in host defense. This study provides more information about the catalytic function of MTPSLs in nonseed plants and for the first time, the subcellular localization of MTPSLs was experimentally characterized.
Collapse
Affiliation(s)
- Piao-Yi Wang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Chun-Jing Sun
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xuebin Zhang
- Henan Joint International Laboratory for Crop Multi-Omics Research, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China.
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
31
|
Pucker B, Reiher F, Schilbert HM. Automatic Identification of Players in the Flavonoid Biosynthesis with Application on the Biomedicinal Plant Croton tiglium. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1103. [PMID: 32867203 PMCID: PMC7570183 DOI: 10.3390/plants9091103] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The flavonoid biosynthesis is a well-characterised model system for specialised metabolism and transcriptional regulation in plants. Flavonoids have numerous biological functions such as UV protection and pollinator attraction, but also biotechnological potential. Here, we present Knowledge-based Identification of Pathway Enzymes (KIPEs) as an automatic approach for the identification of players in the flavonoid biosynthesis. KIPEs combines comprehensive sequence similarity analyses with the inspection of functionally relevant amino acid residues and domains in subjected peptide sequences. Comprehensive sequence sets of flavonoid biosynthesis enzymes and knowledge about functionally relevant amino acids were collected. As a proof of concept, KIPEs was applied to investigate the flavonoid biosynthesis of the medicinal plant Croton tiglium on the basis of a transcriptome assembly. Enzyme candidates for all steps in the biosynthesis network were identified and matched to previous reports of corresponding metabolites in Croton species.
Collapse
Affiliation(s)
- Boas Pucker
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (B.P.); (F.R.)
- Department of Plant Sciences, Evolution and Diversity, University of Cambridge, Cambridge CB2 3EA, UK
| | - Franziska Reiher
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (B.P.); (F.R.)
| | - Hanna Marie Schilbert
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (B.P.); (F.R.)
| |
Collapse
|
32
|
A conserved strategy of chalcone isomerase-like protein to rectify promiscuous chalcone synthase specificity. Nat Commun 2020; 11:870. [PMID: 32054839 PMCID: PMC7018950 DOI: 10.1038/s41467-020-14558-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
Land plants produce diverse flavonoids for growth, survival, and reproduction. Chalcone synthase is the first committed enzyme of the flavonoid biosynthetic pathway and catalyzes the production of 2',4,4',6'-tetrahydroxychalcone (THC). However, it also produces other polyketides, including p-coumaroyltriacetic acid lactone (CTAL), because of the derailment of the chalcone-producing pathway. This promiscuity of CHS catalysis adversely affects the efficiency of flavonoid biosynthesis, although it is also believed to have led to the evolution of stilbene synthase and p-coumaroyltriacetic acid synthase. In this study, we establish that chalcone isomerase-like proteins (CHILs), which are encoded by genes that are ubiquitous in land plant genomes, bind to CHS to enhance THC production and decrease CTAL formation, thereby rectifying the promiscuous CHS catalysis. This CHIL function has been confirmed in diverse land plant species, and represents a conserved strategy facilitating the efficient influx of substrates from the phenylpropanoid pathway to the flavonoid pathway.
Collapse
|