1
|
Avidan O, Martins MCM, Feil R, Lohse M, Giorgi FM, Schlereth A, Lunn JE, Stitt M. Direct and indirect responses of the Arabidopsis transcriptome to an induced increase in trehalose 6-phosphate. PLANT PHYSIOLOGY 2024; 196:409-431. [PMID: 38593032 PMCID: PMC11376379 DOI: 10.1093/plphys/kiae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Trehalose 6-phosphate (Tre6P) is an essential signal metabolite that regulates the level of sucrose, linking growth and development to the metabolic status. We hypothesized that Tre6P plays a role in mediating the regulation of gene expression by sucrose. To test this, we performed transcriptomic profiling on Arabidopsis (Arabidopsis thaliana) plants that expressed a bacterial TREHALOSE 6-PHOSPHATE SYNTHASE (TPS) under the control of an ethanol-inducible promoter. Induction led to a 4-fold rise in Tre6P levels, a concomitant decrease in sucrose, significant changes (FDR ≤ 0.05) of over 13,000 transcripts, and 2-fold or larger changes of over 5,000 transcripts. Comparison with nine published responses to sugar availability allowed some of these changes to be linked to the rise in Tre6P, while others were probably due to lower sucrose or other indirect effects. Changes linked to Tre6P included repression of photosynthesis-related gene expression and induction of many growth-related processes including ribosome biogenesis. About 500 starvation-related genes are known to be induced by SUCROSE-NON-FERMENTING-1-RELATED KINASE 1 (SnRK1). They were largely repressed by Tre6P in a manner consistent with SnRK1 inhibition by Tre6P. SnRK1 also represses many genes that are involved in biosynthesis and growth. These responded to Tre6P in a more complex manner, pointing toward Tre6P interacting with other C-signaling pathways. Additionally, elevated Tre6P modified the expression of genes encoding regulatory subunits of the SnRK1 complex and TPS class II and FCS-LIKE ZINC FINGER proteins that are thought to modulate SnRK1 function and genes involved in circadian, TARGET OF RAPAMYCIN, light, abscisic acid, and other hormone signaling.
Collapse
Affiliation(s)
- Omri Avidan
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Marina C M Martins
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Marc Lohse
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Federico M Giorgi
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
2
|
Baker RL, Brock GL, Newsome EL, Zhao M. Polyploidy and the evolution of phenotypic integration: Network analysis reveals relationships among anatomy, morphology, and physiology. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11605. [PMID: 39184197 PMCID: PMC11342231 DOI: 10.1002/aps3.11605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 08/27/2024]
Abstract
Premise Most traits are polygenic and most genes are pleiotropic, resulting in complex, integrated phenotypes. Polyploidy presents an excellent opportunity to explore the evolution of phenotypic integration as entire genomes are duplicated, allowing for new associations among traits and potentially leading to enhanced or reduced phenotypic integration. Despite the multivariate nature of phenotypic evolution, studies often rely on simplistic bivariate correlations that cannot accurately represent complex phenotypes or data reduction techniques that can obscure specific trait relationships. Methods We apply network modeling, a common gene co-expression analysis, to the study of phenotypic integration to identify multivariate patterns of phenotypic evolution, including anatomy and morphology (structural) and physiology (functional) traits in response to whole genome duplication in the genus Brassica. Results We identify four key structural traits that are overrepresented in the evolution of phenotypic integration. Seeding networks with key traits allowed us to identify structure-function relationships not apparent from bivariate analyses. In general, allopolyploids exhibited larger, more robust networks indicative of increased phenotypic integration compared to diploids. Discussion Phenotypic network analysis may provide important insights into the effects of selection on non-target traits, even when they lack direct correlations with the target traits. Network analysis may allow for more nuanced predictions of both natural and artificial selection.
Collapse
Affiliation(s)
- Robert L. Baker
- Inventory and Monitoring DivisionNational Park ServiceFort Collins80525ColoradoUSA
| | | | - Eastyn L. Newsome
- Department of Botany and Plant PathologyPurdue UniversityWest Lafayette47907IndianaUSA
| | - Meixia Zhao
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesville32611FloridaUSA
| |
Collapse
|
3
|
Kerbler SML, Armijos-Jaramillo V, Lunn JE, Vicente R. The trehalose 6-phosphate phosphatase family in plants. PHYSIOLOGIA PLANTARUM 2023; 175:e14096. [PMID: 38148193 DOI: 10.1111/ppl.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023]
Abstract
Trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is an essential signalling metabolite linking plant growth and development to carbon metabolism. While recent work has focused predominantly on the enzymes that produce Tre6P, little is known about the proteins that catalyse its degradation, the trehalose 6-phosphate phosphatases (TPPs). Often occurring in large protein families, TPPs exhibit cell-, tissue- and developmental stage-specific expression patterns, suggesting important regulatory functions in controlling local levels of Tre6P and trehalose as well as Tre6P signalling. Furthermore, growing evidence through gene expression studies and transgenic approaches shows that TPPs play an important role in integrating environmental signals with plant metabolism. This review highlights the large diversity of TPP isoforms in model and crop plants and identifies how modulating Tre6P metabolism in certain cell types, tissues, and at different developmental stages may promote stress tolerance, resilience and increased crop yield.
Collapse
Affiliation(s)
- Sandra Mae-Lin Kerbler
- Leibniz-Institute für Gemüse- und Zierpflanzenbau, Groβbeeren, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Vinicio Armijos-Jaramillo
- Grupo de Bio-Quimioinformática, Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
4
|
Liang XG, Gao Z, Fu XX, Chen XM, Shen S, Zhou SL. Coordination of carbon assimilation, allocation, and utilization for systemic improvement of cereal yield. FRONTIERS IN PLANT SCIENCE 2023; 14:1206829. [PMID: 37731984 PMCID: PMC10508850 DOI: 10.3389/fpls.2023.1206829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
The growth of yield outputs is dwindling after the first green revolution, which cannot meet the demand for the projected population increase by the mid-century, especially with the constant threat from extreme climates. Cereal yield requires carbon (C) assimilation in the source for subsequent allocation and utilization in the sink. However, whether the source or sink limits yield improvement, a crucial question for strategic orientation in future breeding and cultivation, is still under debate. To narrow the knowledge gap and capture the progress, we focus on maize, rice, and wheat by briefly reviewing recent advances in yield improvement by modulation of i) leaf photosynthesis; ii) primary C allocation, phloem loading, and unloading; iii) C utilization and grain storage; and iv) systemic sugar signals (e.g., trehalose 6-phosphate). We highlight strategies for optimizing C allocation and utilization to coordinate the source-sink relationships and promote yields. Finally, based on the understanding of these physiological mechanisms, we envisage a future scenery of "smart crop" consisting of flexible coordination of plant C economy, with the goal of yield improvement and resilience in the field population of cereals crops.
Collapse
Affiliation(s)
- Xiao-Gui Liang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education and Jiangxi Province/The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhen Gao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiao-Xiang Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education and Jiangxi Province/The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Xian-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Wu A. Modelling plants across scales of biological organisation for guiding crop improvement. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:435-454. [PMID: 37105931 DOI: 10.1071/fp23010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/06/2023] [Indexed: 06/07/2023]
Abstract
Grain yield improvement in globally important staple crops is critical in the coming decades if production is to keep pace with growing demand; so there is increasing interest in understanding and manipulating plant growth and developmental traits for better crop productivity. However, this is confounded by complex cross-scale feedback regulations and a limited ability to evaluate the consequences of manipulation on crop production. Plant/crop modelling could hold the key to deepening our understanding of dynamic trait-crop-environment interactions and predictive capabilities for supporting genetic manipulation. Using photosynthesis and crop growth as an example, this review summarises past and present experimental and modelling work, bringing about a model-guided crop improvement thrust, encompassing research into: (1) advancing cross-scale plant/crop modelling that connects across biological scales of organisation using a trait dissection-integration modelling principle; (2) improving the reliability of predicted molecular-trait-crop-environment system dynamics with experimental validation; and (3) innovative model application in synergy with cross-scale experimentation to evaluate G×M×E and predict yield outcomes of genetic intervention (or lack of it) for strategising further molecular and breeding efforts. The possible future roles of cross-scale plant/crop modelling in maximising crop improvement are discussed.
Collapse
Affiliation(s)
- Alex Wu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
6
|
Lu Z, Hu W, Ye X, Lu J, Gu H, Li X, Cong R, Ren T. Potassium regulates diel leaf growth of Brassica napus by coordinating the rhythmic carbon supply and water balance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3686-3698. [PMID: 35176159 DOI: 10.1093/jxb/erac060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Carbon and water are two main factors limiting leaf expansion. Restriction of leaf growth by low availability of carbon or water is among the earliest visible effects of potassium (K) deficiency. It is not known how K is involved in regulating the rhythmic supply of these two substrates, which differ remarkably across the day-night cycle, affecting leaf expansion. We investigated the effects of different K regimes on the time courses of leaf expansion, carbon assimilation, carbohydrates, and hydraulic properties of Brassica napus. Potassium supply increased leaf area, predominantly by promoting night-time leaf expansion (>60%), which was mainly associated with increased availability of carbohydrates from photosynthetic carbon fixation and import from old leaves rather than improvement of leaf hydraulics. However, sufficient K improved leaf hydraulic conductance to balance diurnal evaporative water loss and increase the osmotic contribution of water-soluble carbohydrates, thereby maintaining leaf turgor and increasing the daytime expansion rate. The results also indicated an ontogenetic role of K in modifying the amplitude of circadian expansion; almost 80% of the increase in leaf area occurred before the area reached 66.9% of the mature size. Our data provide mechanistic insight into K-mediated diel coordination of rhythmic carbon supply and water balance in leaf expansion.
Collapse
Affiliation(s)
- Zhifeng Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Wenshi Hu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaolei Ye
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Hehe Gu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaokun Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Rihuan Cong
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
7
|
Reynolds MP, Slafer GA, Foulkes JM, Griffiths S, Murchie EH, Carmo-Silva E, Asseng S, Chapman SC, Sawkins M, Gwyn J, Flavell RB. A wiring diagram to integrate physiological traits of wheat yield potential. NATURE FOOD 2022; 3:318-324. [PMID: 37117579 DOI: 10.1038/s43016-022-00512-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 04/30/2023]
Abstract
As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging and will require more insight into deterministic pathways to yields. Here, we propose a wiring diagram as a platform to illustrate the interrelationships of the physiological traits that impact wheat yield potential and to serve as a decision support tool for crop scientists. The wiring diagram is based on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable expression of both. By illustrating these linkages as coded wires, the wiring diagram can show connections among traits that may not have been apparent, and can inform new research hypotheses and guide crosses designed to accumulate beneficial traits and alleles in breeding. The wiring diagram can also serve to create an ever-richer common point of reference for refining crop models in the future.
Collapse
Affiliation(s)
| | - Gustavo Ariel Slafer
- Catalonian Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Center for Research in Agrotechnology (AGROTECNIO), Lleida, Spain.
- University of Lleida, Lleida, Spain.
| | | | | | | | | | | | | | - Mark Sawkins
- International Wheat Yield Partnership (IWYP), College Station, TX, USA
- Texas A&M AgriLife Research, Weslaco, TX, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership (IWYP), College Station, TX, USA
| | | |
Collapse
|
8
|
Characterization of Stem Nodes Associated with Carbon Partitioning in Maize in Response to Nitrogen Availability. Int J Mol Sci 2022; 23:ijms23084389. [PMID: 35457213 PMCID: PMC9024680 DOI: 10.3390/ijms23084389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Stem node has been found to be a hub for controlling mineral nutrient distribution in gramineous plants. However, the characteristics of stem nodes associated with whole-plant carbon partitioning in maize (Zea mays L.) and their responses to nitrogen (N) availability remains elusive. Maize plants were grown in greenhouse under low to high N supply. Plant growth, sugar accumulation, and sugar transporters in nodes and leaves, as well as the anatomical structure of nodes, were investigated at vegetative phase. When compared to N-sufficient plants, low-N availability stunted growth and resulted in 49–64% less sugars in leaves, which was attributed to low photosynthesis or the accelerated carbon export, as evidenced by more 13C detected further below leaf tips. Invariably higher sugar concentrations were found in the stem nodes, rather than in the leaves across N treatments, indicating a crucial role of nodes in facilitating whole-plant carbon partitioning. More and smaller vascular bundles and phloem were observed in stem nodes of N-deficient plants, while higher sugar levels were found in the bottom nodes than in the upper ones. Low-N availability upregulated the gene expressions of sugar transporters, which putatively function in nodes such as ZmSWEETs and ZmSUTs at the bottom stem, but suppressed them in the upper ones, showing a developmental impact on node function. Further, greater activity of sugar transporters in the bottom nodes was associated with less sugars in leaves. Overall, these results highlighted that stem nodes may play an important role in facilitating long-distance sugar transport in maize.
Collapse
|
9
|
Salvi P, Agarrwal R, Gandass N, Manna M, Kaur H, Deshmukh R. Sugar transporters and their molecular tradeoffs during abiotic stress responses in plants. PHYSIOLOGIA PLANTARUM 2022; 174:e13652. [PMID: 35174495 DOI: 10.1111/ppl.13652] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Sugars as photosynthates are well known as energy providers and as building blocks of various structural components of plant cells, tissues and organs. Additionally, as a part of various sugar signaling pathways, they interact with other cellular machinery and influence many important cellular decisions in plants. Sugar signaling is further reliant on the differential distribution of sugars throughout the plant system. The distribution of sugars from source to sink tissues or within organelles of plant cells is a highly regulated process facilitated by various sugar transporters located in plasma membranes and organelle membranes, respectively. Sugar distribution, as well as signaling, is impacted during unfavorable environments such as extreme temperatures, salt, nutrient scarcity, or drought. Here, we have discussed the mechanism of sugar transport via various types of sugar transporters as well as their differential response during environmental stress exposure. The functional involvement of sugar transporters in plant's abiotic stress tolerance is also discussed. Besides, we have also highlighted the challenges in engineering sugar transporter proteins as well as the undeciphered modules associated with sugar transporters in plants. Thus, this review provides a comprehensive discussion on the role and regulation of sugar transporters during abiotic stresses and enables us to target the candidate sugar transporter(s) for crop improvement to develop climate-resilient crops.
Collapse
Affiliation(s)
- Prafull Salvi
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | | | - Nishu Gandass
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Harmeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rupesh Deshmukh
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
10
|
Zhang C, Zheng B, He Y. Improving Grain Yield via Promotion of Kernel Weight in High Yielding Winter Wheat Genotypes. BIOLOGY 2021; 11:biology11010042. [PMID: 35053040 PMCID: PMC8772892 DOI: 10.3390/biology11010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary Improving plant net photosynthetic rates and accelerating water-soluble carbohydrate accumulation play an important role in increasing the carbon sources for wheat kernel growth and yield. The objective of this study was to quantify the relative yield contribution by analyzing the photosynthesis rate of flag leaf, water-soluble carbohydrate content of flag leaf, flag leaf sheath and stem, and other agronomic and physiological traits in 15 wheat cultivars released in Shandong Province, China between 1969 and 2006. Our results suggest that increase of flag leaf photosynthesis and WSC had a positive effect of 0.593 on the TKW, and thus benefit for developing high yielding wheat cultivars. Abstract Improving plant net photosynthetic rates and accelerating water-soluble carbohydrate accumulation play an important role in increasing the carbon sources for yield formation of wheat (Triticum aestivum L.). Understanding and quantify the contribution of these traits to grain yield can provide a pathway towards increasing the yield potential of wheat. The objective of this study was to identify kernel weight gap for improving grain yield in 15 winter wheat genotypes grown in Shandong Province, China. A cluster analysis was conducted to classify the 15 wheat genotypes into high yielding (HY) and low yielding (LY) groups based on their performance in grain yield, harvest index, photosynthetic rate, kernels per square meter, and spikes per square meter from two years of field testing. While the grain yield was significantly higher in the HY group, its thousand kernel weight (TKW) was 8.8% lower than that of the LY group (p < 0.05). A structural equation model revealed that 83% of the total variation in grain yield for the HY group could be mainly explained by TKW, the flag leaf photosynthesis rate at the grain filling stage (Pn75), and flag leaf water-soluble carbohydrate content (WSC) at grain filling stage. Their effect values on yield were 0.579, 0.759, and 0.444, respectively. Our results suggest that increase of flag leaf photosynthesis and WSC could improve the TKW, and thus benefit for developing high yielding wheat cultivars.
Collapse
Affiliation(s)
- Cong Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Str., Beijing 100081, China;
| | - Bangyou Zheng
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St. Lucia, Brisbane, QLD 4067, Australia;
| | - Yong He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Str., Beijing 100081, China;
- Correspondence: ; Tel.: +86-10-82109767
| |
Collapse
|
11
|
Lyra DH, Griffiths CA, Watson A, Joynson R, Molero G, Igna AA, Hassani-Pak K, Reynolds MP, Hall A, Paul MJ. Gene-based mapping of trehalose biosynthetic pathway genes reveals association with source- and sink-related yield traits in a spring wheat panel. Food Energy Secur 2021; 10:e292. [PMID: 34594548 PMCID: PMC8459250 DOI: 10.1002/fes3.292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Trehalose 6‐phosphate (T6P) signalling regulates carbon use and allocation and is a target to improve crop yields. However, the specific contributions of trehalose phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP) genes to source‐ and sink‐related traits remain largely unknown. We used enrichment capture sequencing on TPS and TPP genes to estimate and partition the genetic variation of yield‐related traits in a spring wheat (Triticum aestivum) breeding panel specifically built to capture the diversity across the 75,000 CIMMYT wheat cultivar collection. Twelve phenotypes were correlated to variation in TPS and TPP genes including plant height and biomass (source), spikelets per spike, spike growth and grain filling traits (sink) which showed indications of both positive and negative gene selection. Individual genes explained proportions of heritability for biomass and grain‐related traits. Three TPS1 homologues were particularly significant for trait variation. Epistatic interactions were found within and between the TPS and TPP gene families for both plant height and grain‐related traits. Gene‐based prediction improved predictive ability for grain weight when gene effects were combined with the whole‐genome markers. Our study has generated a wealth of information on natural variation of TPS and TPP genes related to yield potential which confirms the role for T6P in resource allocation and in affecting traits such as grain number and size confirming other studies which now opens up the possibility of harnessing natural genetic variation more widely to better understand the contribution of native genes to yield traits for incorporation into breeding programmes.
Collapse
Affiliation(s)
- Danilo H Lyra
- Computational & Analytical Sciences Rothamsted Research Harpenden UK
| | | | - Amy Watson
- Plant Sciences Rothamsted Research Harpenden UK
| | | | - Gemma Molero
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT) Texcoco Mexico
| | | | | | - Matthew P Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT) Texcoco Mexico
| | | | | |
Collapse
|
12
|
Fichtner F, Lunn JE. The Role of Trehalose 6-Phosphate (Tre6P) in Plant Metabolism and Development. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:737-760. [PMID: 33428475 DOI: 10.1146/annurev-arplant-050718-095929] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Trehalose 6-phosphate (Tre6P) has a dual function as a signal and homeostatic regulator of sucrose levels in plants. In source leaves, Tre6P regulates the production of sucrose to balance supply with demand for sucrose from growing sink organs. As a signal of sucrose availability, Tre6P influences developmental decisions that will affect future demand for sucrose, such as flowering, embryogenesis, and shoot branching, and links the growth of sink organs to sucrose supply. This involves complex interactions with SUCROSE-NON-FERMENTING1-RELATED KINASE1 that are not yet fully understood. Tre6P synthase, the enzyme that makes Tre6P, plays a key role in the nexus between sucrose and Tre6P, operating in the phloem-loading zone of leaves and potentially generating systemic signals for source-sink coordination. Many plants have large and diverse families of Tre6P phosphatase enzymes that dephosphorylate Tre6P, some of which have noncatalytic functions in plant development.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia;
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
13
|
Aluko OO, Li C, Wang Q, Liu H. Sucrose Utilization for Improved Crop Yields: A Review Article. Int J Mol Sci 2021; 22:4704. [PMID: 33946791 PMCID: PMC8124652 DOI: 10.3390/ijms22094704] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a signaling molecule and a primary energy source that coordinates the source and sink development. Alteration in source-sink balance halts the physiological and developmental processes of plants, since plant growth is mostly triggered when the primary assimilates in the source leaf balance with the metabolic needs of the heterotrophic sinks. To measure up with the sink organ's metabolic needs, the improvement of photosynthetic carbon to synthesis sucrose, its remobilization, and utilization at the sink level becomes imperative. However, environmental cues that influence sucrose balance within these plant organs, limiting positive yield prospects, have also been a rising issue over the past few decades. Thus, this review discusses strategies to improve photosynthetic carbon assimilation, the pathways actively involved in the transport of sucrose from source to sink organs, and their utilization at the sink organ. We further emphasize the impact of various environmental cues on sucrose transport and utilization, and the strategic yield improvement approaches under such conditions.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| |
Collapse
|
14
|
Müller M, Munné-Bosch S. Hormonal impact on photosynthesis and photoprotection in plants. PLANT PHYSIOLOGY 2021; 185:1500-1522. [PMID: 33793915 PMCID: PMC8133604 DOI: 10.1093/plphys/kiaa119] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 05/19/2023]
Abstract
Photosynthesis is not only essential for plants, but it also sustains life on Earth. Phytohormones play crucial roles in developmental processes, from organ initiation to senescence, due to their role as growth and developmental regulators, as well as their central role in the regulation of photosynthesis. Furthermore, phytohormones play a major role in photoprotection of the photosynthetic apparatus under stress conditions. Here, in addition to discussing our current knowledge on the role of the phytohormones auxin, cytokinins, gibberellins, and strigolactones in promoting photosynthesis, we will also highlight the role of abscisic acid beyond stomatal closure in modulating photosynthesis and photoprotection under various stress conditions through crosstalk with ethylene, salicylates, jasmonates, and brassinosteroids. Furthermore, the role of phytohormones in controlling the production and scavenging of photosynthesis-derived reactive oxygen species, the duration and extent of photo-oxidative stress and redox signaling under stress conditions will be discussed in detail. Hormones have a significant impact on the regulation of photosynthetic processes in plants under both optimal and stress conditions, with hormonal interactions, complementation, and crosstalk being important in the spatiotemporal and integrative regulation of photosynthetic processes during organ development at the whole-plant level.
Collapse
Affiliation(s)
- Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Author for communication:
| |
Collapse
|
15
|
Fichtner F, Dissanayake IM, Lacombe B, Barbier F. Sugar and Nitrate Sensing: A Multi-Billion-Year Story. TRENDS IN PLANT SCIENCE 2021; 26:352-374. [PMID: 33281060 DOI: 10.1016/j.tplants.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 05/03/2023]
Abstract
Sugars and nitrate play a major role in providing carbon and nitrogen in plants. Understanding how plants sense these nutrients is crucial, most notably for crop improvement. The mechanisms underlying sugar and nitrate sensing are complex and involve moonlighting proteins such as the nitrate transporter NRT1.1/NFP6.3 or the glycolytic enzyme HXK1. Major components of nutrient signaling, such as SnRK1, TOR, and HXK1, are relatively well conserved across eukaryotes, and the diversification of components such as the NRT1 family and the SWEET sugar transporters correlates with plant terrestrialization. In plants, Tre6P plays a hormone-like role in plant development. In addition, nutrient signaling has evolved to interact with the more recent hormone signaling, allowing fine-tuning of physiological and developmental responses.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Benoit Lacombe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
16
|
Zhang J, Wan L, Igathinathane C, Zhang Z, Guo Y, Sun D, Cen H. Spatiotemporal Heterogeneity of Chlorophyll Content and Fluorescence Response Within Rice ( Oryza sativa L.) Canopies Under Different Nitrogen Treatments. FRONTIERS IN PLANT SCIENCE 2021; 12:645977. [PMID: 33841474 PMCID: PMC8028447 DOI: 10.3389/fpls.2021.645977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/05/2021] [Indexed: 05/08/2023]
Abstract
Accurate acquisition of plant phenotypic information has raised long-standing concerns in support of crop breeding programs. Different methods have been developed for high throughput plant phenotyping, while they mainly focused on the canopy level without considering the spatiotemporal heterogeneity at different canopy layers and growth stages. This study aims to phenotype spatiotemporal heterogeneity of chlorophyll (Chl) content and fluorescence response within rice leaves and canopies. Multipoint Chl content and high time-resolved Chl a fluorescence (ChlF) transient (OJIP transient) of rice plants were measured at different nitrogen levels and growth stages. Results showed that the Chl content within the upper leaves exhibited an increasing trend from the basal to the top portions but a decreasing pattern within the lower leaves at the most growth stages. Leaf Chl content within the rice canopy was higher in the lower leaves in the vegetative phase, while from the initial heading stage the pattern gradually reversed with the highest Chl content appearing in the upper leaves. Nitrogen supply mainly affects the occurrence time of the reverse vertical pattern. This could be the result of different nutritional demands of leaves transforming from sinks to sources, and it was further confirmed by the fall of the JI phase of OJIP transient in the vegetative phase and the rise in the reproductive phase. We further deduced that the vertical distribution of Chl content could have a defined pattern at a specific growth stage. Furthermore, the reduction of end acceptors at photosystem I (PSI) electron acceptor side per cross section (RE0/CS) was found to be a potential sensitive predictor for identifying the vertical heterogeneity of leaf Chl content. These findings provide prior knowledge on the vertical profiles of crop physiological traits, which explore the opportunity to develop more efficient plant phenotyping tools for crop breeding.
Collapse
Affiliation(s)
- Jiafei Zhang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Liang Wan
- College of Biosystems Engineering and Food Science, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - C. Igathinathane
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, United States
| | - Zhao Zhang
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing, China
- Key Laboratory of Agriculture Information Acquisition Technology, Ministry of Agriculture of China, China Agricultural University, Beijing, China
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, China
| | - Dawei Sun
- College of Biosystems Engineering and Food Science, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Haiyan Cen
- College of Biosystems Engineering and Food Science, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
17
|
Shoesmith JR, Solomon CU, Yang X, Wilkinson LG, Sheldrick S, van Eijden E, Couwenberg S, Pugh LM, Eskan M, Stephens J, Barakate A, Drea S, Houston K, Tucker MR, McKim SM. APETALA2 functions as a temporal factor together with BLADE-ON-PETIOLE2 and MADS29 to control flower and grain development in barley. Development 2021; 148:dev.194894. [DOI: 10.1242/dev.194894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Cereal grain develops from fertilised florets. Alterations in floret and grain development greatly influence grain yield and quality. Despite this, little is known about the underlying genetic control of these processes, especially in key temperate cereals such as barley and wheat. Using a combination of near-isogenic mutant comparisons, gene editing and genetic analyses, we reveal that HvAPETALA2 (HvAP2) controls floret organ identity, floret boundaries, and maternal tissue differentiation and elimination during grain development. These new roles of HvAP2 correlate with changes in grain size and HvAP2-dependent expression of specific HvMADS-box genes, including the B-sister gene, HvMADS29. Consistent with this, gene editing demonstrates that HvMADS29 shares roles with HvAP2 in maternal tissue differentiation. We also discovered that a gain-of-function HvAP2 allele masks changes in floret organ identity and grain size due to loss of barley LAXATUM.A/BLADE-ON-PETIOLE2 (HvBOP2) gene function. Taken together, we reveal novel pleiotropic roles and regulatory interactions for an AP2-like gene controlling floret and grain development in a temperate cereal.
Collapse
Affiliation(s)
- Jennifer R. Shoesmith
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Charles Ugochukwu Solomon
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
- Department of Plant Science and Biotechnology, Abia State University, PMB 2000, Uturu, Nigeria
| | - Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Laura G. Wilkinson
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Scott Sheldrick
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Ewan van Eijden
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Sanne Couwenberg
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Laura M. Pugh
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Mhmoud Eskan
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Jennifer Stephens
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Abdellah Barakate
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Sinéad Drea
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Matthew R. Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Sarah M. McKim
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| |
Collapse
|
18
|
Gahir S, Bharath P, Raghavendra AS. Stomatal Closure Sets in Motion Long-Term Strategies of Plant Defense Against Microbial Pathogens. FRONTIERS IN PLANT SCIENCE 2021; 12:761952. [PMID: 34646293 PMCID: PMC8502850 DOI: 10.3389/fpls.2021.761952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 05/08/2023]
|
19
|
Salter WT, Li S, Dracatos PM, Barbour MM. Identification of quantitative trait loci for dynamic and steady-state photosynthetic traits in a barley mapping population. AOB PLANTS 2020; 12:plaa063. [PMID: 33408849 PMCID: PMC7759950 DOI: 10.1093/aobpla/plaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/18/2020] [Indexed: 05/29/2023]
Abstract
Enhancing the photosynthetic induction response to fluctuating light has been suggested as a key target for improvement in crop breeding programmes, with the potential to substantially increase whole-canopy carbon assimilation and contribute to crop yield potential. Rubisco activation may be the main physiological process that will allow us to achieve such a goal. In this study, we assessed the phenotype of Rubisco activation rate in a doubled haploid (DH) barley mapping population [131 lines from a Yerong/Franklin (Y/F) cross] after a switch from moderate to saturating light. Rates of Rubisco activation were found to be highly variable across the mapping population, with a median activation rate of 0.1 min-1 in the slowest genotype and 0.74 min-1 in the fastest genotype. A unique quantitative trait locus (QTL) for Rubisco activation rate was identified on chromosome 7H. This is the first report on the identification of a QTL for Rubisco activation rate in planta and the discovery opens the door to marker-assisted breeding to improve whole-canopy photosynthesis of barley. This also suggests that genetic factors other than the previously characterized Rubisco activase (RCA) isoforms on chromosome 4H control Rubisco activity. Further strength is given to this finding as this QTL co-localized with QTLs identified for steady-state photosynthesis and stomatal conductance. Several other distinct QTLs were identified for these steady-state traits, with a common overlapping QTL on chromosome 2H, and distinct QTLs for photosynthesis and stomatal conductance identified on chromosomes 4H and 5H, respectively. Future work should aim to validate these QTLs under field conditions so that they can be used to aid plant breeding efforts.
Collapse
Affiliation(s)
- William T Salter
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
| | - Si Li
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
| | - Peter M Dracatos
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, Australia
| | - Margaret M Barbour
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
- School of Science, University of Waikato, Hillcrest, Hamilton, New Zealand
| |
Collapse
|
20
|
Griffiths CA, Reynolds MP, Paul MJ. Combining yield potential and drought resilience in a spring wheat diversity panel. Food Energy Secur 2020; 9:e241. [PMID: 33391733 PMCID: PMC7771037 DOI: 10.1002/fes3.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022] Open
Abstract
Pressures of population growth and climate change require the development of resilient higher yielding crops, particularly to drought. A spring wheat diversity panel was developed to combine high-yield potential with resilience. To assess performance under drought, which in many environments is intermittent and dependent on plant development, 150 lines were grown with drought imposed for 10 days either at jointing or at anthesis stages in Obregon, Mexico. Both drought treatments strongly reduced grain numbers compared with the fully irrigated check. Best performers under drought at jointing had more grain than poor performers, while best performers under drought at anthesis had larger grain than poor performers. Most high-yielding lines were high yielding in one drought environment only. However, some of the best-performing lines displayed yield potential and resilience across two environments (28 lines), particularly for yield under well-watered and drought at jointing, where yield was most related to grain numbers. Strikingly, only three lines were high yielding across all three environments, and interestingly, these lines had high grain numbers. Among parameters measured in leaves and grain, leaf relative water content did not correlate with yield, and proline was negatively correlated with yield; there were small but significant relationships between leaf sugars and yield. This study provides a valuable resource for further crosses and for elucidating genes and mechanisms that may contribute to grain number and grain filling conservation to combine yield potential and drought resilience.
Collapse
|
21
|
Paul MJ, Watson A, Griffiths CA. Trehalose 6-phosphate signalling and impact on crop yield. Biochem Soc Trans 2020; 48:2127-2137. [PMID: 33005918 PMCID: PMC7609034 DOI: 10.1042/bst20200286] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023]
Abstract
The domestication and breeding of crops has been a major achievement for mankind enabling the development of stable societies and civilisation. Crops have become more productive per unit area of cultivated land over the course of domestication supporting a current global population of 7.8 billion. Food security crops such as wheat and maize have seen large changes compared with early progenitors. Amongst processes that have been altered in these crops, is the allocation of carbon resources to support larger grain yield (grain number and size). In wheat, reduction in stem height has enabled diversion of resources from stems to ears. This has freed up carbon to support greater grain yield. Green revolution genes responsible for reductions in stem height are known, but a unifying mechanism for the active regulation of carbon resource allocation towards and within sinks has however been lacking. The trehalose 6-phosphate (T6P) signalling system has emerged as a mechanism of resource allocation and has been implicated in several crop traits including assimilate partitioning and improvement of yield in different environments. Understanding the mode of action of T6P through the SnRK1 protein kinase regulatory system is providing a basis for a unifying mechanism controlling whole-plant resource allocation and source-sink interactions in crops. Latest results show it is likely that the T6P/SnRK1 pathway can be harnessed for further improvements such as grain number and grain filling traits and abiotic stress resilience through targeted gene editing, breeding and chemical approaches.
Collapse
Affiliation(s)
- Matthew J. Paul
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K
| | - Amy Watson
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K
| | - Cara A. Griffiths
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K
| |
Collapse
|
22
|
Dingkuhn M, Luquet D, Fabre D, Muller B, Yin X, Paul MJ. The case for improving crop carbon sink strength or plasticity for a CO 2-rich future. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:259-272. [PMID: 32682621 DOI: 10.1016/j.pbi.2020.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric CO2 concentration [CO2] has increased from 260 to 280μmolmol-1 (level during crop domestication up to the industrial revolution) to currently 400 and will reach 550μmolmol-1 by 2050. C3 crops are expected to benefit from elevated [CO2] (e-CO2) thanks to photosynthesis responsiveness to [CO2] but this may require greater sink capacity. We review recent literature on crop e-CO2 responses, related source-sink interactions, how abiotic stresses potentially interact, and prospects to improve e-CO2 response via breeding or genetic engineering. Several lines of evidence suggest that e-CO2 responsiveness is related either to sink intrinsic capacity or adaptive plasticity, for example, involving enhanced branching. Wild relatives and old cultivars mostly showed lower photosynthetic rates, less downward acclimation of photosynthesis to e-CO2 and responded strongly to e-CO2 due to greater phenotypic plasticity. While reverting to such archaic traits would be an inappropriate strategy for breeding, we argue that substantial enhancement of vegetative sink vigor, inflorescence size and/or number and root sinks will be necessary to fully benefit from e-CO2. Potential ideotype features based on enhanced sinks are discussed. The generic 'feast-famine' sugar signaling pathway may be suited to engineer sink strength tissue-specifically and stage-specifically and help validate ideotype concepts. Finally, we argue that models better accounting for acclimation to e-CO2 are needed to predict which trait combinations should be targeted by breeders for a CO2-rich world.
Collapse
Affiliation(s)
| | | | - Denis Fabre
- CIRAD, UMR 108 AGAP, F-34398 Montpellier, France
| | - Bertrand Muller
- INRAE, UMR 759 LEPSE, Institut de Biologie Intégrative des Plantes, F-34060 Montpellier, France
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Dept. Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Matthew J Paul
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| |
Collapse
|
23
|
Evans JR, Lawson T. From green to gold: agricultural revolution for food security. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2211-2215. [PMID: 32251509 DOI: 10.1093/jxb/eraa110] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- John R Evans
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|