1
|
Kniesz K, Hoffman L, Martínez Arbizu P, Kihara TC. High genomic connectivity within Anatoma at hydrothermal vents along the Central and Southeast Indian Ridge. Sci Rep 2025; 15:1971. [PMID: 39809848 PMCID: PMC11732982 DOI: 10.1038/s41598-025-85507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Hydrothermal vents are ecosystems inhabited by a highly specialized fauna. To date, more than 30 gastropod species have been recorded from vent fields along the Central and Southeast Indian Ridge and all of them are assumed to be vent-endemic. During the INDEX project, 701 representatives of the genus Anatoma (Mollusca: Vetigastropoda) were sampled from six abyssal hydrothermal vent fields. Traditional morphology and COI barcoding of Hoffman et al. (Eur J Taxon 826:135-162, 2022) were combined with 2b-RAD sequencing to investigate the anatomid community structure and connectivity between the different vent fields. Consequently, 2b-RAD sequencing supported the primary species hypothesis (based on morphology) for 125 individuals of the recently described taxa A. discapex, A. declivis, A. laevapex and A. paucisculpta. We assigned 22 additional specimens to species with 2b-RAD sequencing and updated the community analyses that confirmed the pattern of expanding populations. Population structure and FST values indicated high connectivity along the six sampled vent fields for the three most abundant species. High levels of gene flow are suggested, pointing to high dispersal potential of the target species along the study area. However, low levels of heterozygosity revealed a small gene pool and therefore an increased vulnerability towards environmental change. Our results demonstrate that 2b-RAD sequencing, in combination with other molecular methods, can accurately characterise macrobenthic mollusc communities. Sequencing technology is an essential tool for ongoing monitoring. Furthermore, we highlight that the inferred molecular and ecological patterns provide valuable insights into hydrothermal vent ecosystems, which are crucial for the successful conservation of these ecosystems.
Collapse
Affiliation(s)
- Katharina Kniesz
- Senckenberg am Meer, Wilhelmshaven, Germany.
- Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Leibniz-Institut für Ostseeforschung Warnemünde, Rostock, Germany.
| | | | - Pedro Martínez Arbizu
- Senckenberg am Meer, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- INES Integrated Environmental Solutions UG, Wilhelmshaven, Germany
| | - Terue C Kihara
- INES Integrated Environmental Solutions UG, Wilhelmshaven, Germany
| |
Collapse
|
2
|
Ketchum RN, Smith EG, Toledo LM, Leach WB, Padillo-Anthemides N, Baxevanis AD, Reitzel AM, Ryan JF. Rapid speciation in the holopelagic ctenophore Mnemiopsis following glacial recession. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617593. [PMID: 39574589 PMCID: PMC11580945 DOI: 10.1101/2024.10.10.617593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Understanding how populations diverge is one of the oldest and most compelling questions in evolutionary biology. An in depth understanding of how this process operates in planktonic marine animals, where barriers for gene flow are seemingly absent, is critical to understanding the past, present, and future of ocean life. Mnemiopsis plays an important ecological role in its native habitat along the Atlantic coast of the Americas and is highly destructive in its non-native habitats in European waters. Although historical literature described three species of Mnemiopsis, the lack of stable morphological characters has led to the collapse of this group into a single species, Mnemiopsis leidyi. We generate high-quality reference genomes and use a whole-genome sequencing approach to reveal that there are two species of Mnemiopsis along its native range and show that historical divergence between the two species coincides with historical glacial melting. We define a hybridization zone between species and highlight that environmental sensing genes likely contribute to the invasive success of Mnemiopsis. Overall, this study provides insights into the fundamental question of how holopelagic species arise without clear barriers to gene flow and sheds light on the genomic mechanisms important for invasion success in a highly invasive species.
Collapse
Affiliation(s)
- Remi N Ketchum
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward G Smith
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Leandra M Toledo
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| | - Whitney B Leach
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| |
Collapse
|
3
|
Castel J, Pradillon F, Cueff V, Leger G, Daguin-Thiébaut C, Ruault S, Mary J, Hourdez S, Jollivet D, Broquet T. Genetic sex determination in three closely related hydrothermal vent gastropods, including one species with intersex individuals. J Evol Biol 2024; 37:779-794. [PMID: 38699972 DOI: 10.1093/jeb/voae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Molluscs have undergone many transitions between separate sexes and hermaphroditism, which is of interest in studying the evolution of sex determination and differentiation. Here, we combined multi-locus genotypes obtained from restriction site-associated DNA (RAD) sequencing with anatomical observations of the gonads of three deep-sea hydrothermal vent gastropods of the genus Alviniconcha living in the southwest Pacific. We found that all three species (Alviniconcha boucheti, Alviniconcha strummeri, and Alviniconcha kojimai) share the same male-heterogametic XY sex-determination system but that the gonads of XX A. kojimai individuals are invaded by a variable proportion of male reproductive tissue. The identification of Y-specific RAD loci (found only in A. boucheti) and the phylogenetic analysis of three sex-linked loci shared by all species suggested that X-Y recombination has evolved differently within each species. This situation of three species showing variation in gonadal development around a common sex-determination system provides new insights into the reproductive mode of poorly known deep-sea species and opens up an opportunity to study the evolution of recombination suppression on sex chromosomes and its association with mixed or transitory sexual systems.
Collapse
Affiliation(s)
- Jade Castel
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Florence Pradillon
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, Plouzané, France
| | - Valérie Cueff
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, Plouzané, France
| | - Guillaume Leger
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, Plouzané, France
| | | | - Stéphanie Ruault
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Jean Mary
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Stéphane Hourdez
- UMR 8222 LECOB CNRS-Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Didier Jollivet
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Thomas Broquet
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
4
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
5
|
Yang M, Wang H, Gao W, Gan Z, Li X. The complete mitochondrial genome of the deep-sea paskentanid snail Alviniconcha marisindica (Caenogastropoda: abyssochrysoidea) from the Carlsberg Ridge. Mitochondrial DNA B Resour 2024; 9:11-14. [PMID: 38187013 PMCID: PMC10769126 DOI: 10.1080/23802359.2023.2298090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Alviniconcha marisindica Okutani 2014 is a deep-sea gastropod inhabited in hydrothermal vents of the Indo-Pacific. It belongs to superfamily Abyssochrysoidea. In the present study, we report the complete mitochondrial genome of A. marisindica, which is 15,979 bp in length and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes. The nucleotide composition is 29.19% of A, 38.22% of T, 16.88% of G, and 15.71% of C. The phylogenetic analysis indicates that A. marisindica and A. boucheti clustered in the Abyssochrysoidea clade with high bootstrap support. The mitochondrial genome of A. marisindica provides valuable molecular data for further research on the evolution of deep-sea gastropods.
Collapse
Affiliation(s)
- Mei Yang
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | | | - Wei Gao
- National Deep Sea Center, Qingdao, China
| | - Zhinbin Gan
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xinzheng Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Shin CP, Allmon WD. How we study cryptic species and their biological implications: A case study from marine shelled gastropods. Ecol Evol 2023; 13:e10360. [PMID: 37680961 PMCID: PMC10480071 DOI: 10.1002/ece3.10360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/10/2023] [Accepted: 07/13/2023] [Indexed: 09/09/2023] Open
Abstract
Methodological and biological considerations are intertwined when studying cryptic species. A potentially large component of modern biodiversity, the frequency of cryptic species among taxonomic groups is not well documented. The term "cryptic species" is imprecisely used in scientific literature, causing ambiguity when interpreting their evolutionary and ecological significance. This study reviews how cryptic species have been defined, discussing implications for taxonomy and biology, and explores these implications with a case study based on recently published literature on extant shelled marine gastropods. Reviewed gastropods were recorded by species. Records of cryptic gastropods were presented by authors with variable levels of confidence but were difficult to disentangle from inherent biases in the study effort. These complexities notwithstanding, most gastropod species discussed were not cryptic. To the degree that this review's sample represents extinct taxa, the results suggest that a high proportion of shelled marine gastropod species are identifiable for study in the fossil record. Much additional work is needed to provide a more adequate understanding of the relative frequency of cryptic species in shelled marine gastropods, which should start with more explicit definitions and targeted case studies.
Collapse
Affiliation(s)
- Caren P. Shin
- Department of Earth and Atmospheric SciencesCornell UniversityIthacaNew YorkUSA
- Paleontological Research InstitutionIthacaNew YorkUSA
| | - Warren D. Allmon
- Department of Earth and Atmospheric SciencesCornell UniversityIthacaNew YorkUSA
- Paleontological Research InstitutionIthacaNew YorkUSA
| |
Collapse
|
7
|
Hauer MA, Breusing C, Trembath-Reichert E, Huber JA, Beinart RA. Geography, not lifestyle, explains the population structure of free-living and host-associated deep-sea hydrothermal vent snail symbionts. MICROBIOME 2023; 11:106. [PMID: 37189129 DOI: 10.1186/s40168-023-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/11/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Marine symbioses are predominantly established through horizontal acquisition of microbial symbionts from the environment. However, genetic and functional comparisons of free-living populations of symbionts to their host-associated counterparts are sparse. Here, we assembled the first genomes of the chemoautotrophic gammaproteobacterial symbionts affiliated with the deep-sea snail Alviniconcha hessleri from two separate hydrothermal vent fields of the Mariana Back-Arc Basin. We used phylogenomic and population genomic methods to assess sequence and gene content variation between free-living and host-associated symbionts. RESULTS Our phylogenomic analyses show that the free-living and host-associated symbionts of A. hessleri from both vent fields are populations of monophyletic strains from a single species. Furthermore, genetic structure and gene content analyses indicate that these symbiont populations are differentiated by vent field rather than by lifestyle. CONCLUSION Together, this work suggests that, despite the potential influence of host-mediated acquisition and release processes on horizontally transmitted symbionts, geographic isolation and/or adaptation to local habitat conditions are important determinants of symbiont population structure and intra-host composition. Video Abstract.
Collapse
Affiliation(s)
- Michelle A Hauer
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | | | - Julie A Huber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, USA
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA.
| |
Collapse
|
8
|
Bojar AV, Lécuyer C, Maher W, Bojar HP, Fourel F, Vasile Ş. Multi-element stable isotope geochemistry and arsenic speciation of hydrothermal vent fauna (Alviniconcha sp., Ifremeria nautilei and Eochionelasmus ohtai manusensis), Manus Basin, Papua New Guinea. CHEMOSPHERE 2023; 324:138258. [PMID: 36898438 DOI: 10.1016/j.chemosphere.2023.138258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Deep-sea hydrothermal vent communities, revealing patterns of niche partitioning, live in a limited area characterised by sharp physico-chemical gradients. In this study, we investigated carbon, sulfur, nitrogen stable isotopes as well as arsenic (As) speciations and concentrations for two snails (Alviniconcha sp. and Ifremeria nautilei) and a crustacean, (Eochionelasmus ohtai manusensis), occupying distinct niches in the hydrothermal vent field of the Vienna Woods, Manus Basin, Western Pacific. δ13C values of Alviniconcha sp. (foot), I. nautilei (foot and chitin) and E. o. manusensis (soft tissue) are similar, from -28 to -33‰ (V-PDB). The δ15N values of Alviniconcha sp. (foot and chitin), I. nautilei (foot and chitin) and E. o. manusensis (soft tissue) range from 8.4 to 10.6‰. The δ34S values of Alviniconcha sp. (foot and chitin), I. nautilei (foot) and E. o. manusensis (soft tissue) range from 5.9 to 11.1‰. Using stable isotopes, for the first time, we inferred a Calvin-Benson (RuBisCo) metabolic pathway for Alviniconcha sp. along with the presence of γ-Proteobacteria symbionts for the Vienna Woods communities. For I. nautilei, a feeding pattern is proposed with γ-Proteobacteria symbiosis and a Calvin-Benson-Bassham diet with mixotrophic feeding. E. ohtai manusensis is filtering bacteria with a CBB feeding strategy, with δ15N values indicating possible higher position in the trophic chain. Arsenic concentrations in the dry tissue of Alviniconcha (foot), I. nautilei (foot) and E. o. manusensis (soft tissue) are high, from 4134 to 8478 μg/g, with inorganic As concentrations of 607, 492 and 104 μg/g, respectively and dimethyl arsenic (DMA) concentrations of 11.12, 0.25 and 11.2 μg/g, respectively. Snails occurring in a vent proximal position have higher As concentration than barnacles, a pattern not observed for S concentrations. Arsenosugars were not put in evidence indicating that the available organic material for the vent organisms are not surface derived.
Collapse
Affiliation(s)
- Ana-Voica Bojar
- Department of Environment and Biodiversity, Salzburg University, Hellbrunnerstrasse 34, A-5020, Salzburg, Austria; Department of Mineralogy, Universalmuseum Joanneum, Weinzöttlstrasse 16, A-8045, Graz, Austria; Faculty of Physics, University of Bucharest, 405 Atomiștilor Street, Măgurele 077125, Romania.
| | - Christophe Lécuyer
- Laboratoire de Géologie de Lyon, CNRS UMR 5276, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; Institut Universitaire de France, 103 Boulevard, Saint-Michel, 75005 Paris, France
| | - William Maher
- Research School of Earth Sciences, Australian National University, Canberra 2000 Australia
| | - Hans-Peter Bojar
- Department of Mineralogy, Universalmuseum Joanneum, Weinzöttlstrasse 16, A-8045, Graz, Austria
| | - François Fourel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, LEHNA UMR CNRS 5023, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Ştefan Vasile
- Department of Geology, Mineralogy, and Paleontology, Faculty of Geology and Geophysics, University of Bucharest, 1 Nicolae Bălcescu Avenue, 010041 Bucharest, Romania
| |
Collapse
|
9
|
Osvatic JT, Yuen B, Kunert M, Wilkins L, Hausmann B, Girguis P, Lundin K, Taylor J, Jospin G, Petersen JM. Gene loss and symbiont switching during adaptation to the deep sea in a globally distributed symbiosis. THE ISME JOURNAL 2023; 17:453-466. [PMID: 36639537 PMCID: PMC9938160 DOI: 10.1038/s41396-022-01355-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Chemosynthetic symbioses between bacteria and invertebrates occur worldwide from coastal sediments to the deep sea. Most host groups are restricted to either shallow or deep waters. In contrast, Lucinidae, the most species-rich family of chemosymbiotic invertebrates, has both shallow- and deep-sea representatives. Multiple lucinid species have independently colonized the deep sea, which provides a unique framework for understanding the role microbial symbionts play in evolutionary transitions between shallow and deep waters. Lucinids acquire their symbionts from their surroundings during early development, which may allow them to flexibly acquire symbionts that are adapted to local environments. Via metagenomic analyses of museum and other samples collected over decades, we investigated the biodiversity and metabolic capabilities of the symbionts of 22 mostly deep-water lucinid species. We aimed to test the theory that the symbiont played a role in adaptation to life in deep-sea habitats. We identified 16 symbiont species, mostly within the previously described genus Ca. Thiodiazotropha. Most genomic functions were shared by both shallow-water and deep-sea Ca. Thiodiazotropha, though nitrogen fixation was exclusive to shallow-water species. We discovered multiple cases of symbiont switching near deep-sea hydrothermal vents and cold seeps, where distantly related hosts convergently acquired novel symbionts from a different bacterial order. Finally, analyses of selection revealed consistently stronger purifying selection on symbiont genomes in two extreme habitats - hydrothermal vents and an oxygen-minimum zone. Our findings reveal that shifts in symbiont metabolic capability and, in some cases, acquisition of a novel symbiont accompanied adaptation of lucinids to challenging deep-sea habitats.
Collapse
Affiliation(s)
- Jay T Osvatic
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030, Vienna, Austria.
- University of Venna, Doctoral School in Microbiology and Environmental Science, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Benedict Yuen
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030, Vienna, Austria
| | - Martin Kunert
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030, Vienna, Austria
| | - Laetitia Wilkins
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28209, Bremen, Germany
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kennet Lundin
- Gothenburg Natural History Museum, Box 7283, 40235, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 40530, Gothenburg, Sweden
| | - John Taylor
- Natural History Museum, Cromwell Rd, London, SW7 5BD, UK
| | - Guillaume Jospin
- AnimalBiome, 400 29th Street, Suite 502, Oakland, CA, 94609, USA
| | - Jillian M Petersen
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
10
|
Breusing C, Johnson SB, Mitarai S, Beinart RA, Tunnicliffe V. Differential patterns of connectivity in Western Pacific hydrothermal vent metapopulations: A comparison of biophysical and genetic models. Evol Appl 2023; 16:22-35. [PMID: 36699127 PMCID: PMC9850011 DOI: 10.1111/eva.13326] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 01/28/2023] Open
Abstract
Hydrothermal ecosystems face threats from planned deep-seabed mining activities, despite the fact that patterns of realized connectivity among vent-associated populations and communities are still poorly understood. Since populations of vent endemic species depend on larval dispersal to maintain connectivity and resilience to habitat changes, effective conservation strategies for hydrothermal ecosystems should include assessments of metapopulation dynamics. In this study, we combined population genetic methods with biophysical models to assess strength and direction of gene flow within four species of the genus Alviniconcha (A. boucheti, A. kojimai, A. strummeri and A. hessleri) that are ecologically dominant taxa at Western Pacific hydrothermal vents. In contrast to predictions from dispersal models, among-basin migration in A. boucheti occurred predominantly in an eastward direction, while populations within the North Fiji Basin were clearly structured despite the absence of oceanographic barriers. Dispersal models and genetic data were largely in agreement for the other Alviniconcha species, suggesting limited between-basin migration for A. kojimai, lack of genetic structure in A. strummeri within the Lau Basin and restricted gene flow between northern and southern A. hessleri populations in the Mariana back-arc as a result of oceanic current conditions. Our findings show that gene flow patterns in ecologically similar congeneric species can be remarkably different and surprisingly limited depending on environmental and evolutionary contexts. These results are relevant to regional conservation planning and to considerations of similar integrated analyses for any vent metapopulations under threat from seabed mining.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of Oceanography University of Rhode Island Narragansett Rhode Island USA
| | - Shannon B Johnson
- Monterey Bay Aquarium Research Institute Moss Landing California USA
| | - Satoshi Mitarai
- Okinawa Institute of Science and Technology Graduate University Kunigami-gun Japan
| | - Roxanne A Beinart
- Graduate School of Oceanography University of Rhode Island Narragansett Rhode Island USA
| | - Verena Tunnicliffe
- Department of Biology School of Earth and Ocean Sciences University of Victoria Victoria British Columbia Canada
| |
Collapse
|
11
|
Chen C, Watanabe HK, Gena K, Johnson SB. Anatomical shifts linked with unusual diets in deep-sea snails. Ecology 2023; 104:e3847. [PMID: 36336886 PMCID: PMC10078515 DOI: 10.1002/ecy.3847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | | - Kaul Gena
- The Papua New Guinea University of Technology, Lae, Papua New Guinea
| | - Shannon B Johnson
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, California, USA
| |
Collapse
|
12
|
Poitrimol C, Thiébaut É, Daguin-Thiébaut C, Le Port AS, Ballenghien M, Tran Lu Y A, Jollivet D, Hourdez S, Matabos M. Contrasted phylogeographic patterns of hydrothermal vent gastropods along South West Pacific: Woodlark Basin, a possible contact zone and/or stepping-stone. PLoS One 2022; 17:e0275638. [PMID: 36197893 PMCID: PMC9534440 DOI: 10.1371/journal.pone.0275638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding drivers of biodiversity patterns is essential to evaluate the potential impact of deep-sea mining on ecosystems resilience. While the South West Pacific forms an independent biogeographic province for hydrothermal vent fauna, different degrees of connectivity among basins were previously reported for a variety of species depending on their ability to disperse. In this study, we compared phylogeographic patterns of several vent gastropods across South West Pacific back-arc basins and the newly-discovered La Scala site on the Woodlark Ridge by analysing their genetic divergence using a barcoding approach. We focused on six genera of vent gastropods widely distributed in the region: Lepetodrilus, Symmetromphalus, Lamellomphalus, Shinkailepas, Desbruyeresia and Provanna. A wide-range sampling was conducted at different vent fields across the Futuna Volcanic Arc, the Manus, Woodlark, North Fiji, and Lau Basins, during the CHUBACARC cruise in 2019. The Cox1-based genetic structure of geographic populations was examined for each taxon to delineate putative cryptic species and assess potential barriers or contact zones between basins. Results showed contrasted phylogeographic patterns among species, even between closely related species. While some species are widely distributed across basins (i.e. Shinkailepas tollmanni, Desbruyeresia melanioides and Lamellomphalus) without evidence of strong barriers to gene flow, others are restricted to one (i.e. Shinkailepas tufari complex of cryptic species, Desbruyeresia cancellata and D. costata). Other species showed intermediate patterns of isolation with different lineages separating the Manus Basin from the Lau/North Fiji Basins (i.e. Lepetodrilus schrolli, Provanna and Symmetromphalus spp.). Individuals from the Woodlark Basin were either endemic to this area (though possibly representing intermediate OTUs between the Manus Basin and the other eastern basins populations) or, coming into contact from these basins, highlighting the stepping-stone role of the Woodlark Basin in the dispersal of the South West Pacific vent fauna. Results are discussed according to the dispersal ability of species and the geological history of the South West Pacific.
Collapse
Affiliation(s)
- Camille Poitrimol
- Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
- Biologie et Ecologie des Ecosystèmes marins Profonds, Ifremer, CNRS, UBO, Plouzané, France
| | - Éric Thiébaut
- Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Claire Daguin-Thiébaut
- Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Anne-Sophie Le Port
- Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Marion Ballenghien
- Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Adrien Tran Lu Y
- Institut des Sciences de l’Evolution de Montpellier, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Didier Jollivet
- Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Stéphane Hourdez
- Laboratoire d’Ecogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, Sorbonne Université, CNRS, Banyuls-sur-Mer, France
| | - Marjolaine Matabos
- Biologie et Ecologie des Ecosystèmes marins Profonds, Ifremer, CNRS, UBO, Plouzané, France
| |
Collapse
|
13
|
Breusing C, Klobusnik NH, Hauer MA, Beinart RA. Genome assembly of the chemosynthetic endosymbiont of the hydrothermal vent snail Alviniconcha adamantis from the Mariana Arc. G3 (BETHESDA, MD.) 2022; 12:jkac220. [PMID: 35997584 PMCID: PMC9526052 DOI: 10.1093/g3journal/jkac220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022]
Abstract
Chemosynthetic animal-microbe symbioses sustain hydrothermal vent communities in the global deep sea. In the Indo-Pacific Ocean, hydrothermal ecosystems are often dominated by gastropod species of the genus Alviniconcha, which live in association with chemosynthetic Gammaproteobacteria or Campylobacteria. While the symbiont genomes of most extant Alviniconcha species have been sequenced, no genome information is currently available for the gammaproteobacterial endosymbiont of Alviniconcha adamantis-a comparatively shallow living species that is thought to be the ancestor to all other present Alviniconcha lineages. Here, we report the first genome sequence for the symbiont of A. adamantis from the Chamorro Seamount at the Mariana Arc. Our phylogenomic analyses show that the A. adamantis symbiont is most closely related to Chromatiaceae endosymbionts of the hydrothermal vent snails Alviniconcha strummeri and Chrysomallon squamiferum, but represents a distinct bacterial species or possibly genus. Overall, the functional capacity of the A. adamantis symbiont appeared to be similar to other chemosynthetic Gammaproteobacteria, though several flagella and chemotaxis genes were detected, which are absent in other gammaproteobacterial Alviniconcha symbionts. These differences might suggest potential contrasts in symbiont transmission dynamics, host recognition, or nutrient transfer. Furthermore, an abundance of genes for ammonia transport and urea usage could indicate adaptations to the oligotrophic waters of the Mariana region, possibly via recycling of host- and environment-derived nitrogenous waste products. This genome assembly adds to the growing genomic resources for chemosynthetic bacteria from hydrothermal vents and will be valuable for future comparative genomic analyses assessing gene content evolution in relation to environment and symbiotic lifestyles.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | | | - Michelle A Hauer
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| |
Collapse
|
14
|
Chen C, Watanabe HK. A new provannid snail (Gastropoda, Abyssochrysoidea) discovered from Northwest Eifuku Volcano, Mariana Arc. Zookeys 2022; 1112:123-137. [PMID: 36760627 PMCID: PMC9848648 DOI: 10.3897/zookeys.1112.85950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
Gastropods in the family Provannidae are characteristic members of deep-sea chemosynthesis-based communities. Recently, surveys of hydrothermal vents and hydrocarbon seeps in the western Pacific have revealed a high diversity of provannids, with new discoveries continuing to be made. Here, we report and describe a further new species, Provannaexquisita sp. nov., discovered from the Northwest Eifuku volcano on the Mariana Arc. This new species is distinguished from all other described Provanna species by its exaggerated sculpture characterised by two to three sharply raised, flange-like keels on the teleoconch whorls. The status of P.exquisita sp. nov. is also supported by a molecular phylogeny reconstruction using the mitochondrial cytochrome c oxidase subunit I (COI) gene, which suggested that it is most closely related to a clade of three species described from Okinawa Trough vents including P.clathrata, P.subglabra, and P.fenestrata. Despite being one of the better-explored regions of the world in terms of hydrothermal vent biodiversity, new discoveries like P.exquisita sp. nov. continue to remind us that we are nowhere near fully documenting the species diversity in these unique ecosystems-despite the species being threatened from imminent anthropogenic impacts such as deep-sea mining.
Collapse
Affiliation(s)
- Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, JapanX-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan
| | - Hiromi Kayama Watanabe
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, JapanX-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan
| |
Collapse
|
15
|
Castel J, Hourdez S, Pradillon F, Daguin-Thiébaut C, Ballenghien M, Ruault S, Corre E, Tran Lu Y A, Mary J, Gagnaire PA, Bonhomme F, Breusing C, Broquet T, Jollivet D. Inter-Specific Genetic Exchange Despite Strong Divergence in Deep-Sea Hydrothermal Vent Gastropods of the Genus Alviniconcha. Genes (Basel) 2022; 13:985. [PMID: 35741747 PMCID: PMC9223106 DOI: 10.3390/genes13060985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Deep hydrothermal vents are highly fragmented and unstable habitats at all temporal and spatial scales. Such environmental dynamics likely play a non-negligible role in speciation. Little is, however, known about the evolutionary processes that drive population-level differentiation and vent species isolation and, more specifically, how geography and habitat specialisation interplay in the species history of divergence. In this study, the species range and divergence of Alviniconcha snails that occupy active Western Pacific vent fields was assessed by using sequence variation data of the mitochondrial Cox1 gene, RNAseq, and ddRAD-seq. Combining morphological description and sequence datasets of the three species across five basins, we confirmed that A. kojimai, A. boucheti, and A. strummeri, while partially overlapping over their range, display high levels of divergence in the three genomic compartments analysed that usually encompass values retrieved for reproductively isolated species with divergences rang from 9% to 12.5% (mtDNA) and from 2% to 3.1% (nuDNA). Moreover, the three species can be distinguished on the basis of their external morphology by observing the distribution of bristles and the shape of the columella. According to this sampling, A. boucheti and A. kojimai form an east-to-west species abundance gradient, whereas A. strummeri is restricted to the Futuna Arc/Lau and North Fiji Basins. Surprisingly, population models with both gene flow and population size heterogeneities among genomes indicated that these three species are still able to exchange genes due to secondary contacts at some localities after a long period of isolation.
Collapse
Affiliation(s)
- Jade Castel
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Stéphane Hourdez
- Laboratoire d’Ecogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, Sorbonne Université, CNRS, UMR 8222, Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| | - Florence Pradillon
- Unité Biologie et Ecologie des Ecosystèmes Marins Profonds, Université de Brest, Ifremer, CNRS, 29280 Plouzané, France;
| | - Claire Daguin-Thiébaut
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Marion Ballenghien
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Stéphanie Ruault
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Erwan Corre
- ABiMS Bioinformatics Facility, Station biologique de Roscoff, Sorbonne Université, CNRS, FR2424, Place G. Teissier, 29680 Roscoff, France;
| | - Adrien Tran Lu Y
- Team MBE, Department Genφ, ISEM, Université de Montpellier, CNRS, EPHE, IRD, 34110 Montpellier, France; (A.T.L.Y.); (P.-A.G.); (F.B.)
| | - Jean Mary
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Pierre-Alexandre Gagnaire
- Team MBE, Department Genφ, ISEM, Université de Montpellier, CNRS, EPHE, IRD, 34110 Montpellier, France; (A.T.L.Y.); (P.-A.G.); (F.B.)
| | - François Bonhomme
- Team MBE, Department Genφ, ISEM, Université de Montpellier, CNRS, EPHE, IRD, 34110 Montpellier, France; (A.T.L.Y.); (P.-A.G.); (F.B.)
| | - Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Rd, Narragansett, RI 02882, USA;
| | - Thomas Broquet
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Didier Jollivet
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| |
Collapse
|
16
|
Symbiont Community Composition in Rimicaris kairei Shrimps from Indian Ocean Vents with Notes on Mineralogy. Appl Environ Microbiol 2022; 88:e0018522. [PMID: 35404070 PMCID: PMC9040608 DOI: 10.1128/aem.00185-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hydrothermal vent ecosystems are home to a wide array of symbioses between animals and chemosynthetic microbes, among which shrimps in the genus Rimicaris is one of the most iconic. So far, studies of Rimicaris symbioses have been restricted to Atlantic species, including Rimicaris exoculata, which is totally reliant on the symbionts for nutrition, and the mixotrophic species Rimicaris chacei. Here, we expand this by investigating and characterizing the symbiosis of the Indian Ocean species Rimicaris kairei using specimens from two vent fields, Kairei and Edmond. We also aimed to evaluate the differences in mineralogy and microbial communities between two cephalothorax color morphs, black and brown, through a combination of 16S metabarcoding, scanning electron microscopy, fluorescent in situ hybridization, energy-dispersive X-ray spectroscopy, and synchrotron near-edge X-ray absorption structure analyses. Overall, our results highlight that R. kairei exhibits similar symbiont lineages to those of its Atlantic congeners, although with a few differences, such as the lack of Zetaproteobacteria. We found distinct mineralization processes behind the two color morphs that were linked to differences in the vent fluid composition, but the symbiotic community composition was surprisingly similar. In R. exoculata, such mineralogical differences have been shown to stem from disparity in the microbial communities, but our results indicate that in R. kairei this is instead due to the shift of dominant metabolisms by the same symbiotic partners. We suggest that a combination of local environmental factors and biogeographic barriers likely contribute to the differences between Atlantic and Indian Ocean Rimicaris symbioses. IMPORTANCE Hydrothermal vent shrimps in the genus Rimicaris are among the most charismatic deep-sea animals of Atlantic and Indian Oceans, often occurring on towering black smokers in dense aggregates of thousands of individuals. Although this dominance is only possible because of symbiosis, no study on the symbiosis of Indian Ocean Rimicaris species has been conducted. Here, we characterize the Rimicaris kairei symbiosis by combining molecular, microscopic, and elemental analyses, making comparisons with those of the Atlantic species possible for the first time. Although most symbiotic partners remained consistent across the two oceans, some differences were recognized in symbiont lineages, as well as in the mechanisms behind the formation of two color morphs with distinct mineralogies. Our results shed new light on relationships among mineralogy, environmental factors, and microbial communities that are useful for understanding other deep-sea symbioses in the future.
Collapse
|
17
|
Breusing C, Genetti M, Russell SL, Corbett-Detig RB, Beinart RA. Horizontal transmission enables flexible associations with locally adapted symbiont strains in deep-sea hydrothermal vent symbioses. Proc Natl Acad Sci U S A 2022; 119:e2115608119. [PMID: 35349333 PMCID: PMC9168483 DOI: 10.1073/pnas.2115608119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
SignificanceIn marine ecosystems, transmission of microbial symbionts between host generations occurs predominantly through the environment. Yet, it remains largely unknown how host genetics, symbiont competition, environmental conditions, and geography shape the composition of symbionts acquired by individual hosts. To address this question, we applied population genomic approaches to four species of deep-sea hydrothermal vent snails that live in association with chemosynthetic bacteria. Our analyses show that environment is more important to strain-level symbiont composition than host genetics and that symbiont strains show genetic variation indicative of adaptation to the distinct geochemical conditions at each vent site. This corroborates a long-standing hypothesis that hydrothermal vent invertebrates affiliate with locally adapted symbiont strains to cope with the variable conditions characterizing their habitats.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882
| | - Maximilian Genetti
- Jack Baskin School of Engineering, University of California, Santa Cruz, CA 95064
| | - Shelbi L. Russell
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064
| | | | - Roxanne A. Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882
| |
Collapse
|
18
|
Breusing C, Castel J, Yang Y, Broquet T, Sun J, Jollivet D, Qian P, Beinart RA. Global 16S rRNA diversity of provannid snail endosymbionts from Indo-Pacific deep-sea hydrothermal vents. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:299-307. [PMID: 35170217 PMCID: PMC9303550 DOI: 10.1111/1758-2229.13051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Symbioses between invertebrate animals and chemosynthetic bacteria build the foundation of deep-sea hydrothermal ecosystems worldwide. Despite the importance of these symbioses for ecosystem functioning, the diversity of symbionts within and between host organisms and geographic regions is still poorly understood. In this study we used 16S rRNA amplicon sequencing to determine the diversity of gill endosymbionts in provannid snails of the genera Alviniconcha and Ifremeria, which are key species at deep-sea hydrothermal vents in the Indo-Pacific Ocean. Our analysis of 761 snail samples across the distributional range of these species confirms previous findings that symbiont lineages are strongly partitioned by host species and broad-scale geography. Less structuring was observed within geographic regions, probably due to insufficient strain resolution of the 16S rRNA gene. Symbiont richness in individual hosts appeared to be unrelated to host size, suggesting that provannid snails might acquire their symbionts only during a permissive time window in early developmental stages in contrast to other vent molluscs that obtain their symbionts throughout their lifetime. Despite the extent of our dataset, symbiont accumulation curves did not reach saturation, highlighting the need for increased sampling efforts to uncover the full diversity of symbionts within these and other hydrothermal vent species.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRIUSA
| | - Jade Castel
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffRoscoffFrance
| | - Yi Yang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)The Hong Kong University of Science and TechnologyHong KongChina
| | - Thomas Broquet
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffRoscoffFrance
| | - Jin Sun
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Didier Jollivet
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffRoscoffFrance
| | - Pei‐Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)The Hong Kong University of Science and TechnologyHong KongChina
| | - Roxanne A. Beinart
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRIUSA
| |
Collapse
|
19
|
Tran Lu Y A, Ruault S, Daguin-Thiébaut C, Castel J, Bierne N, Broquet T, Wincker P, Perdereau A, Arnaud-Haond S, Gagnaire PA, Jollivet D, Hourdez S, Bonhomme F. Subtle limits to connectivity revealed by outlier loci within two divergent metapopulations of the deep-sea hydrothermal gastropod Ifremeria nautilei. Mol Ecol 2022; 31:2796-2813. [PMID: 35305041 DOI: 10.1111/mec.16430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
Hydrothermal vents form archipelagos of ephemeral deep-sea habitats that raise interesting questions about the evolution and dynamics of the associated endemic fauna, constantly subject to extinction-recolonization processes. These metal-rich environments are coveted for the mineral resources they harbor, thus raising recent conservation concerns. The evolutionary fate and demographic resilience of hydrothermal species strongly depend on the degree of connectivity among and within their fragmented metapopulations. In the deep sea, however, assessing connectivity is difficult and usually requires indirect genetic approaches. Improved detection of fine-scale genetic connectivity is now possible based on genome-wide screening for genetic differentiation. Here, we explored population connectivity in the hydrothermal vent snail Ifremeria nautilei across its species range encompassing five distinct back-arc basins in the Southwest Pacific. The global analysis, based on 10 570 single nucleotide polymorphism (SNP) markers derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), depicted two semi-isolated and homogeneous genetic clusters. Demo-genetic modeling suggests that these two groups began to diverge about 70 000 generations ago, but continue to exhibit weak and slightly asymmetrical gene flow. Furthermore, a careful analysis of outlier loci showed subtle limitations to connectivity between neighboring basins within both groups. This finding indicates that migration is not strong enough to totally counterbalance drift or local selection, hence questioning the potential for demographic resilience at this latter geographical scale. These results illustrate the potential of large genomic datasets to understand fine-scale connectivity patterns in hydrothermal vents and the deep sea.
Collapse
Affiliation(s)
- Adrien Tran Lu Y
- ISEM, Institut des Sciences de l'Evolution, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Stéphanie Ruault
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Claire Daguin-Thiébaut
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Jade Castel
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Nicolas Bierne
- ISEM, Institut des Sciences de l'Evolution, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Thomas Broquet
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Patrick Wincker
- Génomique Métabolique, Génoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Aude Perdereau
- Génomique Métabolique, Génoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Sophie Arnaud-Haond
- MARBEC, Marine Biodiversity Exploitation and Conservation, Univ Montpellier, CNRS, IFREMER, IRD, Sète, France
| | | | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Stéphane Hourdez
- Sorbonne Université, CNRS, UMR 8222, Laboratoire d'Ecogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - François Bonhomme
- ISEM, Institut des Sciences de l'Evolution, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
20
|
Rodríguez-Flores P, Macpherson E, Schnabel K, Ahyong S, Corbari L, Machordom A. Depth as a driver of evolution and diversification of ancient squat lobsters (Decapoda, Galatheoidea, Phylladiorhynchus). Mol Phylogenet Evol 2022; 171:107467. [DOI: 10.1016/j.ympev.2022.107467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
|
21
|
Zhou K, Xu Y, Zhang R, Qian PY. Arms race in a cell: genomic, transcriptomic, and proteomic insights into intracellular phage-bacteria interplay in deep-sea snail holobionts. MICROBIOME 2021; 9:182. [PMID: 34479645 PMCID: PMC8418041 DOI: 10.1186/s40168-021-01099-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/20/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Deep-sea animals in hydrothermal vents often form endosymbioses with chemosynthetic bacteria. Endosymbionts serve essential biochemical and ecological functions, but the prokaryotic viruses (phages) that determine their fate are unknown. RESULTS We conducted metagenomic analysis of a deep-sea vent snail. We assembled four genome bins for Caudovirales phages that had developed dual endosymbiosis with sulphur-oxidising bacteria (SOB) and methane-oxidising bacteria (MOB). Clustered regularly interspaced short palindromic repeat (CRISPR) spacer mapping, genome comparison, and transcriptomic profiling revealed that phages Bin1, Bin2, and Bin4 infected SOB and MOB. The observation of prophages in the snail endosymbionts and expression of the phage integrase gene suggested the presence of lysogenic infection, and the expression of phage structural protein and lysozyme genes indicated active lytic infection. Furthermore, SOB and MOB appear to employ adaptive CRISPR-Cas systems to target phage DNA. Additional expressed defence systems, such as innate restriction-modification systems and dormancy-inducing toxin-antitoxin systems, may co-function and form multiple lines for anti-viral defence. To counter host defence, phages Bin1, Bin2, and Bin3 appear to have evolved anti-restriction mechanisms and expressed methyltransferase genes that potentially counterbalance host restriction activity. In addition, the high-level expression of the auxiliary metabolic genes narGH, which encode nitrate reductase subunits, may promote ATP production, thereby benefiting phage DNA packaging for replication. CONCLUSIONS This study provides new insights into phage-bacteria interplay in intracellular environments of a deep-sea vent snail. Video Abstract.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen University-HKUST Joint Marine Science Ph.D. Program, Shenzhen University, Shenzhen, 518060, China
| | - Ying Xu
- Shenzhen University-HKUST Joint Marine Science Ph.D. Program, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen, Fujian, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
22
|
Beta diversity differs among hydrothermal vent systems: Implications for conservation. PLoS One 2021; 16:e0256637. [PMID: 34437606 PMCID: PMC8389485 DOI: 10.1371/journal.pone.0256637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
Deep-sea hydrothermal vent habitats are small, rare and support unique species through chemosynthesis. As this vulnerable ecosystem is increasingly threatened by human activities, management approaches should address biodiversity conservation. Diversity distribution data provide a useful basis for management approaches as patterns of β-diversity (the change in diversity from site to site) can guide conservation decisions. Our question is whether such patterns are similar enough across vent systems to support a conservation strategy that can be deployed regardless of location. We compile macrofaunal species occurrence data for vent systems in three geological settings in the North Pacific: volcanic arc, back-arc and mid-ocean ridge. Recent discoveries in the Mariana region provide the opportunity to characterize diversity at many vent sites. We examine the extent to which diversity distribution patterns differ among the systems by comparing pairwise β-diversity, nestedness and their additive components. A null model approach that tests whether species compositions of each site pair are more or less similar than random provides insight into community assembly processes. We resolve several taxonomic uncertainties and find that the Mariana arc and back-arc share only 8% of species despite their proximity. Species overlap, species replacement and richness differences create different diversity distributions within the three vent systems; the arc system exhibits much greater β-diversity than both the back-arc and mid-ocean ridge systems which, instead, show greater nestedness. The influence of nestedness on β-diversity also increased from the arc to back-arc to ridge. Community assembly processes appear more deterministic in the arc and ridge systems while back-arc site pairs deviate little from the null expectation. These analyses reflect the need for a variety of management strategies that consider the character of diversity distribution to protect hydrothermal vents, especially in the context of mining hydrothermal deposits.
Collapse
|