1
|
Glavinić A, Šupić J, Alić A, Spahija N, Maksimović A, Šunje-Rizvan A. First case of feline cryptococcosis in Bosnia and Herzegovina. JFMS Open Rep 2024; 10:20551169241265248. [PMID: 39131486 PMCID: PMC11311172 DOI: 10.1177/20551169241265248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Case summary A 2-year-old domestic longhair crossbred female cat was referred for a second opinion on a non-healing surgical wound after left eye enucleation. In addition to the left orbital lesion, ulcerative granular masses protruding from the left nostril and on the base of the left ear were noted. A diagnosis of cryptococcosis was established using histopathological examination and a latex cryptococcal antigen agglutination test. The cat was successfully treated with itraconazole. Relevance and novel information Cryptococcosis, commonly reported in Australia, western Canada and the western USA, is rarely reported in companion animals in Europe. This marks the first report of cryptococcosis in cats in Bosnia and Herzegovina, emphasising the need to raise awareness within the veterinary community, both local and regional, about this disease.
Collapse
Affiliation(s)
- Aida Glavinić
- Department of Clinical Sciences in Veterinary Medicine, University of Sarajevo, Veterinary Faculty, Sarajevo, Bosnia and Herzegovina
| | - Jovana Šupić
- Department of Clinical Sciences in Veterinary Medicine, University of Sarajevo, Veterinary Faculty, Sarajevo, Bosnia and Herzegovina
| | - Amer Alić
- Department of Clinical Sciences in Veterinary Medicine, University of Sarajevo, Veterinary Faculty, Sarajevo, Bosnia and Herzegovina
| | - Nermina Spahija
- Department of Clinical Sciences in Veterinary Medicine, University of Sarajevo, Veterinary Faculty, Sarajevo, Bosnia and Herzegovina
| | - Alan Maksimović
- Department of Clinical Sciences in Veterinary Medicine, University of Sarajevo, Veterinary Faculty, Sarajevo, Bosnia and Herzegovina
| | - Amila Šunje-Rizvan
- Department of Clinical Sciences in Veterinary Medicine, University of Sarajevo, Veterinary Faculty, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
2
|
Bertout S, Gouveia T, Krasteva D, Pierru J, Pottier C, Bellet V, Arianiello E, Salipante F, Roger F, Drakulovski P. Search for Cryptococcus neoformans/gattii Complexes and Related Genera (Filobasidium, Holtermanniella, Naganishia, Papiliotrema, Solicoccozyma, Vishniacozyma) spp. Biotope: Two Years Surveillance of Wild Avian Fauna in Southern France. J Fungi (Basel) 2022; 8:jof8030227. [PMID: 35330229 PMCID: PMC8948691 DOI: 10.3390/jof8030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Fungi belonging to the Cryptococcus genus and related genera (Filobasidium, Holtermanniella, Naganishia, Papiliotrema, Solicoccozyma, Vishniacozyma) are encapsulated yeasts found in either the environment or animal sources. However, the precise biotopes of most species remain poorly defined. To assess whether wild birds from southern France can carry or spread the most pathogenic species (i.e., species belonging to the C. neoformans and C. gattii complexes), as well as lesser-studied species (non-neoformans/gattii Cryptococcus and former Cryptococcus spp.), 669 birds belonging to 89 species received for care over a two-year period at the Centre de Protection de la Faune Sauvage of Villeveyrac (Bird Protection League nongovernmental organization (NGO) care center) were sampled. Samples were cultured, and Cryptococcus and former Cryptococcus yeasts were identified by PCR sequencing. The purpose was to evaluate whether there was any health risk to local populations or care personnel in aviaries and gather new data on the ecological niches of lesser-known species. One hundred and seven birds (16%) were found to be positive for at least one Cryptococcus or former Cryptococcus species. No yeasts belonging to the highly pathogenic C. neoformans or C. gattii complexes were isolated. However, diversity was notable, with 20 different Cryptococcus or former Cryptococcus species identified. Furthermore, most bird–yeast species associations found in this study have never been described before.
Collapse
Affiliation(s)
- Sébastien Bertout
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
| | - Tiphany Gouveia
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
| | - Donika Krasteva
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
| | - Julie Pierru
- Centre Régional de Sauvegarde de la Faune Sauvage, LPO Hérault, 15 rue de Faucon Crécelerette, 34560 Villeveyrac, France; (J.P.); (E.A.)
| | - Cyrille Pottier
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
| | - Virginie Bellet
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
| | - Emilie Arianiello
- Centre Régional de Sauvegarde de la Faune Sauvage, LPO Hérault, 15 rue de Faucon Crécelerette, 34560 Villeveyrac, France; (J.P.); (E.A.)
| | - Florian Salipante
- Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital Center, University of Montpellier, 34000 Nîmes, France;
| | - Frédéric Roger
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
| | - Pascal Drakulovski
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
- Correspondence: ; Tel.: +33-4-11-75-94-24
| |
Collapse
|
3
|
Coelho C, Farrer RA. Pathogen and host genetics underpinning cryptococcal disease. ADVANCES IN GENETICS 2020; 105:1-66. [PMID: 32560785 DOI: 10.1016/bs.adgen.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcosis is a severe fungal disease causing 220,000 cases of cryptococcal meningitis yearly. The etiological agents of cryptococcosis are taxonomically grouped into at least two species complexes belonging to the genus Cryptococcus. All of these yeasts are environmentally ubiquitous fungi (often found in soil, leaves and decaying wood, tree hollows, and associated with bird feces especially pigeon guano). Infection in a range of animals including humans begins following inhalation of spores or aerosolized yeasts. Recent advances provide fundamental insights into the factors from both the pathogen and its hosts which influence pathogenesis and disease. The complex interactions leading to disease in mammalian hosts have also updated from the availability of better genomic tools and datasets. In this review, we discuss recent genetic research on Cryptococcus, covering the epidemiology, ecology, and evolution of Cryptococcus pathogenic species. We also discuss the insights into the host immune response obtained from the latest genetic modified host models as well as insights from monogenic disorders in humans. Finally we highlight outstanding questions that can be answered in the near future using bioinformatics and genomic tools.
Collapse
Affiliation(s)
- Carolina Coelho
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
4
|
Coelho C, Camacho E, Salas A, Alanio A, Casadevall A. Intranasal Inoculation of Cryptococcus neoformans in Mice Produces Nasal Infection with Rapid Brain Dissemination. mSphere 2019; 4:e00483-19. [PMID: 31391283 PMCID: PMC6686232 DOI: 10.1128/msphere.00483-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Cryptococcus neoformans is an important fungal pathogen, causing life-threatening pneumonia and meningoencephalitis. Brain dissemination of C. neoformans is thought to be a consequence of an active infection in the lung which then extravasates to other sites. Brain invasion results from dissemination via either transport by free yeast cells in the bloodstream or Trojan horse transport within mononuclear phagocytes. We assessed brain dissemination in three mouse models of infection: intravenous, intratracheal, and intranasal models. All three modes of infection resulted in dissemination of C. neoformans to the brain in less than 3 h. Further, C. neoformans was detected in the entirety of the upper respiratory tract and the ear canals of mice. In recent years, intranasal infection has become a popular mechanism to induce pulmonary infection because it avoids surgery, but our findings show that instillation of C. neoformans produces cryptococcal nasal infection. These findings imply that immunological studies using intranasal infection should assume that the initial sites of infection of infection are brain, lung, and upper respiratory tract, including the nasal airways.IMPORTANCECryptococcus neoformans causes an estimated 181, 000 deaths each year, mostly associated with untreated HIV/AIDS. C. neoformans has a ubiquitous worldwide distribution. Humans become infected from exposure to environmental sources, after which the fungus lays dormant within the human body. Upon AIDS-induced immunosuppression or therapy-induced immunosuppression (required for organ transplant recipients or those suffering from autoimmune disorders), cryptococcal disease reactivates and causes life-threatening meningitis and pneumonia. This study showed that upon contact with the host, C. neoformans can quickly (a few hours) reach the host brain and also colonizes the nose of infected animals. Therefore, this work paves the way to better knowledge of how C. neoformans travels through the host body. Understanding how C. neoformans infects, disseminates, and survives within the host is critically required so that we can prevent infections and the disease caused by this deadly fungus.
Collapse
Affiliation(s)
- Carolina Coelho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Medical Research Council Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Emma Camacho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Antonio Salas
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Alexandre Alanio
- Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Nourizadeh N, Adabizadeh A, Zarrinfar H, Majidi M, Jafarian AH, Najafzadeh MJ. Fungal biofilms in sinonasal polyposis: The role of fungal agents is notable? JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2019. [DOI: 10.1016/j.ajoms.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Abstract
Cryptococcus gattii molecular type VGII is one of the etiologic agents of cryptococcosis, a systemic mycosis affecting a wide range of host species. Koalas (Phascolarctos cinereus) exhibit a comparatively high prevalence of cryptococcosis (clinical and subclinical) and nasal colonization, particularly in captivity. In Australia, disease associated with C. gattii VGII is typically confined to Western Australia and the Northern Territory (with sporadic cases reported in eastern Australia), occupying an enigmatic ecologic niche. A cluster of cryptococcosis in captive koalas in eastern Australia (five confirmed cases, a further two suspected), caused predominantly by C. gattii VGII, was investigated by surveying for subclinical disease, culturing koala nasal swabs and environmental samples, and genotyping cryptococcal isolates. URA5 restriction fragment length polymorphism analysis, multilocus sequence typing (MLST), and whole-genome sequencing (WGS) provided supportive evidence that the transfer of koalas from Western Australia and subsequently between several facilities in Queensland spread VGII into uncontaminated environments and environments in which C. gattii VGI was endemic. MLST identified VGII isolates as predominantly sequence type 7, while WGS further confirmed a limited genomic diversity and revealed a basal relationship with isolates from Western Australia. We hypothesize that this represents a founder effect following the introduction of a koala from Western Australia. Our findings suggest a possible competitive advantage for C. gattii VGII over VGI in the context of this captive koala environment. The ability of koalas to seed C. gattii VGII into new environments has implications for the management of captive populations and movements of koalas between zoos.IMPORTANCE Cryptococcus gattii molecular type VGII is one of the causes of cryptococcosis, a severe fungal disease that is acquired from the environment and affects many host species (including humans and koalas). In Australia, disease caused by C. gattii VGII is largely confined to western and central northern parts of the country, with sporadic cases reported in eastern Australia. We investigated an unusual case cluster of cryptococcosis, caused predominantly by C. gattii VGII, in a group of captive koalas in eastern Australia. This research identified that the movements of koalas between wildlife parks, including an initial transfer of a koala from Western Australia, introduced and subsequently spread C. gattii VGII in this captive environment. The spread of this pathogen by koalas could also impact other species, and these findings are significant in the implications they have for the management of koala transfers and captive environments.
Collapse
|
7
|
Cafarchia C, Iatta R, Danesi P, Camarda A, Capelli G, Otranto D. Yeasts isolated from cloacal swabs, feces, and eggs of laying hens. Med Mycol 2019; 57:340-345. [PMID: 29762763 DOI: 10.1093/mmy/myy026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/19/2018] [Accepted: 04/05/2018] [Indexed: 11/14/2022] Open
Abstract
Domestic and wild birds may act as carriers of human pathogenic fungi, although the role of laying hens in spreading yeasts has never been investigated. We evaluated the presence of yeasts in the cloaca (Group I, n = 364), feces (Group II, n = 96), and eggs (Group III, n = 270) of laying hens. The occurrence and the population size of yeasts on the eggshell, as well as in the yolks and albumens, were assessed at the oviposition time and during storage of eggs at 22 ± 1°C and 4 ± 1°C. A statistically higher prevalence and population size of yeasts were recorded in Group I (49.7% and 1.3 × 104 cfu/ml) and II (63.8% and 2.8 × 105 cfu/ml) than in Group III (20.7% and 19.9 cfu/ml). Candida catenulata and Candida albicans were the most frequent species isolated. Candida famata and Trichosporon asteroides were isolated only from the eggshells, whereas Candida catenulata was also isolated from yolks and albumens. During storage, the yeast population size on the shell decreased (from 37.5 to 8.5 cfu/ml) in eggs at 22 ± 1°C and increased (from 4.6 to 35.3 cfu/ml) at 4 ± 1°C. The laying hens harbor potentially pathogenic yeasts in their gastrointestinal tract and are prone to disseminating them in the environment through the feces and eggs. Eggshell contamination might occur during the passage through the cloaca or following deposition whereas yolk and albumen contamination might depend on yeast density on eggshell.
Collapse
Affiliation(s)
- Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro," Bari, Italy
| | - Roberta Iatta
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro," Bari, Italy
| | - Patrizia Danesi
- Istituto zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Antonio Camarda
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro," Bari, Italy
| | - Gioia Capelli
- Istituto zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro," Bari, Italy
| |
Collapse
|
8
|
Simi WB, Leite-Jr DP, Paula CR, Hoffmann-Santos HD, Takahara DT, Hahn RC. Yeasts and filamentous fungi in psittacidae and birds of prey droppings in midwest region of Brazil: a potential hazard to human health. BRAZ J BIOL 2018; 79:414-422. [PMID: 30304251 DOI: 10.1590/1519-6984.181192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/27/2017] [Indexed: 11/22/2022] Open
Abstract
Birds of prey and from Psittacidae family are host to fungal microbiota and play an important role in the epidemiology of zoonoses. Few studies in the literature have characterized mycelial and yeast fungi in the droppings of these birds and correlated the isolates with the zoonotic potential of the microorganisms. Droppings from 149 birds were evaluated and divided into two groups: captive: Rhea americana araneipes, Primolius maracana, Ara ararauna, Ara chloropterus, Anodorhynchus hyacinthinus, Amazona aestiva, Ara macao macao, Ramphastos toco, Sarcoramphus papa, Busarellus nigricollis, Bubo virginianus nacurutu, Buteogallus coronatus, Buteogallus urubitinga urubitinga, Spizaetus melanoleucus, Spizaetus ornatus ornatus, Buteo albonotatus, Geranoaetus albicaudatus albicaudatus, Rupornis magnirostris magnirostris and Harpia harpyja, and quarantined birds: Amazona aestiva and Eupsitulla aurea. The fungal isolates were identified according to macroscopic (gross colony appearance), micromorphological and biochemical characteristics. Among birds displayed in enclosures, Aspergillus niger (41.1%) and Candida kefyr (63.8%) were the fungi most frequently isolated in Harpia harpyja and Ramphastos toco, respectively. For quarantined birds, the following percentages were observed in Eupsittula aurea , (76.6%) C. krusei, (84.4%) C. kefyr and (15.2%) C. famata, while in Amazona aestiva, (76.2%) C. krusei was observed. These findings indicate potentially pathogenic species in the bird droppings assessed, which constitute a risk of exposure for keepers and individuals who visit the zoo. Birds of the Cerrado and Pantanal of Mato Grosso (Central Western region of Brazil) could act in the epidemiological chain of important zoonoses.
Collapse
Affiliation(s)
- W B Simi
- Faculdade de Medicina, Pós-graduação em Ciências da Saúde, Universidade Federal de Mato Grosso - UFMT, Av. Fernando Corrêa da Costa, nº 2367, CEP 78060-900, Cuiabá, MT, Brasil.,Centro Universitário de Várzea Grande - UNIVAG, Av. Dom Orlando Chaves, nº 2655, CEP 78118-900, Várzea Grande, MT, Brasil
| | - D P Leite-Jr
- Faculdade de Medicina, Pós-graduação em Ciências da Saúde, Universidade Federal de Mato Grosso - UFMT, Av. Fernando Corrêa da Costa, nº 2367, CEP 78060-900, Cuiabá, MT, Brasil.,Centro Universitário de Várzea Grande - UNIVAG, Av. Dom Orlando Chaves, nº 2655, CEP 78118-900, Várzea Grande, MT, Brasil.,Centro Especializado em Micologia Médica, Universidade Federal de Mato Grosso - UFMT, Av. Fernanda Corrêa da Costa, nº 2367, CEP 78060-900, Cuiabá, MT, Brasil
| | - C R Paula
- Laboratório de Leveduras Patogênicas, Instituto de Ciências Biomédicas II, Universidade de São Paulo - USP, Av. Prof. Lineu Prestes, nº 1374, CEP 05508-900, São Paulo, SP, Brasil
| | - H D Hoffmann-Santos
- Faculdade de Medicina, Pós-graduação em Ciências da Saúde, Universidade Federal de Mato Grosso - UFMT, Av. Fernando Corrêa da Costa, nº 2367, CEP 78060-900, Cuiabá, MT, Brasil.,Centro Universitário de Várzea Grande - UNIVAG, Av. Dom Orlando Chaves, nº 2655, CEP 78118-900, Várzea Grande, MT, Brasil
| | - D T Takahara
- Centro Especializado em Micologia Médica, Universidade Federal de Mato Grosso - UFMT, Av. Fernanda Corrêa da Costa, nº 2367, CEP 78060-900, Cuiabá, MT, Brasil.,MT Laboratório, Secretaria de Estado de Saúde de Mato Grosso, Rua Thogo da Silva Pereira, nº 63, CEP 18020-500, Cuiabá, MT, Brasil
| | - R C Hahn
- Faculdade de Medicina, Pós-graduação em Ciências da Saúde, Universidade Federal de Mato Grosso - UFMT, Av. Fernando Corrêa da Costa, nº 2367, CEP 78060-900, Cuiabá, MT, Brasil.,Centro Especializado em Micologia Médica, Universidade Federal de Mato Grosso - UFMT, Av. Fernanda Corrêa da Costa, nº 2367, CEP 78060-900, Cuiabá, MT, Brasil
| |
Collapse
|
9
|
Evans SJM, Jones K, Moore AR. Atypical Morphology and Disparate Speciation in a Case of Feline Cryptococcosis. Mycopathologia 2017; 183:479-484. [PMID: 28756537 DOI: 10.1007/s11046-017-0183-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023]
Abstract
A 6-year-old, spayed female cat was presented with acute respiratory signs and pleural effusion. Computed tomography scan revealed a large, lobulated mass effect in the ventral right hemithorax with concurrent sternal lymphadenopathy. A cytologic sample of the mass contained pyogranulomatous inflammation, necrotic material, and abundant yeast structures that lacked a distinct capsule and demonstrated rare pseudohyphal forms. Fungal culture and biochemical testing identified the yeast as Cryptococcus albidus, with susceptibility to all antifungal agents tested. However, subsequent 18S PCR identified 99% homology with a strain of Cryptococcus neoformans and only 92% homology with C. albidus. The patient responded well to fluconazole therapy unlike the only known previous report of C. albidus in a cat. The unusual cytologic morphology in this case underscores the need for ancillary testing apart from microscopy for fungal identification. Though C. albidus should be considered as a potential feline pathogen, confirmation with PCR is recommended when such rare non-neoformans species are encountered.
Collapse
Affiliation(s)
- S J M Evans
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, 1644 Campus Delivery, Fort Collins, CO, 80523-1644, USA.
| | - K Jones
- Virginia Veterinary Specialists, Charlottesville, VA, USA
| | - A R Moore
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, 1644 Campus Delivery, Fort Collins, CO, 80523-1644, USA
| |
Collapse
|
10
|
Gerstein AC, Nielsen K. It's not all about us: evolution and maintenance of Cryptococcus virulence requires selection outside the human host. Yeast 2017; 34:143-154. [PMID: 27862271 DOI: 10.1002/yea.3222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
Cryptococcus is predominantly an AIDS-related pathogen that causes significant morbidity and mortality in immunocompromised patients. Research studies have historically focused on understanding how the organism causes human disease through the use of in vivo and in vitro model systems to identify virulence factors. Cryptococcus is not an obligate pathogen, however, as human-human transmission is either absent or rare. Selection in the environment must thus be invoked to shape the evolution of this taxa, and directly influences genotypic and trait diversity. Importantly, the evolution and maintenance of pathogenicity must also stem directly from environmental selection. To that end, here we examine abiotic and biotic stresses in the environment, and discuss how they could shape the factors that are commonly identified as important virulence traits. We identify a number of important unanswered questions about Cryptococcus diversity and evolution that are critical for understanding this deadly pathogen, and discuss how implementation of modern sampling and genomic tools could be utilized to answer these questions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Iatta R, Immediato D, Puttilli MR, Danesi P, Passantino G, Parisi A, Mallia E, Otranto D, Cafarchia C. Cryptococcus neoformans in the respiratory tract of squirrels, Callosciurus finlaysonii (Rodentia, Sciuridae). Med Mycol 2015; 53:666-73. [PMID: 26229151 DOI: 10.1093/mmy/myv045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/14/2015] [Indexed: 11/13/2022] Open
Abstract
Cryptococcosis is a fungal disease acquired from the environment, for which animals may serve as sentinels for human exposure. The occurrence of Cryptococcus spp. in the respiratory tract of 125 squirrels, Callosciurus finlaysonii, trapped in Southern Italy, was assessed. Upon examination of nasal swabs and lung tissue from each individual, a total of 13 (10.4%) animals scored positive for yeasts, 7 for Cryptococcus neoformans (C.n.) (5.6%) and 6 for other yeasts (4.8%). C.n. was isolated from the nostrils and lungs, with a high population size in nostrils. Two C.n. molecular types, VNI and VNIV, were identified, with C.n. var. grubii VNI the most prevalent. Phylogenetic analyses of ITS+ and URA5 sequences revealed that C.n. isolates were genetically similar to isolates from a range of geographical areas and hosts. Results suggest that C.n. can colonize or infect the respiratory tract of C. finlaysonii. The high occurrence and level of colonization of nasal cavities might be an indicator of environmental exposure to high levels of airborne microorganism. The close phylogenetic relationship of C.n. strains from squirrels with those from human and other animal hosts suggests a potential role for these animals as "sentinels" for human exposure.
Collapse
Affiliation(s)
- Roberta Iatta
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Italy
| | - Davide Immediato
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Italy
| | | | - Patrizia Danesi
- Istituto zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Antonio Parisi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Bari, Italy
| | - Egidio Mallia
- Parco Regionale Gallipoli Cognato e Piccole Dolomiti Lucane, Basilicata, Matera, Italy
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Italy
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Italy
| |
Collapse
|
12
|
Phan TG, Mori D, Deng X, Rajindrajith S, Ranawaka U, Fan Ng TF, Bucardo-Rivera F, Orlandi P, Ahmed K, Delwart E. Small circular single stranded DNA viral genomes in unexplained cases of human encephalitis, diarrhea, and in untreated sewage. Virology 2015; 482:98-104. [PMID: 25839169 DOI: 10.1016/j.virol.2015.03.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/16/2015] [Accepted: 03/03/2015] [Indexed: 01/02/2023]
Abstract
Viruses with small circular ssDNA genomes encoding a replication initiator protein can infect a wide range of eukaryotic organisms ranging from mammals to fungi. The genomes of two such viruses, a cyclovirus (CyCV-SL) and gemycircularvirus (GemyCV-SL) were detected by deep sequencing of the cerebrospinal fluids of Sri Lankan patients with unexplained encephalitis. One and three out of 201 CSF samples (1.5%) from unexplained encephalitis patients tested by PCR were CyCV-SL and GemyCV-SL DNA positive respectively. Nucleotide similarity searches of pre-existing metagenomics datasets revealed closely related genomes in feces from unexplained cases of diarrhea from Nicaragua and Brazil and in untreated sewage from Nepal. Whether the tropism of the cyclovirus and gemycircularvirus reported here include humans or other cellular sources in or on the human body remains to be determined.
Collapse
Affiliation(s)
- Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | - Daisuke Mori
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Shaman Rajindrajith
- Department of Pediatrics, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Udaya Ranawaka
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Terry Fei Fan Ng
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | | | | | - Kamruddin Ahmed
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; Research Promotion Institute, Oita University, Yufu 879-5593, Oita, Japan; Department of Pathobiology and Medical Diagnostics, Faculty of Medicine, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA.
| |
Collapse
|
13
|
Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 2015; 78:16-48. [PMID: 25721988 DOI: 10.1016/j.fgb.2015.02.009] [Citation(s) in RCA: 473] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
Abstract
Phylogenetic analysis of 11 genetic loci and results from many genotyping studies revealed significant genetic diversity with the pathogenic Cryptococcus gattii/Cryptococcus neoformans species complex. Genealogical concordance, coalescence-based, and species tree approaches supported the presence of distinct and concordant lineages within the complex. Consequently, we propose to recognize the current C. neoformans var. grubii and C. neoformans var. neoformans as separate species, and five species within C. gattii. The type strain of C. neoformans CBS132 represents a serotype AD hybrid and is replaced. The newly delimited species differ in aspects of pathogenicity, prevalence for patient groups, as well as biochemical and physiological aspects, such as susceptibility to antifungals. MALDI-TOF mass spectrometry readily distinguishes the newly recognized species.
Collapse
Affiliation(s)
- Ferry Hagen
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Kantarawee Khayhan
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Bart Theelen
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands
| | - Anna Kolecka
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands
| | - Itzhack Polacheck
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Edward Sionov
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Rama Falk
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir-David, Israel
| | - Sittiporn Parnmen
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Danesi P, Firacative C, Cogliati M, Otranto D, Capelli G, Meyer W. Multilocus sequence typing (MLST) and M13 PCR fingerprinting revealed heterogeneity amongstCryptococcusspecies obtained from Italian veterinary isolates. FEMS Yeast Res 2014; 14:897-909. [DOI: 10.1111/1567-1364.12178] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/16/2014] [Accepted: 06/26/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Patrizia Danesi
- Istituto Zooprofilattico Sperimentale delle Venezie; Legnaro Italy
- Department of Veterinary Medicine; University of Bari; Bari Italy
| | - Carolina Firacative
- Molecular Mycology Research Laboratory; Centre for Infectious Diseases and Microbiology; Sydney Medical School - Westmead Hospital; Marie Bashir Institute for Infectious Diseases and Biosecurity; The University of Sydney; Westmead Millennium Institute; Sydney NSW Australia
- Grupo de Microbiología; Instituto Nacional de Salud; Bogotá Colombia
| | - Massimo Cogliati
- Laboratorio di Micologia Medica; Istituto di Igiene e Medicina Preventiva; University of Milan; Milan Italy
| | - Domenico Otranto
- Department of Veterinary Medicine; University of Bari; Bari Italy
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie; Legnaro Italy
| | - Wieland Meyer
- Molecular Mycology Research Laboratory; Centre for Infectious Diseases and Microbiology; Sydney Medical School - Westmead Hospital; Marie Bashir Institute for Infectious Diseases and Biosecurity; The University of Sydney; Westmead Millennium Institute; Sydney NSW Australia
| |
Collapse
|