1
|
Hu Z, Fan Z, Li S, Wang M, Huang M, Ma X, Liu W, Wang Y, Yu Y, Li Y, Sun Y, Li X, Li J, Yin H. Genomics insights into flowering and floral pattern formation: regional duplication and seasonal pattern of gene expression in Camellia. BMC Biol 2024; 22:50. [PMID: 38414012 PMCID: PMC10900828 DOI: 10.1186/s12915-024-01851-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The formation and domestication of ornamental traits are influenced by various aspects, such as the recognition of esthetic values and cultural traditions. Camellia japonica is widely appreciated and domesticated around the world mainly due to its rich variations in ornamental traits. Ornamental camellias have a diverse range of resources, including different bud variations from Camellia spp. as well as inter- and intra- specific hybridization. Despite research on the formation of ornamental traits, a basic understanding of their genetics and genomics is still lacking. RESULTS Here, we report the chromosomal-level reference genome of C. japonica through combining multiple DNA-sequencing technologies and obtain a high-density genetic linkage map of 4255 markers by sequencing 98 interspecific F1 hybrids between C. japonica and C. chekiangoleosa. We identify two whole-genome duplication events in C. japonica: one is a shared ancient γ event, and the other is revealed to be specific to genus Camellia. Based on the micro-collinearity analysis, we find large-scale segmental duplication of chromosome 8, resulting to two copies of the AGAMOUS loci, which may play a key role in the domestication of floral shapes. To explore the regulatory mechanisms of seasonal flowering, we have analyzed year-round gene expression patterns of C. japonica and C. azalea-a sister plant of continuous flowering that has been widely used for cross breeding. Through comparative analyses of gene co-expression networks and annual gene expression patterns, we show that annual expression rhythms of some important regulators of seasonal growth and development, including GIGANTEA and CONSTANS of the photoperiod pathway, have been disrupted in C. azalea. Furthermore, we reveal that the distinctive expression patterns of FLOWERING LOCUS T can be correlated with the seasonal activities of flowering and flushing. We demonstrate that the regulatory module involved in GIGANTEA, CONSTANS, and FLOWERING LOCUS T is central to achieve seasonality. CONCLUSIONS Through the genomic and comparative genomics characterizations of ornamental Camellia spp., we propose that duplication of chromosomal segments as well as the establishment of gene expression patterns has played a key role in the formation of ornamental traits (e.g., flower shape, flowering time). This work provides a valuable genomic platform for understanding the molecular basis of ornamental traits.
Collapse
Affiliation(s)
- Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Sijia Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Minyan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Mingchuan Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xianjin Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Weixin Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Yupeng Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Yifan Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Yaxuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Yingkun Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xinlei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China.
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China.
| |
Collapse
|
2
|
Xuan L, Wang Q, Liu Z, Xu B, Cheng S, Zhang Y, Lu D, Dong B, Zhang D, Zhang L, Ma J, Shen Y. Metabolic analysis of the regulatory mechanism of sugars on secondary flowering in Magnolia. BMC Mol Cell Biol 2022; 23:56. [DOI: 10.1186/s12860-022-00458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Magnolia, a traditional and important ornamental plant in urban greening, has been cultivated for about 2000 years in China for its elegant flower shape and gorgeous flower color. Most varieties of Magnolia bloom once a year in spring, whereas a few others, such as Magnolia liliiflora Desr. ‘Hongyuanbao’, also bloom for the second time in summer or early autumn. Such a twice flowering trait is desirable for its high ornamental value, while its underlying mechanism remains unclear.
Methods
Paraffin section was used to show the flowering time and phenotypic changes of M. liliiflora ‘Hongyuanbao’ during the twice flowering periods from March 28 to August 25, 2018. Gas chromatography-mass spectrometry (GC-MS) was then performed to explore the chemical metabolites through the twice flower bud differentiation process in ‘Hongyuanbao’, and the metabolites were screened and identified by orthogonal projection to latent structures discriminant analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was used to reveal the relationship between the sugar metabolites and twice-flowering characteristic. To further investigate the potential role of sucrose and trehalose on flowering regulation of ‘Hongyuanbao’, the plants once finished the spring flowering were regularly sprayed with sucrose and trehalose solutions at 30 mM, 60 mM, and 90 mM concentrations from April 22, 2019. The flower bud differentiation processes of sprayed plants were observed and the expression patterns of the genes involved in sucrose and trehalose metabolic pathways were studied by quantitative reverse transcription PCR (qRT-PCR).
Results
It showed that ‘Hongyuanbao’ could complete flower bud differentiation twice in a year and flowered in both spring and summer. The metabolites of flower bud differentiation had a significant variation between the first and second flower buds. Compared to the first flower bud differentiation process, the metabolites in the sucrose and trehalose metabolic pathways were significantly up-regulated during the second flower bud differentiation process. Besides that, the expression levels of a number of trehalose-6-phosphate synthase (TPS) genes including MlTPS1, MlTPS5, MlTPS6, MlTPS7 and MlTPS9 were substantially increased in the second flower differentiation process compared with the first process. Exogenous treatments indicated that compared to the control plants (sprayed with water, CK), all three concentrations of trehalose could accelerate flowering and the effect of 60 mM concentration was the most significant. For the sucrose foliar spray, only the 60 mM concentration accelerated flowering compared with CK. It suggested that different concentration of trehalose and sucrose might have different effects. Expression analysis showed that sucrose treatment increased the transcription levels of MlTPS5 and MlTPS6, whereas trehalose treatment increased MlTPS1, showing that different MlTPS genes took part in sucrose and trehalose metabolic pathways respectively. The expression levels of a number of flowering-related genes, such as MlFT, MlLFY, and MlSPL were also increased in response to the sprays of sucrose and trehalose.
Conclusions
We provide a novel insight into the effect of sucrose and trehalose on the flowering process in Magnolia. Under the different sugar contents treatments, the time of flower bud differentiation of Magnolia was advanced. Induced and accelerated flowering in response to sucrose and trehalose foliar spray, coupled with elevated expression of trehalose regulatory and response genes, suggests that secondary flower bud formation is a promoted by altered endogenous sucrose and trehalose levels. Those results give a new understanding of sucrose and trehalose on twice-flowering in Magnolia and provide a preliminary speculation for inducing and accelerating the flowering process in Magnolia.
Collapse
|
3
|
Dreni L, Ferrándiz C. Tracing the Evolution of the SEPALLATA Subfamily across Angiosperms Associated with Neo- and Sub-Functionalization for Reproductive and Agronomically Relevant Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2934. [PMID: 36365387 PMCID: PMC9656651 DOI: 10.3390/plants11212934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
SEPALLATA transcription factors (SEP TFs) have been extensively studied in angiosperms as pivotal components of virtually all the MADS-box tetrameric complex master regulators of floral organ identities. However, there are published reports that suggest that some SEP members also regulate earlier reproductive events, such as inflorescence meristem determinacy and inflorescence architecture, with potential for application in breeding programs in crops. The SEP subfamily underwent a quite complex pattern of duplications during the radiation of the angiosperms. Taking advantage of the many whole genomic sequences now available, we present a revised and expanded SEP phylogeny and link it to the known functions of previously characterized genes. This snapshot supports the evidence that the major SEP3 clade is highly specialized for the specification of the three innermost floral whorls, while its sister LOFSEP clade is functionally more versatile and has been recruited for diverse roles, such as the regulation of extra-floral bract formation and inflorescence determinacy and shape. This larger pool of angiosperm SEP genes confirms previous evidence that their evolution was driven by whole-genome duplications rather than small-scale duplication events. Our work may help to identify those SEP lineages that are the best candidates for the improvement of inflorescence traits, even in far distantly related crops.
Collapse
|
4
|
Li X, Kuang Y, Ye Y, Chen Z, Zhang M. Diverse function of the PISTILLATA, APETALA 3, and AGAMOUS-like MADS-box genes involved in the floral development in Alpinia hainanensis (Zingiberaceae). Gene X 2022; 839:146732. [PMID: 35840006 DOI: 10.1016/j.gene.2022.146732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Zingiberaceae is the vital clue and key node in the decreased process of fertile stamens in Zingiberales, helping to understand the evolution of the ginger families. This study focuses on Alpinia hainanensis to investigate the function of B- and C-class MADS-box genes in floral development. The introns size of two B-class genes AhPI and AhAP3, and one C-class gene AhAG are quite variable. By contrast, the positions of the corresponding introns are conserved, resulting in a similar exon size in homologs. The typical region 70 bp-CCAATCA element was not found in the second intron of AhAG compared to AG homologs. The subcellular localization showed that AhAP3 was in both intranuclear and extranuclear. The heterodimer was formed between APETALA3 and PISTILLATA but not between the B- and C-class proteins using Y2H and BiFC. The 35S::AhAG heterologous transformed Arabidopsis had curly and smaller rosette leaves with early flowering. Floral organs had no homeotic conversion, albeit sepals and petals reduced in size. Siliques development was affected and displayed wrinkled and shorter. By contrast, 35S::AhAP3 and 35S::AhPI did not show any modified phenotype in transgenic Arabidopsis thaliana. We first proposed the model for Alpinia flower development. MADS-box transcription factor binding at particular genomic locations and interaction with partners may be crucial for the development of the floral organ.
Collapse
Affiliation(s)
- Xiumei Li
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Yanfeng Kuang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yushi Ye
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Zhongjian Chen
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Mingyong Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
5
|
Ma YY, Meng Q, Tan XM, Yang L, Zhang KL, Xu ZQ. Functional identification of the different regions in B-class floral homeotic MADS-box proteins IiAP3 and IiPI from Isatis indigotica. PHYSIOLOGIA PLANTARUM 2022; 174:e13713. [PMID: 35561122 DOI: 10.1111/ppl.13713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
APETALA3 (AP3) and PISTILLATA (PI) are B-class MADS-box floral homeotic genes of Arabidopsis and are involved in specifying the identity of petals and stamens. In the present work, IiAP3 and IiPI, the respective orthologous genes of AP3 and PI, were cloned from Isatis indigotica. By expressing in ap3-6 and pi-1 homozygous mutant and in wild-type Arabidopsis under the control of AP3 promoter or CaMV 35S promoter, we demonstrated that IiAP3 and IiPI were functionally equivalent to AP3 and PI of Arabidopsis. Referring to previous reports and the research results in the present work, expression patterns of AP3 and PI homologs are not the same in different angiosperms possessing diverse floral structures. It suggests that the alterations in expression may contribute to the changing morphology of flowers. To further determine the relationship between IiAP3 and IiPI, the coding sequences of the different structural regions in these two proteins were swapped with each other, and the data collected from transgenic Arabidopsis plants of the chimeric constructs suggested that MADS domain was irreplaceable for the function of IiAP3, K domain of IiAP3 was involved in specifying the identity of stamens, K domain of IiPI was mainly related to the formation of petals, and C-terminal region of IiPI was involved in characterization of stamens. In addition, a complete KC region of these two proteins was more effective in phenotypic complementation of the mutants.
Collapse
Affiliation(s)
- Ye-Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Qi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Xiao-Min Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Liu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Kai-Li Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| |
Collapse
|
6
|
Osnato M, Lacchini E, Pilatone A, Dreni L, Grioni A, Chiara M, Horner D, Pelaz S, Kater MM. Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:398-414. [PMID: 33035313 DOI: 10.1093/jxb/eraa460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
In angiosperms, floral homeotic genes encoding MADS-domain transcription factors regulate the development of floral organs. Specifically, members of the SEPALLATA (SEP) and AGAMOUS (AG) subfamilies form higher-order protein complexes to control floral meristem determinacy and to specify the identity of female reproductive organs. In rice, the AG subfamily gene OsMADS13 is intimately involved in the determination of ovule identity, since knock-out mutant plants develop carpel-like structures in place of ovules, resulting in female sterility. Little is known about the regulatory pathways at the base of rice gynoecium development. To investigate molecular mechanisms acting downstream of OsMADS13, we obtained transcriptomes of immature inflorescences from wild-type and Osmads13 mutant plants. Among a total of 476 differentially expressed genes (DEGs), a substantial overlap with DEGs from the SEP-family Osmads1 mutant was found, suggesting that OsMADS1 and OsMADS13 may act on a common set of target genes. Expression studies and preliminary analyses of two up-regulated genes encoding Zinc-finger transcription factors indicated that our dataset represents a valuable resource for the identification of both OsMADS13 target genes and novel players in rice ovule development. Taken together, our study suggests that OsMADS13 is an important repressor of the carpel pathway during ovule development.
Collapse
Affiliation(s)
- Michela Osnato
- Department of Biosciences, University of Milan, Milano, Italy
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Elia Lacchini
- Department of Biosciences, University of Milan, Milano, Italy
- VIB Center for Plant System Biology, Ghent, BELGIUM
| | | | - Ludovico Dreni
- Department of Biosciences, University of Milan, Milano, Italy
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Andrea Grioni
- Department of Biosciences, University of Milan, Milano, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Milano, Italy
| | - David Horner
- Department of Biosciences, University of Milan, Milano, Italy
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Martin M Kater
- Department of Biosciences, University of Milan, Milano, Italy
| |
Collapse
|
7
|
Kamal N, Ochßner I, Schwandner A, Viehöver P, Hausmann L, Töpfer R, Weisshaar B, Holtgräwe D. Characterization of genes and alleles involved in the control of flowering time in grapevine. PLoS One 2019; 14:e0214703. [PMID: 31269026 PMCID: PMC6608932 DOI: 10.1371/journal.pone.0214703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Grapevine (Vitis vinifera) is one of the most important perennial crop plants in worldwide. Understanding of developmental processes like flowering, which impact quality and quantity of yield in this species is therefore of high interest. This gets even more important when considering some of the expected consequences of climate change. Earlier bud burst and flowering, for example, may result in yield loss due to spring frost. Berry ripening under higher temperatures will impact wine quality. Knowledge of interactions between a genotype or allele combination and the environment can be used for the breeding of genotypes that are better adapted to new climatic conditions. To this end, we have generated a list of more than 500 candidate genes that may play a role in the timing of flowering. The grapevine genome was exploited for flowering time control gene homologs on the basis of functional data from model organisms like A. thaliana. In a previous study, a mapping population derived from early flowering GF.GA-47-42 and late flowering 'Villard Blanc' was analyzed for flowering time QTLs. In a second step we have now established a workflow combining amplicon sequencing and bioinformatics to follow alleles of selected candidate genes in the F1 individuals and the parental genotypes. Allele combinations of these genes in individuals of the mapping population were correlated with early or late flowering phenotypes. Specific allele combinations of flowering time candidate genes within and outside of the QTL regions for flowering time on chromosome 1, 4, 14, 17, and 18 were found to be associated with an early flowering phenotype. In addition, expression of many of the flowering candidate genes was analyzed over consecutive stages of bud and inflorescence development indicating functional roles of these genes in the flowering control network.
Collapse
Affiliation(s)
- Nadia Kamal
- Bielefeld University, Faculty of Biology & Center for Biotechnology, Bielefeld, Germany
| | - Iris Ochßner
- Julius Kühn-Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Anna Schwandner
- Julius Kühn-Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Prisca Viehöver
- Bielefeld University, Faculty of Biology & Center for Biotechnology, Bielefeld, Germany
| | - Ludger Hausmann
- Julius Kühn-Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Reinhard Töpfer
- Julius Kühn-Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Bernd Weisshaar
- Bielefeld University, Faculty of Biology & Center for Biotechnology, Bielefeld, Germany
| | - Daniela Holtgräwe
- Bielefeld University, Faculty of Biology & Center for Biotechnology, Bielefeld, Germany
| |
Collapse
|
8
|
Cao J. Molecular Evolution of the Vacuolar Iron Transporter ( VIT) Family Genes in 14 Plant Species. Genes (Basel) 2019; 10:E144. [PMID: 30769903 PMCID: PMC6409731 DOI: 10.3390/genes10020144] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
The vacuolar iron transporter (VIT) proteins are involved in the storage and transport of iron. However, the evolution of this gene family in plants is unknown. In this study, I first identified 114 VIT genes in 14 plant species and classified these genes into seven groups by phylogenetic analysis. Conserved gene organization and motif distribution implied conserved function in each group. I also found that tandem duplication, segmental duplication and transposition contributed to the expansion of this gene family. Additionally, several positive selection sites were identified. Divergent expression patterns of soybean VIT genes were further investigated in different development stages and under iron stress. Functional network analysis exhibited 211 physical or functional interactions. The results will provide the basis for further functional studies of the VIT genes in plants.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
9
|
Martín-Pizarro C, Triviño JC, Posé D. Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9-directed mutagenesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:885-895. [PMID: 30428077 DOI: 10.1101/351296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/02/2018] [Indexed: 05/27/2023]
Abstract
The B-class of MADS-box transcription factors has been studied in many plant species, but remains functionally uncharacterized in Rosaceae. APETALA3 (AP3), a member of this class, controls petal and stamen identities in Arabidopsis. In this study, we identified two members of the AP3 lineage in cultivated strawberry, Fragaria × ananassa, namely FaAP3 and FaTM6. FaTM6, and not FaAP3, showed an expression pattern equivalent to that of AP3 in Arabidopsis. We used the CRISPR/Cas9 genome editing system for the first time in an octoploid species to characterize the function of TM6 in strawberry flower development. An analysis by high-throughput sequencing of the FaTM6 locus spanning the target sites showed highly efficient genome editing already present in the T0 generation. Phenotypic characterization of the mutant lines indicated that FaTM6 plays a key role in anther development in strawberry. Our results validate the use of the CRISPR/Cas9 system for gene functional analysis in F. × ananassa as an octoploid species, and offer new opportunities for engineering strawberry to improve traits of interest in breeding programs.
Collapse
Affiliation(s)
- Carmen Martín-Pizarro
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | | | - David Posé
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| |
Collapse
|
10
|
Martín-Pizarro C, Triviño JC, Posé D. Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9-directed mutagenesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:885-895. [PMID: 30428077 PMCID: PMC6363087 DOI: 10.1093/jxb/ery400] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/02/2018] [Indexed: 05/18/2023]
Abstract
The B-class of MADS-box transcription factors has been studied in many plant species, but remains functionally uncharacterized in Rosaceae. APETALA3 (AP3), a member of this class, controls petal and stamen identities in Arabidopsis. In this study, we identified two members of the AP3 lineage in cultivated strawberry, Fragaria × ananassa, namely FaAP3 and FaTM6. FaTM6, and not FaAP3, showed an expression pattern equivalent to that of AP3 in Arabidopsis. We used the CRISPR/Cas9 genome editing system for the first time in an octoploid species to characterize the function of TM6 in strawberry flower development. An analysis by high-throughput sequencing of the FaTM6 locus spanning the target sites showed highly efficient genome editing already present in the T0 generation. Phenotypic characterization of the mutant lines indicated that FaTM6 plays a key role in anther development in strawberry. Our results validate the use of the CRISPR/Cas9 system for gene functional analysis in F. × ananassa as an octoploid species, and offer new opportunities for engineering strawberry to improve traits of interest in breeding programs.
Collapse
Affiliation(s)
- Carmen Martín-Pizarro
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | | | - David Posé
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Correspondence:
| |
Collapse
|
11
|
Gao H, Wang Z, Li S, Hou M, Zhou Y, Zhao Y, Li G, Zhao H, Ma H. Genome-wide survey of potato MADS-box genes reveals that StMADS1 and StMADS13 are putative downstream targets of tuberigen StSP6A. BMC Genomics 2018; 19:726. [PMID: 30285611 PMCID: PMC6171223 DOI: 10.1186/s12864-018-5113-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022] Open
Abstract
Background MADS-box genes encode transcription factors that are known to be involved in several aspects of plant growth and development, especially in floral organ specification. To date, the comprehensive analysis of potato MADS-box gene family is still lacking after the completion of potato genome sequencing. A genome-wide characterization, classification, and expression analysis of MADS-box transcription factor gene family was performed in this study. Results A total of 153 MADS-box genes were identified and categorized into MIKC subfamily (MIKCC and MIKC*) and M-type subfamily (Mα, Mβ, and Mγ) based on their phylogenetic relationships to the Arabidopsis and rice MADS-box genes. The potato M-type subfamily had 114 members, which is almost three times of the MIKC members (39), indicating that M-type MADS-box genes have a higher duplication rate and/or a lower loss rate during potato genome evolution. Potato MADS-box genes were present on all 12 potato chromosomes with substantial clustering that mainly contributed by the M-type members. Chromosomal localization of potato MADS-box genes revealed that MADS-box genes, mostly MIKC, were located on the duplicated segments of the potato genome whereas tandem duplications mainly contributed to the M-type gene expansion. The potato MIKC subfamily could be further classified into 11 subgroups and the TT16-like, AGL17-like, and FLC-like subgroups found in Arabidopsis were absent in potato. Moreover, the expressions of potato MADS-box genes in various tissues were analyzed by using RNA-seq data and verified by quantitative real-time PCR, revealing that the MIKCC genes were mainly expressed in flower organs and several of them were highly expressed in stolon and tubers. StMADS1 and StMADS13 were up-regulated in the StSP6A-overexpression plants and down-regulated in the StSP6A-RNAi plant, and their expression in leaves and/or young tubers were associated with high level expression of StSP6A. Conclusion Our study identifies the family members of potato MADS-box genes and investigate the evolution history and functional divergence of MADS-box gene family. Moreover, we analyze the MIKCC expression patterns and screen for genes involved in tuberization. Finally, the StMADS1 and StMADS13 are most likely to be downstream target of StSP6A and involved in tuber development. Electronic supplementary material The online version of this article (10.1186/s12864-018-5113-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huhu Gao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziming Wang
- School of Stomatology, Wuhan University, Wuhan, 430072, Hubei, China
| | - Silu Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Menglu Hou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaqi Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guojun Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hua Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Haoli Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Causier B, Li Z, De Smet R, Lloyd JPB, Van de Peer Y, Davies B. Conservation of Nonsense-Mediated mRNA Decay Complex Components Throughout Eukaryotic Evolution. Sci Rep 2017; 7:16692. [PMID: 29192227 PMCID: PMC5709506 DOI: 10.1038/s41598-017-16942-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 11/15/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential eukaryotic process regulating transcript quality and abundance, and is involved in diverse processes including brain development and plant defenses. Although some of the NMD machinery is conserved between kingdoms, little is known about its evolution. Phosphorylation of the core NMD component UPF1 is critical for NMD and is regulated in mammals by the SURF complex (UPF1, SMG1 kinase, SMG8, SMG9 and eukaryotic release factors). However, since SMG1 is reportedly missing from the genomes of fungi and the plant Arabidopsis thaliana, it remains unclear how UPF1 is activated outside the metazoa. We used comparative genomics to determine the conservation of the NMD pathway across eukaryotic evolution. We show that SURF components are present in all major eukaryotic lineages, including fungi, suggesting that in addition to UPF1 and SMG1, SMG8 and SMG9 also existed in the last eukaryotic common ancestor, 1.8 billion years ago. However, despite the ancient origins of the SURF complex, we also found that SURF factors have been independently lost across the Eukarya, pointing to genetic buffering within the essential NMD pathway. We infer an ancient role for SURF in regulating UPF1, and the intriguing possibility of undiscovered NMD regulatory pathways.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - Riet De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium.,Department of Genetics, Genomics Research Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
13
|
Zhao T, Holmer R, de Bruijn S, Angenent GC, van den Burg HA, Schranz ME. Phylogenomic Synteny Network Analysis of MADS-Box Transcription Factor Genes Reveals Lineage-Specific Transpositions, Ancient Tandem Duplications, and Deep Positional Conservation. THE PLANT CELL 2017; 29:1278-1292. [PMID: 28584165 PMCID: PMC5502458 DOI: 10.1105/tpc.17.00312] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 05/06/2023]
Abstract
Conserved genomic context provides critical information for comparative evolutionary analysis. With the increase in numbers of sequenced plant genomes, synteny analysis can provide new insights into gene family evolution. Here, we exploit a network analysis approach to organize and interpret massive pairwise syntenic relationships. Specifically, we analyzed synteny networks of the MADS-box transcription factor gene family using 51 completed plant genomes. In combination with phylogenetic profiling, several novel evolutionary patterns were inferred and visualized from synteny network clusters. We found lineage-specific clusters that derive from transposition events for the regulators of floral development (APETALA3 and PI) and flowering time (FLC) in the Brassicales and for the regulators of root development (AGL17) in Poales. We also identified two large gene clusters that jointly encompass many key phenotypic regulatory Type II MADS-box gene clades (SEP1, SQUA, TM8, SEP3, FLC, AGL6, and TM3). Gene clustering and gene trees support the idea that these genes are derived from an ancient tandem gene duplication that likely predates the radiation of the seed plants and then expanded by subsequent polyploidy events. We also identified angiosperm-wide conservation of synteny of several other less studied clades. Combined, these findings provide new hypotheses for the genomic origins, biological conservation, and divergence of MADS-box gene family members.
Collapse
Affiliation(s)
- Tao Zhao
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Rens Holmer
- Laboratory for Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Suzanne de Bruijn
- Laboratory for Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory for Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
14
|
Zhao T, Schranz ME. Network approaches for plant phylogenomic synteny analysis. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:129-134. [PMID: 28327435 DOI: 10.1016/j.pbi.2017.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 05/07/2023]
Abstract
Network analysis approaches have been widely applied across disciplines. In biology, network analysis is now frequently adopted to organize protein-protein interactions, organize pathways and/or to interpret gene co-expression patterns. However, comparative genomic analyses still largely rely on pairwise comparisons and linear visualizations between genomes. In this article, we discuss the challenges and prospects for establishing a generalized plant phylogenomic synteny network approach needed to interpret the wealth of new and emerging genomic data. We illustrate our approach with an example synteny network of B-class floral MADS-box genes. A broad synteny network approach holds great promise for understanding the evolutionary history of genes and genomes across broad phylogenetic groups and divergence times.
Collapse
Affiliation(s)
- Tao Zhao
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
15
|
Mizzotti C, Galliani BM, Dreni L, Sommer H, Bombarely A, Masiero S. ERAMOSA controls lateral branching in snapdragon. Sci Rep 2017; 7:41319. [PMID: 28145519 PMCID: PMC5286501 DOI: 10.1038/srep41319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/16/2016] [Indexed: 11/21/2022] Open
Abstract
Plant forms display a wide variety of architectures, depending on the number of lateral branches, internode elongation and phyllotaxy. These are in turn determined by the number, the position and the fate of the Axillary Meristems (AMs). Mutants that affect AM determination during the vegetative phase have been isolated in several model plants. Among these genes, the GRAS transcription factor LATERAL SUPPRESSOR (Ls) plays a pivotal role in AM determination during the vegetative phase. Hereby we characterize the phylogenetic orthologue of Ls in Antirrhinum, ERAMOSA (ERA). Our data supported ERA control of AM formation during both the vegetative and the reproductive phase in snapdragon. A phylogenetic analysis combined with an analysis of the synteny of Ls in several species strongly supported the hypothesis that ERA is a phylogenetic orthologue of Ls, although it plays a broader role. During the reproductive phase ERA promotes the establishment of the stem niche at the bract axis but, after the reproductive transition, it is antagonized by the MADS box transcription factor SQUAMOSA (SQUA). Surprisingly double mutant era squa plants display a squa phenotype developing axillary meristems, which can eventually turn into inflorescences or flowers.
Collapse
Affiliation(s)
- Chiara Mizzotti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Bianca M Galliani
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Ludovico Dreni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Hans Sommer
- Max-Planck-Institut fuer Zuechtungsforschung, Carl-von-Linne-Weg 10, 50829 Koeln, Germany
| | | | - Simona Masiero
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
16
|
Abstract
Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at http://chibba.agtec.uga.edu/duplication/.
Collapse
Affiliation(s)
- Tae-Ho Lee
- Genomics Division, Department of Agricultural Bio-resource, National Academy of Agricultural Science, Rural Development Administration (RDA), Jeonju, South Korea
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Junah Kim
- Genomics Division, Department of Agricultural Bio-resource, National Academy of Agricultural Science, Rural Development Administration (RDA), Jeonju, South Korea
| | - Jon S Robertson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
17
|
Panchy N, Lehti-Shiu M, Shiu SH. Evolution of Gene Duplication in Plants. PLANT PHYSIOLOGY 2016; 171:2294-316. [PMID: 27288366 PMCID: PMC4972278 DOI: 10.1104/pp.16.00523] [Citation(s) in RCA: 845] [Impact Index Per Article: 93.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication.
Collapse
Affiliation(s)
- Nicholas Panchy
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| | - Melissa Lehti-Shiu
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
18
|
Li Q, Huo Q, Wang J, Zhao J, Sun K, He C. Expression of B-class MADS-box genes in response to variations in photoperiod is associated with chasmogamous and cleistogamous flower development in Viola philippica. BMC PLANT BIOLOGY 2016; 16:151. [PMID: 27388887 PMCID: PMC4936093 DOI: 10.1186/s12870-016-0832-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/15/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Some plants develop a breeding system that produces both chasmogamous (CH) and cleistogamous (CL) flowers. However, the underlying molecular mechanism remains elusive. RESULTS In the present study, we observed that Viola philippica develops CH flowers with short daylight, whereas an extended photoperiod induces the formation of intermediate CL and CL flowers. In response to long daylight, the respective number and size of petals and stamens was lower and smaller than those of normally developed CH flowers, and a minimum of 14-h light induced complete CL flowers that had no petals but developed two stamens of reduced fertility. The floral ABC model indicates that B-class MADS-box genes largely influence the development of the affected two-whorl floral organs; therefore, we focused on characterizing these genes in V. philippica to understand this particular developmental transition. Three such genes were isolated and respectively designated as VpTM6-1, VpTM6-2, and VpPI. These were differentially expressed during floral development (particularly in petals and stamens) and the highest level of expression was observed in CH flowers; significantly low levels were detected in intermediate CL flowers, and the lowest level in CL flowers. The observed variations in the levels of expression after floral induction and organogenesis apparently occurred in response to variations in photoperiod. CONCLUSIONS Therefore, inhibition of the development of petals and stamens might be due to the downregulation of B-class MADS-box gene expression by long daylight, thereby inducing the generation of CL flowers. Our work contributes to the understanding of the adaptive evolutionary formation of dimorphic flowers in plants.
Collapse
Affiliation(s)
- Qiaoxia Li
- />Life Science College, Northwest Normal University, Anning East Road 967, Anning, 730070 Lanzhou, Gansu China
| | - Qingdi Huo
- />Life Science College, Northwest Normal University, Anning East Road 967, Anning, 730070 Lanzhou, Gansu China
| | - Juan Wang
- />Life Science College, Northwest Normal University, Anning East Road 967, Anning, 730070 Lanzhou, Gansu China
| | - Jing Zhao
- />Life Science College, Northwest Normal University, Anning East Road 967, Anning, 730070 Lanzhou, Gansu China
- />State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan 100093 Beijing, China
| | - Kun Sun
- />Life Science College, Northwest Normal University, Anning East Road 967, Anning, 730070 Lanzhou, Gansu China
| | - Chaoying He
- />State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan 100093 Beijing, China
| |
Collapse
|
19
|
Hecht V. Duplicate MADS genes with split roles. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1609-1611. [PMID: 26956503 PMCID: PMC4783379 DOI: 10.1093/jxb/erw086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Valérie Hecht
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
20
|
Liu D, Sun W, Yuan Y, Zhang N, Hayward A, Liu Y, Wang Y. Phylogenetic analyses provide the first insights into the evolution of OVATE family proteins in land plants. ANNALS OF BOTANY 2014; 113:1219-33. [PMID: 24812252 PMCID: PMC4030818 DOI: 10.1093/aob/mcu061] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/07/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS The OVATE gene encodes a nuclear-localized regulatory protein belonging to a distinct family of plant-specific proteins known as the OVATE family proteins (OFPs). OVATE was first identified as a key regulator of fruit shape in tomato, with nonsense mutants displaying pear-shaped fruits. However, the role of OFPs in plant development has been poorly characterized. METHODS Public databases were searched and a total of 265 putative OVATE protein sequences were identified from 13 sequenced plant genomes that represent the major evolutionary lineages of land plants. A phylogenetic analysis was conducted based on the alignment of the conserved OVATE domain from these 13 selected plant genomes. The expression patterns of tomato SlOFP genes were analysed via quantitative real-time PCR. The pattern of OVATE gene duplication resulting in the expansion of the gene family was determined in arabidopsis, rice and tomato. KEY RESULTS Genes for OFPs were found to be present in all the sampled land plant genomes, including the early-diverged lineages, mosses and lycophytes. Phylogenetic analysis based on the amino acid sequences of the conserved OVATE domain defined 11 sub-groups of OFPs in angiosperms. Different evolutionary mechanisms are proposed for OVATE family evolution, namely conserved evolution and divergent expansion. Characterization of the AtOFP family in arabidopsis, the OsOFP family in rice and the SlOFP family in tomato provided further details regarding the evolutionary framework and revealed a major contribution of tandem and segmental duplications towards expansion of the OVATE gene family. CONCLUSIONS This first genome-wide survey on OFPs provides new insights into the evolution of the OVATE protein family and establishes a solid base for future functional genomics studies on this important but poorly characterized regulatory protein family in plants.
Collapse
Affiliation(s)
- Di Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Sun
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing 100700, China Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yaowu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Ning Zhang
- Department of Biology, the Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Alice Hayward
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yongliang Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
21
|
Sun W, Huang W, Li Z, Song C, Liu D, Liu Y, Hayward A, Liu Y, Huang H, Wang Y. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum. ANNALS OF BOTANY 2014; 113:653-68. [PMID: 24532606 PMCID: PMC3936592 DOI: 10.1093/aob/mct301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS MADS-box transcriptional regulators play important roles during plant development. Based on phylogenetic reconstruction, the AP1/SEP/AGL6 superclade of floral MADS-box genes underwent one or two duplication events in the common ancestor of the core eudicots. However, the functional evolution of the AP1/SEP/AGL6 superclade in basal eudicots remains uncharacterized. Epimedium sagittatum is a basal eudicot species valued for its medicinal properties and showing unique floral morphology. In this study, structural and functional variation of FUL-like (AP1 subfamily), SEP-like and AGL6-like genes in this species was investigated to further our understanding of flower evolution in angiosperms. Detailed investigations into the microsynteny and evolutionary history of the floral A and E class MADS-box genes in eudicots were undertaken and used to trace their genomic rearrangements. METHODS One AP1-like gene, two SEP-like genes and one AGL6-like gene were cloned from E. sagittatum. Their expression patterns were examined using quantitative RT-PCR in different vegetative and reproductive organs at two developmental stages. Yeast two-hybrid assays were carried out among AP1/SEP/AGL6 superclade, AP3/PI and AGAMOUS subfamily members for elucidation of dimerization patterns. In addition, possible formation of a ternary complex involving B class proteins with the A class protein EsFUL-like, the E class SEP-like protein EsAGL2-1 or the AGL6-class protein EsAGL6 were detected using yeast three-hybrid assays. Transgenic Arabidopsis or tobacco plants expressing EsFUL-like, EsAGL2-1 and EsAGL6-like under the cauliflower mosaic virus (CaMV) 35S promoter were generated and analysed. Genomic studies of AP1 syntenic regions in arabidopsis, columbine, strawberry, papaya, peach, grapevine and tomato were conducted for microsyntenic analyses. KEY RESULTS Sequence and phylogenetic analyses showed that EsFUL-like is a member of the AP1 (A class) subfamily, EsAGL2-1 and EsAGL2-2 belong to the SEP-like (E class) subfamily, and EsAGL6-like belongs to the AGL6 (AGL6 class) subfamily. Quantitative RT-PCR analyses revealed that the transcripts of the four genes are absent, or minimal, in vegetative tissues and are most highly expressed in floral organs. Yeast two-hybrid results revealed that of the eight MADS-box proteins tested, only EsAGL6-like, EsAGL2-1 and EsAGL2 were able to form strong homo- and heterodimers, with EsAGL6-like and EsAGL2-1 showing similar interaction patterns. Yeast three-hybrid analysis revealed that EsFUL1-like, EsAGL6-like and EsAGL2-1 (representing the three major lineages of the Epimedium AGL/SEP/ALG6 superclade) could act as bridging proteins in ternary complexes with both EsAP3-2 (B class) and EsPI (B class), which do not heterodimerize themselves. Syntenic analyses of sequenced basal eudicots, rosids and asterids showed that most AP1-like and SEP-like genes have been tightly associated as neighbours since the origin of basal eudicots. Ectopic expression of EsFUL-like in arabidopsis caused early flowering through endogenous high-level expression of AP1 and formation of secondary flowers between the first and second whorls. Tobacco plants with ectopic expression of EsAGL2-1 showed shortened pistils and styles, as well as axillary and extra petals in the initial flower. CONCLUSIONS This study provides a description of EsFUL-like, EsAGL2-1, EsAGL2-2 and EsAGL6-like function divergence and conservation in comparison with a selection of model core eudicots. The study also highlights how organization in genomic segments containing A and E class genes in sequenced model species has resulted in similar topologies of AP1 and SEP-like gene trees.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing, 100700, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Zhineng Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Chi Song
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing, 100700, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Di Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Yongliang Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Alice Hayward
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Yifei Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Hongwen Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- For correspondence. E-mail or
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- For correspondence. E-mail or
| |
Collapse
|
22
|
Abstract
A complete understanding of the genetic control of flower development requires a comparative approach, involving species from across the angiosperm lineage. Using the accessible model plant Arabidopsis thaliana many of the genetic pathways that control development of the reproductive growth phase have been delineated. Research in other species has added to this knowledge base, revealing that, despite the myriad of floral forms found in nature, the genetic blueprint of flower development is largely conserved. However, these same studies have also highlighted differences in the way flowering is controlled in evolutionarily diverse species. Here, we review flower development in the eudicot asterid lineage, a group of plants that diverged from the rosid family, which includes Arabidopsis, 120 million years ago. Work on model species such as Antirrhinum majus, Petunia hybrida, and Gerbera hybrida has prompted a reexamination of textbook models of flower development; revealed novel mechanisms controlling floral gene expression; provided a means to trace evolution of key regulatory genes; and stimulated discussion about genetic redundancy and the fate of duplicated genes.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
23
|
Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots. PLoS One 2013; 8:e74803. [PMID: 24019982 PMCID: PMC3760840 DOI: 10.1371/journal.pone.0074803] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/05/2013] [Indexed: 11/24/2022] Open
Abstract
TCP ECE genes encode transcription factors which have received much attention for their repeated recruitment in the control of floral symmetry in core eudicots, and more recently in monocots. Major duplications of TCP ECE genes have been described in core eudicots, but the evolutionary history of this gene family is unknown in basal eudicots. Reconstructing the phylogeny of ECE genes in basal eudicots will help set a framework for understanding the functional evolution of these genes. TCP ECE genes were sequenced in all major lineages of basal eudicots and Gunnera which belongs to the sister clade to all other core eudicots. We show that in these lineages they have a complex evolutionary history with repeated duplications. We estimate the timing of the two major duplications already identified in the core eudicots within a timeframe before the divergence of Gunnera and after the divergence of Proteales. We also use a synteny-based approach to examine the extent to which the expansion of TCP ECE genes in diverse eudicot lineages may be due to genome-wide duplications. The three major core-eudicot specific clades share a number of collinear genes, and their common evolutionary history may have originated at the γ event. Genomic comparisons in Arabidopsis thaliana and Solanumlycopersicum highlight their separate polyploid origin, with syntenic fragments with and without TCP ECE genes showing differential gene loss and genomic rearrangements. Comparison between recently available genomes from two basal eudicots Aquilegiacoerulea and Nelumbonucifera suggests that the two TCP ECE paralogs in these species are also derived from large-scale duplications. TCP ECE loci from basal eudicots share many features with the three main core eudicot loci, and allow us to infer the makeup of the ancestral eudicot locus.
Collapse
|
24
|
Ruelens P, de Maagd RA, Proost S, Theißen G, Geuten K, Kaufmann K. FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nat Commun 2013; 4:2280. [DOI: 10.1038/ncomms3280] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 07/10/2013] [Indexed: 12/11/2022] Open
|
25
|
Abstract
Genome duplication (GD) has permanently shaped the architecture and function of many higher eukaryotic genomes. The angiosperms (flowering plants) are outstanding models in which to elucidate consequences of GD for higher eukaryotes, owing to their propensity for chromosomal duplication or even triplication in a few cases. Duplicated genome structures often require both intra- and inter-genome alignments to unravel their evolutionary history, also providing the means to deduce both obvious and otherwise-cryptic orthology, paralogy and other relationships among genes. The burgeoning sets of angiosperm genome sequences provide the foundation for a host of investigations into the functional and evolutionary consequences of gene and GD. To provide genome alignments from a single resource based on uniform standards that have been validated by empirical studies, we built the Plant Genome Duplication Database (PGDD; freely available at http://chibba.agtec.uga.edu/duplication/), a web service providing synteny information in terms of colinearity between chromosomes. At present, PGDD contains data for 26 plants including bryophytes and chlorophyta, as well as angiosperms with draft genome sequences. In addition to the inclusion of new genomes as they become available, we are preparing new functions to enhance PGDD.
Collapse
Affiliation(s)
- Tae-Ho Lee
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
26
|
Airoldi CA, Davies B. Gene Duplication and the Evolution of Plant MADS-box Transcription Factors. J Genet Genomics 2012; 39:157-65. [DOI: 10.1016/j.jgg.2012.02.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 11/17/2022]
|
27
|
Guyot R, Lefebvre-Pautigny F, Tranchant-Dubreuil C, Rigoreau M, Hamon P, Leroy T, Hamon S, Poncet V, Crouzillat D, de Kochko A. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades. BMC Genomics 2012; 13:103. [PMID: 22433423 PMCID: PMC3372433 DOI: 10.1186/1471-2164-13-103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coffee trees (Rubiaceae) and tomato (Solanaceae) belong to the Asterid clade, while grapevine (Vitaceae) belongs to the Rosid clade. Coffee and tomato separated from grapevine 125 million years ago, while coffee and tomato diverged 83-89 million years ago. These long periods of divergent evolution should have permitted the genomes to reorganize significantly. So far, very few comparative mappings have been performed between very distantly related species belonging to different clades. We report the first multiple comparison between species from Asterid and Rosid clades, to examine both macro-and microsynteny relationships. RESULTS Thanks to a set of 867 COSII markers, macrosynteny was detected between coffee, tomato and grapevine. While coffee and tomato genomes share 318 orthologous markers and 27 conserved syntenic segments (CSSs), coffee and grapevine also share a similar number of syntenic markers and CSSs: 299 and 29 respectively. Despite large genome macrostructure reorganization, several large chromosome segments showed outstanding macrosynteny shedding new insights into chromosome evolution between Asterids and Rosids. We also analyzed a sequence of 174 kb containing the ovate gene, conserved in a syntenic block between coffee, tomato and grapevine that showed a high-level of microstructure conservation. A higher level of conservation was observed between coffee and grapevine, both woody and long life-cycle plants, than between coffee and tomato. Out of 16 coffee genes of this syntenic segment, 7 and 14 showed complete synteny between coffee and tomato or grapevine, respectively. CONCLUSIONS These results show that significant conservation is found between distantly related species from the Asterid (Coffea canephora and Solanum sp.) and Rosid (Vitis vinifera) clades, at the genome macrostructure and microstructure levels. At the ovate locus, conservation did not decline in relation to increasing phylogenetic distance, suggesting that the time factor alone does not explain divergences. Our results are considerably useful for syntenic studies between supposedly remote species for the isolation of important genes for agronomy.
Collapse
Affiliation(s)
- Romain Guyot
- UMR DIADE, Evolution et Dynamique des Génomes, Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 2012; 40:e49. [PMID: 22217600 PMCID: PMC3326336 DOI: 10.1093/nar/gkr1293] [Citation(s) in RCA: 3883] [Impact Index Per Article: 298.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
MCScan is an algorithm able to scan multiple genomes or subgenomes in order to identify putative homologous chromosomal regions, and align these regions using genes as anchors. The MCScanX toolkit implements an adjusted MCScan algorithm for detection of synteny and collinearity that extends the original software by incorporating 14 utility programs for visualization of results and additional downstream analyses. Applications of MCScanX to several sequenced plant genomes and gene families are shown as examples. MCScanX can be used to effectively analyze chromosome structural changes, and reveal the history of gene family expansions that might contribute to the adaptation of lineages and taxa. An integrated view of various modes of gene duplication can supplement the traditional gene tree analysis in specific families. The source code and documentation of MCScanX are freely available at http://chibba.pgml.uga.edu/mcscan2/.
Collapse
Affiliation(s)
- Yupeng Wang
- Plant Genome Mapping Laboratory, Institute of Bioinformatics, Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wei RX, Ge S. Evolutionary history and complementary selective relaxation of the duplicated PI genes in grasses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:682-693. [PMID: 21615687 DOI: 10.1111/j.1744-7909.2011.01058.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gene duplication plays an important role in the evolution of organisms by allowing functional innovation and the divergence of duplicate genes. Previous studies found two PI-like genes in grass species, suggesting functional divergence between the paralogous copies. Here, we reconstructed the evolutionary history of two PI genes from major lineages of grasses and other monocot species, and demonstrated that two PI genes (PI1 and PI2) arose from a whole genome duplication that occurred in a common ancestor of extant grasses. Molecular evolutionary analyses at the family and tribal levels found strong purifying selection acting on two genes in grasses, consistent with the conserved class B function of the PI genes. Importantly, we detected different patterns of selective relaxation between the duplicated PI genes although no signature of positive selection was found. Likelihood ratio tests revealed that the ω ratio for M domain is significantly higher in PI1 than in PI2 but that for K domain is significantly higher in PI2 than in PI1. These findings imply that complementary selective relaxation occurs in two PI genes after duplication, and provide additional molecular evidence for the subfunctionalization of the duplicated PI genes in grasses.
Collapse
Affiliation(s)
- Ruo-Xun Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
30
|
Lee HL, Irish VF. Gene duplication and loss in a MADS box gene transcription factor circuit. Mol Biol Evol 2011; 28:3367-80. [PMID: 21712469 DOI: 10.1093/molbev/msr169] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although many models have been proposed that could lead to the maintenance of gene duplicates, the ways in which interacting gene duplicates influence each other's evolution and function remain poorly understood. Here, we focus on duplication and loss of the B class MADS box transcription factor genes in the euasterids I and the ramifications of such changes on paralog evolution and their encoded functions. In core eudicots, the B class genes belong to two paralogous lineages whose products form obligate heterodimers. Based on comparative genomic and phylogenetic analyses, we show that five stepwise B class MADS box gene gain or loss events occurred during the radiation of the euasterids I within core eudicots. Gene loss in one sublineage was correlated with a deficit of other sublineage genes. We also show that the gain or loss of B class MADS box gene paralogs were associated with altered protein-protein interactions among the remaining copies. These altered protein interactions were correlated with asymmetric patterns of sequence diversification and selection, suggesting that compensatory changes were driving the evolution of such genes. Furthermore, these B class MADS box gene gain or loss events were associated with the evolutionary divergence of floral morphology in the euasterids I. Together, these observations point to a cooperative strategy by which gene networks evolve, with selection maintaining the overall logic of a network despite changes in individual components.
Collapse
Affiliation(s)
- Hae-Lim Lee
- Department of Molecular, Cellular and Developmental Biology, Yale University, USA
| | | |
Collapse
|