1
|
Chen CZ, Li P, Liu L, Sun YJ, Ju WM, Li ZH. Seasonal variations of microbial communities and viral diversity in fishery-enhanced marine ranching sediments: insights into metabolic potentials and ecological interactions. MICROBIOME 2024; 12:209. [PMID: 39434181 PMCID: PMC11492486 DOI: 10.1186/s40168-024-01922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The ecosystems of marine ranching have enhanced marine biodiversity and ecological balance and have promoted the natural recovery and enhancement of fishery resources. The microbial communities of these ecosystems, including bacteria, fungi, protists, and viruses, are the drivers of biogeochemical cycles. Although seasonal changes in microbial communities are critical for ecosystem functioning, the current understanding of microbial-driven metabolic properties and their viral communities in marine sediments remains limited. Here, we employed amplicon (16S and 18S) and metagenomic approaches aiming to reveal the seasonal patterns of microbial communities, bacterial-eukaryotic interactions, whole metabolic potential, and their coupling mechanisms with carbon (C), nitrogen (N), and sulfur (S) cycling in marine ranching sediments. Additionally, the characterization and diversity of viral communities in different seasons were explored in marine ranching sediments. RESULTS The current study demonstrated that seasonal variations dramatically affected the diversity of microbial communities in marine ranching sediments and the bacterial-eukaryotic interkingdom co-occurrence networks. Metabolic reconstruction of the 113 medium to high-quality metagenome-assembled genomes (MAGs) was conducted, and a total of 8 MAGs involved in key metabolic genes and pathways (methane oxidation - denitrification - S oxidation), suggesting a possible coupling effect between the C, N, and S cycles. In total, 338 viral operational taxonomic units (vOTUs) were identified, all possessing specific ecological characteristics in different seasons and primarily belonging to Caudoviricetes, revealing their widespread distribution and variety in marine sediment ecosystems. In addition, predicted virus-host linkages showed that high host specificity was observed, with few viruses associated with specific hosts. CONCLUSIONS This finding deepens our knowledge of element cycling and viral diversity in fisheries enrichment ecosystems, providing insights into microbial-virus interactions in marine sediments and their effects on biogeochemical cycling. These findings have potential applications in marine ranching management and ecological conservation. Video Abstract.
Collapse
Affiliation(s)
- Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Yong-Jun Sun
- Homey Group Co. Ltd., Rongcheng, 264306, Shandong, China
| | - Wen-Ming Ju
- Homey Group Co. Ltd., Rongcheng, 264306, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
2
|
Miller JT, Clark BW, Reid NM, Karchner SI, Roach JL, Hahn ME, Nacci D, Whitehead A. Independently evolved pollution resistance in four killifish populations is largely explained by few variants of large effect. Evol Appl 2024; 17:e13648. [PMID: 38293268 PMCID: PMC10824703 DOI: 10.1111/eva.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The genetic architecture of phenotypic traits can affect the mode and tempo of trait evolution. Human-altered environments can impose strong natural selection, where successful evolutionary adaptation requires swift and large phenotypic shifts. In these scenarios, theory predicts that adaptation is due to a few adaptive variants of large effect, but empirical studies that have revealed the genetic architecture of rapidly evolved phenotypes are rare, especially for populations inhabiting polluted environments. Fundulus killifish have repeatedly evolved adaptive resistance to extreme pollution in urban estuaries. Prior studies, including genome scans for signatures of natural selection, have revealed some of the genes and pathways important for evolved pollution resistance, and provide context for the genotype-phenotype association studies reported here. We created multiple quantitative trait locus (QTL) mapping families using progenitors from four different resistant populations, and using RAD-seq genetically mapped variation in sensitivity (developmental perturbations) following embryonic exposure to a model toxicant PCB-126. We found that one to two large-effect QTL loci accounted for resistance to PCB-mediated developmental toxicity. QTLs harbored candidate genes that govern the regulation of aryl hydrocarbon receptor (AHR) signaling. One QTL locus was shared across all populations and another was shared across three populations. One QTL locus showed strong signatures of recent natural selection in the corresponding wild population but another QTL locus did not. Some candidate genes for PCB resistance inferred from genome scans in wild populations were identified as QTL, but some key candidate genes were not. We conclude that rapidly evolved resistance to the developmental defects normally caused by PCB-126 is governed by few genes of large effect. However, other aspects of resistance beyond developmental phenotypes may be governed by additional loci, such that comprehensive resistance to PCB-126, and to the mixtures of chemicals that distinguish urban estuaries more broadly, may be more genetically complex.
Collapse
Affiliation(s)
- Jeffrey T. Miller
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences InstituteUniversity of California, DavisDavisCaliforniaUSA
- Present address:
Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
| | - Bryan W. Clark
- Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences DivisionUS Environmental Protection AgencyNarragansettRhode IslandUSA
| | - Noah M. Reid
- Department of Molecular & Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Sibel I. Karchner
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Jennifer L. Roach
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences InstituteUniversity of California, DavisDavisCaliforniaUSA
| | - Mark E. Hahn
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Diane Nacci
- Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences DivisionUS Environmental Protection AgencyNarragansettRhode IslandUSA
| | - Andrew Whitehead
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences InstituteUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
3
|
Miller JT, Clark BW, Reid NM, Karchner SI, Roach JL, Hahn ME, Nacci D, Whitehead A. Independently evolved pollution resistance in four killifish populations is largely explained by few variants of large effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536079. [PMID: 37066319 PMCID: PMC10104127 DOI: 10.1101/2023.04.07.536079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The genetic architecture of phenotypic traits can affect the mode and tempo of trait evolution. Human-altered environments can impose strong natural selection, where successful evolutionary adaptation requires swift and large phenotypic shifts. In these scenarios, theory predicts the influence of few adaptive variants of large effect, but empirical studies that have revealed the genetic architecture of rapidly evolved phenotypes are rare, especially for populations inhabiting polluted environments. Fundulus killifish have repeatedly evolved adaptive resistance to extreme pollution in urban estuaries. Prior studies, including genome scans for signatures of natural selection, have revealed some of the genes and pathways important for evolved pollution resistance, and provide context for the genotype-phenotype association studies reported here. We created multiple quantitative trait locus (QTL) mapping families using progenitors from four different resistant populations, and genetically mapped variation in sensitivity (developmental perturbations) following embryonic exposure to a model toxicant PCB-126. We found that a few large-effect QTL loci accounted for resistance to PCB-mediated developmental toxicity. QTLs harbored candidate genes that govern the regulation of aryl hydrocarbon receptor (AHR) signaling, where some (but not all) of these QTL loci were shared across all populations, and some (but not all) of these loci showed signatures of recent natural selection in the corresponding wild population. Some strong candidate genes for PCB resistance inferred from genome scans in wild populations were identified as QTL, but some key candidate genes were not. We conclude that rapidly evolved resistance to the developmental defects normally caused by PCB-126 is governed by few genes of large effect. However, other aspects of resistance beyond developmental phenotypes may be governed by additional loci, such that comprehensive resistance to PCB-126, and to the mixtures of chemicals that distinguish urban estuaries more broadly, may be more genetically complex.
Collapse
Affiliation(s)
- Jeffrey T Miller
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California, Davis, CA
| | - Bryan W Clark
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI
| | - Noah M Reid
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA
| | - Jennifer L Roach
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California, Davis, CA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA
| | - Diane Nacci
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI
| | - Andrew Whitehead
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California, Davis, CA
| |
Collapse
|
4
|
Phillips C, de la Puente M, Ruiz-Ramirez J, Staniewska A, Ambroa-Conde A, Freire-Aradas A, Mosquera-Miguel A, Rodriguez A, Lareu MV. Eurasiaplex-2: Shifting the focus to SNPs with high population specificity increases the power of forensic ancestry marker sets. Forensic Sci Int Genet 2022; 61:102780. [PMID: 36174251 DOI: 10.1016/j.fsigen.2022.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/27/2022]
Abstract
To compile a new South Asian-informative panel of forensic ancestry SNPs, we changed the strategy for selecting the most powerful markers for this purpose by targeting polymorphisms with near absolute specificity - when the South Asian-informative allele identified is absent from all other populations or present at frequencies below 0.001 (one in a thousand). More than 120 candidate SNPs were identified from 1000 Genomes datasets satisfying an allele frequency screen of ≥ 0.1 (10 % or more) allele frequency in South Asians, and ≤ 0.001 (0.1 % or less) in African, East Asian, and European populations. From the candidate pool of markers, a final panel of 36 SNPs, widely distributed across most autosomes, were selected that had allele frequencies in the five 1000 Genomes South Asian populations ranging from 0.4 to 0.15. Slightly lower average allele frequencies, but consistent patterns of informativeness were observed in gnomAD South Asian datasets used to validate the 1000 Genomes variant annotations. We named the panel of 36 South Asian-specific SNPs Eurasiaplex-2, and the informativeness of the panel was evaluated by compiling worldwide population data from 4097 samples in four genome variation databases that largely complement the global sampling of 1000 Genomes. Consistent patterns of allele frequency distribution, which were specific to South Asia, were observed in all populations in, or closely sited to, the Indian sub-continent. Pakistani populations from the HGDP-CEPH panel had markedly lower allele frequencies, highlighting the need to develop a statistical system to evaluate the ancestry inference value of counting the number of population-specific alleles present in an individual.
Collapse
Affiliation(s)
- C Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain; Institute of Anthropology and Ethnology, Adam Mickiewicz University in Poznań, Poland..
| | - M de la Puente
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - J Ruiz-Ramirez
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - A Staniewska
- Institute of Anthropology and Ethnology, Adam Mickiewicz University in Poznań, Poland
| | - A Ambroa-Conde
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - A Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - A Mosquera-Miguel
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - A Rodriguez
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - M V Lareu
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| |
Collapse
|
5
|
Hamilton PB, Baynes A, Nicol E, Harris G, Uren Webster TM, Beresford N, Straszkiewicz M, Jobling S, Tyler CR. Feminizing effects of ethinylestradiol in roach (Rutilus rutilus) populations with different estrogenic pollution exposure histories. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106229. [PMID: 35753216 DOI: 10.1016/j.aquatox.2022.106229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Experimental exposures aimed at assessing the risks posed by estrogens in waste-water treatment work (WwTW) effluents to fish populations have rarely considered whether populations differ in their sensitivity to estrogenic compounds. This is despite evidence that selection at genes involved in the estrogen response has occurred in wild populations, and evidence that genotype can influence estrogen-response. In this study we compare the effects of a two-year exposure to a low measured concentration (1.3 ng/L) of ethinylestradiol (EE2) on the sexual development of roach (Rutilus rutilus) whose parental generation was sampled from two river stretches heavily contaminated with WwTW effluent and from two without any known WwTW effluent contamination. Exposure to EE2 significantly reduced the proportion of genetic males and induced a range of feminized phenotypes in males. Significantly, exposure also increased the proportion of genetic females with vitellogenic oocytes from 51 to 96%, raising the possibility that estrogen pollution could impact populations of annually spawning fish species through advancing female reproduction by at least a year. However, there was no evidence that river origin affected sensitivity to estrogens in either sex. Thus, we conclude that chronic exposure to low level EE2 has reproductive health outcomes for both male and female roach, but we find no evidence that the nature or magnitude of the response is affected by the population origin.
Collapse
Affiliation(s)
- Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK; College of Medicine and Health, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU.
| | - Alice Baynes
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Elizabeth Nicol
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Graham Harris
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Tamsyn M Uren Webster
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK; Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - Nicola Beresford
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Marta Straszkiewicz
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
6
|
Quina AS, Durão AF, Mathias MDL. Evidence of micro-evolution in Crocidura russula from two abandoned heavy metal mines: potential use of Cytb, CYP1A1, and p53 as gene biomarkers. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1969-1982. [PMID: 34505200 DOI: 10.1007/s10646-021-02472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals accumulated in the environment due to the mining industry may impact on the health of exposed wild animals with consequences at the population level via survival and selection of the most resistant individuals. The detection and quantification of shifts in gene frequencies or in the genetic structure in populations inhabiting polluted sites may be used as early indicators of environmental stress and reveal potential 'candidate gene biomarkers' for environmental health assessment. We had previously observed that specimens of the Greater white-toothed shrew (Crocidura russula) from two heavy metal mines in Southern Portugal (the Aljustrel and the Preguiça mines) carried physiological alterations compared to shrews from an unpolluted site. Here, we further investigated whether these populations showed genetic differences in genes relevant for physiological homeostasis and/or that are associated with pathways altered in animals living under chronic exposure to pollution, and which could be used as biomarkers. We analysed the mitochondrial cytochrome b (Cytb) gene and intronic and/or exonic regions of four nuclear genes: CYP1A1, LCAT, PRPF31, and p53. We observed (1) population differences in allele frequencies, types of variation, and diversity parameters in the Cytb, CYP1A1, and p53 genes; (2) purifying selection of Cytb in the mine populations; (3) genetic differentiation of the two mine populations from the reference by the p53 gene. Adding to our previous observations with Mus spretus, we provide unequivocal evidence of a population effect exerted by the contaminated environment of the mines on the local species of small mammals.
Collapse
Affiliation(s)
- Ana Sofia Quina
- CESAM - Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Universidade de Aveiro Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- CESAM - Centro de Estudos do Ambiente e do Mar, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Ana Filipa Durão
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Maria da Luz Mathias
- CESAM - Centro de Estudos do Ambiente e do Mar, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
7
|
Drown MK, DeLiberto AN, Ehrlich MA, Crawford DL, Oleksiak MF. Interindividual plasticity in metabolic and thermal tolerance traits from populations subjected to recent anthropogenic heating. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210440. [PMID: 34295527 PMCID: PMC8292749 DOI: 10.1098/rsos.210440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/25/2021] [Indexed: 05/05/2023]
Abstract
To better understand temperature's role in the interaction between local evolutionary adaptation and physiological plasticity, we investigated acclimation effects on metabolic performance and thermal tolerance among natural Fundulus heteroclitus (small estuarine fish) populations from different thermal environments. Fundulus heteroclitus populations experience large daily and seasonal temperature variations, as well as local mean temperature differences across their large geographical cline. In this study, we use three populations: one locally heated (32°C) by thermal effluence (TE) from the Oyster Creek Nuclear Generating Station, NJ, and two nearby reference populations that do not experience local heating (28°C). After acclimation to 12 or 28°C, we quantified whole-animal metabolic (WAM) rate, critical thermal maximum (CTmax) and substrate-specific cardiac metabolic rate (CaM, substrates: glucose, fatty acids, lactate plus ketones plus ethanol, and endogenous (i.e. no added substrates)) in approximately 160 individuals from these three populations. Populations showed few significant differences due to large interindividual variation within populations. In general, for WAM and CTmax, the interindividual variation in acclimation response (log2 ratio 28/12°C) was a function of performance at 12°C and order of acclimation (12-28°C versus 28-12°C). CTmax and WAM were greater at 28°C than 12°C, although WAM had a small change (2.32-fold) compared with the expectation for a 16°C increase in temperature (expect 3- to 4.4-fold). By contrast, for CaM, the rates when acclimatized and assayed at 12 or 28°C were nearly identical. The small differences in CaM between 12 and 28°C temperature were partially explained by cardiac remodeling where individuals acclimatized to 12°C had larger hearts than individuals acclimatized to 28°C. Correlation among physiological traits was dependent on acclimation temperature. For example, WAM was negatively correlated with CTmax at 12°C but positively correlated at 28°C. Additionally, glucose substrate supported higher CaM than fatty acid, and fatty acid supported higher CaM than lactate, ketones and alcohol (LKA) or endogenous. However, these responses were highly variable with some individuals using much more FA than glucose. These findings suggest interindividual variation in physiological responses to temperature acclimation and indicate that additional research investigating interindividual may be relevant for global climate change responses in many species.
Collapse
Affiliation(s)
- Melissa K. Drown
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Amanda N. DeLiberto
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Moritz A. Ehrlich
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Douglas L. Crawford
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Marjorie F. Oleksiak
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
8
|
Balderston S, Taulbee JJ, Celaya E, Fung K, Jiao A, Smith K, Hajian R, Gasiunas G, Kutanovas S, Kim D, Parkinson J, Dickerson K, Ripoll JJ, Peytavi R, Lu HW, Barron F, Goldsmith BR, Collins PG, Conboy IM, Siksnys V, Aran K. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 2021; 5:713-725. [PMID: 33820980 DOI: 10.1038/s41551-021-00706-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
Simple and fast methods for the detection of target genes with single-nucleotide specificity could open up genetic research and diagnostics beyond laboratory settings. We recently reported a biosensor for the electronic detection of unamplified target genes using liquid-gated graphene field-effect transistors employing an RNA-guided catalytically deactivated CRISPR-associated protein 9 (Cas9) anchored to a graphene monolayer. Here, using unamplified genomic samples from patients and by measuring multiple types of electrical response, we show that the biosensors can discriminate within one hour between wild-type and homozygous mutant alleles differing by a single nucleotide. We also show that biosensors using a guide RNA-Cas9 orthologue complex targeting genes within the protospacer-adjacent motif discriminated between homozygous and heterozygous DNA samples from patients with sickle cell disease, and that the biosensors can also be used to rapidly screen for guide RNA-Cas9 complexes that maximize gene-targeting efficiency.
Collapse
Affiliation(s)
- Sarah Balderston
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | | | | | - Kandace Fung
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | | | - Kasey Smith
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Reza Hajian
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | - Giedrius Gasiunas
- CasZyme, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Daehwan Kim
- University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | - Hsiang-Wei Lu
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | | | | | | | | | - Virginijus Siksnys
- CasZyme, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA.
- Cardea, San Diego, CA, USA.
- University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
9
|
Eide M, Zhang X, Karlsen OA, Goldstone JV, Stegeman J, Jonassen I, Goksøyr A. The chemical defensome of five model teleost fish. Sci Rep 2021; 11:10546. [PMID: 34006915 PMCID: PMC8131381 DOI: 10.1038/s41598-021-89948-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
How an organism copes with chemicals is largely determined by the genes and proteins that collectively function to defend against, detoxify and eliminate chemical stressors. This integrative network includes receptors and transcription factors, biotransformation enzymes, transporters, antioxidants, and metal- and heat-responsive genes, and is collectively known as the chemical defensome. Teleost fish is the largest group of vertebrate species and can provide valuable insights into the evolution and functional diversity of defensome genes. We have previously shown that the xenosensing pregnane x receptor (pxr, nr1i2) is lost in many teleost species, including Atlantic cod (Gadus morhua) and three-spined stickleback (Gasterosteus aculeatus), but it is not known if compensatory mechanisms or signaling pathways have evolved in its absence. In this study, we compared the genes comprising the chemical defensome of five fish species that span the teleosteii evolutionary branch often used as model species in toxicological studies and environmental monitoring programs: zebrafish (Danio rerio), medaka (Oryzias latipes), Atlantic killifish (Fundulus heteroclitus), Atlantic cod, and three-spined stickleback. Genome mining revealed evolved differences in the number and composition of defensome genes that can have implication for how these species sense and respond to environmental pollutants, but we did not observe any candidates of compensatory mechanisms or pathways in cod and stickleback in the absence of pxr. The results indicate that knowledge regarding the diversity and function of the defensome will be important for toxicological testing and risk assessment studies.
Collapse
Affiliation(s)
- Marta Eide
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - John Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
10
|
Ehrlich MA, Wagner DN, Oleksiak MF, Crawford DL. Polygenic Selection within a Single Generation Leads to Subtle Divergence among Ecological NichesINc. Genome Biol Evol 2021; 13:evaa257. [PMID: 33313716 PMCID: PMC7875003 DOI: 10.1093/gbe/evaa257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/09/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Selection on standing genetic variation may be effective enough to allow for adaptation to distinct niche environments within a single generation. Minor allele frequency changes at multiple, redundant loci of small effect can produce remarkable phenotypic shifts. Yet, demonstrating rapid adaptation via polygenic selection in the wild remains challenging. Here we harness natural replicate populations that experience similar selection pressures and harbor high within-, yet negligible among-population genetic variation. Such populations can be found among the teleost Fundulus heteroclitus that inhabits marine estuaries characterized by high environmental heterogeneity. We identify 10,861 single nucleotide polymorphisms in F. heteroclitus that belong to a single, panmictic population yet reside in environmentally distinct niches (one coastal basin and three replicate tidal ponds). By sampling at two time points within a single generation, we quantify both allele frequency change within as well as spatial divergence among niche subpopulations. We observe few individually significant allele frequency changes yet find that the "number" of moderate changes exceeds the neutral expectation by 10-100%. We find allele frequency changes to be significantly concordant in both direction and magnitude among all niche subpopulations, suggestive of parallel selection. In addition, within-generation allele frequency changes generate subtle but significant divergence among niches, indicative of local adaptation. Although we cannot distinguish between selection and genotype-dependent migration as drivers of within-generation allele frequency changes, the trait/s determining fitness and/or migration likelihood appear to be polygenic. In heterogeneous environments, polygenic selection and polygenic, genotype-dependent migration offer conceivable mechanisms for within-generation, local adaptation to distinct niches.
Collapse
Affiliation(s)
- Moritz A Ehrlich
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL, USA
| | - Dominique N Wagner
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL, USA
| | - Marjorie F Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL, USA
| | - Douglas L Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL, USA
| |
Collapse
|
11
|
Hamilton PB, Lockyer AE, Uren Webster TM, Studholme DJ, Paris JR, Baynes A, Nicol E, Dawson DA, Moore K, Farbos A, Jobling S, Stevens JR, Tyler CR. Investigation into Adaptation in Genes Associated with Response to Estrogenic Pollution in Populations of Roach ( Rutilus rutilus) Living in English Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15935-15945. [PMID: 33227200 DOI: 10.1021/acs.est.0c00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exposure of male fish to estrogenic substances from wastewater treatment works (WwTWs) results in feminization and reduced reproductive fitness. Nevertheless, self-sustaining populations of roach (Rutilus rutilus) inhabit river stretches polluted with estrogenic WwTW effluents. In this study, we examine whether such roach populations have evolved adaptations to tolerate estrogenic pollution by comparing frequency differences in single-nucleotide polymorphisms (SNPs) between populations sampled from rivers receiving either high- or low-level WwTW discharges. SNPs within 36 "candidate" genes, selected for their involvement in estrogenic responses, and 120 SNPs in reference genes were genotyped in 465 roaches. There was no evidence for selection in highly estrogen-dependent candidate genes, including those for the estrogen receptors, aromatases, and vitellogenins. The androgen receptor (ar) and cytochrome P450 1A genes were associated with large shifts in allele frequencies between catchments and in individual populations, but there is no clear link to estrogen pollution. Selection at ar in the effluent-dominated River Lee may have resulted from historical contamination with endocrine-disrupting pesticides. Critically, although our results suggest population-specific selection including at genes related to endocrine disruption, there was no strong evidence that the selection resulted from exposure to estrogen pollution.
Collapse
Affiliation(s)
- Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
- College of Medicine and Health, University of Exeter, St Luke's Campus, Heavitree Road, Exeter EX1 2LU, U.K
| | - Anne E Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, U.K
| | - Tamsyn M Uren Webster
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
- Biosciences, College of Science, Swansea University, Swansea SA2 8PP, U.K
| | - David J Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Josephine R Paris
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Alice Baynes
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, U.K
| | - Elizabeth Nicol
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, U.K
| | - Deborah A Dawson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Karen Moore
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Audrey Farbos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, U.K
| | - Jamie R Stevens
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| |
Collapse
|
12
|
Veliz D, Rojas‐Hernández N, Copaja SV, Vega‐Retter C. Temporal changes in gene expression and genotype frequency of the ornithine decarboxylase gene in native silverside Basilichthys microlepidotus: Impact of wastewater reduction due to implementation of public policies. Evol Appl 2020; 13:1183-1194. [PMID: 32684954 PMCID: PMC7359834 DOI: 10.1111/eva.13000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Human activity has caused a deterioration in the health and population size of riverine species; thus, public policies have been implemented to mitigate the anthropogenic impacts of water use, watercourse transformation, and pollution. We studied the Maipo River Basin, one of the most polluted with untreated wastewater in Chile, for a period of 12 years (2007-2019). Since the implementation of new public policies, including the operation of a wastewater collector (2012), the Maipo River Basin is currently much less polluted by untreated water than before. To analyze the impact of wastewater reduction in this river basin, we studied the native silverside (Basilichthys microlepidotus), which inhabits both polluted and unpolluted areas of the river basin. Previous studies reported the overexpression of the ornithine decarboxylase (odc) gene, heterozygote deficit, and high frequency of a homozygote odc genotype in silverside populations that inhabit wastewater-polluted sites, suggesting a phenotypic change and genotypic selection in response to pollution. Here, a population affected and another population unaffected by wastewater were studied before and after implementing the wastewater collector. The physicochemical data of water samples, changes in odc expression and microsatellite variability, and odc genotype frequencies were analyzed. The results showed physicochemical changes in the affected site before and after the operation of the wastewater collector. The microsatellite loci showed no changes in either population. The odc expression in the affected site was higher before the operation of the wastewater collector. Significant changes in the genotype frequencies of the odc gene before and after the wastewater collector operation were detected only at the affected site, wherein the homozygous dominant genotype decreased from >59% to <25%. Our results suggest that public policies aimed at mitigating aquatic pollution can indirectly affect both gene expression and genotype frequencies of important functional genes.
Collapse
Affiliation(s)
- David Veliz
- Departamento de Ciencias EcológicasFacultad de CienciasUniversidad de ChileSantiagoChile
- Instituto de Ecología y Biodiversidad (IEB)Universidad de ChileSantiagoChile
- Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI)Departamento de Biología MarinaUniversidad Católica del NorteCoquimboChile
| | - Noemi Rojas‐Hernández
- Departamento de Ciencias EcológicasFacultad de CienciasUniversidad de ChileSantiagoChile
| | - Sylvia V. Copaja
- Departamento de QuímicaFacultad de CienciasUniversidad de ChileSantiagoChile
| | - Caren Vega‐Retter
- Departamento de Ciencias EcológicasFacultad de CienciasUniversidad de ChileSantiagoChile
| |
Collapse
|
13
|
Crawford DL, Schulte PM, Whitehead A, Oleksiak MF. Evolutionary Physiology and Genomics in the Highly Adaptable Killifish (
Fundulus heteroclitus
). Compr Physiol 2020; 10:637-671. [DOI: 10.1002/cphy.c190004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Sigsgaard EE, Jensen MR, Winkelmann IE, Møller PR, Hansen MM, Thomsen PF. Population-level inferences from environmental DNA-Current status and future perspectives. Evol Appl 2020; 13:245-262. [PMID: 31993074 PMCID: PMC6976968 DOI: 10.1111/eva.12882] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023] Open
Abstract
Environmental DNA (eDNA) extracted from water samples has recently shown potential as a valuable source of population genetic information for aquatic macroorganisms. This approach offers several potential advantages compared with conventional tissue-based methods, including the fact that eDNA sampling is noninvasive and generally more cost-efficient. Currently, eDNA approaches have been limited to single-marker studies of mitochondrial DNA (mtDNA), and the relationship between eDNA haplotype composition and true haplotype composition still needs to be thoroughly verified. This will require testing of bioinformatic and statistical software to correct for erroneous sequences, as well as biases and random variation in relative sequence abundances. However, eDNA-based population genetic methods have far-reaching potential for both basic and applied research. In this paper, we present a brief overview of the achievements of eDNA-based population genetics to date, and outline the prospects for future developments in the field, including the estimation of nuclear DNA (nuDNA) variation and epigenetic information. We discuss the challenges associated with eDNA samples as opposed to those of individual tissue samples and assess whether eDNA might offer additional types of information unobtainable with tissue samples. Lastly, we provide recommendations for determining whether an eDNA approach would be a useful and suitable choice in different research settings. We limit our discussion largely to contemporary aquatic systems, but the advantages, challenges, and perspectives can to a large degree be generalized to eDNA studies with a different spatial and temporal focus.
Collapse
Affiliation(s)
| | | | | | - Peter Rask Møller
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen ØDenmark
| | | | | |
Collapse
|
15
|
Li Z, Löytynoja A, Fraimout A, Merilä J. Effects of marker type and filtering criteria on Q ST- F ST comparisons. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190666. [PMID: 31827824 PMCID: PMC6894560 DOI: 10.1098/rsos.190666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Comparative studies of quantitative and neutral genetic differentiation (Q ST-F ST tests) provide means to detect adaptive population differentiation. However, Q ST-F ST tests can be overly liberal if the markers used deflate F ST below its expectation, or overly conservative if methodological biases lead to inflated F ST estimates. We investigated how marker type and filtering criteria for marker selection influence Q ST-F ST comparisons through their effects on F ST using simulations and empirical data on over 18 000 in silico genotyped microsatellites and 3.8 million single-locus polymorphism (SNP) loci from four populations of nine-spined sticklebacks (Pungitius pungitius). Empirical and simulated data revealed that F ST decreased with increasing marker variability, and was generally higher with SNPs than with microsatellites. The estimated baseline F ST levels were also sensitive to filtering criteria for SNPs: both minor alleles and linkage disequilibrium (LD) pruning influenced F ST estimation, as did marker ascertainment. However, in the case of stickleback data used here where Q ST is high, the choice of marker type, their genomic location, ascertainment and filtering made little difference to outcomes of Q ST-F ST tests. Nevertheless, we recommend that Q ST-F ST tests using microsatellites should discard the most variable loci, and those using SNPs should pay attention to marker ascertainment and properly account for LD before filtering SNPs. This may be especially important when level of quantitative trait differentiation is low and levels of neutral differentiation high.
Collapse
Affiliation(s)
- Zitong Li
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Antoine Fraimout
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
16
|
Osterberg JS, Cammen KM, Schultz TF, Clark BW, Di Giulio RT. Genome-wide scan reveals signatures of selection related to pollution adaptation in non-model estuarine Atlantic killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:73-82. [PMID: 29727773 PMCID: PMC6957077 DOI: 10.1016/j.aquatox.2018.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 05/09/2023]
Abstract
In many human-altered ecosystems, organisms are increasingly faced with more diverse and complex environmental stressors and pollutant mixtures, to which the adaptations necessary to survive exposure are likely to be numerous and varied. Improving our understanding of the molecular mechanisms that underlie complex polygenic adaptations in natural settings requires significant toxicological, biochemical, physiological, and genomic data rarely available for non-model organisms. Here, we build upon two decades of study of adaptation to anthropogenic pollutants in a population of Atlantic killifish (Fundulus heteroclitus) that inhabits the creosote-contaminated Atlantic Wood Industries Superfund (AW) site on the Elizabeth River, Virginia in the United States. To better understand the genotypes that underlie previously characterized resistance to PCBs and PAHs, we performed Restriction site-Associated DNA sequencing (RADseq) on killifish from AW and two relatively clean reference sites (King's Creek-KC, and Mains Creek-MC). Across the genome, we analyzed over 83,000 loci and 12,000 single nucleotide polymorphisms (SNPs). Shared across both comparisons of killifish from polluted (AW) and relatively unpolluted (KC and MC) sites, we found eight genomic regions with smoothed FST values significantly (p < 0.001) elevated above background. Using the recently published F. heteroclitus reference genome, we identified candidate genes in these significant regions involved in the AHR pathway (e.g. AIP, ARNT1c), as well as genes relating to cardiac structure and function. These genes represent both previously characterized and potentially novel molecular adaptations involved with various aspects of resistance to these environmental toxins.
Collapse
Affiliation(s)
- J S Osterberg
- Duke University, Nicholas School of the Environment, Duke Superfund Research Center, Durham, NC, 27708, USA; Duke University, Nicholas School of the Environment, Duke Marine Lab, Beaufort, NC, 28516, USA.
| | - K M Cammen
- Duke University, Nicholas School of the Environment, Duke Marine Lab, Beaufort, NC, 28516, USA
| | - T F Schultz
- Duke University, Nicholas School of the Environment, Duke Marine Lab, Beaufort, NC, 28516, USA
| | - B W Clark
- Duke University, Nicholas School of the Environment, Duke Superfund Research Center, Durham, NC, 27708, USA
| | - R T Di Giulio
- Duke University, Nicholas School of the Environment, Duke Superfund Research Center, Durham, NC, 27708, USA
| |
Collapse
|
17
|
Nunez JCB, Biancani LM, Flight PA, Nacci DE, Rand DM, Crawford DL, Oleksiak MF. Stable genetic structure and connectivity in pollution-adapted and nearby pollution-sensitive populations of Fundulus heteroclitus. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171532. [PMID: 29892357 PMCID: PMC5990737 DOI: 10.1098/rsos.171532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/02/2018] [Indexed: 05/15/2023]
Abstract
Populations of the non-migratory estuarine fish Fundulus heteroclitus inhabiting the heavily polluted New Bedford Harbour (NBH) estuary have shown inherited tolerance to local pollutants introduced to their habitats in the past 100 years. Here we examine two questions: (i) Is there pollution-driven selection on the mitochondrial genome across a fine geographical scale? and (ii) What is the pattern of migration among sites spanning a strong pollution gradient? Whole mitochondrial genomes were analysed for 133 F. heteroclitus from seven nearby collection sites: four sites along the NBH pollution cline (approx. 5 km distance), which had pollution-adapted fish, as well as one site adjacent to the pollution cline and two relatively unpolluted sites about 30 km away, which had pollution-sensitive fish. Additionally, we used microsatellite analyses to quantify genetic variation over three F. heteroclitus generations in both pollution-adapted and sensitive individuals collected from two sites at two different time points (1999/2000 and 2007/2008). Our results show no evidence for a selective sweep of mtDNA in the polluted sites. Moreover, mtDNA analyses revealed that both pollution-adapted and sensitive populations harbour similar levels of genetic diversity. We observed a high level of non-synonymous mutations in the most polluted site. This is probably associated with a reduction in Ne and concomitant weakening of purifying selection, a demographic expansion following a pollution-related bottleneck or increased mutation rates. Our demographic analyses suggest that isolation by distance influences the distribution of mtDNA genetic variation between the pollution cline and the clean populations at broad spatial scales. At finer scales, population structure is patchy, and neither spatial distance, pollution concentration or pollution tolerance is a good predictor of mtDNA variation. Lastly, microsatellite analyses revealed stable population structure over the last decade.
Collapse
Affiliation(s)
- Joaquin C. B. Nunez
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI 02912, USA
| | - Leann M. Biancani
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI 02912, USA
| | - Patrick A. Flight
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI 02912, USA
| | - Diane E. Nacci
- Population Ecology Branch, Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - David M. Rand
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI 02912, USA
| | - Douglas L. Crawford
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Marjorie F. Oleksiak
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| |
Collapse
|
18
|
Hamilton PB, Rolshausen G, Uren Webster TM, Tyler CR. Adaptive capabilities and fitness consequences associated with pollution exposure in fish. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0042. [PMID: 27920387 PMCID: PMC5182438 DOI: 10.1098/rstb.2016.0042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2016] [Indexed: 12/22/2022] Open
Abstract
Many fish populations are exposed to harmful levels of chemical pollution and selection pressures associated with these exposures have led to the evolution of tolerance. Our understanding of the physiological basis for these adaptations is limited, but they are likely to include processes involved with the absorption, distribution, metabolism and/or excretion of the target chemical. Other potential adaptive mechanisms include enhancements in antioxidant responses, an increased capacity for DNA and/or tissue repair and alterations to the life cycle of fish that enable earlier reproduction. Analysis of single-nucleotide polymorphism frequencies has shown that tolerance to hydrocarbon pollutants in both marine and estuarine fish species involves alteration in the expression of the xenobiotic metabolism enzyme CYP1A. In this review, we present novel data showing also that variants of the CYP1A gene have been under selection in guppies living in Trinidadian rivers heavily polluted with crude oil. Potential costs associated with these adaptations could reduce fitness in unpolluted water conditions. Integrating knowledge of local adaptation to pollution is an important future consideration in conservation practices such as for successful restocking, and improving connectivity within river systems.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Tamsyn M Uren Webster
- Department of Biosciences, Swansea University, Wallace Building, Swansea SA2 8PP, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
19
|
Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish ( Fundulus heteroclitus) populations. Evol Appl 2017; 10:762-783. [PMID: 29151869 PMCID: PMC5680427 DOI: 10.1111/eva.12470] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human‐mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well‐studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution‐adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful “solution to pollution” because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology University of California Davis Davis CA USA
| | - Bryan W Clark
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development Oak Ridge Institute for Science and Education US Environmental Protection Agency Narragansett RI USA
| | - Noah M Reid
- Department of Molecular and Cell Biology University of Connecticut Storrs CT USA
| | - Mark E Hahn
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA.,Superfund Research Program Boston University Boston MA USA
| | - Diane Nacci
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development US Environmental Protection Agency Narragansett RI USA
| |
Collapse
|
20
|
Rubino F, Carberry C, M Waters S, Kenny D, McCabe MS, Creevey CJ. Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome. ISME JOURNAL 2017; 11:932-944. [PMID: 28085156 PMCID: PMC5364355 DOI: 10.1038/ismej.2016.172] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/28/2016] [Accepted: 09/21/2016] [Indexed: 01/16/2023]
Abstract
Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation.
Collapse
Affiliation(s)
- Francesco Rubino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK.,Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Ciara Carberry
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland.,School of Agriculture, University College Dublin, Dublin, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - David Kenny
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Matthew S McCabe
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Christopher J Creevey
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
21
|
Bernatchez L. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. JOURNAL OF FISH BIOLOGY 2016; 89:2519-2556. [PMID: 27687146 DOI: 10.1111/jfb.13145] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/23/2016] [Indexed: 05/18/2023]
Abstract
The first goal of this paper was to overview modern approaches to local adaptation, with a focus on the use of population genomics data to detect signals of natural selection in fishes. Several mechanisms are discussed that may enhance the maintenance of genetic variation and evolutionary potential, which have been overlooked and should be considered in future theoretical development and predictive models: the prevalence of soft sweeps, polygenic basis of adaptation, balancing selection and transient polymorphisms, parallel evolution, as well as epigenetic variation. Research on fish population genomics has provided ample evidence for local adaptation at the genome level. Pervasive adaptive evolution, however, seems to almost never involve the fixation of beneficial alleles. Instead, adaptation apparently proceeds most commonly by soft sweeps entailing shifts in frequencies of alleles being shared between differentially adapted populations. One obvious factor contributing to the maintenance of standing genetic variation in the face of selective pressures is that adaptive phenotypic traits are most often highly polygenic, and consequently the response to selection should derive mostly from allelic co-variances among causative loci rather than pronounced allele frequency changes. Balancing selection in its various forms may also play an important role in maintaining adaptive genetic variation and the evolutionary potential of species to cope with environmental change. A large body of literature on fishes also shows that repeated evolution of adaptive phenotypes is a ubiquitous evolutionary phenomenon that seems to occur most often via different genetic solutions, further adding to the potential options of species to cope with a changing environment. Moreover, a paradox is emerging from recent fish studies whereby populations of highly reduced effective population sizes and impoverished genetic diversity can apparently retain their adaptive potential in some circumstances. Although more empirical support is needed, several recent studies suggest that epigenetic variation could account for this apparent paradox. Therefore, epigenetic variation should be fully integrated with considerations pertaining to role of soft sweeps, polygenic and balancing selection, as well as repeated adaptation involving different genetic basis towards improving models predicting the evolutionary potential of species to cope with a changing world.
Collapse
Affiliation(s)
- L Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1Y 2T8, Canada
| |
Collapse
|
22
|
Larsson J, Lönn M, Lind EE, Świeżak J, Smolarz K, Grahn M. Sewage treatment plant associated genetic differentiation in the blue mussel from the Baltic Sea and Swedish west coast. PeerJ 2016; 4:e2628. [PMID: 27812424 PMCID: PMC5088577 DOI: 10.7717/peerj.2628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022] Open
Abstract
Human-derived environmental pollutants and nutrients that reach the aquatic environment through sewage effluents, agricultural and industrial processes are constantly contributing to environmental changes that serve as drivers for adaptive responses and evolutionary changes in many taxa. In this study, we examined how two types of point sources of aquatic environmental pollution, harbors and sewage treatment plants, affect gene diversity and genetic differentiation in the blue mussel in the Baltic Sea area and off the Swedish west coast (Skagerrak). Reference sites (REF) were geographically paired with sites from sewage treatments plant (STP) and harbors (HAR) with a nested sampling scheme, and genetic differentiation was evaluated using a high-resolution marker amplified fragment length polymorphism (AFLP). This study showed that genetic composition in the Baltic Sea blue mussel was associated with exposure to sewage treatment plant effluents. In addition, mussel populations from harbors were genetically divergent, in contrast to the sewage treatment plant populations, suggesting that there is an effect of pollution from harbors but that the direction is divergent and site specific, while the pollution effect from sewage treatment plants on the genetic composition of blue mussel populations acts in the same direction in the investigated sites.
Collapse
Affiliation(s)
- Josefine Larsson
- School of Natural Science, Technology and Environmental Studies, Södertörn University, Huddinge, Stockholm, Sweden
| | - Mikael Lönn
- School of Natural Science, Technology and Environmental Studies, Södertörn University, Huddinge, Stockholm, Sweden
| | - Emma E. Lind
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Stockholm, Stockholm, Sweden
| | - Justyna Świeżak
- Department of Marine Ecosystem Functioning, University of Gdansk, Institute of Oceanography, Gdynia, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdansk, Institute of Oceanography, Gdynia, Poland
| | - Mats Grahn
- School of Natural Science, Technology and Environmental Studies, Södertörn University, Huddinge, Stockholm, Sweden
| |
Collapse
|
23
|
Nunez JCB, Oleksiak MF. A Cost-Effective Approach to Sequence Hundreds of Complete Mitochondrial Genomes. PLoS One 2016; 11:e0160958. [PMID: 27505419 PMCID: PMC4978415 DOI: 10.1371/journal.pone.0160958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
We present a cost-effective approach to sequence whole mitochondrial genomes for hundreds of individuals. Our approach uses small reaction volumes and unmodified (non-phosphorylated) barcoded adaptors to minimize reagent costs. We demonstrate our approach by sequencing 383 Fundulus sp. mitochondrial genomes (192 F. heteroclitus and 191 F. majalis). Prior to sequencing, we amplified the mitochondrial genomes using 4–5 custom-made, overlapping primer pairs, and sequencing was performed on an Illumina HiSeq 2500 platform. After removing low quality and short sequences, 2.9 million and 2.8 million reads were generated for F. heteroclitus and F. majalis respectively. Individual genomes were assembled for each species by mapping barcoded reads to a reference genome. For F. majalis, the reference genome was built de novo. On average, individual consensus sequences had high coverage: 61-fold for F. heteroclitus and 57-fold for F. majalis. The approach discussed in this paper is optimized for sequencing mitochondrial genomes on an Illumina platform. However, with the proper modifications, this approach could be easily applied to other small genomes and sequencing platforms.
Collapse
Affiliation(s)
- Joaquin C. B. Nunez
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, Miami, Florida, United States of America
| | - Marjorie F. Oleksiak
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
24
|
Waits ER, Martinson J, Rinner B, Morris S, Proestou D, Champlin D, Nacci D. Genetic Linkage Map and Comparative Genome Analysis for the Atlantic Killifish (<i>Fundulus heteroclitus</i>). ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojgen.2016.61004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Du X, Crawford DL, Oleksiak MF. Effects of Anthropogenic Pollution on the Oxidative Phosphorylation Pathway of Hepatocytes from Natural Populations of Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:231-40. [PMID: 26122720 DOI: 10.1016/j.aquatox.2015.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 05/24/2023]
Abstract
Persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), potentially target mitochondria and cause toxicity. We compared the effects of POPs on mitochondrial respiration by measuring oxidative phosphorylation (OxPhos) metabolism in hepatocytes isolated from lab-depurated Fundulus heteroclitus from a Superfund site contaminated with PAHs (Elizabeth River VA, USA) relative to OxPhos metabolism in individuals from a relatively clean, reference population (King's Creek VA, USA). In individuals from the polluted Elizabeth River population, OxPhos metabolism displayed lower LEAK and lower activities in complex III, complex IV, and E State, but higher activity in complex I compared to individuals from the reference King's Creek population. To test the supposition that these differences were due to or related to the chronic PAH contamination history of the Elizabeth River population, we compared the OxPhos functions of undosed individuals from the polluted and reference populations to individuals from these populations dosed with a PAH {benzo [α] pyrene (BaP)} or a PCB {PCB126 (3,3',4,4',5-pentachlorobiphenyl)}, respectively. Exposure to PAH or PCB affected OxPhos in the reference King's Creek population but had no detectable effects on the polluted Elizabeth River population. Thus, PAH exposure significantly increased LEAK, and exposure to PCB126 significantly decreased State 3, E state and complex I activity in the reference King's Creek population. These data strongly implicate an evolved tolerance in the Elizabeth River fish where dosed fish are not affected by PAH exposure and undosed fish show decreased LEAK and increased State 3 and E state.
Collapse
Affiliation(s)
- Xiao Du
- Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, University of Miami, Miami, FL 33149, USA
| | - Douglas L Crawford
- Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, University of Miami, Miami, FL 33149, USA
| | - Marjorie F Oleksiak
- Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, University of Miami, Miami, FL 33149, USA.
| |
Collapse
|
26
|
Proestou DA, Flight P, Champlin D, Nacci D. Targeted approach to identify genetic loci associated with evolved dioxin tolerance in Atlantic killifish (Fundulus heteroclitus). BMC Evol Biol 2014; 14:7. [PMID: 24422627 PMCID: PMC4029433 DOI: 10.1186/1471-2148-14-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/30/2013] [Indexed: 11/10/2022] Open
Abstract
Background The most toxic aromatic hydrocarbon pollutants are categorized as dioxin-like compounds (DLCs) to which extreme tolerance has evolved independently and contemporaneously in (at least) four populations of Atlantic killifish (Fundulus heteroclitus). Surprisingly, the magnitude and phenotype of DLC tolerance is similar among these killifish populations that have adapted to varied, but highly aromatic hydrocarbon-contaminated urban/industrialized estuaries of the US Atlantic coast. Multiple tolerant and neighboring sensitive killifish populations were compared with the expectation that genetic loci associated with DLC tolerance would be revealed. Results Since the aryl hydrocarbon receptor (AHR) pathway partly or fully mediates DLC toxicity in vertebrates, single nucleotide polymorphisms (SNPs) from 42 genes associated with the AHR pathway were identified to serve as targeted markers. Wild fish (N = 36/37) from four highly tolerant killifish populations and four nearby sensitive populations were genotyped using 59 SNP markers. Similar to other killifish population genetic analyses, strong genetic differentiation among populations was detected, consistent with isolation by distance models. When DLC-sensitive populations were pooled and compared to pooled DLC-tolerant populations, multi-locus analyses did not distinguish the two groups. However, pairwise comparisons of nearby tolerant and sensitive populations revealed high differentiation among sensitive and tolerant populations at these specific loci: AHR 1 and 2, cathepsin Z, the cytochrome P450s (CYP1A and 3A30), and the NADH dehydrogenase subunits. In addition, significant shifts in minor allele frequency were observed at AHR2 and CYP1A loci across most sensitive/tolerant pairs, but only AHR2 exhibited shifts in the same direction across all pairs. Conclusions The observed differences in allelic composition at the AHR2 and CYP1A SNP loci were identified as significant among paired sensitive/tolerant populations of Atlantic killifish with multiple statistical tests. The genetic patterns reported here lend support to the argument that AHR2 and CYP1A play a role in the adaptive response to extreme DLC contamination. Additional functional assays are required to isolate the exact mechanism of DLC tolerance.
Collapse
Affiliation(s)
- Dina A Proestou
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA.
| | | | | | | |
Collapse
|
27
|
Whitehead A. Evolutionary Genomics of Environmental Pollution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:321-37. [DOI: 10.1007/978-94-007-7347-9_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
Bozinovic G, Sit TL, Di Giulio R, Wills LF, Oleksiak MF. Genomic and physiological responses to strong selective pressure during late organogenesis: few gene expression changes found despite striking morphological differences. BMC Genomics 2013; 14:779. [PMID: 24215130 PMCID: PMC3835409 DOI: 10.1186/1471-2164-14-779] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/26/2013] [Indexed: 12/31/2022] Open
Abstract
Background Adaptations to a new environment, such as a polluted one, often involve large modifications of the existing phenotypes. Changes in gene expression and regulation during critical developmental stages may explain these phenotypic changes. Embryos from a population of the teleost fish, Fundulus heteroclitus, inhabiting a clean estuary do not survive when exposed to sediment extract from a site highly contaminated with polycyclic aromatic hydrocarbons (PAHs) while embryos derived from a population inhabiting a PAH polluted estuary are remarkably resistant to the polluted sediment extract. We exposed embryos from these two populations to surrogate model PAHs and analyzed changes in gene expression, morphology, and cardiac physiology in order to better understand sensitivity and adaptive resistance mechanisms mediating PAH exposure during development. Results The synergistic effects of two model PAHs, an aryl hydrocarbon receptor (AHR) agonist (β-naphthoflavone) and a cytochrome P4501A (CYP1A) inhibitor (α-naphthoflavone), caused significant developmental delays, impaired cardiac function, severe morphological alterations and failure to hatch, leading to the deaths of reference embryos; resistant embryos were mostly unaffected. Unexpectedly, patterns of gene expression among normal and moderately deformed embryos were similar, and only severely deformed embryos showed a contrasting pattern of gene expression. Given the drastic morphological differences between reference and resistant embryos, a surprisingly low percentage of genes, 2.24% of 6,754 analyzed, show statistically significant differences in transcript levels during late organogenesis between the two embryo populations. Conclusions Our study demonstrates important contrasts in responses between reference and resistant natural embryo populations to synergistic effects of surrogate model PAHs that may be important in adaptive mechanisms mediating PAH effects during fish embryo development. These results suggest that statistically significant changes in gene expression of relatively few genes contribute to the phenotypic changes and large morphological differences exhibited by reference and resistant populations upon exposure to PAH pollutants. By correlating cardiac physiology and morphology with changes in gene expression patterns of reference and resistant embryos, we provide additional evidence for acquired resistance among embryos whose parents live at heavily contaminated sites.
Collapse
Affiliation(s)
- Goran Bozinovic
- Department of Environmental and Molecular Toxicology, North Carolina State University, Box 7633, Raleigh, NC 27695-7633, USA.
| | | | | | | | | |
Collapse
|
29
|
Santos EM, Hamilton PB, Coe TS, Ball JS, Cook AC, Katsiadaki I, Tyler CR. Population bottlenecks, genetic diversity and breeding ability of the three-spined stickleback (Gasterosteus aculeatus) from three polluted English Rivers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:264-271. [PMID: 24071362 DOI: 10.1016/j.aquatox.2013.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 07/02/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
Pollution is a significant environmental pressure on fish populations in both freshwater and marine environments. Populations subjected to chronic exposure to pollutants can experience impacts ranging from altered reproductive capacity to changes in population genetic structure. Few studies, however, have examined the reproductive vigor of individuals within populations inhabiting environments characterized by chronic pollution. In this study we undertook an analysis of populations of three-spined sticklebacks (Gasterosteus aculeatus) from polluted sites, to determine levels of genetic diversity, assess for evidence of historic population genetic bottlenecks and determine the reproductive competitiveness of males from these locations. The sites chosen included locations in the River Aire, the River Tees and the River Birket, English rivers that have been impacted by pollution from industrial and/or domestic effluents for over 100 years. Male reproductive competitiveness was determined via competitive breeding experiments with males and females derived from a clean water site, employing DNA microsatellites to determine parentage outcome. Populations of stickleback collected from the three historically polluted sites showed evidence of recent population bottlenecks, although only the River Aire population showed low genetic diversity. In contrast, fish collected from two relatively unpolluted sites within the River Gowy and Houghton Springs showed weak, or no evidence of such bottlenecks. Nevertheless, males derived from polluted sites were able to reproduce successfully in competition with males derived from clean water exposures, indicating that these bottlenecks have not resulted in any substantial loss of reproductive fitness in males.
Collapse
Affiliation(s)
- Eduarda M Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
Host-specific phenotypic plasticity of the turtle barnacle Chelonibia testudinaria: a widespread generalist rather than a specialist. PLoS One 2013; 8:e57592. [PMID: 23469208 PMCID: PMC3585910 DOI: 10.1371/journal.pone.0057592] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/24/2013] [Indexed: 11/19/2022] Open
Abstract
Turtle barnacles are common epibionts on marine organisms. Chelonibia testudinaria is specific on marine turtles whereas C. patula is a host generalist, but rarely found on turtles. It has been questioned why C. patula, being abundant on a variety of live substrata, is almost absent from turtles. We evaluated the genetic (mitochondrial COI, 16S and 12S rRNA, and amplified fragment length polymorphism (AFLP)) and morphological differentiation of C. testudinaia and C. patula from different hosts, to determine the mode of adaptation exhibited by Chelonibia species on different hosts. The two taxa demonstrate clear differences in shell morphology and length of 4-6(th) cirri, but very similar in arthropodal characters. Moreover, we detected no genetic differentiation in mitochondrial DNA and AFLP analyses. Outlier detection infers insignificant selection across loci investigated. Based on combined morphological and molecular evidence, we proposed that C. testudinaria and C. patula are conspecific, and the two morphs with contrasting shell morphologies and cirral length found on different host are predominantly shaped by developmental plasticity in response to environmental setting on different hosts. Chelonibia testudinaria is, thus, a successful general epibiotic fouler and the phenotypic responses postulated can increase the fitness of the animals when they attach on hosts with contrasting life-styles.
Collapse
|
31
|
Loftus SJ, Crawford DL. Interindividual variation in Complex I activity in Fundulus heteroclitus along a steep thermocline. Physiol Biochem Zool 2012; 86:82-91. [PMID: 23303323 DOI: 10.1086/668850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The first enzyme in the oxidative phosphorylation pathway is Complex I (EC 1.6.5.3). Complex I is a large heteromeric enzyme complex with 45 protein subunits that translocates H(+) ions across the mitochondrial inner membrane. Among northern and southern populations of the teleost fish Fundulus heteroclitus, Complex I subunits have fixed amino acid substitutions. Additionally, there are differences in oxidative phosphorylation activity among populations of F. heteroclitus. To investigate whether these differences are related to Complex I, enzyme activity was measured in 121 individuals from five populations of F. heteroclitus and its sister species Fundulus grandis acclimated to a constant 20°C temperature. Within each population, Complex I activity is highly variable among individuals of F. heteroclitus (coefficient of variation percentage among individuals has a mean of 90% in the five F. heteroclitus populations), and the mean Complex I activity among populations is significantly different at the latitudinal extremes of the range. Importantly, Complex I activity is more similar between F. heteroclitus from the southernmost population and its sister species F. grandis than to the northern populations of F. heteroclitus, suggesting important evolutionary differences. Unexpectedly, the activity is nearly fourfold higher in southern populations than northern populations. Mitochondrial density appears to compensate partially for decreased activity in northern individuals; activity per wet weight is only twofold higher in southern populations. We suggest that some of the variation in Complex I activity is genetically based and thus is being influenced by directional selection. However, this conclusion presents a conundrum: there should not be so much variation in Complex I activity within a population if this variation is biologically important.
Collapse
Affiliation(s)
- Samuel J Loftus
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | | |
Collapse
|
32
|
Kraus RHS, van Hooft P, Megens HJ, Tsvey A, Fokin SY, Ydenberg RC, Prins HHT. Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol 2012; 22:41-55. [PMID: 23110616 DOI: 10.1111/mec.12098] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 01/13/2023]
Abstract
Knowledge about population structure and connectivity of waterfowl species, especially mallards (Anas platyrhynchos), is a priority because of recent outbreaks of avian influenza. Ringing studies that trace large-scale movement patterns have to date been unable to detect clearly delineated mallard populations. We employed 363 single nucleotide polymorphism markers in combination with population genetics and phylogeographical approaches to conduct a population genomic test of panmixia in 801 mallards from 45 locations worldwide. Basic population genetic and phylogenetic methods suggest no or very little population structure on continental scales. Nor could individual-based structuring algorithms discern geographical structuring. Model-based coalescent analyses for testing models of population structure pointed to strong genetic connectivity among the world's mallard population. These diverse approaches all support the conclusion that there is a lack of clear population structure, suggesting that the world's mallards, perhaps with minor exceptions, form a single large, mainly interbreeding population.
Collapse
Affiliation(s)
- Robert H S Kraus
- Resource Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
Strand AE, Williams LM, Oleksiak MF, Sotka EE. Can diversifying selection be distinguished from history in geographic clines? A population genomic study of killifish (Fundulus heteroclitus). PLoS One 2012; 7:e45138. [PMID: 23049770 PMCID: PMC3458873 DOI: 10.1371/journal.pone.0045138] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/14/2012] [Indexed: 02/03/2023] Open
Abstract
A common geographical pattern of genetic variation is the one-dimensional cline. Clines may be maintained by diversifying selection across a geographical gradient but can also reflect historical processes such as allopatry followed by secondary contact. To identify loci that may be undergoing diversifying selection, we examined the distribution of geographical variation patterns across the range of the killifish (Fundulus heteroclitus) in 310 loci, including microsatellites, allozymes, and single nucleotide polymorphisms. We employed two approaches to detect loci under strong diversifying selection. First, we developed an automated method to identify clinal variation on a per-locus basis and examined the distribution of clines to detect those that exhibited signifcantly steeper slopes. Second, we employed a classic [Formula: see text]-outlier method as a complementary approach. We also assessed performance of these techniques using simulations. Overall, latitudinal clines were detected in nearly half of all loci genotyped (i.e., all eight microsatellite loci, 12 of 16 allozyme loci and 44% of the 285 SNPs). With the exception of few outlier loci (notably mtDNA and malate dehydrogenase), the positions and slopes of Fundulus clines were statistically indistinguishable. The high frequency of latitudinal clines across the genome indicates that secondary contact plays a central role in the historical demography of this species. Our simulation results indicate that accurately detecting diversifying selection using genome scans is extremely difficult in species with a strong signal of secondary contact; neutral evolution under this history produces clines as steep as those expected under selection. Based on these results, we propose that demographic history can explain all clinal patterns observed in F. heteroclitus without invoking natural selection to either establish or maintain the pattern we observe today.
Collapse
Affiliation(s)
- Allan E Strand
- College of Charleston, Department of Biology, Grice Marine Laboratory, Charleston, South Carolina, USA. strandacofc.edu
| | | | | | | |
Collapse
|
34
|
Hansen MM, Olivieri I, Waller DM, Nielsen EE. Monitoring adaptive genetic responses to environmental change. Mol Ecol 2012; 21:1311-29. [PMID: 22269082 DOI: 10.1111/j.1365-294x.2011.05463.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Widespread environmental changes including climate change, selective harvesting and landscape alterations now greatly affect selection regimes for most organisms. How animals and plants can adapt to these altered environments via contemporary evolution is thus of strong interest. We discuss how to use genetic monitoring to study adaptive responses via repeated analysis of the same populations over time, distinguishing between phenotypic and molecular genetics approaches. After describing monitoring designs, we develop explicit criteria for demonstrating adaptive responses, which include testing for selection and establishing clear links between genetic and environmental change. We then review a few exemplary studies that explore adaptive responses to climate change in Drosophila, selective responses to hunting and fishing, and contemporary evolution in Daphnia using resurrected resting eggs. We further review a broader set of 44 studies to assess how well they meet the proposed criteria, and conclude that only 23% fulfill all criteria. Approximately half (43%) of these studies failed to rule out the alternative hypothesis of replacement by a different, better-adapted population. Likewise, 34% of the studies based on phenotypic variation did not test for selection as opposed to drift. These shortcomings can be addressed via improved experimental designs and statistical testing. We foresee monitoring of adaptive responses as a future valuable tool in conservation biology, for identifying populations unable to evolve at sufficiently high rates and for identifying possible donor populations for genetic rescue. Technological advances will further augment the realization of this potential, especially next-generation sequencing technologies that allow for monitoring at the level of whole genomes.
Collapse
Affiliation(s)
- Michael M Hansen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
35
|
Williams LM, Oleksiak MF. Evolutionary and functional analyses of cytochrome P4501A promoter polymorphisms in natural populations. Mol Ecol 2011; 20:5236-47. [PMID: 22093087 DOI: 10.1111/j.1365-294x.2011.05360.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functional importance of variable, transcriptional regulatory sequences within and among natural populations is largely unexplored. We analysed the cytochrome P4501A (CYP1A) promoter in three populations of the minnow, Fundulus heteroclitus, because two SNPs in the promoter and first intron of CYP1A are under selection in populations adapted to pollutants. To define the importance of these SNPs, 1630 bp of the CYP1A promoter and first intron and exon were sequenced in eight individuals from three populations: a population from a polluted environment resistant to some aromatic pollutants and two flanking reference populations. CYP1A is induced by many aromatic pollutants, but in populations adapted to pollutants, CYP1A has been shown to be refractory to induction. We were interested in understanding whether variation in the CYP1A promoter explains mechanism(s) of adaptation to these aromatic pollutants. The CYP1A promoter was extremely variable (an average of 9.3% of the promoter nucleotides varied among all populations) and exhibited no fixed differences between populations. As CYP1A is poorly inducible in adapted fish, we hypothesized that CYP1A promoter regions might vary functionally between populations. Unexpectedly, in vitro analysis showed significantly greater transcription from CYP1A promoters found in the population from the polluted environment relative to promoters found in both reference populations. Thus, despite extensive variation among populations and lack of fixed differences between populations, individuals from a polluted environment have significantly enhanced promoter activity. These data demonstrate that intraspecific variation, which provides the raw material for natural selection to act on, can occur while maintaining promoter function.
Collapse
Affiliation(s)
- Larissa M Williams
- Department of Environmental and Molecular Toxicology, PO Box 7633, North Carolina State University, Raleigh, NC 27695-7633, USA
| | | |
Collapse
|