1
|
Sarre LA, Kim IV, Ovchinnikov V, Olivetta M, Suga H, Dudin O, Sebé-Pedrós A, de Mendoza A. DNA methylation enables recurrent endogenization of giant viruses in an animal relative. SCIENCE ADVANCES 2024; 10:eado6406. [PMID: 38996012 PMCID: PMC11244446 DOI: 10.1126/sciadv.ado6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
5-Methylcytosine (5mC) is a widespread silencing mechanism that controls genomic parasites. In eukaryotes, 5mC has gained complex roles in gene regulation beyond parasite control, yet 5mC has also been lost in many lineages. The causes for 5mC retention and its genomic consequences are still poorly understood. Here, we show that the protist closely related to animals Amoebidium appalachense features both transposon and gene body methylation, a pattern reminiscent of invertebrates and plants. Unexpectedly, hypermethylated genomic regions in Amoebidium derive from viral insertions, including hundreds of endogenized giant viruses, contributing 14% of the proteome. Using a combination of inhibitors and genomic assays, we demonstrate that 5mC silences these giant virus insertions. Moreover, alternative Amoebidium isolates show polymorphic giant virus insertions, highlighting a dynamic process of infection, endogenization, and purging. Our results indicate that 5mC is critical for the controlled coexistence of newly acquired viral DNA into eukaryotic genomes, making Amoebidium a unique model to understand the hybrid origins of eukaryotic DNA.
Collapse
Affiliation(s)
- Luke A. Sarre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Iana V. Kim
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Vladimir Ovchinnikov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arnau Sebé-Pedrós
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- ICREA, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Zhang Y, Chen J, Zheng B, Teng J, Lou Z, Feng H, Zhao S, Xue L. Genome-wide identification, evolution of DNA methyltransferases and their expression under salinity stress in Larimichthys crocea. Int J Biol Macromol 2024; 264:130603. [PMID: 38447841 DOI: 10.1016/j.ijbiomac.2024.130603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024]
Abstract
DNA methyltransferases (Dnmts) are responsible for DNA methylation which influences patterns of gene expression and plays a crucial role in response to environmental changes. In this study, 7 LcDnmt genes were identified in the genome of large yellow croaker (Larimichthys crocea). The comprehensive analysis was conducted on gene structure, protein and location site of LcDnmts. LcDnmt proteins belonged to three groups (Dnmt1, Dnmt2, and Dnmt3) according to their conserved domains and phylogenetic analysis. Although Dnmt3 can be further divided into three sub groups (Dnmt3a, Dnmt3b, and Dnmt3l), there is no Dnmnt3l member in the large yellow croaker. Phylogenetic analysis revealed that the Dnmt family was highly conserved in teleosts. Expression patterns derived from the RNA-seq, qRT-PCR and Western blot analysis revealed that 2 LcDnmt genes (LcDnmt1 and LcDnmt3a2) significantly regulated under salinity stress in the liver, which was found to be dominantly expressed in the intestine and brain, respectively. These two genes may play an important role in the salinity stress of large yellow croaker and represent candidates for future functional analysis. Our results revealed the conservation of Dnmts during evolution and indicated a potential role of Dnmts in epigenetic regulation of response to salinity stress.
Collapse
Affiliation(s)
- Yu Zhang
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Jiaqian Chen
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Baoxiao Zheng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jian Teng
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Zhengjia Lou
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Huijie Feng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Shiqi Zhao
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Liangyi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
3
|
Qin Y, Li T, An P, Ren Z, Xi J, Tang B. Important role of DNA methylation hints at significant potential in tuberculosis. Arch Microbiol 2024; 206:177. [PMID: 38494532 DOI: 10.1007/s00203-024-03888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection, has persisted as a major global public health threat for millennia. Until now, TB continues to challenge efforts aimed at controlling it, with drug resistance and latent infections being the two main factors hindering treatment efficacy. The scientific community is still striving to understand the underlying mechanisms behind Mtb's drug resistance and latent infection. DNA methylation, a critical epigenetic modification occurring throughout an individual's growth and development, has gained attention following advances in high-throughput sequencing technologies. Researchers have observed abnormal DNA methylation patterns in the host genome during Mtb infection. Given the escalating issue of drug-resistant Mtb, delving into the role of DNA methylation in TB's development is crucial. This review article explores DNA methylation's significance in human growth, development and disease, and its role in regulating Mtb's evolution and infection processes. Additionally, it discusses potential applications of DNA methylation research in tuberculosis.
Collapse
Affiliation(s)
- Yuexuan Qin
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Tianyue Li
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Peiyan An
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Zhi Ren
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Jun Xi
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China.
| | - Bikui Tang
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China.
| |
Collapse
|
4
|
Cissé OH, Curran SJ, Folco HD, Liu Y, Bishop L, Wang H, Fischer ER, Davis AS, Combs C, Thapar S, Dekker JP, Grewal S, Cushion M, Ma L, Kovacs JA. Regional centromere configuration in the fungal pathogens of the Pneumocystis genus. mBio 2024; 15:e0318523. [PMID: 38380929 PMCID: PMC10936427 DOI: 10.1128/mbio.03185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Centromeres are constricted chromosomal regions that are essential for cell division. In eukaryotes, centromeres display a remarkable architectural and genetic diversity. The basis of centromere-accelerated evolution remains elusive. Here, we focused on Pneumocystis species, a group of mammalian-specific fungal pathogens that form a sister taxon with that of the Schizosaccharomyces pombe, an important genetic model for centromere biology research. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of S. pombe. Using organisms from a short-term in vitro culture or infected animal models and chromatin immunoprecipitation (ChIP)-Seq, we identified CENP-A bound regions in two Pneumocystis species that diverged ~35 million years ago. Each species has a unique short regional centromere (<10 kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. These features suggest an epigenetic specification of centromere function. Analysis of centromeric DNA across multiple Pneumocystis species suggests a vertical transmission at least 100 million years ago. The common ancestry of Pneumocystis and S. pombe centromeres is untraceable at the DNA level, but the overall architectural similarity could be the result of functional constraint for successful chromosomal segregation.IMPORTANCEPneumocystis species offer a suitable genetic system to study centromere evolution in pathogens because of their phylogenetic proximity with the non-pathogenic yeast S. pombe, a popular model for cell biology. We used this system to explore how centromeres have evolved after the divergence of the two clades ~ 460 million years ago. To address this question, we established a protocol combining short-term culture and ChIP-Seq to characterize centromeres in multiple Pneumocystis species. We show that Pneumocystis have short epigenetic centromeres that function differently from those in S. pombe.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shelly J. Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - H. Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bishop
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth R. Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - A. Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Christian Combs
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabrina Thapar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John P. Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shiv Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melanie Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Zhu C, Hao Z, Liu D. Reshaping the Landscape of the Genome: Toolkits for Precise DNA Methylation Manipulation and Beyond. JACS AU 2024; 4:40-57. [PMID: 38274248 PMCID: PMC10806789 DOI: 10.1021/jacsau.3c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024]
Abstract
DNA methylation plays a pivotal role in various biological processes and is highly related to multiple diseases. The exact functions of DNA methylation are still puzzling due to its uneven distribution, dynamic conversion, and complex interactions with other substances. Current methods such as chemical- and enzyme-based sequencing techniques have enabled us to pinpoint DNA methylation at single-base resolution, which necessitated the manipulation of DNA methylation at comparable resolution to precisely illustrate the correlations and causal relationships between the functions of DNA methylation and its spatiotemporal patterns. Here a perspective on the past, recent process, and future of precise DNA methylation tools is provided. Specifically, genome-wide and site-specific manipulation of DNA methylation methods is discussed, with an emphasis on their principles, limitations, applications, and future developmental directions.
Collapse
Affiliation(s)
- Chenyou Zhu
- Engineering
Research Center of Advanced Rare Earth Materials, Ministry of Education,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ziyang Hao
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing, 100069, PR China
| | - Dongsheng Liu
- Engineering
Research Center of Advanced Rare Earth Materials, Ministry of Education,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Funabiki H, Wassing IE, Jia Q, Luo JD, Carroll T. Coevolution of the CDCA7-HELLS ICF-related nucleosome remodeling complex and DNA methyltransferases. eLife 2023; 12:RP86721. [PMID: 37769127 PMCID: PMC10538959 DOI: 10.7554/elife.86721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
5-Methylcytosine (5mC) and DNA methyltransferases (DNMTs) are broadly conserved in eukaryotes but are also frequently lost during evolution. The mammalian SNF2 family ATPase HELLS and its plant ortholog DDM1 are critical for maintaining 5mC. Mutations in HELLS, its activator CDCA7, and the de novo DNA methyltransferase DNMT3B, cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, a genetic disorder associated with the loss of DNA methylation. We here examine the coevolution of CDCA7, HELLS and DNMTs. While DNMT3, the maintenance DNA methyltransferase DNMT1, HELLS, and CDCA7 are all highly conserved in vertebrates and green plants, they are frequently co-lost in other evolutionary clades. The presence-absence patterns of these genes are not random; almost all CDCA7 harboring eukaryote species also have HELLS and DNMT1 (or another maintenance methyltransferase, DNMT5). Coevolution of presence-absence patterns (CoPAP) analysis in Ecdysozoa further indicates coevolutionary linkages among CDCA7, HELLS, DNMT1 and its activator UHRF1. We hypothesize that CDCA7 becomes dispensable in species that lost HELLS or DNA methylation, and/or the loss of CDCA7 triggers the replacement of DNA methylation by other chromatin regulation mechanisms. Our study suggests that a unique specialized role of CDCA7 in HELLS-dependent DNA methylation maintenance is broadly inherited from the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Isabel E Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
7
|
Arkhipova IR, Yushenova IA, Rodriguez F. Shaping eukaryotic epigenetic systems by horizontal gene transfer. Bioessays 2023; 45:e2200232. [PMID: 37339822 PMCID: PMC10287040 DOI: 10.1002/bies.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 06/22/2023]
Abstract
DNA methylation constitutes one of the pillars of epigenetics, relying on covalent bonds for addition and/or removal of chemically distinct marks within the major groove of the double helix. DNA methyltransferases, enzymes which introduce methyl marks, initially evolved in prokaryotes as components of restriction-modification systems protecting host genomes from bacteriophages and other invading foreign DNA. In early eukaryotic evolution, DNA methyltransferases were horizontally transferred from bacteria into eukaryotes several times and independently co-opted into epigenetic regulatory systems, primarily via establishing connections with the chromatin environment. While C5-methylcytosine is the cornerstone of plant and animal epigenetics and has been investigated in much detail, the epigenetic role of other methylated bases is less clear. The recent addition of N4-methylcytosine of bacterial origin as a metazoan DNA modification highlights the prerequisites for foreign gene co-option into the host regulatory networks, and challenges the existing paradigms concerning the origin and evolution of eukaryotic regulatory systems.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachusetts, USA
| | - Irina A Yushenova
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachusetts, USA
| | - Fernando Rodriguez
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachusetts, USA
| |
Collapse
|
8
|
Hoguin A, Yang F, Groisillier A, Bowler C, Genovesio A, Ait-Mohamed O, Vieira FRJ, Tirichine L. The model diatom Phaeodactylum tricornutum provides insights into the diversity and function of microeukaryotic DNA methyltransferases. Commun Biol 2023; 6:253. [PMID: 36894681 PMCID: PMC9998398 DOI: 10.1038/s42003-023-04629-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Cytosine methylation is an important epigenetic mark involved in the transcriptional control of transposable elements in mammals, plants and fungi. The Stramenopiles-Alveolate-Rhizaria (SAR) lineages are a major group of ecologically important marine microeukaryotes, including the phytoplankton groups diatoms and dinoflagellates. However, little is known about their DNA methyltransferase diversity. Here, we performed an in-silico analysis of DNA methyltransferases found in marine microeukaryotes and showed that they encode divergent DNMT3, DNMT4, DNMT5 and DNMT6 enzymes. Furthermore, we found three classes of enzymes within the DNMT5 family. Using a CRISPR/Cas9 strategy we demonstrated that the loss of the DNMT5a gene correlates with a global depletion of DNA methylation and overexpression of young transposable elements in the model diatom Phaeodactylum tricornutum. The study provides a view of the structure and function of a DNMT family in the SAR supergroup using an attractive model species.
Collapse
Affiliation(s)
- Antoine Hoguin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Feng Yang
- Nantes Université, CNRS, US2B, UMR 6286, F-44000, Nantes, France
| | | | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Auguste Genovesio
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Ouardia Ait-Mohamed
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France.
| | - Fabio Rocha Jimenez Vieira
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France.
- Laboratory of Computational and Quantitative Biology-LCQB - UMR 7238 CNRS-Sorbonne Université. Institut de Biologie Paris Seine, 75005, Paris, France.
| | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, F-44000, Nantes, France.
| |
Collapse
|
9
|
Phillips CM, Stamatovic SM, Keep RF, Andjelkovic AV. Epigenetics and stroke: role of DNA methylation and effect of aging on blood-brain barrier recovery. Fluids Barriers CNS 2023; 20:14. [PMID: 36855111 PMCID: PMC9972738 DOI: 10.1186/s12987-023-00414-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Incomplete recovery of blood-brain barrier (BBB) function contributes to stroke outcomes. How the BBB recovers after stroke remains largely unknown. Emerging evidence suggests that epigenetic factors play a significant role in regulating post-stroke BBB recovery. This study aimed to evaluate the epigenetic and transcriptional profile of cerebral microvessels after thromboembolic (TE) stroke to define potential causes of limited BBB recovery. RNA-sequencing and reduced representation bisulfite sequencing (RRBS) analyses were performed using microvessels isolated from young (6 months) and old (18 months) mice seven days poststroke compared to age-matched sham controls. DNA methylation profiling of poststroke brain microvessels revealed 11,287 differentially methylated regions (DMR) in old and 9818 DMR in young mice, corresponding to annotated genes. These DMR were enriched in genes encoding cell structural proteins (e.g., cell junction, and cell polarity, actin cytoskeleton, extracellular matrix), transporters and channels (e.g., potassium transmembrane transporter, organic anion and inorganic cation transporters, calcium ion transport), and proteins involved in endothelial cell processes (e.g., angiogenesis/vasculogenesis, cell signaling and transcription regulation). Integrated analysis of methylation and RNA sequencing identified changes in cell junctions (occludin), actin remodeling (ezrin) as well as signaling pathways like Rho GTPase (RhoA and Cdc42ep4). Aging as a hub of aberrant methylation affected BBB recovery processes by profound alterations (hypermethylation and repression) in structural protein expression (e.g., claudin-5) as well as activation of a set of genes involved in endothelial to mesenchymal transformation (e.g., Sox9, Snai1), repression of angiogenesis and epigenetic regulation. These findings revealed that DNA methylation plays an important role in regulating BBB repair after stroke, through regulating processes associated with BBB restoration and prevalently with processes enhancing BBB injury.
Collapse
Affiliation(s)
- Chelsea M Phillips
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Svetlana M Stamatovic
- Department of Pathology, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Pathology, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA. .,Department of Neurosurgery, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| |
Collapse
|
10
|
Li YH, Chang JC, Yen MR, Huang YF, Chen TH, Chen LH, Nai YS. Whole-genome DNA methylome analysis of different developmental stages of the entomopathogenic fungus Beauveria bassiana NCHU-157 by nanopore sequencing. Front Genet 2023; 14:1085631. [PMID: 36741316 PMCID: PMC9889659 DOI: 10.3389/fgene.2023.1085631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The entomopathogenic fungus (EPF), Beauveria bassiana, is an important and commonly used EPF for microbial control. However, the role of DNA methylation has not been thoroughly studied. Therefore, the whole genomic DNA methylome of one promising EPF isolate, B. bassiana NCHU-157 (Bb-NCHU-157), was investigated by Oxford Nanopore Technologies (ONT). First, the whole genome of Bb-NCHU-157 was sequenced by next-generation sequencing (NGS) and ONT. The genome of Bb-NCHU-157 contains 16 contigs with 34.19 Mb and 50% GC content, which are composed of 10,848 putative protein-coding genes. Two putative DNA methyltransferases (DNMTs) were found, including Dim-2 and C-5 cytosine-specific DNA methylases. Both DNMTs showed higher expression levels in the mycelium stage than in the conidia stage, indicating that development of DNA methylation in Bb-NCHU-157 might occur in the mycelium stage. The global methylation level of the mycelium stage (5 mC = 4.56%, CG = 3.33%, CHG = 0.74%, CHH = 0.49%) was higher than that of the conidial stage (5 mC = 2.99%, CG = 1.99%, CHG = 0.63%, CHH = 0.37%) in both the gene and transposable element (TE) regions. Furthermore, the TE regions showed higher methylation frequencies than the gene regions, especially for CHH site methylation, suggesting regulation of genomic stabilization during mycelium development. In the gene regions, high methylation frequencies were found around the transcription start site (TSS) and transcription end site (TES). Moreover, CG and CHG methylation mainly occur in the promoter and intergenic regions, while CHH methylation occurs in the TE region. Among the methylated regions, 371, 661, and 756 differentially DNA methylated regions (DMRs) were hypermethylated in the mycelium in CG, CHG, and CHH, while only 13 and 7 DMRs were hypomethylated in the mycelium in CHG, and CHH, respectively. Genes located in the DMR shared the GO terms, DNA binding (GO: 0003677), and sequence-specific DNA binding (GO: 0043565) for hypermethylation in the mycelium, suggesting that methylation might regulate gene expression from the initial process. Evaluation of the DNA methylome in Bb-NCHU-157 by ONT provided new insight into this field. These data will be further validated, and epigenetic regulation during the development of B. bassiana will be explored.
Collapse
Affiliation(s)
- Yi-Hsuan Li
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| | - Ju-Chun Chang
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| | - Ming-Ren Yen
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| | - Yu-Feng Huang
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan,Department of Computer Science and Engineering, Yuan-Ze University, Taoyuan City, Taiwan
| | - Tzu-Han Chen
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| | - Li-Hung Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung City, Taiwan,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung City, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan,*Correspondence: Yu-Shin Nai,
| |
Collapse
|
11
|
Hanson HE, Liebl AL. The Mutagenic Consequences of DNA Methylation within and across Generations. EPIGENOMES 2022; 6:33. [PMID: 36278679 PMCID: PMC9624357 DOI: 10.3390/epigenomes6040033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/28/2022] Open
Abstract
DNA methylation is an epigenetic modification with wide-ranging consequences across the life of an organism. This modification can be stable, persisting through development despite changing environmental conditions. However, in other contexts, DNA methylation can also be flexible, underlying organismal phenotypic plasticity. One underappreciated aspect of DNA methylation is that it is a potent mutagen; methylated cytosines mutate at a much faster rate than other genetic motifs. This mutagenic property of DNA methylation has been largely ignored in eco-evolutionary literature, despite its prevalence. Here, we explore how DNA methylation induced by environmental and other factors could promote mutation and lead to evolutionary change at a more rapid rate and in a more directed manner than through stochastic genetic mutations alone. We argue for future research on the evolutionary implications of DNA methylation driven mutations both within the lifetime of organisms, as well as across timescales.
Collapse
Affiliation(s)
- Haley E. Hanson
- Global and Planetary Health, University of South Florida, Tampa, FL 33620, USA
| | - Andrea L. Liebl
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
12
|
DNA Methyltransferases: From Evolution to Clinical Applications. Int J Mol Sci 2022; 23:ijms23168994. [PMID: 36012258 PMCID: PMC9409253 DOI: 10.3390/ijms23168994] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is an epigenetic mark that living beings have used in different environments. The MTases family catalyzes DNA methylation. This process is conserved from archaea to eukaryotes, from fertilization to every stage of development, and from the early stages of cancer to metastasis. The family of DNMTs has been classified into DNMT1, DNMT2, and DNMT3. Each DNMT has been duplicated or deleted, having consequences on DNMT structure and cellular function, resulting in a conserved evolutionary reaction of DNA methylation. DNMTs are conserved in the five kingdoms of life: bacteria, protists, fungi, plants, and animals. The importance of DNMTs in whether methylate or not has a historical adaptation that in mammals has been discovered in complex regulatory mechanisms to develop another padlock to genomic insurance stability. The regulatory mechanisms that control DNMTs expression are involved in a diversity of cell phenotypes and are associated with pathologies transcription deregulation. This work focused on DNA methyltransferases, their biology, functions, and new inhibitory mechanisms reported. We also discuss different approaches to inhibit DNMTs, the use of non-coding RNAs and nucleoside chemical compounds in recent studies, and their importance in biological, clinical, and industry research.
Collapse
|
13
|
Sarkies P. Encyclopaedia of eukaryotic DNA methylation: from patterns to mechanisms and functions. Biochem Soc Trans 2022; 50:1179-1190. [PMID: 35521905 PMCID: PMC9246332 DOI: 10.1042/bst20210725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022]
Abstract
DNA methylation is an epigenetic modification with a very long evolutionary history. However, DNA methylation evolves surprisingly rapidly across eukaryotes. The genome-wide distribution of methylation diversifies rapidly in different lineages, and DNA methylation is lost altogether surprisingly frequently. The growing availability of genomic and epigenomic sequencing across organisms highlights this diversity but also illuminates potential factors that could explain why both the DNA methylation machinery and its genome-wide distribution evolve so rapidly. Key to this are new discoveries about the fitness costs associated with DNA methylation, and new theories about how the fundamental biochemical mechanisms of DNA methylation introduction and maintenance could explain how new genome-wide patterns of methylation evolve.
Collapse
Affiliation(s)
- Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, U.K
- MRC London Institute of Molecular Biology, London, U.K
- Institute of Clinical Sciences, Imperial College London, London, U.K
| |
Collapse
|
14
|
Wang J, Catania S, Wang C, de la Cruz MJ, Rao B, Madhani HD, Patel DJ. Structural insights into DNMT5-mediated ATP-dependent high-fidelity epigenome maintenance. Mol Cell 2022; 82:1186-1198.e6. [PMID: 35202575 PMCID: PMC8956514 DOI: 10.1016/j.molcel.2022.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Epigenetic evolution occurs over million-year timescales in Cryptococcus neoformans and is mediated by DNMT5, the first maintenance type cytosine methyltransferase identified in the fungal or protist kingdoms, the first dependent on adenosine triphosphate (ATP), and the most hemimethyl-DNA-specific enzyme known. To understand these novel properties, we solved cryo-EM structures of CnDNMT5 in three states. These studies reveal an elaborate allosteric cascade in which hemimethylated DNA binding first activates the SNF2 ATPase domain by a large rigid body rotation while the target cytosine partially flips out of the DNA duplex. ATP binding then triggers striking structural reconfigurations of the methyltransferase catalytic pocket to enable cofactor binding, completion of base flipping, and catalysis. Bound unmethylated DNA does not open the catalytic pocket and is instead ejected upon ATP binding, driving high fidelity. This unprecedented chaperone-like, enzyme-remodeling role of the SNF2 ATPase domain illuminates how energy is used to enable faithful epigenetic memory.
Collapse
Affiliation(s)
- Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Sandra Catania
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chongyuan Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Jason de la Cruz
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
15
|
Almeida MV, Vernaz G, Putman AL, Miska EA. Taming transposable elements in vertebrates: from epigenetic silencing to domestication. Trends Genet 2022; 38:529-553. [DOI: 10.1016/j.tig.2022.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022]
|
16
|
DNA Methyltransferases and DNA Damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:349-361. [DOI: 10.1007/978-3-031-11454-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Weiner AKM, Cerón-Romero MA, Yan Y, Katz LA. Phylogenomics of the Epigenetic Toolkit Reveals Punctate Retention of Genes across Eukaryotes. Genome Biol Evol 2021; 12:2196-2210. [PMID: 33049043 DOI: 10.1093/gbe/evaa198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Epigenetic processes in eukaryotes play important roles through regulation of gene expression, chromatin structure, and genome rearrangements. The roles of chromatin modification (e.g., DNA methylation and histone modification) and non-protein-coding RNAs have been well studied in animals and plants. With the exception of a few model organisms (e.g., Saccharomyces and Plasmodium), much less is known about epigenetic toolkits across the remainder of the eukaryotic tree of life. Even with limited data, previous work suggested the existence of an ancient epigenetic toolkit in the last eukaryotic common ancestor. We use PhyloToL, our taxon-rich phylogenomic pipeline, to detect homologs of epigenetic genes and evaluate their macroevolutionary patterns among eukaryotes. In addition to data from GenBank, we increase taxon sampling from understudied clades of SAR (Stramenopila, Alveolata, and Rhizaria) and Amoebozoa by adding new single-cell transcriptomes from ciliates, foraminifera, and testate amoebae. We focus on 118 gene families, 94 involved in chromatin modification and 24 involved in non-protein-coding RNA processes based on the epigenetics literature. Our results indicate 1) the presence of a large number of epigenetic gene families in the last eukaryotic common ancestor; 2) differential conservation among major eukaryotic clades, with a notable paucity of genes within Excavata; and 3) punctate distribution of epigenetic gene families between species consistent with rapid evolution leading to gene loss. Together these data demonstrate the power of taxon-rich phylogenomic studies for illuminating evolutionary patterns at scales of >1 billion years of evolution and suggest that macroevolutionary phenomena, such as genome conflict, have shaped the evolution of the eukaryotic epigenetic toolkit.
Collapse
Affiliation(s)
- Agnes K M Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| |
Collapse
|
18
|
Zhao Q, Wang W, Li JX, Yuan P, Liu Y, Li Y, Wang L, Song L. The DNA cytosine-5-methyltransferase 3 (DNMT3) involved in regulation of CgIL-17 expression in the immune response of oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104092. [PMID: 33819545 DOI: 10.1016/j.dci.2021.104092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
DNA methyltransferase, a key enzyme mediating DNA methylation, is involved in numerous processes including genomic imprinting, X chromosome inactivation, transposable element suppression, and immune defense in vertebrates. In the present study, a DNA cytosine-5-methyltransferase 3 was identified from oyster Crassostrea gigas (designed as CgDNMT3). There were a PWWP domain, a PHD domain and a DNA-methylase domain in the deduced amino acid sequences of CgDNMT3, and the conserved motifs I, IV, VI, Ⅷ, IX and X were identified in its C-terminal catalytic DNA-methylase domain. The mRNA transcripts of CgDNMT3 were detected in haemocytes, mantle, gill, adductor muscle, digestive gland and labial palp, with higher expression level in haemocytes (6.54 folds of those in gill, p < 0.01). The expression level of CgDNMT3 mRNA in haemocytes increased significantly after LPS primed (2.87 folds of that in control group, p < 0.05) in vitro or Vibrio splendidus challenging (1.94 folds of that in control group, p < 0.05) in vivo. Immunocytochemical analysis revealed that CgDNMT3 protein was distributed mainly in cytoplasm and partial in nucleus of oyster haemocytes. After CgDNMT3 was transfected and expressed in HEK293T cells, the DNA 5-methylcytosine (5-mc) level in the transfected group was significantly increased, which was 1.22 folds (p < 0.05) of the pcDNA-3.1 group. The expressions of oyster CgIL17-1, CgIL17-2 and CgIL17-5 in haemocytes increased (13.05 folds, 4.78 folds and 9.41 folds of that in control group, respectively) at 12 h after V. splendidus challenging, but the increase were significantly inhibited when the oysters were pre-treated with DNA methyltransferase inhibitor 5-Azacytidine, which were 9 folds, 1.93 folds and 3.22 folds of that in control group, respectively. These results collectively suggested that CgDNMT3 was a conserved member of DNA methyltransferase 3 family in oyster, and participated in regulating the expression of cytokines during immune response.
Collapse
Affiliation(s)
- Qi Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jia Xin Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Pei Yuan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
19
|
Yang X, Wang X, Yao J, Duan D. Genome-Wide Mapping of Cytosine Methylation Revealed Dynamic DNA Methylation Patterns Associated with Sporophyte Development of Saccharina japonica. Int J Mol Sci 2021; 22:9877. [PMID: 34576045 PMCID: PMC8472486 DOI: 10.3390/ijms22189877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/04/2023] Open
Abstract
Cytosine methylation plays vital roles in regulating gene expression and plant development. However, the function of DNA methylation in the development of macroalgae remains unclear. Through the genome-wide bisulfite sequencing of cytosine methylation in holdfast, stipe and blade, we obtained the complete 5-mC methylation landscape of Saccharina japonica sporophyte. Our results revealed that the total DNA methylation level of sporophyte was less than 0.9%, and the content of CHH contexts was dominant. Moreover, the distribution of CHH methylation within the genes exhibited exon-enriched characteristics. Profiling of DNA methylation in three parts revealed the diverse methylation pattern of sporophyte development. These pivotal DMRs were involved in cell motility, cell cycle and cell wall/membrane biogenesis. In comparison with stipe and blade, hypermethylation of mannuronate C5-epimerase in holdfast decreased the transcript abundance, which affected the synthesis of alginate, the key component of cell walls. Additionally, 5-mC modification participated in the regulation of blade and holdfast development by the glutamate content respectively via glutamine synthetase and amidophosphoribosyl transferase, which may act as the epigenetic regulation signal. Overall, our study revealed the global methylation characteristics of the well-defined holdfast, stipe and blade, and provided evidence for epigenetic regulation of sporophyte development in brown macroalgae.
Collapse
Affiliation(s)
- Xiaoqi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Y.); (X.W.); (J.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuliang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Y.); (X.W.); (J.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Jianting Yao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Y.); (X.W.); (J.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Y.); (X.W.); (J.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| |
Collapse
|
20
|
Planques A, Kerner P, Ferry L, Grunau C, Gazave E, Vervoort M. DNA methylation atlas and machinery in the developing and regenerating annelid Platynereis dumerilii. BMC Biol 2021; 19:148. [PMID: 34340707 PMCID: PMC8330077 DOI: 10.1186/s12915-021-01074-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Methylation of cytosines in DNA (5mC methylation) is a major epigenetic modification that modulates gene expression and constitutes the basis for mechanisms regulating multiple aspects of embryonic development and cell reprogramming in vertebrates. In mammals, 5mC methylation of promoter regions is linked to transcriptional repression. Transcription regulation by 5mC methylation notably involves the nucleosome remodeling and deacetylase complex (NuRD complex) which bridges DNA methylation and histone modifications. However, less is known about regulatory mechanisms involving 5mC methylation and their function in non-vertebrate animals. In this paper, we study 5mC methylation in the marine annelid worm Platynereis dumerilii, an emerging evolutionary and developmental biology model capable of regenerating the posterior part of its body post-amputation. RESULTS Using in silico and experimental approaches, we show that P. dumerilii displays a high level of DNA methylation comparable to that of mammalian somatic cells. 5mC methylation in P. dumerilii is dynamic along the life cycle of the animal and markedly decreases at the transition between larval to post-larval stages. We identify a full repertoire of mainly single-copy genes encoding the machinery associated with 5mC methylation or members of the NuRD complex in P. dumerilii and show that this repertoire is close to the one inferred for the last common ancestor of bilaterians. These genes are dynamically expressed during P. dumerilii development and regeneration. Treatment with the DNA hypomethylating agent Decitabine impairs P. dumerilii larval development and regeneration and has long-term effects on post-regenerative growth. CONCLUSIONS Our data reveal high levels of 5mC methylation in the annelid P. dumerilii, highlighting that this feature is not specific to vertebrates in the bilaterian clade. Analysis of DNA methylation levels and machinery gene expression during development and regeneration, as well as the use of a chemical inhibitor of DNA methylation, suggest an involvement of 5mC methylation in P. dumerilii development and regeneration. We also present data indicating that P. dumerilii constitutes a promising model to study biological roles and mechanisms of DNA methylation in non-vertebrate bilaterians and to provide new knowledge about evolution of the functions of this key epigenetic modification in bilaterian animals.
Collapse
Affiliation(s)
- Anabelle Planques
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Pierre Kerner
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Laure Ferry
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75006, Paris, France
| | - Christoph Grunau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, F-66860, Perpignan, France
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France.
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France.
| |
Collapse
|
21
|
Rojas-Rojas FU, Vega-Arreguín JC. Epigenetic insight into regulatory role of chromatin covalent modifications in lifecycle and virulence of Phytophthora. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:445-457. [PMID: 33876568 DOI: 10.1111/1758-2229.12954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The Oomycota phylum includes fungi-like filamentous microorganisms classified as plant pathogens. The most destructive genus within oomycetes is Phytophthora, which causes diseases in plants of economic importance in agriculture, forestry and ornamental. Phytophthora species are widespread worldwide and some of them enable adaptation to different hosts and environmental changes. The development of sexual and asexual reproductive structures and the secretion of proteins to control plant immunity are critical for the adaptative lifestyle. However, molecular mechanisms underlying the adaptation of Phytophthora to different hosts and environmental changes are poorly understood. In the last decade, the role of epigenetics has gained attention, and important evidence has demonstrated the potential role of chromatin covalent modifications, such as DNA methylation and histone acetylation/methylation, in the regulation of gene expression during Phytophthora development and plant infection. Here, we review for the first time the evidence of the potential role of chromatin covalent modifications in the lifecycle of the phytopathogenic genus Phytophthora, including virulence, and host and environment adaptation processes.
Collapse
Affiliation(s)
- Fernando Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
| | - Julio C Vega-Arreguín
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
| |
Collapse
|
22
|
Functional Interplay between Methyltransferases and Inflammasomes in Inflammatory Responses and Diseases. Int J Mol Sci 2021; 22:ijms22147580. [PMID: 34299198 PMCID: PMC8306412 DOI: 10.3390/ijms22147580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023] Open
Abstract
An inflammasome is an intracellular protein complex that is activated in response to a pathogenic infection and cellular damage. It triggers inflammatory responses by promoting inflammatory cell death (called pyroptosis) and the secretion of pro-inflammatory cytokines, interleukin (IL)-1β and IL-18. Many types of inflammasomes have been identified and demonstrated to play a central role in inducing inflammatory responses, leading to the onset and progression of numerous inflammatory diseases. Methylation is a biological process by which methyl groups are transferred from methyl donors to proteins, nucleic acids, and other cellular molecules. Methylation plays critical roles in various biological functions by modulating gene expression, protein activity, protein localization, and molecular stability, and aberrant regulation of methylation causes deleterious outcomes in various human diseases. Methylation is a key determinant of inflammatory responses and diseases. This review highlights the current understanding of the functional relationship between inflammasome regulation and methylation of cellular molecules in inflammatory responses and diseases.
Collapse
|
23
|
Kyger R, Luzuriaga-Neira A, Layman T, Milkewitz Sandberg TO, Singh D, Huchon D, Peri S, Atkinson SD, Bartholomew JL, Yi SV, Alvarez-Ponce D. Myxosporea (Myxozoa, Cnidaria) Lack DNA Cytosine Methylation. Mol Biol Evol 2021; 38:393-404. [PMID: 32898240 PMCID: PMC7826176 DOI: 10.1093/molbev/msaa214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA cytosine methylation is central to many biological processes, including regulation of gene expression, cellular differentiation, and development. This DNA modification is conserved across animals, having been found in representatives of sponges, ctenophores, cnidarians, and bilaterians, and with very few known instances of secondary loss in animals. Myxozoans are a group of microscopic, obligate endoparasitic cnidarians that have lost many genes over the course of their evolution from free-living ancestors. Here, we investigated the evolution of the key enzymes involved in DNA cytosine methylation in 29 cnidarians and found that these enzymes were lost in an ancestor of Myxosporea (the most speciose class of Myxozoa). Additionally, using whole-genome bisulfite sequencing, we confirmed that the genomes of two distant species of myxosporeans, Ceratonova shasta and Henneguya salminicola, completely lack DNA cytosine methylation. Our results add a notable and novel taxonomic group, the Myxosporea, to the very short list of animal taxa lacking DNA cytosine methylation, further illuminating the complex evolutionary history of this epigenetic regulatory mechanism.
Collapse
Affiliation(s)
- Ryan Kyger
- Department of Biology, University of Nevada, Reno, NV
| | | | - Thomas Layman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | | - Devika Singh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Dorothée Huchon
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel.,The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Sateesh Peri
- Department of Biology, University of Nevada, Reno, NV
| | | | | | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | |
Collapse
|
24
|
Ritter EJ, Niederhuth CE. Intertwined evolution of plant epigenomes and genomes. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:101990. [PMID: 33445143 DOI: 10.1016/j.pbi.2020.101990] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
DNA methylation is found across eukaryotes; however, plants have evolved patterns and pathways of DNA methylation that are distinct from animals and fungi. DNA methylation shapes the evolution of genomes through its direct roles in transposon silencing, gene expression, genome stability, and its impact on mutation rates. In return the diversity of DNA methylation across species is shaped by genome sequence evolution. Extensive diversification of key DNA methylation pathways has continued in plants through gene duplication and loss. Meanwhile, frequent movement of transposons has altered local DNA methylation patterns and the genes affected. Only recently has the diversity and evolutionary history of plant DNA methylation become evident with the availability of increasing genomic and epigenomic data. However, much remains unresolved regarding the evolutionary forces that have shaped the dynamics of the complex and intertwined history of plant genome and epigenome evolution.
Collapse
Affiliation(s)
- Eleanore J Ritter
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; AgBioResearch, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
25
|
Schneider L, Guo Y, Birch D, Sarkies P. Network-based visualisation reveals new insights into transposable element diversity. Mol Syst Biol 2021; 17:e9600. [PMID: 34169647 PMCID: PMC8226279 DOI: 10.15252/msb.20209600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 01/12/2023] Open
Abstract
Transposable elements (TEs) are widespread across eukaryotic genomes, yet their content varies widely between different species. Factors shaping the diversity of TEs are poorly understood. Understanding the evolution of TEs is difficult because their sequences diversify rapidly and TEs are often transferred through non-conventional means such as horizontal gene transfer. We developed a method to track TE evolution using network analysis to visualise TE sequence and TE content across different genomes. We illustrate our method by first using a monopartite network to study the sequence evolution of Tc1/mariner elements across focal species. We identify a connection between two subfamilies associated with convergent acquisition of a domain from a protein-coding gene. Second, we use a bipartite network to study how TE content across species is shaped by epigenetic silencing mechanisms. We show that the presence of Piwi-interacting RNAs is associated with differences in network topology after controlling for phylogenetic effects. Together, our method demonstrates how a network-based approach can identify hitherto unknown properties of TE evolution across species.
Collapse
Affiliation(s)
- Lisa Schneider
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial CollegeLondonUK
- Data Sciences InstituteImperial CollegeLondonUK
| | - Yi‐Ke Guo
- Data Sciences InstituteImperial CollegeLondonUK
- Present address:
Hong Kong Baptist UniversityKowloon TsaiHong Kong
| | - David Birch
- Data Sciences InstituteImperial CollegeLondonUK
| | - Peter Sarkies
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial CollegeLondonUK
| |
Collapse
|
26
|
Rastogi A, Lin X, Lombard B, Loew D, Tirichine L. Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms. AIMS GENETICS 2021. [DOI: 10.3934/genet.2015.3.173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractRecent progress made on epigenetic studies revealed the conservation of epigenetic features in deep diverse branching species including Stramenopiles, plants and animals. This suggests their fundamental role in shaping species genomes across different evolutionary time scales. Diatoms are a highly successful and diverse group of phytoplankton with a fossil record of about 190 million years ago. They are distantly related from other super-groups of Eukaryotes and have retained some of the epigenetic features found in mammals and plants suggesting their ancient origin. Phaeodactylum tricornutum and Thalassiosira pseudonana, pennate and centric diatoms, respectively, emerged as model species to address questions on the evolution of epigenetic phenomena such as what has been lost, retained or has evolved in contemporary species. In the present work, we will discuss how the study of non-model or emerging model organisms, such as diatoms, helps understand the evolutionary history of epigenetic mechanisms with a particular focus on DNA methylation and histone modifications.
Collapse
Affiliation(s)
- Achal Rastogi
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS UMR8197 INSERM U1024, 46 rue d’Ulm 75005 Paris, France
| | - Xin Lin
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS UMR8197 INSERM U1024, 46 rue d’Ulm 75005 Paris, France
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Bérangère Lombard
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d’Ulm 75248 Cedex 05 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d’Ulm 75248 Cedex 05 Paris, France
| | - Leïla Tirichine
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS UMR8197 INSERM U1024, 46 rue d’Ulm 75005 Paris, France
| |
Collapse
|
27
|
Li D, Feng BE, Liu YJ, Gong J, Tang YM, Zhang LP, Pang BS, Sun RW, Zhang FT, Chen ZB, Wang YB, Chen XC, Wang AP, Zhao CP, Gao SQ. Genome-wide identification and transcriptional characterization of DNA methyltransferases conferring temperature-sensitive male sterility in wheat. BMC Genomics 2021; 22:310. [PMID: 33926387 PMCID: PMC8082647 DOI: 10.1186/s12864-021-07600-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/11/2021] [Indexed: 01/18/2023] Open
Abstract
Background DNA methyltransferase (DMT) genes contribute to plant stress responses and development by de novo establishment and subsequent maintenance of DNA methylation during replication. The photoperiod and/or temperature-sensitive genic male sterile (P/TGMS) lines play an important role in hybrid seed production of wheat. However, only a few studies have reported on the effect of DMT genes on temperature-sensitive male sterility of wheat. Although DMT genes have been investigated in some plant species, the identification and analysis of DMT genes in wheat (Triticum aestivum L.) based on genome-wide levels have not been reported. Results In this study, a detailed overview of phylogeny of 52 wheat DMT (TaDMT) genes was presented. Homoeolog retention for TaDMT genes was significantly above the average retention rate for whole-wheat genes, indicating the functional importance of many DMT homoeologs. We found that the strikingly high number of TaDMT genes resulted mainly from the significant expansion of the TaDRM subfamily. Intriguingly, all 5 paralogs belonged to the wheat DRM subfamily, and we speculated that tandem duplications might play a crucial role in the TaDRM subfamily expansion. Through the transcriptional analysis of TaDMT genes in a TGMS line BS366 and its hybrids with the other six fertile lines under sterile and fertile conditions, we concluded that TaCMT-D2, TaMET1-B1, and TaDRM-U6 might be involved in male sterility in BS366. Furthermore, a correlation analysis showed that TaMET1-B1 might negatively regulate the expression of TaRAFTIN1A, an important gene for pollen development, so we speculated regarding an epigenetic regulatory mechanism underlying the male sterility of BS366 via the interaction between TaMET1-B1 and TaRAFTIN1A. Conclusions Our findings presented a detailed phylogenic overview of the DMT genes and could provide novel insights into the effects of DMT genes on TGMS wheat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07600-7.
Collapse
Affiliation(s)
- Dan Li
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bian-E Feng
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,Shanxi Agricultural University, Taigu, 030800, China
| | - Yong-Jie Liu
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jie Gong
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yi-Miao Tang
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Li-Ping Zhang
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bin-Shuang Pang
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ren-Wei Sun
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Feng-Ting Zhang
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhao-Bo Chen
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yong-Bo Wang
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xian-Chao Chen
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ai-Ping Wang
- Shanxi Agricultural University, Taigu, 030800, China.
| | - Chang-Ping Zhao
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Shi-Qing Gao
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
28
|
Teng L, Han W, Fan X, Zhang X, Xu D, Wang Y, Rahman S, Pellegrini M, Mock T, Ye N. Integrative analysis of chloroplast DNA methylation in a marine alga-Saccharina japonica. PLANT MOLECULAR BIOLOGY 2021; 105:611-623. [PMID: 33528753 DOI: 10.1007/s11103-020-01113-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/30/2020] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE We applied an integrative approach using multiple methods to verify cytosine methylation in the chloroplast DNA of the multicellular brown alga Saccharina japonica. Cytosine DNA methylation is a heritable process which plays important roles in regulating development throughout the life cycle of an organism. Although methylation of nuclear DNA has been studied extensively, little is known about the state and role of DNA methylation in chloroplast genomes, especially in marine algae. Here, we have applied an integrated approach encompassing whole-genome bisulfite sequencing, methylated DNA immunoprecipitation, gene co-expression networks and photophysiological analyses to provide evidence for the role of chloroplast DNA methylation in a marine alga, the multicellular brown alga Saccharina japonica. Although the overall methylation level was relatively low in the chloroplast genome of S. japonica, gametophytes exhibited higher methylation levels than sporophytes. Gene-specific bisulfite-cloning sequencing provided additional evidence for the methylation of key photosynthetic genes. Many of them were highly expressed in sporophytes whereas genes involved in transcription, translation and biosynthesis were strongly expressed in gametophytes. Nucleus-encoded photosynthesis genes were co-expressed with their chloroplast-encoded counterparts potentially contributing to the higher photosynthetic performance in sporophytes compared to gametophytes where these co-expression networks were less pronounced. A nucleus-encoded DNA methyltransferase of the DNMT2 family is assumed to be responsible for the methylation of the chloroplast genome because it is predicted to possess a plastid transit peptide.
Collapse
Affiliation(s)
- Linhong Teng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Wentao Han
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Sadequr Rahman
- Tropical Medicine and Biology Platform and School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Institute for Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
29
|
Molaro A, Malik HS, Bourc'his D. Dynamic Evolution of De Novo DNA Methyltransferases in Rodent and Primate Genomes. Mol Biol Evol 2021; 37:1882-1892. [PMID: 32077945 PMCID: PMC7306680 DOI: 10.1093/molbev/msaa044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcriptional silencing of retrotransposons via DNA methylation is paramount for mammalian fertility and reproductive fitness. During germ cell development, most mammalian species utilize the de novo DNA methyltransferases DNMT3A and DNMT3B to establish DNA methylation patterns. However, many rodent species deploy a third enzyme, DNMT3C, to selectively methylate the promoters of young retrotransposon insertions in their germline. The evolutionary forces that shaped DNMT3C’s unique function are unknown. Using a phylogenomic approach, we confirm here that Dnmt3C arose through a single duplication of Dnmt3B that occurred ∼60 Ma in the last common ancestor of muroid rodents. Importantly, we reveal that DNMT3C is composed of two independently evolving segments: the latter two-thirds have undergone recurrent gene conversion with Dnmt3B, whereas the N-terminus has instead evolved under strong diversifying selection. We hypothesize that positive selection of Dnmt3C is the result of an ongoing evolutionary arms race with young retrotransposon lineages in muroid genomes. Interestingly, although primates lack DNMT3C, we find that the N-terminus of DNMT3A has also evolved under diversifying selection. Thus, the N-termini of two independent de novo methylation enzymes have evolved under diversifying selection in rodents and primates. We hypothesize that repression of young retrotransposons might be driving the recurrent innovation of a functional domain in the N-termini on germline DNMT3s in mammals.
Collapse
Affiliation(s)
- Antoine Molaro
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | |
Collapse
|
30
|
Distinct Roles of Two DNA Methyltransferases from Cryphonectria parasitica in Fungal Virulence, Responses to Hypovirus Infection, and Viral Clearance. mBio 2021; 12:mBio.02890-20. [PMID: 33563819 PMCID: PMC8545091 DOI: 10.1128/mbio.02890-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Two DNA methyltransferase (DNMTase) genes from Cryphonectria parasitica have been previously identified as CpDmt1 and CpDmt2, which are orthologous to rid and dim-2 of Neurospora crassa, respectively. While global changes in DNA methylation have been associated with fungal sectorization and CpDmt1 but not CpDmt2 has been implicated in the sporadic sectorization, the present study continues to investigate the biological functions of both DNMTase genes. Transcription of both DNMTases is regulated in response to infection with the Cryphonectria hypovirus 1 (CHV1-EP713). CpDmt1 is upregulated and CpDmt2 is downregulated by CHV1 infection. Conidium production and response to heat stress are affected only by mutation of CpDmt1, not by CpDmt2 mutation. Significant changes in virulence are observed in opposite directions; i.e., the CpDmt1-null mutant is hypervirulent, while the CpDmt2-null mutant is hypovirulent. Compared to the CHV1-infected wild type, CHV1-transferred single and double mutants show severe growth retardation: the colony size is less than 10% that of the parental virus-free null mutants, and their titers of transferred CHV1 are higher than that of the wild type, implying that no defect in viral replication occurs. However, as cultivation proceeds, spontaneous viral clearance is observed in hypovirus-infected colonies of the null mutants, which has never been reported in this fungus-virus interaction. This study demonstrates that both DNMTases are significant factors in fungal development and virulence. Each fungal DNMTase affects fungal biology in both common and separate ways. In addition, both genes are essential to the antiviral responses, including viral clearance which depends on their mutations.
Collapse
|
31
|
Nai YS, Huang YC, Yen MR, Chen PY. Diversity of Fungal DNA Methyltransferases and Their Association With DNA Methylation Patterns. Front Microbiol 2021; 11:616922. [PMID: 33552027 PMCID: PMC7862722 DOI: 10.3389/fmicb.2020.616922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022] Open
Abstract
DNA methyltransferases (DNMTs) are a group of proteins that catalyze DNA methylation by transferring a methyl group to DNA. The genetic variation in DNMTs results in differential DNA methylation patterns associated with various biological processes. In fungal species, DNMTs and their DNA methylation profiles were found to be very diverse and have gained many research interests. We reviewed fungal DNMTs in terms of their biological functions, protein domain structures, and their associated epigenetic regulations compared to those known in plant and animal systems. In addition, we summarized recent reports on potential RNA-directed DNA methylation (RdDM) related to DNMT5 in fungi. We surveyed up to 40 fungal species with published genome-wide DNA methylation profiles (methylomes) and presented the associations between the specific patterns of fungal DNA methylation and their DNMTs based on a phylogenetic tree of protein domain structures. For example, the main DNMTs in Basidiomycota, DNMT1 with RFD domain + DNMT5, contributing to CG methylation preference, were distinct from RID + Dim-2 in Ascomycota, resulting in a non-CG methylation preference. Lastly, we revealed that the dynamic methylation involved in fungal life stage changes was particularly low in mycelium and DNA methylation was preferentially located in transposable elements (TEs). This review comprehensively discussed fungal DNMTs and methylomes and their connection with fungal development and taxonomy to present the diverse usages of DNA methylation in fungal genomes.
Collapse
Affiliation(s)
- Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan.,Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan.,Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
32
|
Bonner C, Sproule A, Rowland O, Overy D, Subramaniam R. DNA Methylation Is Responsive to the Environment and Regulates the Expression of Biosynthetic Gene Clusters, Metabolite Production, and Virulence in Fusarium graminearum. FRONTIERS IN FUNGAL BIOLOGY 2021; 1:614633. [PMID: 37743878 PMCID: PMC10512235 DOI: 10.3389/ffunb.2020.614633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 09/26/2023]
Abstract
Histone modifications play a significant role in the regulation of biosynthetic gene clusters (BGCs) in the phytopathogen Fusarium graminearum, by contrast, epigenetic regulation by DNA methyltransferases (DNMTs) is less documented. In this study, we characterized two DNMTs (FgDIM-2 and FgRID) in F. graminearum, with homologies to "Deficient in methylation" (DIM-2) and "Repeat-induced point (RIP) deficient" (RID) from Neurospora. The loss of DNMTs resulted in not only a decrease in average methylation density in the nutrient-poor, compared to nutrient-rich conditions, but also differences in the genes expressed between the WT and the DNMT mutant strains, implicating the external environment as an important trigger in altering DNA methylation patterns. Consequently, we observed significant changes in the regulation of multiple BGCs and alterations in the pathogenicity of the fungus.
Collapse
Affiliation(s)
- Christopher Bonner
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Owen Rowland
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Overy
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Rajagopal Subramaniam
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
33
|
Adrian-Kalchhauser I, Sultan SE, Shama LNS, Spence-Jones H, Tiso S, Keller Valsecchi CI, Weissing FJ. Understanding 'Non-genetic' Inheritance: Insights from Molecular-Evolutionary Crosstalk. Trends Ecol Evol 2020; 35:1078-1089. [PMID: 33036806 DOI: 10.1016/j.tree.2020.08.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022]
Abstract
Understanding the evolutionary and ecological roles of 'non-genetic' inheritance (NGI) is daunting due to the complexity and diversity of epigenetic mechanisms. We draw on insights from molecular and evolutionary biology perspectives to identify three general features of 'non-genetic' inheritance systems: (i) they are functionally interdependent with, rather than separate from, DNA sequence; (ii) precise mechanisms vary phylogenetically and operationally; and (iii) epigenetic elements are probabilistic, interactive regulatory factors and not deterministic 'epialleles' with defined genomic locations and effects. We discuss each of these features and offer recommendations for future empirical and theoretical research that implements a unifying inherited gene regulation (IGR) approach to studies of 'non-genetic' inheritance.
Collapse
Affiliation(s)
- Irene Adrian-Kalchhauser
- Centre for Fish and Wildlife Health, Department for Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Sonia E Sultan
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| | - Lisa N S Shama
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List, Germany
| | - Helen Spence-Jones
- Centre for Biological Diversity, School of Biology, University of St Andrews, St. Andrews, UK
| | - Stefano Tiso
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | | | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
34
|
The Absence of C-5 DNA Methylation in Leishmania donovani Allows DNA Enrichment from Complex Samples. Microorganisms 2020; 8:microorganisms8081252. [PMID: 32824654 PMCID: PMC7463849 DOI: 10.3390/microorganisms8081252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 11/21/2022] Open
Abstract
Cytosine C5 methylation is an important epigenetic control mechanism in a wide array of eukaryotic organisms and generally carried out by proteins of the C-5 DNA methyltransferase family (DNMTs). In several protozoans, the status of this mechanism remains elusive, such as in Leishmania, the causative agent of the disease leishmaniasis in humans and a wide array of vertebrate animals. In this work, we showed that the Leishmania donovani genome contains a C-5 DNA methyltransferase (DNMT) from the DNMT6 subfamily, whose function is still unclear, and verified its expression at the RNA level. We created viable overexpressor and knock-out lines of this enzyme and characterized their genome-wide methylation patterns using whole-genome bisulfite sequencing, together with promastigote and amastigote control lines. Interestingly, despite the DNMT6 presence, we found that methylation levels were equal to or lower than 0.0003% at CpG sites, 0.0005% at CHG sites, and 0.0126% at CHH sites at the genomic scale. As none of the methylated sites were retained after manual verification, we conclude that there is no evidence for DNA methylation in this species. We demonstrated that this difference in DNA methylation between the parasite (no detectable DNA methylation) and the vertebrate host (DNA methylation) allowed enrichment of parasite vs. host DNA using methyl-CpG-binding domain columns, readily available in commercial kits. As such, we depleted methylated DNA from mixes of Leishmania promastigote and amastigote DNA with human DNA, resulting in average Leishmania:human enrichments from 62× up to 263×. These results open a promising avenue for unmethylated DNA enrichment as a pre-enrichment step before sequencing Leishmania clinical samples.
Collapse
|
35
|
DNA methylation in the vertebrate germline: balancing memory and erasure. Essays Biochem 2020; 63:649-661. [PMID: 31755927 DOI: 10.1042/ebc20190038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cytosine methylation is a DNA modification that is critical for vertebrate development and provides a plastic yet stable information module in addition to the DNA code. DNA methylation memory establishment, maintenance and erasure is carefully balanced by molecular machinery highly conserved among vertebrates. In mammals, extensive erasure of epigenetic marks, including 5-methylcytosine (5mC), is a hallmark of early embryo and germline development. Conversely, global cytosine methylation patterns are preserved in at least some non-mammalian vertebrates over comparable developmental windows. The evolutionary mechanisms which drove this divergence are unknown, nevertheless a direct consequence of retaining epigenetic memory in the form of 5mC is the enhanced potential for transgenerational epigenetic inheritance (TEI). Given that DNA methylation dynamics remains underexplored in most vertebrate lineages, the extent of information transferred to offspring by epigenetic modification might be underestimated.
Collapse
|
36
|
Lewis SH, Ross L, Bain SA, Pahita E, Smith SA, Cordaux R, Miska EA, Lenhard B, Jiggins FM, Sarkies P. ------Widespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods. PLoS Genet 2020; 16:e1008864. [PMID: 32584820 PMCID: PMC7343188 DOI: 10.1371/journal.pgen.1008864] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/08/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Cytosine methylation is an ancient epigenetic modification yet its function and extent within genomes is highly variable across eukaryotes. In mammals, methylation controls transposable elements and regulates the promoters of genes. In insects, DNA methylation is generally restricted to a small subset of transcribed genes, with both intergenic regions and transposable elements (TEs) depleted of methylation. The evolutionary origin and the function of these methylation patterns are poorly understood. Here we characterise the evolution of DNA methylation across the arthropod phylum. While the common ancestor of the arthropods had low levels of TE methylation and did not methylate promoters, both of these functions have evolved independently in centipedes and mealybugs. In contrast, methylation of the exons of a subset of transcribed genes is ancestral and widely conserved across the phylum, but has been lost in specific lineages. A similar set of genes is methylated in all species that retained exon-enriched methylation. We show that these genes have characteristic patterns of expression correlating to broad transcription initiation sites and well-positioned nucleosomes, providing new insights into potential mechanisms driving methylation patterns over hundreds of millions of years.
Collapse
Affiliation(s)
- Samuel H. Lewis
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Laura Ross
- Institute of Evolutionary Biology, Edinburgh, United Kingdom
| | - Stevie A. Bain
- Institute of Evolutionary Biology, Edinburgh, United Kingdom
| | - Eleni Pahita
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Stephen A. Smith
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions Universite de Poitiers, France
| | - Eric A. Miska
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, United Kingdom
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Dumesic PA, Stoddard CI, Catania S, Narlikar GJ, Madhani HD. ATP Hydrolysis by the SNF2 Domain of Dnmt5 Is Coupled to Both Specific Recognition and Modification of Hemimethylated DNA. Mol Cell 2020; 79:127-139.e4. [PMID: 32437639 DOI: 10.1016/j.molcel.2020.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
C.neoformans Dnmt5 is an unusually specific maintenance-type CpG methyltransferase (DNMT) that mediates long-term epigenome evolution. It harbors a DNMT domain and SNF2 ATPase domain. We find that the SNF2 domain couples substrate specificity to an ATPase step essential for DNA methylation. Coupling occurs independent of nucleosomes. Hemimethylated DNA preferentially stimulates ATPase activity, and mutating Dnmt5's ATP-binding pocket disproportionately reduces ATPase stimulation by hemimethylated versus unmethylated substrates. Engineered DNA substrates that stabilize a reaction intermediate by mimicking a "flipped-out" conformation of the target cytosine bypass the SNF2 domain's requirement for hemimethylation. This result implies that ATP hydrolysis by the SNF2 domain is coupled to the DNMT domain conformational changes induced by preferred substrates. These findings establish a new role for a SNF2 ATPase: controlling an adjoined enzymatic domain's substrate recognition and catalysis. We speculate that this coupling contributes to the exquisite specificity of Dnmt5 via mechanisms related to kinetic proofreading.
Collapse
Affiliation(s)
- Phillip A Dumesic
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caitlin I Stoddard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sandra Catania
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
38
|
Adrian-Kalchhauser I, Blomberg A, Larsson T, Musilova Z, Peart CR, Pippel M, Solbakken MH, Suurväli J, Walser JC, Wilson JY, Alm Rosenblad M, Burguera D, Gutnik S, Michiels N, Töpel M, Pankov K, Schloissnig S, Winkler S. The round goby genome provides insights into mechanisms that may facilitate biological invasions. BMC Biol 2020; 18:11. [PMID: 31992286 PMCID: PMC6988351 DOI: 10.1186/s12915-019-0731-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background The invasive benthic round goby (Neogobius melanostomus) is the most successful temperate invasive fish and has spread in aquatic ecosystems on both sides of the Atlantic. Invasive species constitute powerful in situ experimental systems to study fast adaptation and directional selection on short ecological timescales and present promising case studies to understand factors involved the impressive ability of some species to colonize novel environments. We seize the unique opportunity presented by the round goby invasion to study genomic substrates potentially involved in colonization success. Results We report a highly contiguous long-read-based genome and analyze gene families that we hypothesize to relate to the ability of these fish to deal with novel environments. The analyses provide novel insights from the large evolutionary scale to the small species-specific scale. We describe expansions in specific cytochrome P450 enzymes, a remarkably diverse innate immune system, an ancient duplication in red light vision accompanied by red skin fluorescence, evolutionary patterns of epigenetic regulators, and the presence of osmoregulatory genes that may have contributed to the round goby’s capacity to invade cold and salty waters. A recurring theme across all analyzed gene families is gene expansions. Conclusions The expanded innate immune system of round goby may potentially contribute to its ability to colonize novel areas. Since other gene families also feature copy number expansions in the round goby, and since other Gobiidae also feature fascinating environmental adaptations and are excellent colonizers, further long-read genome approaches across the goby family may reveal whether gene copy number expansions are more generally related to the ability to conquer new habitats in Gobiidae or in fish. Electronic supplementary material The online version of this article (10.1186/s12915-019-0731-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Adrian-Kalchhauser
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland. .,University of Bern, Institute for Fish and Wildlife Health, Länggassstrasse 122, 3012, Bern, Austria.
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden
| | - Tomas Larsson
- Department of Marine Sciences, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden
| | - Zuzana Musilova
- Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Claire R Peart
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152 Planegg-, Martinsried, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Monica Hongroe Solbakken
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindernveien 31, 0371, Oslo, Norway
| | - Jaanus Suurväli
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674, Köln, Germany
| | - Jean-Claude Walser
- Genetic Diversity Centre, ETH, Universitätsstrasse 16, 8092, Zurich, Switzerland
| | - Joanna Yvonne Wilson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Magnus Alm Rosenblad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden.,NBIS Bioinformatics Infrastructure for Life Sciences, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden
| | - Demian Burguera
- Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Silvia Gutnik
- Biocenter, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Nico Michiels
- Institute of Evolution and Ecology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Mats Töpel
- University of Bern, Institute for Fish and Wildlife Health, Länggassstrasse 122, 3012, Bern, Austria
| | - Kirill Pankov
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Siegfried Schloissnig
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| |
Collapse
|
39
|
Liu J, Hu H, Panserat S, Marandel L. Evolutionary history of DNA methylation related genes in chordates: new insights from multiple whole genome duplications. Sci Rep 2020; 10:970. [PMID: 31969623 PMCID: PMC6976628 DOI: 10.1038/s41598-020-57753-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023] Open
Abstract
DNA methylation is an important epigenetic mechanism involved in many biological processes, i.e. gametogenesis and embryonic development. However, increased copy numbers of DNA methylation related genes (dnmt, tet and tdg) have been found during chordate evolution due to successive whole genome duplication (WGD) events. Their evolutionary history and phylogenetic relationships remain unclear. The present study is the first to clarify the evolutionary history of DNA methylation genes in chordates. In particular, our results highlight the fixation of several dnmt3-related genes following successive WGD throughout evolution. The rainbow trout genome offered a unique opportunity to study the early evolutionary fates of duplicated genes due to a recent round of WGD at the radiation of salmonids. Differences highlighted in transcriptional patterns of these genes during gametogenesis and ontogenesis in trout indicated that they might be subjected to sub- or neo-functionalisation after WDG. The fixation of multiple dnmt3 genes in genomes after WGD could contribute to the diversification and plastic adaptation of the teleost.
Collapse
Affiliation(s)
- Jingwei Liu
- INRAE, Univ Pau & Pays de l'Adour, E2S-UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Huihua Hu
- INRAE, Univ Pau & Pays de l'Adour, E2S-UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Stéphane Panserat
- INRAE, Univ Pau & Pays de l'Adour, E2S-UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, Univ Pau & Pays de l'Adour, E2S-UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France.
| |
Collapse
|
40
|
Fan X, Han W, Teng L, Jiang P, Zhang X, Xu D, Li C, Pellegrini M, Wu C, Wang Y, Kaczurowski MJS, Lin X, Tirichine L, Mock T, Ye N. Single-base methylome profiling of the giant kelp Saccharina japonica reveals significant differences in DNA methylation to microalgae and plants. THE NEW PHYTOLOGIST 2020; 225:234-249. [PMID: 31419316 PMCID: PMC6916402 DOI: 10.1111/nph.16125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 05/28/2023]
Abstract
Brown algae have convergently evolved plant-like body plans and reproductive cycles, which in plants are controlled by differential DNA methylation. This contribution provides the first single-base methylome profiles of haploid gametophytes and diploid sporophytes of a multicellular alga. Although only c. 1.4% of cytosines in Saccharina japonica were methylated mainly at CHH sites and characterized by 5-methylcytosine (5mC), there were significant differences between life-cycle stages. DNA methyltransferase 2 (DNMT2), known to efficiently catalyze tRNA methylation, is assumed to methylate the genome of S. japonica in the structural context of tRNAs as the genome does not encode any other DNA methyltransferases. Circular and long noncoding RNA genes were the most strongly methylated regulatory elements in S. japonica. Differential expression of genes was negatively correlated with DNA methylation with the highest methylation levels measured in both haploid gametophytes. Hypomethylated and highly expressed genes in diploid sporophytes included genes involved in morphogenesis and halogen metabolism. The data herein provide evidence that cytosine methylation, although occurring at a low level, is significantly contributing to the formation of different life-cycle stages, tissue differentiation and metabolism in brown algae.
Collapse
Affiliation(s)
- Xiao Fan
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
- Function Laboratory for Marine Fisheries Science and Food Production ProcessesQingdaoChina
- Key Laboratory of Exploration and Utilization of Aquatic Genetic ResourcesMinistry of EducationShanghai Ocean UniversityShanghai201306China
| | - Wentao Han
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
| | - Linhong Teng
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
- College of Life ScienceDezhou UniversityDezhou253023China
- Shandong Key Laboratory of BiophysicsDezhou UniversityDezhou253023China
| | - Peng Jiang
- Institute of OceanologyChinese Academy of SciencesQingdao266071China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
| | - Dong Xu
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
| | - Chang Li
- University of Chinese Academy of SciencesShenzhenChina
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental BiologyInstitute for Genomics and ProteomicsUniversity of CaliforniaLos AngelesCA90095USA
| | - Chunhui Wu
- Institute of OceanologyChinese Academy of SciencesQingdao266071China
| | - Yitao Wang
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
| | | | - Xin Lin
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean & Earth SciencesXiamen UniversityXiamenChina
| | - Leila Tirichine
- CNRS UMR 6286Faculté des Sciences et des TechniquesUniversité de Nantes2 rue de la Houssinière44322NantesFrance
| | - Thomas Mock
- School of Environmental SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Naihao Ye
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
- Function Laboratory for Marine Fisheries Science and Food Production ProcessesQingdaoChina
| |
Collapse
|
41
|
de Mendoza A, Lister R, Bogdanovic O. Evolution of DNA Methylome Diversity in Eukaryotes. J Mol Biol 2019:S0022-2836(19)30659-X. [PMID: 31726061 DOI: 10.1016/j.jmb.2019.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Cytosine DNA methylation (5mC) is a widespread base modification in eukaryotic genomes with critical roles in transcriptional regulation. In recent years, our understanding of 5mC has changed because of advances in 5mC detection techniques that allow mapping of this mark on the whole genome scale. Profiling DNA methylomes from organisms across the eukaryotic tree of life has reshaped our views on the evolution of 5mC. In this review, we explore the macroevolution of 5mC in major eukaryotic groups, and then focus on recent advances made in animals. Genomic 5mC patterns as well as the mechanisms of 5mC deposition tend to be evolutionary labile across large phylogenetic distances; however, some common patterns are starting to emerge. Within the animal kingdom, 5mC diversity has proven to be much greater than anticipated. For example, a previously held common view that genome hypermethylation is a trait exclusive to vertebrates has recently been challenged. Also, data from genome-wide studies are starting to yield insights into the potential roles of 5mC in invertebrate cis regulation. Here we provide an evolutionary perspective of both the well-known and enigmatic roles of 5mC across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Alex de Mendoza
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia.
| | - Ryan Lister
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
42
|
Talbert PB, Meers MP, Henikoff S. Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nat Rev Genet 2019; 20:283-297. [PMID: 30886348 DOI: 10.1038/s41576-019-0105-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sophisticated gene-regulatory mechanisms probably evolved in prokaryotes billions of years before the emergence of modern eukaryotes, which inherited the same basic enzymatic machineries. However, the epigenomic landscapes of eukaryotes are dominated by nucleosomes, which have acquired roles in genome packaging, mitotic condensation and silencing parasitic genomic elements. Although the molecular mechanisms by which nucleosomes are displaced and modified have been described, just how transcription factors, histone variants and modifications and chromatin regulators act on nucleosomes to regulate transcription is the subject of considerable ongoing study. We explore the extent to which these transcriptional regulatory components function in the context of the evolutionarily ancient role of chromatin as a barrier to processes acting on DNA and how chromatin proteins have diversified to carry out evolutionarily recent functions that accompanied the emergence of differentiation and development in multicellular eukaryotes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael P Meers
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| |
Collapse
|
43
|
Identification and sequencing of the gene encoding DNA methyltransferase 3 (DNMT3) from sea cucumber, Apostichopus japonicus. Mol Biol Rep 2019; 46:3791-3800. [DOI: 10.1007/s11033-019-04821-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/13/2019] [Indexed: 11/25/2022]
|
44
|
Cremen MCM, Leliaert F, Marcelino VR, Verbruggen H. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta). Genome Biol Evol 2018; 10:1048-1061. [PMID: 29635329 PMCID: PMC5888179 DOI: 10.1093/gbe/evy063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.
Collapse
Affiliation(s)
| | - Frederik Leliaert
- Botanic Garden Meise, 1860 Meise, Belgium.,Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - Vanessa R Marcelino
- School of BioSciences, University of Melbourne, Parkville, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, New South Wales, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
45
|
Wang FL, Yan LX, Shi HJ, Liu XY, Zheng QY, Sun LN, Wang DS. Genome-wide identification, evolution of DNA methyltransferases and their expression during gonadal development in Nile tilapia. Comp Biochem Physiol B Biochem Mol Biol 2018; 226:73-84. [PMID: 30170023 DOI: 10.1016/j.cbpb.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022]
Abstract
DNA methyltransferases (dnmts) are responsible for DNA methylation and play important roles in organism development. In this study, seven dnmts genes (dnmt1, dnmt2, dnmt3aa, dnmt3ab, dnmt3ba, dnmt3bb.1, dnmt3bb.2) were identified in Nile tilapia. Comprehensive analyses of dnmts were performed using available genome databases from representative animal species. Phylogenetic analysis revealed that the dnmts family were highly conserved in teleosts. Based on transcriptome data from eight adult tilapia tissues, the dnmts were found to be dominantly expressed in the head kidney, testis and ovary. Analyses of the gonadal transcriptome data in different developmental stages revealed that all dnmts were expressed in both ovary and testis, and four de novo dnmts (dnmt3aa, dnmt3ab, dnmt3bb.1, dnmt3bb.2) showed higher expression in the testis than in the ovary. Furthermore, during sex reversal induced by Fadrozole, the expression of these four de novo dnmts increased significantly in treated group compared to female control group. By in situ hybridization, the seven dnmts were found to be expressed mainly in phase I and II oocytes of the ovary and spermatocytes of the testis. When gonads were incubated with a methyltransferase inhibitor (5-AzaCdR) in vitro, the expression of dnmts genes were down-regulated significantly, while the expression of cyp19a1a (a key gene in female pathway) and dmrt1 (a key gene in male pathway) increased significantly. Our results revealed the conservation of dnmts during evolution and indicated a potential role of dnmts in epigenetic regulation of gonadal development.
Collapse
Affiliation(s)
- Fei-Long Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Long-Xia Yan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Hong-Juan Shi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Xing-Yong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Qiao-Yuan Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Li-Na Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China.
| | - De-Shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China.
| |
Collapse
|
46
|
Weinhouse C, Truong L, Meyer JN, Allard P. Caenorhabditis elegans as an emerging model system in environmental epigenetics. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:560-575. [PMID: 30091255 PMCID: PMC6113102 DOI: 10.1002/em.22203] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 05/19/2023]
Abstract
The roundworm Caenorhabitis elegans has been an established model organism for the study of genetics and developmental biology, including studies of transcriptional regulation, since the 1970s. This model organism has continued to be used as a classical model system as the field of transcriptional regulation has expanded to include scientific advances in epigenetics and chromatin biology. In the last several decades, C. elegans has emerged as a powerful model for environmental toxicology, particularly for the study of chemical genotoxicity. Here, we outline the utility and applicability of C. elegans as a powerful model organism for mechanistic studies of environmental influences on the epigenome. Our goal in this article is to inform the field of environmental epigenetics of the strengths and limitations of the well-established C. elegans model organism as an emerging model for medium-throughput, in vivo exploration of the role of exogenous chemical stimuli in transcriptional regulation, developmental epigenetic reprogramming, and epigenetic memory and inheritance. As the field of environmental epigenetics matures, and research begins to map mechanisms underlying observed associations, new toolkits and model systems, particularly manipulable, scalable in vivo systems that accurately model human transcriptional regulatory circuits, will provide an essential experimental bridge between in vitro biochemical experiments and mammalian model systems. Environ. Mol. Mutagen. 59:560-575, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caren Weinhouse
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Lisa Truong
- UCLA Human Genetics and Genomic Analysis Training Program, University of California, Los Angeles; Los Angeles, California
| | - Joel N. Meyer
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Patrick Allard
- Institute for Society and Genetics, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
47
|
Vieira GC, D'Ávila MF, Zanini R, Deprá M, da Silva Valente VL. Evolution of DNMT2 in drosophilids: Evidence for positive and purifying selection and insights into new protein (pathways) interactions. Genet Mol Biol 2018; 41:215-234. [PMID: 29668012 PMCID: PMC5913717 DOI: 10.1590/1678-4685-gmb-2017-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/18/2017] [Indexed: 12/03/2022] Open
Abstract
The DNA methyltransferase 2 (DNMT2) protein is the most conserved member of the
DNA methyltransferase family. Nevertheless, its substrate specificity is still
controversial and elusive. The genomic role and determinants of DNA methylation
are poorly understood in invertebrates, and several mechanisms and associations
are suggested. In Drosophila, the only known DNMT gene is
Dnmt2. Here we present our findings from a wide search for
Dnmt2 homologs in 68 species of Drosophilidae. We
investigated its molecular evolution, and in our phylogenetic analyses the main
clades of Drosophilidae species were recovered. We tested whether the
Dnmt2 has evolved neutrally or under positive selection
along the subgenera Drosophila and Sophophora
and investigated positive selection in relation to several physicochemical
properties. Despite of a major selective constraint on Dnmt2,
we detected six sites under positive selection. Regarding the DNMT2 protein, 12
sites under positive-destabilizing selection were found, which suggests a
selection that favors structural and functional shifts in the protein. The
search for new potential protein partners with DNMT2 revealed 15 proteins with
high evolutionary rate covariation (ERC), indicating a plurality of DNMT2
functions in different pathways. These events might represent signs of molecular
adaptation, with molecular peculiarities arising from the diversity of
evolutionary histories experienced by drosophilids.
Collapse
Affiliation(s)
- Gilberto Cavalheiro Vieira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marícia Fantinel D'Ávila
- Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil
| | - Rebeca Zanini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maríndia Deprá
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
48
|
Alvarez-Ponce D, Torres-Sánchez M, Feyertag F, Kulkarni A, Nappi T. Molecular evolution of DNMT1 in vertebrates: Duplications in marsupials followed by positive selection. PLoS One 2018; 13:e0195162. [PMID: 29621315 PMCID: PMC5886458 DOI: 10.1371/journal.pone.0195162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is mediated by a conserved family of DNA methyltransferases (Dnmts). The human genome encodes three active Dnmts (Dnmt1, Dnmt3a and Dnmt3b), the tRNA methyltransferase Dnmt2, and the regulatory protein Dnmt3L. Despite their high degree of conservation among different species, genes encoding Dnmts have been duplicated and/or lost in multiple lineages throughout evolution, indicating that the DNA methylation machinery has some potential to undergo evolutionary change. However, little is known about the extent to which this machinery, or the methylome, varies among vertebrates. Here, we study the molecular evolution of Dnmt1, the enzyme responsible for maintenance of DNA methylation patterns after replication, in 79 vertebrate species. Our analyses show that all studied species exhibit a single copy of the DNMT1 gene, with the exception of tilapia and marsupials (tammar wallaby, koala, Tasmanian devil and opossum), each of which displays two apparently functional DNMT1 copies. Our phylogenetic analyses indicate that DNMT1 duplicated before the radiation of major marsupial groups (i.e., at least ~75 million years ago), thus giving rise to two DNMT1 copies in marsupials (copy 1 and copy 2). In the opossum lineage, copy 2 was lost, and copy 1 recently duplicated again, generating three DNMT1 copies: two putatively functional genes (copy 1a and 1b) and one pseudogene (copy 1ψ). Both marsupial copies (DNMT1 copies 1 and 2) are under purifying selection, and copy 2 exhibits elevated rates of evolution and signatures of positive selection, suggesting a scenario of neofunctionalization. This gene duplication might have resulted in modifications in marsupial methylomes and their dynamics.
Collapse
Affiliation(s)
- David Alvarez-Ponce
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| | - María Torres-Sánchez
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Felix Feyertag
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Asmita Kulkarni
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Taylen Nappi
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| |
Collapse
|
49
|
Li J, Li C, Lu S. Identification and characterization of the cytosine-5 DNA methyltransferase gene family in Salvia miltiorrhiza. PeerJ 2018. [PMID: 29527415 PMCID: PMC5842782 DOI: 10.7717/peerj.4461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cytosine DNA methylation is highly conserved epigenetic modification involved in a wide range of biological processes in eukaryotes. It was established and maintained by cytosine-5 DNA methyltransferases (C5-MTases) in plants. Through genome-wide identification, eight putative SmC5-MTase genes were identified from the genome of Salvia miltiorrhiza, a well-known traditional Chinese medicine material and an emerging model medicinal plant. Based on conserved domains and phylogenetic analysis, eight SmC5-MTase genes were divided into four subfamilies, including MET, CMT, DRM and DNMT2. Genome-wide comparative analysis of the C5-MTase gene family in S. miltiorrhiza and Arabidopsis thaliana, including gene structure, sequence features, sequence alignment and conserved motifs, was carried out. The results showed conservation and divergence of the members of each subfamily in plants. The length of SmC5-MTase open reading frames ranges widely from 1,152 (SmDNMT2) to 5,034 bp (SmMET1). The intron number of SmC5-MTases varies between 7 (SmDRM1) and 20 (SmCMT1 and SmCMT2b). These features were similar to their counterparts from Arabidopsis. Sequence alignment and conserved motif analysis showed the existence of highly conserved and subfamily-specific motifs in the C5-MTases analyzed. Differential transcript abundance was detected for SmC5-MTases, implying genome-wide variance of DNA methylation in different organs and tissues. Transcriptome-wide analysis showed that the transcript levels of all SmC5-MTase genes was slightly changed under yeast extract and methyl jasmonate treatments. Six SmC5-MTases, including SmMET1, SmCMT1, SmCMT2a, SmCMT2b, SmCMT3 and SmDRM1, were salicylic acid-responsive, suggesting the involvement of SmC5-MTases in salicylic acid-dependent immunity. These results provide useful information for demonstrating the role of DNA methylation in bioactive compound biosynthesis and Dao-di herb formation in medicinal plants.
Collapse
Affiliation(s)
- Jiang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nat Genet 2018; 50:452-459. [PMID: 29459678 PMCID: PMC5865749 DOI: 10.1038/s41588-018-0061-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/16/2018] [Indexed: 01/31/2023]
Abstract
Methylation at the 5 position of cytosine in DNA (5meC) is a key epigenetic mark in eukaryotes. Once introduced, 5meC can be maintained through DNA replication by the activity of 'maintenance' DNA methyltransferases (DNMTs). Despite their ancient origin, DNA methylation pathways differ widely across animals, such that 5meC is either confined to transcribed genes or lost altogether in several lineages. We used comparative epigenomics to investigate the evolution of DNA methylation. Although the model nematode Caenorhabditis elegans lacks DNA methylation, more basal nematodes retain cytosine DNA methylation, which is targeted to repeat loci. We found that DNA methylation coevolved with the DNA alkylation repair enzyme ALKB2 across eukaryotes. In addition, we found that DNMTs introduced the toxic lesion 3-methylcytosine into DNA both in vitro and in vivo. Alkylation damage is therefore intrinsically associated with DNMT activity, and this may promote the loss of DNA methylation in many species.
Collapse
|