1
|
Mayorova TD, Koch TL, Kachar B, Jung JH, Reese TS, Smith CL. Placozoan secretory cell types implicated in feeding, innate immunity and regulation of behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613768. [PMID: 39372748 PMCID: PMC11452194 DOI: 10.1101/2024.09.18.613768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Placozoa are millimeter-sized, flat, irregularly shaped ciliated animals that crawl on surfaces in warm oceans feeding on biofilms, which they digest externally. They stand out from other animals due to their simple body plans. They lack organs, body cavities, muscles and a nervous system and have only seven broadly defined morphological cell types, each with a unique distribution. Analyses of single cell transcriptomes of four species of placozoans revealed greater diversity of secretory cell types than evident from morphological studies, but the locations of many of these new cell types were unknown and it was unclear which morphological cell types they represent. Furthermore, there were contradictions between the conclusions of previous studies and the single cell RNAseq studies. To address these issues, we used mRNA probes for genes encoding secretory products expressed in different metacells in Trichoplax adhaerens to localize cells in whole mounts and in dissociated cell cultures, where their morphological features could be visualized and identified. The nature and functions of their secretory granules were further investigated with electron microscopic techniques and by imaging secretion in live animals during feeding episodes. We found that two cell types participate in disintegrating prey, one resembling a lytic cell type in mammals and another combining features of zymogen gland cells and enterocytes. We identified secretory epithelial cells expressing glycoproteins or short peptides implicated in defense. We located seven peptidergic cell types and two types of mucocytes. Our findings reveal mechanisms that placozoans use to feed and protect themselves from pathogens and clues about neuropeptidergic signaling. We compare placozoan secretory cell types with cell types in other animal phyla to gain insight about general evolutionary trends in cell type diversification, as well as pathways leading to the emergence of synapomorphies.
Collapse
|
2
|
Hehmeyer J, Plessier F, Marlow H. Adaptive Cellular Radiations and the Genetic Mechanisms Underlying Animal Nervous System Diversification. Annu Rev Cell Dev Biol 2024; 40:407-425. [PMID: 39052757 DOI: 10.1146/annurev-cellbio-111822-124041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In animals, the nervous system evolved as the primary interface between multicellular organisms and the environment. As organisms became larger and more complex, the primary functions of the nervous system expanded to include the modulation and coordination of individual responsive cells via paracrine and synaptic functions as well as to monitor and maintain the organism's own internal environment. This was initially accomplished via paracrine signaling and eventually through the assembly of multicell circuits in some lineages. Cells with similar functions and centralized nervous systems have independently arisen in several lineages. We highlight the molecular mechanisms that underlie parallel diversifications of the nervous system.
Collapse
Affiliation(s)
- Jenks Hehmeyer
- Integrative Biology Program, The University of Chicago, Chicago, Illinois, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| | - Flora Plessier
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
3
|
Su L, Li G, Chow BKC, Cardoso JCR. Neuropeptides and receptors in the cephalochordate: A crucial model for understanding the origin and evolution of vertebrate neuropeptide systems. Mol Cell Endocrinol 2024; 592:112324. [PMID: 38944371 DOI: 10.1016/j.mce.2024.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Genomes and transcriptomes from diverse organisms are providing a wealth of data to explore the evolution and origin of neuropeptides and their receptors in metazoans. While most neuropeptide-receptor systems have been extensively studied in vertebrates, there is still a considerable lack of understanding regarding their functions in invertebrates, an extraordinarily diverse group that account for the majority of animal species on Earth. Cephalochordates, commonly known as amphioxus or lancelets, serve as the evolutionary proxy of the chordate ancestor. Their key evolutionary position, bridging the invertebrate to vertebrate transition, has been explored to uncover the origin, evolution, and function of vertebrate neuropeptide systems. Amphioxus genomes exhibit a high degree of sequence and structural conservation with vertebrates, and sequence and functional homologues of several vertebrate neuropeptide families are present in cephalochordates. This review aims to provide a comprehensively overview of the recent findings on neuropeptides and their receptors in cephalochordates, highlighting their significance as a model for understanding the complex evolution of neuropeptide signaling in vertebrates.
Collapse
Affiliation(s)
- Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
4
|
Sachkova MY. Evolutionary origin of the nervous system from Ctenophora prospective. Evol Dev 2024; 26:e12472. [PMID: 38390763 DOI: 10.1111/ede.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Nervous system is one of the key adaptations underlying the evolutionary success of the majority of animal groups. Ctenophores (or comb jellies) are gelatinous marine invertebrates that were probably the first lineage to diverge from the rest of animals. Due to the key phylogenetic position and multiple unique adaptations, the noncentralized nervous system of comb jellies has been in the center of the debate around the origin of the nervous system in the animal kingdom and whether it happened only once or twice. Here, we discuss the latest findings in ctenophore neuroscience and multiple challenges on the way to build a clear evolutionary picture of the origin of the nervous system.
Collapse
Affiliation(s)
- Maria Y Sachkova
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Cardoso JCR, Mc Shane JC, Li Z, Peng M, Power DM. Revisiting the evolution of Family B1 GPCRs and ligands: Insights from mollusca. Mol Cell Endocrinol 2024; 586:112192. [PMID: 38408601 DOI: 10.1016/j.mce.2024.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species. Recently, an increased interest in molluscs, means a series of genomes have become available, and since they are less modified than insect and nematode genomes, they are ideal to explore the origin and evolution of neuropeptide gene families. This review provides an overview of Family B1 GPCRs and their peptide ligands and incorporates new data obtained from Mollusca genomes and taking a comparative approach challenges existing models on their origin and evolution.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Jennifer C Mc Shane
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Zhi Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
6
|
Thiel D, Yañez Guerra LA, Kieswetter A, Cole AG, Temmerman L, Technau U, Jékely G. Large-scale deorphanization of Nematostella vectensis neuropeptide G protein-coupled receptors supports the independent expansion of bilaterian and cnidarian peptidergic systems. eLife 2024; 12:RP90674. [PMID: 38727714 PMCID: PMC11087051 DOI: 10.7554/elife.90674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) - the most common receptors of bilaterian neuropeptides - but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.
Collapse
Affiliation(s)
- Daniel Thiel
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | | | - Amanda Kieswetter
- Animal Physiology & Neurobiology, Department of Biology, University of LeuvenLeuvenBelgium
| | - Alison G Cole
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of ViennaViennaAustria
| | - Liesbet Temmerman
- Animal Physiology & Neurobiology, Department of Biology, University of LeuvenLeuvenBelgium
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of ViennaViennaAustria
| | - Gáspár Jékely
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Centre for Organismal Studies (COS), Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
7
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Lin Z, Agarwal V, Cong Y, Pomponi SA, Schmidt EW. Short macrocyclic peptides in sponge genomes. Proc Natl Acad Sci U S A 2024; 121:e2314383121. [PMID: 38442178 PMCID: PMC10945851 DOI: 10.1073/pnas.2314383121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024] Open
Abstract
Sponges (Porifera) contain many peptide-specialized metabolites with potent biological activities and significant roles in shaping marine ecology. It is well established that symbiotic bacteria produce bioactive "sponge" peptides, both on the ribosome (RiPPs) and nonribosomally. Here, we demonstrate that sponges themselves also produce many bioactive macrocyclic peptides, such as phakellistatins and related proline-rich macrocyclic peptides (PRMPs). Using the Stylissa carteri sponge transcriptome, methods were developed to find sequences encoding 46 distinct RiPP-type core peptides, of which ten encoded previously identified PRMP sequences. With this basis set, the genome and transcriptome of the sponge Axinella corrugata was interrogated to find 35 PRMP precursor peptides encoding 31 unique core peptide sequences. At least 11 of these produced cyclic peptides that were present in the sponge and could be characterized by mass spectrometry, including stylissamides A-D and seven previously undescribed compounds. Precursor peptides were encoded in the A. corrugata genome, confirming their animal origin. The peptides contained signal peptide sequences and highly repetitive recognition sequence-core peptide elements with up to 25 PRMP copies in a single precursor. In comparison to sponges without PRMPs, PRMP sponges are incredibly enriched in potentially secreted polypeptides, with >23,000 individual signal peptide encoding genes found in a single transcriptome. The similarities between PRMP biosynthetic genes and neuropeptides in terms of their biosynthetic logic suggest a fundamental biology linked to circular peptides, possibly indicating a widespread and underappreciated diversity of signaling peptide post-translational modifications across the animal kingdom.
Collapse
Affiliation(s)
- Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT84112
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA30332
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Ying Cong
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT84112
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL34946
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT84112
| |
Collapse
|
9
|
Cherry AL, Wheeler MJ, Mathisova K, Di Miceli M. In silico analyses of the involvement of GPR55, CB1R and TRPV1: response to THC, contribution to temporal lobe epilepsy, structural modeling and updated evolution. Front Neuroinform 2024; 18:1294939. [PMID: 38404644 PMCID: PMC10894036 DOI: 10.3389/fninf.2024.1294939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The endocannabinoid (eCB) system is named after the discovery that endogenous cannabinoids bind to the same receptors as the phytochemical compounds found in Cannabis. While endogenous cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), exogenous phytocannabinoids include Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds finely tune neurotransmission following synapse activation, via retrograde signaling that activates cannabinoid receptor 1 (CB1R) and/or transient receptor potential cation channel subfamily V member 1 (TRPV1). Recently, the eCB system has been linked to several neurological diseases, such as neuro-ocular abnormalities, pain insensitivity, migraine, epilepsy, addiction and neurodevelopmental disorders. In the current study, we aim to: (i) highlight a potential link between the eCB system and neurological disorders, (ii) assess if THC exposure alters the expression of eCB-related genes, and (iii) identify evolutionary-conserved residues in CB1R or TRPV1 in light of their function. Methods To address this, we used several bioinformatic approaches, such as transcriptomic (Gene Expression Omnibus), protein-protein (STRING), phylogenic (BLASTP, MEGA) and structural (Phyre2, AutoDock, Vina, PyMol) analyzes. Results Using RNA sequencing datasets, we did not observe any dysregulation of eCB-related transcripts in major depressive disorders, bipolar disorder or schizophrenia in the anterior cingulate cortex, nucleus accumbens or dorsolateral striatum. Following in vivo THC exposure in adolescent mice, GPR55 was significantly upregulated in neurons from the ventral tegmental area, while other transcripts involved in the eCB system were not affected by THC exposure. Our results also suggest that THC likely induces neuroinflammation following in vitro application on mice microglia. Significant downregulation of TPRV1 occurred in the hippocampi of mice in which a model of temporal lobe epilepsy was induced, confirming previous observations. In addition, several transcriptomic dysregulations were observed in neurons of both epileptic mice and humans, which included transcripts involved in neuronal death. When scanning known interactions for transcripts involved in the eCB system (n = 12), we observed branching between the eCB system and neurophysiology, including proteins involved in the dopaminergic system. Our protein phylogenic analyzes revealed that CB1R forms a clade with CB2R, which is distinct from related paralogues such as sphingosine-1-phosphate, receptors, lysophosphatidic acid receptors and melanocortin receptors. As expected, several conserved residues were identified, which are crucial for CB1R receptor function. The anandamide-binding pocket seems to have appeared later in evolution. Similar results were observed for TRPV1, with conserved residues involved in receptor activation. Conclusion The current study found that GPR55 is upregulated in neurons following THC exposure, while TRPV1 is downregulated in temporal lobe epilepsy. Caution is advised when interpreting the present results, as we have employed secondary analyzes. Common ancestors for CB1R and TRPV1 diverged from jawless vertebrates during the late Ordovician, 450 million years ago. Conserved residues are identified, which mediate crucial receptor functions.
Collapse
Affiliation(s)
- Amy L. Cherry
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Michael J. Wheeler
- Sustainable Environments Research Group, School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Karolina Mathisova
- School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
10
|
Moroz LL. Syncytial nets vs. chemical signaling: emerging properties of alternative integrative systems. Front Cell Dev Biol 2023; 11:1320209. [PMID: 38125877 PMCID: PMC10730927 DOI: 10.3389/fcell.2023.1320209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| |
Collapse
|
11
|
Fodor I, Yañez-Guerra LA, Kiss B, Büki G, Pirger Z. Copper-transporting ATPases throughout the animal evolution - From clinics to basal neuron-less animals. Gene 2023; 885:147720. [PMID: 37597707 DOI: 10.1016/j.gene.2023.147720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Copper-transporting ATPases are a group of heavy metal-transporting proteins and which can be found in all living organisms. In animals, they are generally referred to as ATP7 proteins and are involved in many different physiological processes including the maintaining of copper homeostasis and the supply of copper to cuproenzymes. A single ATP7 gene is present in non-chordate animals while it is divided into ATP7A and ATP7B in chordates. In humans, dysfunction of ATP7 proteins can lead to severe genetic disorders, such as, Menkes disease and Wilson's disease, which are characterized by abnormal copper transport and accumulation, causing significant health complications. Therefore, there is a substantial amount of research on ATP7 genes and ATP7 proteins in humans and mice to understand pathophysiological conditions and find potential therapeutic interventions. Copper-transporting ATPases have also been investigated in some non-mammalian vertebrates, protostomes, single-cellular eukaryotes, prokaryotes, and archaea to gain useful evolutionary insights. However, ATP7 function in many animals has been somewhat neglected, particularly in non-bilaterians. Previous reviews on this topic only broadly summarized the available information on the function and evolution of ATP7 genes and ATP7 proteins and included only the classic vertebrate and invertebrate models. Given this, and the fact that a considerable amount of new information on this topic has been published in recent years, the present study was undertaken to provide an up-to-date, comprehensive summary of ATP7s/ATP7s and give new insights into their evolutionary relationships. Additionally, this work provides a framework for studying these genes and proteins in non-bilaterians. As early branching animals, they are important to understand the evolution of function of these proteins and their important role in copper homeostasis and neurotransmission.
Collapse
Affiliation(s)
- István Fodor
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, H-8237 Tihany, Hungary.
| | | | - Bence Kiss
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Gergely Büki
- Department of Medical Genetics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, H-8237 Tihany, Hungary
| |
Collapse
|
12
|
Ripoll-Sánchez L, Watteyne J, Sun H, Fernandez R, Taylor SR, Weinreb A, Bentley BL, Hammarlund M, Miller DM, Hobert O, Beets I, Vértes PE, Schafer WR. The neuropeptidergic connectome of C. elegans. Neuron 2023; 111:3570-3589.e5. [PMID: 37935195 PMCID: PMC7615469 DOI: 10.1016/j.neuron.2023.09.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/02/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023]
Abstract
Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.
Collapse
Affiliation(s)
- Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Psychiatry, Cambridge University, Cambridge, UK
| | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, Belgium
| | - HaoSheng Sun
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Fernandez
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexis Weinreb
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Barry L Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
| | - Marc Hammarlund
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Oliver Hobert
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Petra E Vértes
- Department of Psychiatry, Cambridge University, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Breton TS, Fike S, Francis M, Patnaude M, Murray CA, DiMaggio MA. Characterizing the SREB G protein-coupled receptor family in fish: Brain gene expression and genomic differences in upstream transcription factor binding sites. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111507. [PMID: 37611891 PMCID: PMC10529039 DOI: 10.1016/j.cbpa.2023.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The SREB (Super-conserved Receptors Expressed in Brain) family of orphan G protein-coupled receptors is highly conserved in vertebrates and consists of three members: SREB1 (orphan designation GPR27), SREB2 (GPR85), and SREB3 (GPR173). SREBs are associated with processes ranging from neuronal plasticity to reproductive control. Relatively little is known about similarities across the entire family, or how mammalian gene expression patterns compare to non-mammalian vertebrates. In fish, this system may be particularly complex, as some species have gained a fourth member (SREB3B) while others have lost genes. To better understand the system, the present study aimed to: 1) use qPCR to characterize sreb and related gene expression patterns in the brains of three fish species with different systems, and 2) identify possible differences in transcriptional regulation among the receptors, using upstream transcription factor binding sites across 70 ray-finned fish genomes. Overall, regional patterns of sreb expression were abundant in forebrain-related areas. However, some species-specific patterns were detected, such as abundant expression of receptors in zebrafish (Danio rerio) hypothalamic-containing sections, and divergence between sreb3a and sreb3b in pufferfish (Dichotomyctere nigroviridis). In addition, a gene possibly related to the system (dkk3a) was spatially correlated with the receptors in all three species. Genomic regions upstream of sreb2 and sreb3b, but largely not sreb1 or sreb3a, contained many highly conserved transcription factor binding sites. These results provide novel information about expression differences and transcriptional regulation across fish that may inform future research to better understand these receptors.
Collapse
Affiliation(s)
- Timothy S Breton
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938, USA.
| | - Samantha Fike
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Mullein Francis
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Michael Patnaude
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Casey A Murray
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570, USA
| | - Matthew A DiMaggio
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570, USA
| |
Collapse
|
14
|
Ros-Rocher N, Brunet T. What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals. Anim Cogn 2023; 26:1767-1782. [PMID: 37067637 PMCID: PMC10770216 DOI: 10.1007/s10071-023-01776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Thibaut Brunet
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
15
|
Moroz LL, Romanova DY. Chemical cognition: chemoconnectomics and convergent evolution of integrative systems in animals. Anim Cogn 2023; 26:1851-1864. [PMID: 38015282 PMCID: PMC11106658 DOI: 10.1007/s10071-023-01833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a chemical connectome mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap-dynamic, multifunctional chemical micro-environments in nervous systems-is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call chemoconnectomics and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, University of Florida, Gainesville, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA.
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
16
|
Beets I, Zels S, Vandewyer E, Demeulemeester J, Caers J, Baytemur E, Courtney A, Golinelli L, Hasakioğulları İ, Schafer WR, Vértes PE, Mirabeau O, Schoofs L. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell Rep 2023; 42:113058. [PMID: 37656621 PMCID: PMC7615250 DOI: 10.1016/j.celrep.2023.113058] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Sven Zels
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London NW1 1AT, UK; VIB - KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Caers
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Esra Baytemur
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Amy Courtney
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Brain-Immune Communication Lab, 75015 Paris, France
| | | |
Collapse
|
17
|
Brunet T. Cell contractility in early animal evolution. Curr Biol 2023; 33:R966-R985. [PMID: 37751712 DOI: 10.1016/j.cub.2023.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Tissue deformation mediated by collective cell contractility is a signature characteristic of animals. In most animals, fast and reversible contractions of muscle cells mediate behavior, while slow and irreversible contractions of epithelial or mesenchymal cells play a key role in morphogenesis. Animal tissue contractility relies on the activity of the actin/myosin II complex (together referred to as 'actomyosin'), an ancient and versatile molecular machinery that performs a broad range of functions in development and physiology. This review synthesizes emerging insights from morphological and molecular studies into the evolutionary history of animal contractile tissue. The most ancient functions of actomyosin are cell crawling and cytokinesis, which are found in a wide variety of unicellular eukaryotes and in individual metazoan cells. Another contractile functional module, apical constriction, is universal in metazoans and shared with choanoflagellates, their closest known living relatives. The evolution of animal contractile tissue involved two key innovations: firstly, the ability to coordinate and integrate actomyosin assembly across multiple cells, notably to generate supracellular cables, which ensure tissue integrity but also allow coordinated morphogenesis and movements at the organism scale; and secondly, the evolution of dedicated contractile cell types for adult movement, belonging to two broad categories respectively defined by the expression of the fast (striated-type) and slow (smooth/non-muscle-type) myosin II paralogs. Both contractile cell types ancestrally resembled generic contractile epithelial or mesenchymal cells and might have played a versatile role in both behavior and morphogenesis. Modern animal contractile cells span a continuum between unspecialized contractile epithelia (which underlie behavior in modern placozoans), epithelia with supracellular actomyosin cables (found in modern sponges), epitheliomuscular tissues (with a concentration of actomyosin cables in basal processes, for example in sea anemones), and specialized muscle tissue that has lost most or all epithelial properties (as in ctenophores, jellyfish and bilaterians). Recent studies in a broad range of metazoans have begun to reveal the molecular basis of these transitions, powered by the elaboration of the contractile apparatus and the evolution of 'core regulatory complexes' of transcription factors specifying contractile cell identity.
Collapse
Affiliation(s)
- Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
18
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers K, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551666. [PMID: 37577507 PMCID: PMC10418225 DOI: 10.1101/2023.08.02.551666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate anatomy, molecular physiology, and control of these movements. We find them driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent system, controlled by an Akt/NO/PKG/A pathway. A concomitant increase in reactive oxygen species and secretion of proteinases and cytokines indicate an inflammation-like state reminiscent of vascular endothelial cells experiencing oscillatory shear stress. This suggests an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic Consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Monteagudo-Cascales E, Ortega Á, Velando F, Morel B, Matilla MA, Krell T. Study of NIT domain-containing chemoreceptors from two global phytopathogens and identification of NIT domains in eukaryotes. Mol Microbiol 2023. [PMID: 37186477 DOI: 10.1111/mmi.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Bacterial signal transduction systems are typically activated by the binding of signal molecules to receptor ligand binding domains (LBDs), such as the NIT LBD. We report here the identification of the NIT domain in more than 15,000 receptors that were present in 30 bacterial phyla, but also in 19 eukaryotic phyla, expanding its known phylogenetic distribution. The NIT domain formed part of seven receptor families that either control transcription, mediate chemotaxis or regulate second messenger levels. We have produced the NIT domains from chemoreceptors of the bacterial phytopathogens Pectobacterium atrosepticum (PacN) and Pseudomonas savastanoi (PscN) as individual purified proteins. High-throughput ligand screening using compound libraries revealed a specificity for nitrate and nitrite binding. Isothermal titration calorimetry experiments showed that PacN-LBD bound preferentially nitrate ( K D = 1.9 μM), whereas the affinity of PscN-LBD for nitrite ( K D = 2.1 μM) was 22 times higher than that for nitrate. Analytical ultracentrifugation experiments indicated that PscN-LBD is monomeric in the presence and absence of ligands. The R182A mutant of PscN did not bind nitrate or nitrite. This residue is not conserved in the NIT domain of the Pseudomonas aeruginosa chemoreceptor PA4520, which may be related to its failure to bind nitrate/nitrite. The magnitude of P. atrosepticum chemotaxis towards nitrate was significantly greater than that of nitrite and pacN deletion almost abolished responses to both compounds. This study highlights the important role of nitrate and nitrite as signal molecules in life and advances our knowledge on the NIT domain as universal nitrate/nitrite sensor module.
Collapse
Affiliation(s)
- Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence 'Campus Mare Nostrum, Murcia, Spain
| | - Félix Velando
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Bertrand Morel
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
20
|
Thoma V, Sakai S, Nagata K, Ishii Y, Maruyama S, Abe A, Kondo S, Kawata M, Hamada S, Deguchi R, Tanimoto H. On the origin of appetite: GLWamide in jellyfish represents an ancestral satiety neuropeptide. Proc Natl Acad Sci U S A 2023; 120:e2221493120. [PMID: 37011192 PMCID: PMC10104569 DOI: 10.1073/pnas.2221493120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 04/05/2023] Open
Abstract
Food intake is regulated by internal state. This function is mediated by hormones and neuropeptides, which are best characterized in popular model species. However, the evolutionary origins of such feeding-regulating neuropeptides are poorly understood. We used the jellyfish Cladonema to address this question. Our combined transcriptomic, behavioral, and anatomical approaches identified GLWamide as a feeding-suppressing peptide that selectively inhibits tentacle contraction in this jellyfish. In the fruit fly Drosophila, myoinhibitory peptide (MIP) is a related satiety peptide. Surprisingly, we found that GLWamide and MIP were fully interchangeable in these evolutionarily distant species for feeding suppression. Our results suggest that the satiety signaling systems of diverse animals share an ancient origin.
Collapse
Affiliation(s)
- Vladimiros Thoma
- Graduate School of Life Sciences, Tohoku University, Sendai980-8577, Japan
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai980-0845, Japan
| | - Shuhei Sakai
- Graduate School of Life Sciences, Tohoku University, Sendai980-8577, Japan
| | - Koki Nagata
- Graduate School of Life Sciences, Tohoku University, Sendai980-8577, Japan
| | - Yuu Ishii
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai980-0845, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobaku, Sendai980-8578, Japan
| | - Shinichiro Maruyama
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobaku, Sendai980-8578, Japan
- Department of Life Science, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo112-8610, Japan
| | - Ayako Abe
- Graduate School of Life Sciences, Tohoku University, Sendai980-8577, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo125-8585, Japan
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
| | - Masakado Kawata
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobaku, Sendai980-8578, Japan
| | - Shun Hamada
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women’s University, Fukuoka813-8529, Japan
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai980-0845, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai980-8577, Japan
| |
Collapse
|
21
|
Friedrich T, Stengel A. Current state of phoenixin-the implications of the pleiotropic peptide in stress and its potential as a therapeutic target. Front Pharmacol 2023; 14:1076800. [PMID: 36860304 PMCID: PMC9968724 DOI: 10.3389/fphar.2023.1076800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023] Open
Abstract
Phoenixin is a pleiotropic peptide, whose known functions have broadened significantly over the last decade. Initially first described as a reproductive peptide in 2013, phoenixin is now recognized as being implicated in hypertension, neuroinflammation, pruritus, food intake, anxiety as well as stress. Due to its wide field of involvement, an interaction with physiological as well as psychological control loops has been speculated. It has shown to be both able to actively reduce anxiety as well as being influenced by external stressors. Initial rodent models have shown that central administration of phoenixin alters the behavior of the subjects when confronted with stress-inducing situations, proposing an interaction with the perception and processing of stress and anxiety. Although the research on phoenixin is still in its infancy, there are several promising insights into its functionality, which might prove to be of value in the pharmacological treatment of several psychiatric and psychosomatic illnesses such as anorexia nervosa, post-traumatic stress disorder as well as the increasingly prevalent stress-related illnesses of burnout and depression. In this review, we aim to provide an overview of the current state of knowledge of phoenixin, its interactions with physiological processes as well as focus on the recent developments in stress response and the possible novel treatment options this might entail.
Collapse
Affiliation(s)
- T. Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - A. Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany,*Correspondence: A. Stengel,
| |
Collapse
|
22
|
Glendinning S, Fitzgibbon QP, Smith GG, Ventura T. Unravelling the neuropeptidome of the ornate spiny lobster Panulirus ornatus: A focus on peptide hormones and their processing enzymes expressed in the reproductive tissues. Gen Comp Endocrinol 2023; 332:114183. [PMID: 36471526 DOI: 10.1016/j.ygcen.2022.114183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Neuropeptides are commonly produced in the neural tissues yet can have effects on far-reaching targets, with varied biological responses. We describe here the neuropeptidome of the ornate spiny lobster, Panulirus ornatus, a species of emerging importance to closed-system aquaculture, with a focus on peptide hormones produced by the reproductive tissues. Transcripts for a precursor to one neuropeptide, adipokinetic hormone/corazonin-related peptide (ACP) were identified in high numbers in the sperm duct of adult spiny lobsters suggesting a role for ACP in the reproduction of this species. Neuropeptide production in the sperm duct may be linked with physiological control of spermatophore production in the male, or alternatively may function in signalling to the female. The enzymes which process nascent neuropeptide precursors into their mature, active forms have seldom been studied in decapods, and never before at the multi-tissue level. We have identified transcripts for multiple members of the proprotein convertase subtisilin/kexin family in the ornate spiny lobster, with some enzymes showing specificity to certain tissues. In addition, other enzyme transcripts involved with neuropeptide processing are identified along with their tissue and life stage expression patterns.
Collapse
Affiliation(s)
- Susan Glendinning
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia.
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
23
|
Jayachandran P, Battaglin F, Strelez C, Lenz A, Algaze S, Soni S, Lo JH, Yang Y, Millstein J, Zhang W, Shih JC, Lu J, Mumenthaler SM, Spicer D, Neman J, Roussos Torres ET, Lenz HJ. Breast cancer and neurotransmitters: emerging insights on mechanisms and therapeutic directions. Oncogene 2023; 42:627-637. [PMID: 36650218 PMCID: PMC9957733 DOI: 10.1038/s41388-022-02584-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
Exploring the relationship between various neurotransmitters and breast cancer cell growth has revealed their likely centrality to improving breast cancer treatment. Neurotransmitters play a key role in breast cancer biology through their effects on the cell cycle, epithelial mesenchymal transition, angiogenesis, inflammation, the tumor microenvironment and other pathways. Neurotransmitters and their receptors are vital to the initiation, progression and drug resistance of cancer and progress in our biological understanding may point the way to lower-cost and lower-risk antitumor therapeutic strategies. This review discusses multiple neurotransmitters in the context of breast cancer. It also discusses risk factors, repurposing of pharmaceuticals impacting neurotransmitter pathways, and the opportunity for better integrated models that encompass exercise, the intestinal microbiome, and other non-pharmacologic considerations. Neurotransmitters' role in breast cancer should no longer be ignored; it may appear to complicate the molecular picture but the ubiquity of neurotransmitters and their wide-ranging impacts provide an organizing framework upon which further understanding and progress against breast cancer can be based.
Collapse
Affiliation(s)
- Priya Jayachandran
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Francesca Battaglin
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, US
| | - Annika Lenz
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Sandra Algaze
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Shivani Soni
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Jae Ho Lo
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Yan Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Wu Zhang
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Jean C Shih
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, US
| | - Janice Lu
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Shannon M Mumenthaler
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, US
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, US
| | - Darcy Spicer
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Josh Neman
- Department of Neurosurgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Evanthia T Roussos Torres
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Heinz-Josef Lenz
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US.
| |
Collapse
|
24
|
Aguilar-Camacho JM, Foreman K, Jaimes-Becerra A, Aharoni R, Gründer S, Moran Y. Functional analysis in a model sea anemone reveals phylogenetic complexity and a role in cnidocyte discharge of DEG/ENaC ion channels. Commun Biol 2023; 6:17. [PMID: 36609696 PMCID: PMC9822975 DOI: 10.1038/s42003-022-04399-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Ion channels of the DEG/ENaC family share a similar structure but serve strikingly diverse biological functions, such as Na+ reabsorption, mechanosensing, proton-sensing, chemosensing and cell-cell communication via neuropeptides. This functional diversity raises the question of the ancient function of DEG/ENaCs. Using an extensive phylogenetic analysis across many different animal groups, we found a surprising diversity of DEG/ENaCs already in Cnidaria (corals, sea anemones, hydroids and jellyfish). Using a combination of gene expression analysis, electrophysiological and functional studies combined with pharmacological inhibition as well as genetic knockout in the model cnidarian Nematostella vectensis, we reveal an unanticipated role for a proton-sensitive DEG/ENaC in discharge of N. vectensis cnidocytes, the stinging cells typifying all cnidarians. Our study supports the view that DEG/ENaCs are versatile channels that have been co-opted for diverse functions since their early occurrence in animals and that respond to simple and ancient stimuli, such as omnipresent protons.
Collapse
Affiliation(s)
- Jose Maria Aguilar-Camacho
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | - Adrian Jaimes-Becerra
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Aachen, Germany.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
25
|
Farris SM. Insect PRXamides: Evolutionary Divergence, Novelty, and Loss in a Conserved Neuropeptide System. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 36661324 PMCID: PMC9853942 DOI: 10.1093/jisesa/ieac079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Indexed: 06/17/2023]
Abstract
The PRXamide neuropeptides have been described in both protostome and deuterostome species, including all major groups of the Panarthropoda. Best studied are the insect PRXamides consisting of three genes: pk/pban, capa, and eth, each encoding multiple short peptides that are cleaved post-translationally. Comparisons of genome and transcriptome sequences reveal that while retaining its fundamental ancestral organization, the products of the pk/pban gene have undergone significant change in the insect Order Diptera. Basal dipteran pk/pban genes are much like those of other holometabolous insects, while more crown species have lost two peptide coding sequences including the otherwise ubiquitous pheromone biosynthesis activating neuropeptide (PBAN). In the genomic model species Drosophila melanogaster, one of the remaining peptides (hugin) plays a potentially novel role in feeding and locomotor regulation tied to circadian rhythms. Comparison of peptide coding sequences of pk/pban across the Diptera pinpoints the acquisition or loss of the hugin and PBAN peptide sequences respectively, and provides clues to associated changes in life history, physiology, and/or behavior. Interestingly, the neural circuitry underlying pk/pban function is highly conserved across the insects regardless of the composition of the pk/pban gene. The rapid evolution and diversification of the Diptera provide many instances of adaptive novelties from genes to behavior that can be placed in the context of emerging selective pressures at key points in their phylogeny; further study of changing functional roles of pk/pban may then be facilitated by the high-resolution genetic tools available in Drosophila melanogaster.
Collapse
|
26
|
Aleotti A, Wilkie IC, Yañez-Guerra LA, Gattoni G, Rahman TA, Wademan RF, Ahmad Z, Ivanova DA, Semmens DC, Delroisse J, Cai W, Odekunle E, Egertová M, Ferrario C, Sugni M, Bonasoro F, Elphick MR. Discovery and functional characterization of neuropeptides in crinoid echinoderms. Front Neurosci 2022; 16:1006594. [PMID: 36583101 PMCID: PMC9793003 DOI: 10.3389/fnins.2022.1006594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
Neuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria. However, our knowledge of neuropeptide signaling in echinoderms is largely based on bioinformatic and experimental analysis of eleutherozoans-Asterozoa (starfish and brittle stars) and Echinozoa (sea urchins and sea cucumbers). Little is known about neuropeptide signaling in crinoids (feather stars and sea lilies), which are a sister clade to the Eleutherozoa. Therefore, we have analyzed transcriptome/genome sequence data from three feather star species, Anneissia japonica, Antedon mediterranea, and Florometra serratissima, to produce the first comprehensive identification of neuropeptide precursors in crinoids. These include representatives of bilaterian neuropeptide precursor families and several predicted crinoid neuropeptide precursors. Using A. mediterranea as an experimental model, we have investigated the expression of selected neuropeptides in larvae (doliolaria), post-metamorphic pentacrinoids and adults, providing new insights into the cellular architecture of crinoid nervous systems. Thus, using mRNA in situ hybridization F-type SALMFamide precursor transcripts were revealed in a previously undescribed population of peptidergic cells located dorso-laterally in doliolaria. Furthermore, using immunohistochemistry a calcitonin-type neuropeptide was revealed in the aboral nerve center, circumoral nerve ring and oral tube feet in pentacrinoids and in the ectoneural and entoneural compartments of the nervous system in adults. Moreover, functional analysis of a vasopressin/oxytocin-type neuropeptide (crinotocin), which is expressed in the brachial nerve of the arms in A. mediterranea, revealed that this peptide causes a dose-dependent change in the mechanical behavior of arm preparations in vitro-the first reported biological action of a neuropeptide in a crinoid. In conclusion, our findings provide new perspectives on neuropeptide signaling in echinoderms and the foundations for further exploration of neuropeptide expression/function in crinoids as a sister clade to eleutherozoan echinoderms.
Collapse
Affiliation(s)
- Alessandra Aleotti
- Department of Environmental Science and Policy, University of Milan, Milan, Italy,School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Iain C. Wilkie
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Luis A. Yañez-Guerra
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Giacomo Gattoni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy,School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Tahshin A. Rahman
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard F. Wademan
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Zakaryya Ahmad
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Deyana A. Ivanova
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Dean C. Semmens
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Jérôme Delroisse
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Weigang Cai
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Esther Odekunle
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Michaela Egertová
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Maurice R. Elphick
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom,*Correspondence: Maurice R. Elphick,
| |
Collapse
|
27
|
Colgren J, Burkhardt P. The premetazoan ancestry of the synaptic toolkit and appearance of first neurons. Essays Biochem 2022; 66:781-795. [PMID: 36205407 PMCID: PMC9750855 DOI: 10.1042/ebc20220042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Neurons, especially when coupled with muscles, allow animals to interact with and navigate through their environment in ways unique to life on earth. Found in all major animal lineages except sponges and placozoans, nervous systems range widely in organization and complexity, with neurons possibly representing the most diverse cell-type. This diversity has led to much debate over the evolutionary origin of neurons as well as synapses, which allow for the directed transmission of information. The broad phylogenetic distribution of neurons and presence of many of the defining components outside of animals suggests an early origin of this cell type, potentially in the time between the first animal and the last common ancestor of extant animals. Here, we highlight the occurrence and function of key aspects of neurons outside of animals as well as recent findings from non-bilaterian animals in order to make predictions about when and how the first neuron(s) arose during animal evolution and their relationship to those found in extant lineages. With advancing technologies in single cell transcriptomics and proteomics as well as expanding functional techniques in non-bilaterian animals and the close relatives of animals, it is an exciting time to begin unraveling the complex evolutionary history of this fascinating animal cell type.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| |
Collapse
|
28
|
Jokura K, Sato Y, Shiba K, Inaba K. Two distinct compartments of a ctenophore comb plate provide structural and functional integrity for the motility of giant multicilia. Curr Biol 2022; 32:5144-5152.e6. [PMID: 36272402 DOI: 10.1016/j.cub.2022.09.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/12/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Comb plates are large ciliary structures uniquely seen in comb jellies (ctenophores).1,2,3 A comb plate is constructed from tens of thousands of cilia that are bundled together by structures called compartmenting lamellae (CLs).4,5,6 We previously reported the first component of the CL, CTENO64, and found that it was specifically found in ctenophores and was essential for the determination of ciliary orientation.3 However, CTENO64 is localized only in the proximal region of the CL; therefore, the molecular architecture of the CL over the entire length of a comb plate has not been elucidated. Here, we identified a second CL component, CTENO189. This ctenophore-specific protein was present in the distal region of comb plates, with a localization clearly segregated from CTENO64. Knockdown of the CTENO189 gene using morpholino antisense oligonucleotides resulted in complete loss of CLs in the distal region of comb plates but did not affect the formation of comb plates or the orientation of each cilium. However, the hexagonal distribution of cilia was disarranged, and the metachronal coordination of comb plates along a comb row was lost in the CTENO189 morphants. The morphant comb plate showed asymmetric ciliary-type movement in normal seawater, and in a high-viscosity solution, it could not maintain the normal waveforms but showed a symmetric flagellar-type movement. Our findings demonstrated two distinct compartments of a comb plate: the proximal CL as the building foundation that rigidly fixes the ciliary orientation, and the distal CL that reinforces the elastic connection among cilia to overcome the hydrodynamic drag of giant multiciliary plates.
Collapse
Affiliation(s)
- Kei Jokura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Yu Sato
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan.
| |
Collapse
|
29
|
Stäubert C, Wozniak M, Dupuis N, Laschet C, Pillaiyar T, Hanson J. Superconserved receptors expressed in the brain: Expression, function, motifs and evolution of an orphan receptor family. Pharmacol Ther 2022; 240:108217. [PMID: 35644261 DOI: 10.1016/j.pharmthera.2022.108217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
GPR27, GPR85 and GPR173 constitute a small family of G protein-coupled receptors (GPCR) that share the distinctive characteristics of being highly conserved throughout vertebrate evolution and predominantly expressed in the brain. Accordingly, they have been coined as "Superconserved Receptors Expressed in the Brain" (SREB), although their expression profile is more complex than what was originally thought. SREBs have no known validated endogenous ligands and are thus labeled as "orphan" receptors. The investigation of this particular category of uncharacterized receptors holds great promise both in terms of physiology and drug development. In the largest GPCR family, the Rhodopsin-like or Class A, around 100 receptors are considered orphans. Because GPCRs are the most successful source of drug targets, the discovery of a novel function or ligand most likely will lead to significant breakthroughs for the discovery of innovative therapies. The high level of conservation is one of the characteristic features of the SREBs. We propose herein a detailed analysis of the putative evolutionary origin of this family. We highlight the properties that distinguish SREBs from other rhodopsin-like GPCRs. We present the current evidence for these receptors downstream signaling pathways and functions. We discuss the pharmacological challenge for the identification of natural or synthetic ligands of orphan receptors like SREBs. The different SREB-related scientific questions are presented with a highlight on what should be addressed in the near future, including the confirmation of published evidence and their validation as drug targets. In particular, we discuss in which pathological conditions these receptors may be of great relevance to solve unmet medical needs.
Collapse
Affiliation(s)
- Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany.
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Nadine Dupuis
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Céline Laschet
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium; Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium.
| |
Collapse
|
30
|
Hayakawa E, Guzman C, Horiguchi O, Kawano C, Shiraishi A, Mohri K, Lin MF, Nakamura R, Nakamura R, Kawai E, Komoto S, Jokura K, Shiba K, Shigenobu S, Satake H, Inaba K, Watanabe H. Mass spectrometry of short peptides reveals common features of metazoan peptidergic neurons. Nat Ecol Evol 2022; 6:1438-1448. [PMID: 35941202 PMCID: PMC9525235 DOI: 10.1038/s41559-022-01835-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
The evolutionary origins of neurons remain unknown. Although recent genome data of extant early-branching animals have shown that neural genes existed in the common ancestor of animals, the physiological and genetic properties of neurons in the early evolutionary phase are still unclear. Here, we performed a mass spectrometry-based comprehensive survey of short peptides from early-branching lineages Cnidaria, Porifera and Ctenophora. We identified a number of mature ctenophore neuropeptides that are expressed in neurons associated with sensory, muscular and digestive systems. The ctenophore peptides are stored in vesicles in cell bodies and neurites, suggesting volume transmission similar to that of cnidarian and bilaterian peptidergic systems. A comparison of genetic characteristics revealed that the peptide-expressing cells of Cnidaria and Ctenophora express the vast majority of genes that have pivotal roles in maturation, secretion and degradation of neuropeptides in Bilateria. Functional analysis of neuropeptides and prediction of receptors with machine learning demonstrated peptide regulation of a wide range of target effector cells, including cells of muscular systems. The striking parallels between the peptidergic neuronal properties of Cnidaria and Bilateria and those of Ctenophora, the most basal neuron-bearing animals, suggest a common evolutionary origin of metazoan peptidergic nervous systems.
Collapse
Affiliation(s)
- Eisuke Hayakawa
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Christine Guzman
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Osamu Horiguchi
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Chihiro Kawano
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kurato Mohri
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mei-Fang Lin
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ryotaro Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ryo Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Erina Kawai
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shinya Komoto
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Imaging Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kei Jokura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Shuji Shigenobu
- Center for the Development of New Model Organisms, National Institute for Basic Biology, Okazaki, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
31
|
Sachkova MY. Neuropeptides at the origin of neurons. Nat Ecol Evol 2022; 6:1410-1411. [PMID: 35941203 DOI: 10.1038/s41559-022-01828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Y Sachkova
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| |
Collapse
|
32
|
Hauser F, Koch TL, Grimmelikhuijzen CJP. Review: The evolution of peptidergic signaling in Cnidaria and Placozoa, including a comparison with Bilateria. Front Endocrinol (Lausanne) 2022; 13:973862. [PMID: 36213267 PMCID: PMC9545775 DOI: 10.3389/fendo.2022.973862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bilateria have bilateral symmetry and are subdivided into Deuterostomia (animals like vertebrates) and Protostomia (animals like insects and mollusks). Neuropeptides occur in both Proto- and Deuterostomia and they are frequently structurally related across these two lineages. For example, peptides belonging to the oxytocin/vasopressin family exist in both clades. The same is true for the G protein-coupled receptors (GPCRs) of these peptides. These observations suggest that these neuropeptides and their GPCRs were already present in the common ancestor of Proto- and Deuterostomia, which lived about 700 million years ago (MYA). Furthermore, neuropeptides and their GPCRs occur in two early-branching phyla that diverged before the emergence of Bilateria: Cnidaria (animals like corals and sea anemones), and Placozoa (small disk-like animals, feeding on algae). The sequences of these neuropeptides and their GPCRs, however, are not closely related to those from Bilateria. In addition, cnidarian neuropeptides and their receptors are not closely related to those from Placozoa. We propose that the divergence times between Cnidaria, Placozoa, and Bilateria might be too long for recognizing sequence identities. Leucine-rich repeats-containing GPCRs (LGRs) are a special class of GPCRs that are characterized by a long N-terminus containing 10-20 leucine-rich domains, which are used for ligand binding. Among the ligands for LGRs are dimeric glycoprotein hormones, and insulin-like peptides, such as relaxin. LGRs have been found not only in Proto- and Deuterostomia, but also in early emerging phyla, such as Cnidaria and Placozoa. Humans have eight LGRs. In our current review, we have revisited the annotations of LGRs from the sea anemone Nematostella vectensis and the placozoan Trichoplax adhaerens. We identified 13 sea anemone LGRs and no less than 46 LGRs from T. adhaerens. All eight human LGRs appear to have orthologues in sea anemones and placozoans. LGRs and their ligands, therefore, have a long evolutionary history, going back to the common ancestor of Cnidaria and Placozoa.
Collapse
Affiliation(s)
- Frank Hauser
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas L. Koch
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
33
|
Newman SA. Inherency and agency in the origin and evolution of biological functions. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Although discussed by 20th century philosophers in terms drawn from the sciences of non-living systems, in recent decades biological function has been considered in relationship to organismal capability and purpose. Bringing two phenomena generally neglected in evolutionary theory (i.e. inherency and agency) to bear on questions of function leads to a rejection of the adaptationist ‘selected effects’ notion of biological function. I review work showing that organisms such as the placozoans can thrive with almost no functional embellishments beyond those of their constituent cells and physical properties of their simple tissues. I also discuss work showing that individual tissue cells and their artificial aggregates exhibit agential behaviours that are unprecedented in the histories of their respective lineages. I review findings on the unique metazoan mechanism of developmental gene expression that has recruited, during evolution, inherent ancestral cellular functionalities into specialized cell types and organs of the different animal groups. I conclude that most essential functions in animal species are inherent to the cells from which they evolved, not selected effects, and that many of the others are optional ‘add-ons’, a status inimical to fitness-based models of evolution positing that traits emerge from stringent cycles of selection to meet external challenges.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology & Anatomy, New York Medical College , Valhalla, NY 10595 , USA
| |
Collapse
|
34
|
Liang H, Zhao Q, Lv S, Ji X. Regulation and physiological functions of phoenixin. Front Mol Biosci 2022; 9:956500. [PMID: 36090042 PMCID: PMC9456248 DOI: 10.3389/fmolb.2022.956500] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Phoenixin is a newly discovered neuropeptide generated from small integral membrane protein 20. Phoenixin is a ligand for the G protein-coupled receptor 173 (GPR173) and has been detected in central and peripheral tissues of human, rats, mice, bovine, and zebrafish. It was initially involved in regulating reproductive function by stimulating the luteinizing hormone release from pituitary cells by increasing the level of gonadotropin-releasing hormone. Recently, many functions of phoenixin have been generalized, including regulation of food intake, memory, Alzheimer’s disease, anxiety, inflammation, neuronal and microglial activity, energy metabolism and body fluid balance, cardiovascular function, and endocrine activity. In addition, the interaction between phoenixin and nesfatin-1 have been revealed. The present article summarized the latest research progress on physiological function of phoenixin, suggesting that it is a potential target for novel drug development and clinical application.
Collapse
Affiliation(s)
- Han Liang
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|
35
|
Breton TS, Murray CA, Huff SR, Phaneuf AM, Tripp BM, Patuel SJ, Martyniuk CJ, DiMaggio MA. Phoenixin-14 alters transcriptome and steroid profiles in female green-spotted puffer (Dichotomyctere nigroviridis). Sci Rep 2022; 12:9454. [PMID: 35676522 PMCID: PMC9177834 DOI: 10.1038/s41598-022-13695-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
Phoenixin (PNX) is a highly conserved, novel hormone with diverse functions, including hypothalamic control of reproduction, appetite modulation, and regulation of energy metabolism and inflammation. While some functions appear conserved across vertebrates, additional research is required to fully characterize these complex pleiotropic effects. For instance, very little is known about transcriptome level changes associated with PNX exposure, including responses in the hypothalamic-pituitary-gonadal (HPG) axis, which is critical in vertebrate reproduction. In addition, the PNX system may be especially complex in fish, where an additional receptor is likely present in some species. The purpose of this study was to assess hypothalamic and ovarian transcriptomes after PNX-14 administration in female vitellogenic green-spotted puffer (Dichotomyctere nigroviridis). Steroid-related changes were also assessed in the liver and blood plasma. Hypothalamic responses included pro-inflammatory signals such as interleukin 1β, possibly related to gut-brain axis functions, as well as suppression of cell proliferation. Ovarian responses were more widely downregulated across all identified pathways, which may reflect progression to a less transcriptionally active state in oocytes. Both organs shared regulation in transforming growth factor-β and extracellular matrix remodeling (periostin) pathways. Reproductive processes were in general downregulated, but both inhibiting (bone morphogenetic protein 15 and follistatin) and promoting (17-hydroxyprogesterone) factors for oocyte maturation were identified. Select genes involved in reproduction (vitellogenins, estrogen receptors) in the liver were unresponsive to PNX-14 and higher doses may be needed to induce reproductive effects in D. nigroviridis. These results reinforce the complexity of PNX actions in diverse tissues and highlight important roles for this hormone in regulating the immune response, energy metabolism, and cell growth.
Collapse
Affiliation(s)
- Timothy S. Breton
- grid.266648.80000 0000 8760 9708Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938 USA
| | - Casey A. Murray
- grid.15276.370000 0004 1936 8091Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570 USA
| | - Sierra R. Huff
- grid.266648.80000 0000 8760 9708Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938 USA
| | - Anyssa M. Phaneuf
- grid.266648.80000 0000 8760 9708Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938 USA
| | - Bethany M. Tripp
- grid.266648.80000 0000 8760 9708Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938 USA
| | - Sarah J. Patuel
- grid.15276.370000 0004 1936 8091Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611 USA
| | - Christopher J. Martyniuk
- grid.15276.370000 0004 1936 8091Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611 USA
| | - Matthew A. DiMaggio
- grid.15276.370000 0004 1936 8091Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570 USA
| |
Collapse
|