1
|
York JM, Taylor TN, LaPotin S, Lu Y, Mueller U. Hymenopteran-specific TRPA channel from the Texas leaf cutter ant (Atta texana) is heat and cold activated and expression correlates with environmental temperature. INSECT SCIENCE 2025; 32:301-320. [PMID: 38605428 PMCID: PMC11824891 DOI: 10.1111/1744-7917.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Leaf cutting ants of the genus Atta cultivate fungal gardens, carefully modifying environmental conditions to maintain optimal temperature for fungal growth. Antennal nerves from Atta are highly temperature sensitive, but the underlying molecular sensor is unknown. Here, we utilize Atta texana (Texas leaf cutter ant) to investigate the molecular basis of ant temperature sensation and how it might have evolved as the range expanded northeast across Texas from ancestral populations in Mexico. We focus on transient receptor potential (TRP) channel genes, the best characterized temperature sensor proteins in animals. Atta texana antennae express 6 of 13 Hymenopteran TRP channel genes and sequences are under a mix of relaxed and intensified selection. In a behavioral assay, we find A. texana workers prefer 24 °C (range 21-26 °C) for fungal growth. There was no evidence of regulatory evolution across a temperature transect in Texas, but instead Hymenoptera-specific TRPA (HsTRPA) expression highly correlated with ambient temperature. When expressed in vitro, HsTRPA from A. texana is temperature activated with Q10 values exceeding 100 on initial exposure to temperatures above 33 °C. Surprisingly, HsTRPA also appears to be activated by cooling, and therefore to our knowledge, the first non-TRPA1 ortholog to be described with dual heat/cold activation and the first in any invertebrate.
Collapse
Affiliation(s)
- Julia M. York
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois Urbana‐ChampaignUrbanaUSA
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
- Institute for NeuroscienceUniversity of Texas at AustinAustinUSA
| | - Timothy N. Taylor
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
| | - Sarah LaPotin
- Institute for NeuroscienceUniversity of Texas at AustinAustinUSA
- Department of Human GeneticsUniversity of UtahSalt Lake CityUSA
| | - Ying Lu
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
- Institute for NeuroscienceUniversity of Texas at AustinAustinUSA
| | - Ulrich Mueller
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
| |
Collapse
|
2
|
Valencia-Montoya WA, Pierce NE, Bellono NW. Evolution of Sensory Receptors. Annu Rev Cell Dev Biol 2024; 40:353-379. [PMID: 38985841 PMCID: PMC11526382 DOI: 10.1146/annurev-cellbio-120123-112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Sensory receptors are at the interface between an organism and its environment and thus represent key sites for biological innovation. Here, we survey major sensory receptor families to uncover emerging evolutionary patterns. Receptors for touch, temperature, and light constitute part of the ancestral sensory toolkit of animals, often predating the evolution of multicellularity and the nervous system. In contrast, chemoreceptors exhibit a dynamic history of lineage-specific expansions and contractions correlated with the disparate complexity of chemical environments. A recurring theme includes independent transitions from neurotransmitter receptors to sensory receptors of diverse stimuli from the outside world. We then provide an overview of the evolutionary mechanisms underlying sensory receptor diversification and highlight examples where signatures of natural selection are used to identify novel sensory adaptations. Finally, we discuss sensory receptors as evolutionary hotspots driving reproductive isolation and speciation, thereby contributing to the stunning diversity of animals.
Collapse
Affiliation(s)
- Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
| |
Collapse
|
3
|
Ros-Rocher N, Brunet T. What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals. Anim Cogn 2023; 26:1767-1782. [PMID: 37067637 PMCID: PMC10770216 DOI: 10.1007/s10071-023-01776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Thibaut Brunet
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
4
|
York JM. Temperature activated transient receptor potential ion channels from Antarctic fishes. Open Biol 2023; 13:230215. [PMID: 37848053 PMCID: PMC10581778 DOI: 10.1098/rsob.230215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 10/19/2023] Open
Abstract
Antarctic notothenioid fishes (cryonotothenioids) live in waters that range between -1.86°C and an extreme maximum +4°C. Evidence suggests these fish sense temperature peripherally, but the molecular mechanism of temperature sensation in unknown. Previous work identified transient receptor potential (TRP) channels TRPA1b, TRPM4 and TRPV1a as the top candidates for temperature sensors. Here, cryonotothenioid TRPA1b and TRPV1a are characterized using Xenopus oocyte electrophysiology. TRPA1b and TRPV1a showed heat-evoked currents with Q10s of 11.1 ± 2.2 and 20.5 ± 2.4, respectively. Unexpectedly, heat activation occurred at a threshold of 22.9 ± 1.3°C for TRPA1b and 32.1 ± 0.6°C for TRPV1a. These fish have not experienced such temperatures for at least 15 Myr. Either (1) another molecular mechanism underlies temperature sensation, (2) these fishes do not sense temperatures below these thresholds despite having lethal limits as low as 5°C, or (3) native cellular conditions modify the TRP channels to function at relevant temperatures. The effects of osmolytes, pH, oxidation, phosphorylation, lipids and accessory proteins were tested. No conditions shifted the activity range of TRPV1a. Oxidation in combination with reduced cholesterol significantly dropped activation threshold of TRPA1b to 11.3 ± 2.3°C, it is hypothesized the effect may be due to lipid raft disruption.
Collapse
Affiliation(s)
- Julia M. York
- Department of Integrative Biology, Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- School of Integrative Biology, University of Illinois Urbana–Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Fang Y, Jiang J, Ding H, Li X, Xie X. Phospholipase C: Diverse functions in plant biotic stress resistance and fungal pathogenicity. MOLECULAR PLANT PATHOLOGY 2023; 24:1192-1202. [PMID: 37119461 PMCID: PMC10423330 DOI: 10.1111/mpp.13343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Phospholipase C (PLC) generates various second messenger molecules and mediates phospholipid hydrolysis. In recent years, the important roles of plant and fungal PLC in disease resistance and pathogenicity, respectively, have been determined. However, the roles of PLC in plants and fungi are unintegrated and relevant literature is disorganized. This makes it difficult for researchers to implement PLC-based strategies to improve disease resistance in plants. In this comprehensive review, we summarize the structure, classification, and phylogeny of the PLCs involved in plant biotic stress resistance and fungal pathogenicity. PLCs can be divided into two groups, nonspecific PLC (NPC) and phosphatidylinositol-specific PLC (PI-PLC), which present marked differences in phylogenetic evolution. The products of PLC genes in fungi play significant roles in physiological activity and pathogenesis, whereas those encoded by plant PLC genes mediate the immune response to fungi. This review provides a perspective for the future control of plant fungal diseases.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Guizhou UniversityGuiyangChina
| | - Haixia Ding
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Guizhou UniversityGuiyangChina
| | - Xin Xie
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| |
Collapse
|
6
|
Merényi Z, Krizsán K, Sahu N, Liu XB, Bálint B, Stajich JE, Spatafora JW, Nagy LG. Genomes of fungi and relatives reveal delayed loss of ancestral gene families and evolution of key fungal traits. Nat Ecol Evol 2023; 7:1221-1231. [PMID: 37349567 PMCID: PMC10406608 DOI: 10.1038/s41559-023-02095-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
Fungi are ecologically important heterotrophs that have radiated into most niches on Earth and fulfil key ecological services. Despite intense interest in their origins, major genomic trends of their evolutionary route from a unicellular opisthokont ancestor to derived multicellular fungi remain poorly known. Here we provide a highly resolved genome-wide catalogue of gene family changes across fungal evolution inferred from the genomes of 123 fungi and relatives. We show that a dominant trend in early fungal evolution has been the gradual shedding of protist genes and the punctuated emergence of innovation by two main gene duplication events. We find that the gene content of non-Dikarya fungi resembles that of unicellular opisthokonts in many respects, owing to the conservation of protist genes in their genomes. The most rapidly duplicating gene groups included extracellular proteins and transcription factors, as well as ones linked to the coordination of nutrient uptake with growth, highlighting the transition to a sessile osmotrophic feeding strategy and subsequent lifestyle evolution as important elements of early fungal history. These results suggest that the genomes of pre-fungal ancestors evolved into the typical filamentous fungal genome by a combination of gradual gene loss, turnover and several large duplication events rather than by abrupt changes. Consequently, the taxonomically defined Fungi represents a genomically non-uniform assemblage of species.
Collapse
Affiliation(s)
- Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - Neha Sahu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Xiao-Bin Liu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Jason E Stajich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
7
|
Ion channel chameleons: Switching ion selectivity by alternative splicing. J Biol Chem 2023; 299:102946. [PMID: 36707054 PMCID: PMC10017353 DOI: 10.1016/j.jbc.2023.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Voltage-gated sodium and calcium channels are distinct, evolutionarily related ion channels that achieve remarkable ion selectivity despite sharing an overall similar structure. Classical studies have shown that ion selectivity is determined by specific binding of ions to the channel pore, enabled by signature amino acid sequences within the selectivity filter (SF). By studying ancestral channels in the pond snail (Lymnaea stagnalis), Guan et al. showed in a recent JBC article that this well-established mechanism can be tuned by alternative splicing, allowing a single CaV3 gene to encode both a Ca2+-permeable and an Na+-permeable channel depending on the cellular context. These findings shed light on mechanisms that tune ion selectivity in physiology and on the evolutionary basis of ion selectivity.
Collapse
|
8
|
Mantilla G, Peréz-Gordones MC, Cisneros-Montufar S, Benaim G, Navarro JC, Mendoza M, Ramírez-Iglesias JR. Structural Analysis and Diversity of Calmodulin-Binding Domains in Membrane and Intracellular Ca2+-ATPases. J Membr Biol 2022; 256:159-174. [PMID: 36454258 DOI: 10.1007/s00232-022-00275-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
The plasma membrane and autoinhibited Ca2+-ATPases contribute to the Ca2+ homeostasis in a wide variety of organisms. The enzymatic activity of these pumps is stimulated by calmodulin, which interacts with the target protein through the calmodulin-binding domain (CaMBD). Most information about this region is related to all calmodulin modulated proteins, which indicates general chemical properties and there is no established relation between Ca2+ pump sequences and taxonomic classification. Thus, the aim of this study was to perform an in silico analysis of the CaMBD from several Ca2+-ATPases, in order to determine their diversity and to detect specific patterns and amino acid selection in different species. Patterns related to potential and confirmed CaMBD were detected using sequences retrieved from the literature. The occurrence of these patterns was determined across 120 sequences from 17 taxonomical classes, which were analyzed by a phylogenetic tree to establish phylogenetic groups. Predicted physicochemical characteristics including hydropathy and net charge were calculated for each group of sequences. 22 Ca2+-ATPases sequences from animals, unicellular eukaryotes, and plants were retrieved from bioinformatic databases. These sequences allow us to establish the Patterns 1(GQILWVRGLTRLQTQ), 3(KNPSLEALQRW), and 4(SRWRRLQAEHVKK), which are present at the beginning of putative CaMBD of metazoan, parasites, and land plants. A pattern 2 (IRVVNAFR) was consistently found at the end of most analyzed sequences. The amino acid preference in the CaMBDs changed depending on the phylogenetic groups, with predominance of several aliphatic and charged residues, to confer amphiphilic properties. The results here displayed show a conserved mechanism to contribute to the Ca2+ homeostasis across evolution and may help to detect putative CaMBDs.
Collapse
Affiliation(s)
- Génesis Mantilla
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Faculty of Engineering and Applied Sciences, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - María C Peréz-Gordones
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Soledad Cisneros-Montufar
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Faculty of Engineering and Applied Sciences, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - Gustavo Benaim
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Juan-Carlos Navarro
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Program of Master in Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - Marta Mendoza
- Centro de Estudios Biomédicos y Veterinarios, Instituto de Estudios Científicos y Tecnológicos (IDECYT), Universidad Nacional Experimental Simón Rodríguez, Caracas, Venezuela
| | - José R Ramírez-Iglesias
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador.
- Program of Master in Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador.
| |
Collapse
|
9
|
Quantitative Analysis of Plant Cytosolic Calcium Signals in Response to Water Activated by Low-Power Non-Thermal Plasma. Int J Mol Sci 2022; 23:ijms231810752. [PMID: 36142664 PMCID: PMC9506352 DOI: 10.3390/ijms231810752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Non-thermal plasma technology is increasingly being applied in the plant biology field. Despite the variety of beneficial effects of plasma-activated water (PAW) on plants, information about the mechanisms of PAW sensing by plants is still limited. In this study, in order to link PAW perception to the positive downstream responses of plants, transgenic Arabidopsis thaliana seedlings expressing the Ca2+-sensitive photoprotein aequorin in the cytosol were challenged with water activated by low-power non-thermal plasma generated by a dielectric barrier discharge (DBD) source. PAW sensing by plants resulted in the occurrence of cytosolic Ca2+ signals, whose kinetic parameters were found to strictly depend on the operational conditions of the plasma device and thus on the corresponding mixture of chemical species contained in the PAW. In particular, we highlighted the effect on the intracellular Ca2+ signals of low doses of DBD-PAW chemicals and also presented the effects of consecutive plant treatments. The results were discussed in terms of the possibility of using PAW-triggered Ca2+ signatures as benchmarks to accurately modulate the chemical composition of PAW in order to induce environmental stress resilience in plants, thus paving the way for further applications in agriculture.
Collapse
|
10
|
Wu C, Guo Z, Zhang M, Chen H, Peng M, Abubakar YS, Zheng H, Yun Y, Zheng W, Wang Z, Zhou J. Golgi-localized calcium/manganese transporters FgGdt1 and FgPmr1 regulate fungal development and virulence by maintaining Ca 2+ and Mn 2+ homeostasis in Fusarium graminearum. Environ Microbiol 2022; 24:4623-4640. [PMID: 35837846 DOI: 10.1111/1462-2920.16128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Calcium and manganese transporters play important roles in regulating Ca2+ and Mn2+ homeostasis in cells, which is necessary for the normal physiological activities of eukaryotes. Gdt1 and Pmr1 function as calcium/manganese transporters in the Golgi apparatus. However, the functions of Gdt1 and Pmr1 have not been previously characterized in the plant pathogenic fungus Fusarium graminearum. Here, we identified and characterized the biological functions of FgGdt1 and FgPmr1 in F. graminearum. Our study shows that FgGdt1 and FgPmr1 are both localized to the cis- and medial-Golgi. Disruption of FgGdt1 or FgPmr1 in F. graminearum caused serious defects in vegetative growth, conidiation, sexual development and significantly decreased virulence in wheat but increased deoxynivalenol (DON) production. Importantly, FgGdt1 is involved in Ca2+ and Mn2+ homeostasis and the severe phenotypic defects of the ΔFggdt1 mutant were largely due to loss of FgGdt1 function in Mn2+ transportation. FgGdt1-mCherry colocalizes with FgPmr1-GFP at the Golgi, and FgGDT1 exerts its biological function upstream of FgPMR1. Taken together, our results collectively demonstrate that the cis- and medial-Golgi-localized proteins FgGdt1 and FgPmr1 regulate Ca2+ and Mn2+ homeostasis of the Golgi apparatus, and this function is important in modulating the growth, development, DON biosynthesis and pathogenicity of F. graminearum.
Collapse
Affiliation(s)
- Congxian Wu
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongkun Guo
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meiru Zhang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huilin Chen
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minghui Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Huawei Zheng
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Jie Zhou
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Lezama-García K, Mota-Rojas D, Pereira AMF, Martínez-Burnes J, Ghezzi M, Domínguez A, Gómez J, de Mira Geraldo A, Lendez P, Hernández-Ávalos I, Falcón I, Olmos-Hernández A, Wang D. Transient Receptor Potential (TRP) and Thermoregulation in Animals: Structural Biology and Neurophysiological Aspects. Animals (Basel) 2022; 12:106. [PMID: 35011212 PMCID: PMC8749608 DOI: 10.3390/ani12010106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents and analyzes recent scientific findings on the structure, physiology, and neurotransmission mechanisms of transient receptor potential (TRP) and their function in the thermoregulation of mammals. The aim is to better understand the functionality of these receptors and their role in maintaining the temperature of animals, or those susceptible to thermal stress. The majority of peripheral receptors are TRP cation channels formed from transmembrane proteins that function as transductors through changes in the membrane potential. TRP are classified into seven families and two groups. The data gathered for this review include controversial aspects because we do not fully know the mechanisms that operate the opening and closing of the TRP gates. Deductions, however, suggest the intervention of mechanisms related to G protein-coupled receptors, dephosphorylation, and ligands. Several questions emerge from the review as well. For example, the future uses of these data for controlling thermoregulatory disorders and the invitation to researchers to conduct more extensive studies to broaden our understanding of these mechanisms and achieve substantial advances in controlling fever, hyperthermia, and hypothermia.
Collapse
Affiliation(s)
- Karina Lezama-García
- PhD Program in Biological and Health Sciences, [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Daniel Mota-Rojas
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.M.F.P.); (A.d.M.G.)
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico;
| | - Marcelo Ghezzi
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Arroyo Seco S/N, Tandil 7000, Argentina; (M.G.); (P.L.)
| | - Adriana Domínguez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Jocelyn Gómez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Ana de Mira Geraldo
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.M.F.P.); (A.d.M.G.)
| | - Pamela Lendez
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Arroyo Seco S/N, Tandil 7000, Argentina; (M.G.); (P.L.)
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlan Izcalli 54714, Mexico;
| | - Isabel Falcón
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico;
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| |
Collapse
|
12
|
Abstract
Animals rely on their sensory systems to inform them of ecologically relevant environmental variation. In the Southern Ocean, the thermal environment has remained between −1.9 and 5 °C for 15 Myr, yet we have no knowledge of how an Antarctic marine organism might sense their thermal habitat as we have yet to discover a thermosensitive ion channel that gates (opens/closes) below 10 °C. Here, we investigate the evolutionary dynamics of transient receptor potential (TRP) channels, which are the primary thermosensors in animals, within cryonotothenioid fishes—the dominant fish fauna of the Southern Ocean. We found cryonotothenioids have a similar complement of TRP channels as other teleosts (∼28 genes). Previous work has shown that thermosensitive gating in a given channel is species specific, and multiple channels act together to sense the thermal environment. Therefore, we combined evidence of changes in selective pressure, gene gain/loss dynamics, and the first sensory ganglion transcriptome in this clade to identify the best candidate TRP channels that might have a functional dynamic range relevant for frigid Antarctic temperatures. We concluded that TRPV1a, TRPA1b, and TRPM4 are the likeliest putative thermosensors, and found evidence of diversifying selection at sites across these proteins. We also put forward hypotheses for molecular mechanisms of other cryonotothenioid adaptations, such as reduced skeletal calcium deposition, sensing oxidative stress, and unusual magnesium homeostasis. By completing a comprehensive and unbiased survey of these genes, we lay the groundwork for functional characterization and answering long-standing thermodynamic questions of thermosensitive gating and protein adaptation to low temperatures.
Collapse
Affiliation(s)
- Julia M York
- Department of Integrative Biology, University of Texas at Austin, USA
- Corresponding author: E-mail:
| | - Harold H Zakon
- Department of Integrative Biology, University of Texas at Austin, USA
| |
Collapse
|
13
|
Pan-phylum genome-wide identification of sodium calcium exchangers reveal heterogeneous expansions and possible roles in nematode parasitism. Gene 2021; 810:146052. [PMID: 34756961 DOI: 10.1016/j.gene.2021.146052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Calcium signaling is ubiquitous in nematode development from fertilization to cell specification to apoptosis. Calcium also regulates dauer entry in Caenorhabditis elegans, which corresponds to the infective stage of parasitic nematodes. In diverse parasites such as Trypanosoma cruzi and Toxoplasma gondii calcium has been shown to regulate host cell entry and egress, and perturbing calcium signaling represents a possible route to inhibit infection and parasitism in these species. Sodium calcium exchangers are considered the most important mechanism of calcium efflux, and our lab has previously characterized the sodium calcium exchanger gene family in C. elegans and studied the diversity of this family across a subset of specific nematode species. Here we build upon these data and explore sodium calcium exchangers across 108 species of nematodes. Our data reveal substantial differences in sodium calcium exchanger counts across the Phylum and detail expansions and contractions of specific exchanger subtypes within certain nematode clades. Finally, we also provide evidence for a role of sodium calcium exchangers in parasite activation by examining differentially expressed genes in non-activated versus activated infective stage larvae. Taken together our findings paint a heterogeneous picture of sodium calcium exchanger evolution across the Phylum Nematoda that may reflect unique adaptations to free-living and parasitic lifestyles.
Collapse
|
14
|
Mata-Martínez E, Sánchez-Cárdenas C, Chávez JC, Guerrero A, Treviño CL, Corkidi G, Montoya F, Hernandez-Herrera P, Buffone MG, Balestrini PA, Darszon A. Role of calcium oscillations in sperm physiology. Biosystems 2021; 209:104524. [PMID: 34453988 DOI: 10.1016/j.biosystems.2021.104524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Intracellular Ca2+ is a key regulator of cell signaling and sperm are not the exception. Cells often use cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations as a means to decodify external and internal information. [Ca2+]i oscillations faster than those usually found in other cells and correlated with flagellar beat were the first to be described in sperm in 1993 by Susan Suarez, in the boar. More than 20 years passed before similar [Ca2+]i oscillations were documented in human sperm, simultaneously examining their flagellar beat in three dimensions by Corkidi et al. 2017. On the other hand, 10 years after the discovery of the fast boar [Ca2+]i oscillations, slower ones triggered by compounds from the egg external envelope were found to regulate cell motility and chemotaxis in sperm from marine organisms. Today it is known that sperm display fast and slow spontaneous and agonist triggered [Ca2+]i oscillations. In mammalian sperm these Ca2+ transients may act like a multifaceted tool that regulates fundamental functions such as motility and acrosome reaction. This review covers the main sperm species and experimental conditions where [Ca2+]i oscillations have been described and discusses what is known about the transporters involved, their regulation and the physiological purpose of these oscillations. There is a lot to be learned regarding the origin, regulation and physiological relevance of these Ca2+ oscillations.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM) Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, IBT, UNAM, Mexico.
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Gabriel Corkidi
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Fernando Montoya
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Paul Hernandez-Herrera
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
15
|
Abstract
Calcium (Ca2+) is a unique mineral that serves as both a nutrient and a signal in all eukaryotes. To maintain Ca2+ homeostasis for both nutrition and signaling purposes, the toolkit for Ca2+ transport has expanded across kingdoms of eukaryotes to encode specific Ca2+ signals referred to as Ca2+ signatures. In parallel, a large array of Ca2+-binding proteins has evolved as specific sensors to decode Ca2+ signatures. By comparing these coding and decoding mechanisms in fungi, animals, and plants, both unified and divergent themes have emerged, and the underlying complexity will challenge researchers for years to come. Considering the scale and breadth of the subject, instead of a literature survey, in this review we focus on a conceptual framework that aims to introduce to readers to the principles and mechanisms of Ca2+ signaling. We finish with several examples of Ca2+-signaling pathways, including polarized cell growth, immunity and symbiosis, and systemic signaling, to piece together specific coding and decoding mechanisms in plants versus animals. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
16
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
17
|
Zheng Y, Wang LB, Sun SF, Liu SY, Liu MJ, Lin J. Phylogenetic and ion-response analyses reveal a relationship between gene expansion and functional divergence in the Ca 2+/cation antiporter family in Angiosperms. PLANT MOLECULAR BIOLOGY 2021; 105:303-320. [PMID: 33123851 DOI: 10.1007/s11103-020-01088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/21/2020] [Indexed: 05/28/2023]
Abstract
Plant CaCA superfamily genes with higher tendency to retain after WGD are more gene expression and function differentiated in ion-response. Plants and animals face different environmental stresses but share conserved Ca2+ signaling pathways, such as Ca2+/Cation transport. The Ca2+/cation antiporters superfamily (CaCAs) is an ancient and widespread family of ion-coupled cation transporters found in all kingdoms of life. We analyzed the molecular evolution progress of the family through comparative genomics and phylogenetics of CaCAs genes from plants and animals, grouping these genes into several families and clades, and identified multiple gene duplication retention events, particularly in the CAX (H+/cation exchanger), CCX (cation/Ca2+ exchanger), and NCL (Na+/Ca2+ exchanger-like) families. The tendency of duplication retention differs between families and gene clades. The gene duplication events were probably the result of whole-genome duplication (WGD) in plants and might have led to functional divergence. Tissue and ion-response expression analyses revealed that CaCAs genes with more highly differentiated expression patterns are more likely to be retained as duplicates than those with more conserved expression profiles. Phenotype of Arabidopsis thaliana mutants showed that loss of genes with a greater tendency to be retained after duplication resulted in more severe growth deficiency. CaCAs genes in salt-tolerant species tended to inherit the expression characteristics of their most recent common ancestral genes, with conservative ion-response expression. This study indicates a possible evolutionary scheme for cation transport and illustrates distinct fates and a mechanism for the evolution of gene duplicates. The increased copy numbers of genes and divergences in expression might have contributed to the divergent functions of CaCAs protein, allowing plants to cope with environmental stresses and adapt to a larger number of ecological niches.
Collapse
Affiliation(s)
- Ye Zheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Lin-Bo Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Shu-Feng Sun
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Shi-Ying Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Ming-Jia Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Juan Lin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
18
|
Yang J, Li W, Guo X, Chen P, Cheng Y, Mao K, Ma F. Cation/Ca 2+ Exchanger 1 (MdCCX1), a Plasma Membrane-Localized Na + Transporter, Enhances Plant Salt Tolerance by Inhibiting Excessive Accumulation of Na + and Reactive Oxygen Species. FRONTIERS IN PLANT SCIENCE 2021; 12:746189. [PMID: 34721472 PMCID: PMC8549818 DOI: 10.3389/fpls.2021.746189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/20/2021] [Indexed: 05/18/2023]
Abstract
High salinity causes severe damage to plant growth and significantly reduces crop yields. The CCX family proteins can facilitate the transport of multiple ions to prevent toxicity. CCX proteins play an important role in regulating plant salt tolerance, but no detailed studies on CCX proteins in apples have been reported. Here, the CCX family gene MdCCX1 was cloned from apple (Malus domestica). It is constitutively expressed in various apple tissues and is significantly induced by salt stress. As a plasma membrane-localized protein, MdCCX1-overexpression could complement the Na+-sensitive phenotype of yeast mutants and reduce the Na+ content in yeast cells under NaCl treatment, suggesting that MdCCX1 could be a plasma membrane-localized Na+ transporter. To identify the function of MdCCX1 in salt response, we transformed this gene into Arabidopsis, apple calli, and apple plants. Overexpression of MdCCX1 significantly improved the salt tolerance of these transgenic materials. The significantly reduced Na+ content under NaCl treatment indicated that MdCCX1 overexpression could enhance plant salt tolerance by inhibiting the excessive accumulation of Na+. Besides, MdCCX1 overexpression could also enhance plant salt tolerance by promoting ROS scavenging. These findings provide new insight and rich resources for future studies of CCX proteins in plant species.
Collapse
|
19
|
Himmel NJ, Cox DN. Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature. Proc Biol Sci 2020; 287:20201309. [PMID: 32842926 DOI: 10.1098/rspb.2020.1309] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential superfamily of ion channels (TRP channels) is widely recognized for the roles its members play in sensory nervous systems. However, the incredible diversity within the TRP superfamily, and the wide range of sensory capacities found therein, has also allowed TRP channels to function beyond sensing an organism's external environment, and TRP channels have thus become broadly critical to (at least) animal life. TRP channels were originally discovered in Drosophila and have since been broadly studied in animals; however, thanks to a boom in genomic and transcriptomic data, we now know that TRP channels are present in the genomes of a variety of creatures, including green algae, fungi, choanoflagellates and a number of other eukaryotes. As a result, the organization of the TRP superfamily has changed radically from its original description. Moreover, modern comprehensive phylogenetic analyses have brought to light the vertebrate-centricity of much of the TRP literature; much of the nomenclature has been grounded in vertebrate TRP subfamilies, resulting in a glossing over of TRP channels in other taxa. Here, we provide a comprehensive review of the function, structure and evolutionary history of TRP channels, and put forth a more complete set of non-vertebrate-centric TRP family, subfamily and other subgroup nomenclature.
Collapse
Affiliation(s)
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
20
|
Zheng L, Prestwich BD, Harrison PT, Mackrill JJ. Polycystic Kidney Disease Ryanodine Receptor Domain (PKDRR) Proteins in Oomycetes. Pathogens 2020; 9:pathogens9070577. [PMID: 32708691 PMCID: PMC7399828 DOI: 10.3390/pathogens9070577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022] Open
Abstract
In eukaryotes, two sources of Ca2+ are accessed to allow rapid changes in the cytosolic levels of this second messenger: the extracellular medium and intracellular Ca2+ stores, such as the endoplasmic reticulum. One class of channel that permits Ca2+ entry is the transient receptor potential (TRP) superfamily, including the polycystic kidney disease (PKD) proteins, or polycystins. Channels that release Ca2+ from intracellular stores include the inositol 1,4,5-trisphosphate/ryanodine receptor (ITPR/RyR) superfamily. Here, we characterise a family of proteins that are only encoded by oomycete genomes, that we have named PKDRR, since they share domains with both PKD and RyR channels. We provide evidence that these proteins belong to the TRP superfamily and are distinct from the ITPR/RyR superfamily in terms of their evolutionary relationships, protein domain architectures and predicted ion channel structures. We also demonstrate that a hypothetical PKDRR protein from Phytophthora infestans is produced by this organism, is located in the cell-surface membrane and forms multimeric protein complexes. Efforts to functionally characterise this protein in a heterologous expression system were unsuccessful but support a cell-surface localisation. These PKDRR proteins represent potential targets for the development of new "fungicides", since they are of a distinctive structure that is only found in oomycetes and not in any other cellular organisms.
Collapse
Affiliation(s)
- Limian Zheng
- Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland; (L.Z.); (P.T.H.)
| | - Barbara Doyle Prestwich
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 TK30 Cork, Ireland;
| | - Patrick T. Harrison
- Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland; (L.Z.); (P.T.H.)
| | - John J. Mackrill
- Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland; (L.Z.); (P.T.H.)
- Correspondence:
| |
Collapse
|
21
|
Evolutionary Aspects of TRPMLs and TPCs. Int J Mol Sci 2020; 21:ijms21114181. [PMID: 32545371 PMCID: PMC7312350 DOI: 10.3390/ijms21114181] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023] Open
Abstract
Transient receptor potential (TRP) or transient receptor potential channels are a highly diverse family of mostly non-selective cation channels. In the mammalian genome, 28 members can be identified, most of them being expressed predominantly in the plasma membrane with the exception of the mucolipins or TRPMLs which are expressed in the endo-lysosomal system. In mammalian organisms, TRPMLs have been associated with a number of critical endo-lysosomal functions such as autophagy, endo-lysosomal fusion/fission and trafficking, lysosomal exocytosis, pH regulation, or lysosomal motility and positioning. The related non-selective two-pore cation channels (TPCs), likewise expressed in endosomes and lysosomes, have also been found to be associated with endo-lysosomal trafficking, autophagy, pH regulation, or lysosomal exocytosis, raising the question why these two channel families have evolved independently. We followed TRP/TRPML channels and TPCs through evolution and describe here in which species TRP/TRPMLs and/or TPCs are found, which functions they have in different species, and how this compares to the functions of mammalian orthologs.
Collapse
|
22
|
Darszon A, Nishigaki T, López-González I, Visconti PE, Treviño CL. Differences and Similarities: The Richness of Comparative Sperm Physiology. Physiology (Bethesda) 2020; 35:196-208. [PMID: 32293232 DOI: 10.1152/physiol.00033.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Species preservation depends on the success of fertilization. Sperm are uniquely equipped to fulfill this task, and, although several mechanisms are conserved among species, striking functional differences have evolved to contend with particular sperm-egg environmental characteristics. This review highlights similarities and differences in sperm strategies, with examples within internal and external fertilizers, pointing out unresolved issues.
Collapse
Affiliation(s)
- Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Ignacio López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| |
Collapse
|
23
|
Wakai T, Mehregan A, Fissore RA. Ca 2+ Signaling and Homeostasis in Mammalian Oocytes and Eggs. Cold Spring Harb Perspect Biol 2019; 11:a035162. [PMID: 31427376 PMCID: PMC6886447 DOI: 10.1101/cshperspect.a035162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca2+]i) represent a vital signaling mechanism enabling communication between and among cells as well as with the environment. Cells have developed a sophisticated set of molecules, "the Ca2+ toolkit," to adapt [Ca2+]i changes to specific cellular functions. Mammalian oocytes and eggs, the subject of this review, are not an exception, and in fact the initiation of embryo devolvement in all species is entirely dependent on distinct [Ca2+]i responses. Here, we review the components of the Ca2+ toolkit present in mammalian oocytes and eggs, the regulatory mechanisms that allow these cells to accumulate Ca2+ in the endoplasmic reticulum, release it, and maintain basal and stable cytoplasmic concentrations. We also discuss electrophysiological and genetic studies that have uncovered Ca2+ influx channels in oocytes and eggs, and we analyze evidence supporting the role of a sperm-specific phospholipase C isoform as the trigger of Ca2+ oscillations during mammalian fertilization including its implication in fertility.
Collapse
Affiliation(s)
- Takuya Wakai
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Aujan Mehregan
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
24
|
Pattison LA, Callejo G, St John Smith E. Evolution of acid nociception: ion channels and receptors for detecting acid. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190291. [PMID: 31544616 PMCID: PMC6790391 DOI: 10.1098/rstb.2019.0291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
Nociceptors, i.e. sensory neurons tuned to detect noxious stimuli, are found in numerous phyla of the Animalia kingdom and are often polymodal, responding to a variety of stimuli, e.g. heat, cold, pressure and chemicals, such as acid. Owing to the ability of protons to have a profound effect on ionic homeostasis and damage macromolecular structures, it is no wonder that the ability to detect acid is conserved across many species. To detect changes in pH, nociceptors are equipped with an assortment of different acid sensors, some of which can detect mild changes in pH, such as the acid-sensing ion channels, proton-sensing G protein-coupled receptors and several two-pore potassium channels, whereas others, such as the transient receptor potential vanilloid 1 ion channel, require larger shifts in pH. This review will discuss the evolution of acid sensation and the different mechanisms by which nociceptors can detect acid. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
| | | | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
25
|
Dubinin MV, Belosludtsev KN. Taxonomic Features of Specific Ca2+ Transport Mechanisms in Mitochondria. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747819030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Romero F, Nishigaki T. Comparative genomic analysis suggests that the sperm-specific sodium/proton exchanger and soluble adenylyl cyclase are key regulators of CatSper among the Metazoa. ZOOLOGICAL LETTERS 2019; 5:25. [PMID: 31372239 PMCID: PMC6660944 DOI: 10.1186/s40851-019-0141-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND CatSper is a sperm-specific calcium ion (Ca2+) channel, which regulates sperm flagellar beating by tuning cytoplasmic Ca2+ concentrations. Although this Ca2+ channel is essential for mammalian fertilization, recent bioinformatics analyses have revealed that genes encoding CatSper are heterogeneously distributed throughout the eukaryotes, including vertebrates. As this channel is activated by cytoplasmic alkalization in mammals and sea urchins, it has been proposed that the sperm-specific Na+/H+ exchanger (sNHE, a product of the SLC9C gene family) positively regulates its activity. In mouse, sNHE is functionally coupled to soluble adenylyl cyclase (sAC). CatSper, sNHE, and sAC have thus been considered functionally interconnected in the control of sperm motility, at least in mouse and sea urchin. RESULTS We carried out a comparative genomic analysis to explore phylogenetic relationships among CatSper, sNHE and sAC in eukaryotes. We found that sNHE occurs only in Metazoa, although sAC occurs widely across eukaryotes. In animals, we found correlated and restricted distribution patterns of the three proteins, suggesting coevolution among them in the Metazoa. Namely, nearly all species in which CatSper is conserved also preserve sNHE and sAC. In contrast, in species without sAC, neither CatSper nor sNHE is conserved. On the other hand, the distribution of another testis-specific NHE (NHA, a product of the SLC9B gene family) does not show any apparent association with that of CatSper. CONCLUSIONS Our results suggest that CatSper, sNHE and sAC form prototypical machinery that functions in regulating sperm flagellar beating in Metazoa. In non-metazoan species, CatSper may be regulated by other H+ transporters, or its activity might be independent of cytoplasmic pH.
Collapse
Affiliation(s)
- Francisco Romero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México (IBT-UNAM). Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México (IBT-UNAM). Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
27
|
Moscatiello R, Sello S, Ruocco M, Barbulova A, Cortese E, Nigris S, Baldan B, Chiurazzi M, Mariani P, Lorito M, Navazio L. The Hydrophobin HYTLO1 Secreted by the Biocontrol Fungus Trichoderma longibrachiatum Triggers a NAADP-Mediated Calcium Signalling Pathway in Lotus japonicus. Int J Mol Sci 2018; 19:E2596. [PMID: 30200468 PMCID: PMC6164116 DOI: 10.3390/ijms19092596] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Trichoderma filamentous fungi are increasingly used as biocontrol agents and plant biostimulants. Growing evidence indicates that part of the beneficial effects is mediated by the activity of fungal metabolites on the plant host. We have investigated the mechanism of plant perception of HYTLO1, a hydrophobin abundantly secreted by Trichoderma longibrachiatum, which may play an important role in the early stages of the plant-fungus interaction. Aequorin-expressing Lotus japonicus suspension cell cultures responded to HYTLO1 with a rapid cytosolic Ca2+ increase that dissipated within 30 min, followed by the activation of the defence-related genes MPK3, WRK33, and CP450. The Ca2+-dependence of these gene expression was demonstrated by using the extracellular Ca2+ chelator EGTA and Ned-19, a potent inhibitor of the nicotinic acid adenine dinucleotide phosphate (NAADP) receptor in animal cells, which effectively blocked the HYTLO1-induced Ca2+ elevation. Immunocytochemical analyses showed the localization of the fungal hydrophobin at the plant cell surface, where it forms a protein film covering the plant cell wall. Our data demonstrate the Ca2+-mediated perception by plant cells of a key metabolite secreted by a biocontrol fungus, and provide the first evidence of the involvement of NAADP-gated Ca2+ release in a signalling pathway triggered by a biotic stimulus.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Simone Sello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection, CNR, Via Università 133, 80055 Portici (NA), Italy.
| | - Ani Barbulova
- Institute of BioSciences and BioResourses, CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| | - Enrico Cortese
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Sebastiano Nigris
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy.
| | - Barbara Baldan
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy.
| | - Maurizio Chiurazzi
- Institute of BioSciences and BioResourses, CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| | - Paola Mariani
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Napoli "Federico II", Via Università 100, 80055 Portici (NA), Italy.
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy.
| |
Collapse
|
28
|
Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM. The Evolution of Calcium-Based Signalling in Plants. Curr Biol 2018; 27:R667-R679. [PMID: 28697370 DOI: 10.1016/j.cub.2017.05.020] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcium-based intracellular signalling system is used ubiquitously to couple extracellular stimuli to their characteristic intracellular responses. It is becoming clear from genomic and physiological investigations that while the basic elements in the toolkit are common between plants and animals, evolution has acted in such a way that, in plants, some components have diversified with respect to their animal counterparts, while others have either been lost or have never evolved in the plant lineages. In comparison with animals, in plants there appears to have been a loss of diversity in calcium-influx mechanisms at the plasma membrane. However, the evolution of the calcium-storing vacuole may provide plants with additional possibilities for regulating calcium influx into the cytosol. Among the proteins that are involved in sensing and responding to increases in calcium, plants possess specific decoder proteins that are absent from the animal lineage. In seeking to understand the selection pressures that shaped the plant calcium-signalling toolkit, we consider the evolution of fast electrical signalling. We also note that, in contrast to animals, plants apparently do not make extensive use of cyclic-nucleotide-based signalling. It is possible that reliance on a single intracellular second-messenger-based system, coupled with the requirement to adapt to changing environmental conditions, has helped to define the diversity of components found in the extant plant calcium-signalling toolkit.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Elodie Marchadier
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK; Génétique Quantitative et Evolution - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Colin Brownlee
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton, SO14 3ZH, UK
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
29
|
Bode K, O'Halloran DM. NCX-DB: a unified resource for integrative analysis of the sodium calcium exchanger super-family. BMC Neurosci 2018; 19:19. [PMID: 29649983 PMCID: PMC5898058 DOI: 10.1186/s12868-018-0423-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Na+/Ca2+ exchangers are low-affinity high-capacity transporters that mediate Ca2+ extrusion by coupling Ca2+ efflux to the influx of Na+ ions. The Na+/Ca2+ exchangers form a super-family comprised of three branches each differing in ion-substrate selectivity: Na+/Ca2+ exchangers (NCX), Na+/Ca2+/K+ exchangers, and Ca2+/cation exchangers. Their primary function is to maintain Ca2+ homeostasis and play a particularly important role in excitable cells that experience transient Ca2+ fluxes. Research into the role and activity of Na+/Ca2+ exchangers has focused extensively on the cardio-vascular system, however, growing evidence suggests that Na+/Ca2+ exchangers play a key role in neuronal processes such as memory formation, learning, oligodendrocyte differentiation, neuroprotection during brain ischemia and axon guidance. They have also been implicated in pathologies such as Alzheimer’s disease, Parkinson’s disease, Multiple Sclerosis and Epilepsy, however, a clear understanding of their mechanism during disease is lacking. To date, there has never been a central resource or database for Na+/Ca2+ exchangers. With clear disease relevance and ever-increasing research on Na+/Ca2+ exchangers from both model and non-model species, a database that unifies the data on Na+/Ca2+ exchangers is needed for future research. NCX-DB is a publicly available database with a web interface that enables users to explore various Na+/Ca2+ exchangers, perform cross-species sequence comparison, identify new exchangers, and stay-up to date with recent literature. NCX-DB is available on the web via an interactive user interface with an intuitive design, which is applicable for the identification and comparison of Na+/Ca2+ exchanger proteins across diverse species.
Collapse
Affiliation(s)
- Katrin Bode
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall 6000, 800 22nd St. N.W., Washington, DC, 20052, USA.,Institute for Neuroscience, The George Washington University, 636A Ross Hall, 2300 I St. N.W., Washington, DC, 20052, USA
| | - Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall 6000, 800 22nd St. N.W., Washington, DC, 20052, USA. .,Institute for Neuroscience, The George Washington University, 636A Ross Hall, 2300 I St. N.W., Washington, DC, 20052, USA.
| |
Collapse
|
30
|
Jayakumar S, Hasan G. Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress. Front Neural Circuits 2018; 12:25. [PMID: 29674958 PMCID: PMC5895653 DOI: 10.3389/fncir.2018.00025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/02/2018] [Indexed: 01/13/2023] Open
Abstract
All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.
Collapse
Affiliation(s)
- Siddharth Jayakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
31
|
Kim HS, Kim JE, Son H, Frailey D, Cirino R, Lee YW, Duncan R, Czymmek KJ, Kang S. Roles of three Fusarium graminearum membrane Ca 2+ channels in the formation of Ca 2+ signatures, growth, development, pathogenicity and mycotoxin production. Fungal Genet Biol 2017; 111:30-46. [PMID: 29175365 DOI: 10.1016/j.fgb.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Similar to animals and plants, external stimuli cause dynamic spatial and temporal changes of cytoplasmic Ca2+ in fungi. Such changes are referred as the Ca2+ signature and control cellular responses by modulating the activity or location of diverse Ca2+-binding proteins (CBPs) and also indirectly affecting proteins that interact with CBPs. To understand the mechanism underpinning Ca2+ signaling, therefore, characterization of how Ca2+ moves to and from the cytoplasm to create Ca2+ signatures under different conditions is fundamental. Three genes encoding plasma membrane Ca2+ channels in a Fusarium graminearum strain that expresses a fluorescent protein-based Ca2+ indicator in the cytoplasm were mutagenized to investigate their roles in the generation of Ca2+ signatures under different growth conditions and genetic backgrounds. The genes disrupted include CCH1 and MID1, which encode a high affinity Ca2+ uptake system, and FIG1, encoding a low affinity Ca2+ channel. Resulting mutants were also analyzed for growth, development, pathogenicity and mycotoxin production to determine how loss of each of the genes alters these traits. To investigate whether individual genes influence the function and expression of other genes, phenotypes and Ca2+ signatures of their double and triple mutants, as well as their expression patterns, were analyzed.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, Newark, DE 19711, USA
| | - Jung-Eun Kim
- Department of Plant Pathology & Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daniel Frailey
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert Cirino
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kirk J Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, Newark, DE 19711, USA
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
32
|
Liebeskind BJ, Hofmann HA, Hillis DM, Zakon HH. Evolution of Animal Neural Systems. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-023048] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nervous systems are among the most spectacular products of evolution. Their provenance and evolution have been of interest and often the subjects of intense debate since the late nineteenth century. The genomics era has provided researchers with a new set of tools with which to study the early evolution of neurons, and recent progress on the molecular evolution of the first neurons has been both exciting and frustrating. It has become increasingly obvious that genomic data are often insufficient to reconstruct complex phenotypes in deep evolutionary time because too little is known about how gene function evolves over deep time. Therefore, additional functional data across the animal tree are a prerequisite to a fuller understanding of cell evolution. To this end, we review the functional modules of neurons and the evolution of their molecular components, and we introduce the idea of hierarchical molecular evolution.
Collapse
Affiliation(s)
- Benjamin J. Liebeskind
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
| | - Hans A. Hofmann
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - David M. Hillis
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Harold H. Zakon
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
33
|
Lindström JB, Pierce NT, Latz MI. Role of TRP Channels in Dinoflagellate Mechanotransduction. THE BIOLOGICAL BULLETIN 2017; 233:151-167. [PMID: 29373067 DOI: 10.1086/695421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transient receptor potential (TRP) ion channels are common components of mechanosensing pathways, mainly described in mammals and other multicellular organisms. To gain insight into the evolutionary origins of eukaryotic mechanosensory proteins, we investigated the involvement of TRP channels in mechanosensing in a unicellular eukaryotic protist, the dinoflagellate Lingulodinium polyedra. BLASTP analysis of the protein sequences predicted from the L. polyedra transcriptome revealed six sequences with high similarity to human TRPM2, TRPM8, TRPML2, TRPP1, and TRPP2; and characteristic TRP domains were identified in all sequences. In a phylogenetic tree including all mammalian TRP subfamilies and TRP channel sequences from unicellular and multicellular organisms, the L. polyedra sequences grouped with the TRPM, TPPML, and TRPP clades. In pharmacological experiments, we used the intrinsic bioluminescence of L. polyedra as a reporter of mechanoresponsivity. Capsaicin and RN1734, agonists of mammalian TRPV, and arachidonic acid, an agonist of mammalian TRPV, TRPA, TRPM, and Drosophila TRP, all stimulated bioluminescence in L. polyedra. Mechanical stimulation of bioluminescence, but not capsaicin-stimulated bioluminescence, was inhibited by gadolinium (Gd3+), a general inhibitor of mechanosensitive ion channels, and the phospholipase C (PLC) inhibitor U73122. These pharmacological results are consistent with the involvement of TRP-like channels in mechanosensing by L. polyedra. The TRP channels do not appear to be mechanoreceptors but rather are components of the mechanotransduction signaling pathway and may be activated via a PLC-dependent mechanism. The presence and function of TRP channels in a dinoflagellate emphasize the evolutionary conservation of both the channel structures and their functions.
Collapse
Key Words
- AA, amino acids
- AMTB hydrochloride, N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide hydrochloride
- Ce, Caenorhabditis elegans
- Cr, Chlamydomonas reinhardtii
- DMSO, dimethyl sulfoxide
- Dm, Drosophila melanogaster
- Dr, Danio rerio
- FSW, filtered seawater
- Gd3+, gadolinium
- GsMTx4, Grammostola spatulata mechanotoxin 4
- HC067047, 2-Methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide
- HMM, Hidden Markov Model
- Hs, Homo sapiens
- Lp, Lingulodinium polyedra
- ML204, 4-Methyl-2-(1-piperidinyl)-quinoline
- Mb, Monosiga brevicollis
- ORF, open reading frame
- PIP2, Phosphatidylinositol 4,5-bisphosphate
- PLC, phospholipase C
- Pt, Paramecium tetraurelia
- RHC80267, O,O′-[1,6-Hexanediylbis(iminocarbonyl)]dioxime cyclohexanone
- RN1734, 2,4-Dichloro-N-isopropyl-N-(2-isopropylaminoethyl)benzenesulfonamide
- RN1747, 1-(4-Chloro-2-nitrophenyl)sulfonyl-4-benzylpiperazine
- TMHMM, transmembrane helix prediction
- TRP, transient receptor potential channel
- U73122, 1-[6-[((17β)-3-Methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione
Collapse
|
34
|
Zhao JY, Zhao XT, Sun JT, Zou LF, Yang SX, Han X, Zhu WC, Yin Q, Hong XY. Transcriptome and proteome analyses reveal complex mechanisms of reproductive diapause in the two-spotted spider mite, Tetranychus urticae. INSECT MOLECULAR BIOLOGY 2017; 26:215-232. [PMID: 28001328 DOI: 10.1111/imb.12286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although a variety of factors underlying diapause have been identified in arthropods and other organisms, the molecular mechanisms regulating diapause are still largely unknown. Here, to better understand this process, we examined diapause-associated genes in the two-spotted spider mite, Tetranychus urticae, by comparing the transcriptomes and proteomes of early diapausing and reproductive adult females. Amongst genes underlying diapause revealed by the transcriptomic and proteomic data sets, we described the noticeable change in Ca2+ -associated genes, including 65 Ca2+ -binding protein genes and 23 Ca2+ transporter genes, indicating that Ca2+ signalling has a substantial role in diapause regulation. Other interesting changes in diapause included up-regulation of (1) glutamate receptors that may be involved in synaptic plasticity changes, (2) genes involved in cytoskeletal reorganization including genes encoding each of the components of thick and thin filaments, tubulin and members of integrin signalling and (3) genes involved in anaerobic energy metabolism, which reflects a shift to anaerobic energy metabolism in early diapausing mites.
Collapse
Affiliation(s)
- J-Y Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - X-T Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - J-T Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - L-F Zou
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - S-X Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - X Han
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - W-C Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Q Yin
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Vicens A, Andrade‐López K, Cortez D, Gutiérrez RM, Treviño CL. Premammalian origin of the sperm-specific Slo3 channel. FEBS Open Bio 2017; 7:382-390. [PMID: 28286733 PMCID: PMC5337896 DOI: 10.1002/2211-5463.12186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/01/2016] [Accepted: 12/16/2016] [Indexed: 01/05/2023] Open
Abstract
Slo3 is a sperm-specific potassium (K+) channel essential for male fertility. Slo3 channels have so far been considered to be specific to mammals. Through exploratory genomics, we identified the Slo3 gene in the genome of terrestrial (birds and reptiles) and aquatic (fish) vertebrates. In the case of fish, Slo3 has undergone several episodes of gene loss. Transcriptomic analysis showed that vertebrate Slo3 transcript orthologues are predominantly expressed in testis, in concordance with the mammalian Slo3. We conclude that the Slo3 gene arose during the radiation of early vertebrates, much earlier than previously thought. Our findings add to the growing evidence indicating that the phylogenetic profiles of sperm-specific channels are intermittent throughout metazoan evolution, which probably reflects the adaptation of sperm to different ionic milieus and fertilization environments.
Collapse
Affiliation(s)
- Alberto Vicens
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca MorelosMéxico
| | - Karla Andrade‐López
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca MorelosMéxico
| | - Diego Cortez
- Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavaca MorelosMéxico
| | - Rosa María Gutiérrez
- Departamento de Microbiología MolecularInstituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca MorelosMéxico
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca MorelosMéxico
| |
Collapse
|
36
|
Pittman JK, Hirschi KD. Phylogenetic analysis and protein structure modelling identifies distinct Ca(2+)/Cation antiporters and conservation of gene family structure within Arabidopsis and rice species. RICE (NEW YORK, N.Y.) 2016; 9:3. [PMID: 26833031 PMCID: PMC4735048 DOI: 10.1186/s12284-016-0075-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/20/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND The Ca(2+)/Cation Antiporter (CaCA) superfamily is an ancient and widespread family of ion-coupled cation transporters found in nearly all kingdoms of life. In animals, K(+)-dependent and K(+)-indendent Na(+)/Ca(2+) exchangers (NCKX and NCX) are important CaCA members. Recently it was proposed that all rice and Arabidopsis CaCA proteins should be classified as NCX proteins. Here we performed phylogenetic analysis of CaCA genes and protein structure homology modelling to further characterise members of this transporter superfamily. FINDINGS Phylogenetic analysis of rice and Arabidopsis CaCAs in comparison with selected CaCA members from non-plant species demonstrated that these genes form clearly distinct families, with the H(+)/Cation exchanger (CAX) and cation/Ca(2+) exchanger (CCX) families dominant in higher plants but the NCKX and NCX families absent. NCX-related Mg(2+)/H(+) exchanger (MHX) and CAX-related Na(+)/Ca(2+) exchanger-like (NCL) proteins are instead present. Analysis of genomes of ten closely-related rice species and four Arabidopsis-related species found that CaCA gene family structures are highly conserved within related plants, apart from minor variation. Protein structures were modelled for OsCAX1a and OsMHX1. Despite exhibiting broad structural conservation, there are clear structural differences observed between the different CaCA types. CONCLUSIONS Members of the CaCA superfamily form clearly distinct families with different phylogenetic, structural and functional characteristics, and therefore should not be simply classified as NCX proteins, which should remain as a separate gene family.
Collapse
Affiliation(s)
- Jon K Pittman
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| | - Kendal D Hirschi
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| |
Collapse
|
37
|
Arendt D, Benito-Gutierrez E, Brunet T, Marlow H. Gastric pouches and the mucociliary sole: setting the stage for nervous system evolution. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0286. [PMID: 26554050 PMCID: PMC4650134 DOI: 10.1098/rstb.2015.0286] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Prerequisite for tracing nervous system evolution is understanding of the body plan, feeding behaviour and locomotion of the first animals in which neurons evolved. Here, a comprehensive scenario is presented for the diversification of cell types in early metazoans, which enhanced feeding efficiency and led to the emergence of larger animals that were able to move. Starting from cup-shaped, gastraea-like animals with outer and inner choanoflagellate-like cells, two major innovations are discussed that set the stage for nervous system evolution. First, the invention of a mucociliary sole entailed a switch from intra- to extracellular digestion and increased the concentration of nutrients flowing into the gastric cavity. In these animals, an initial nerve net may have evolved via division of labour from mechanosensory-contractile cells in the lateral body wall, enabling coordinated movement of the growing body that involved both mucociliary creeping and changes of body shape. Second, the inner surface of the animals folded into metameric series of gastric pouches, which optimized nutrient resorption and allowed larger body sizes. The concomitant acquisition of bilateral symmetry may have allowed more directed locomotion and, with more demanding coordinative tasks, triggered the evolution of specialized nervous subsystems. Animals of this organizational state would have resembled Ediacarian fossils such as Dickinsonia and may have been close to the cnidarian–bilaterian ancestor. In the bilaterian lineage, the mucociliary sole was used mostly for creeping, or frequently lost. One possible remnant is the enigmatic Reissner's fibre in the ventral neural tube of cephalochordates and vertebrates.
Collapse
Affiliation(s)
- Detlev Arendt
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | - Thibaut Brunet
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | - Heather Marlow
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| |
Collapse
|
38
|
Beckmann L, Edel KH, Batistič O, Kudla J. A calcium sensor - protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species. Sci Rep 2016; 6:31645. [PMID: 27538881 PMCID: PMC4990929 DOI: 10.1038/srep31645] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/21/2016] [Indexed: 01/09/2023] Open
Abstract
Calcium (Ca2+) signaling is a universal mechanism of signal transduction and involves Ca2+ signal formation and decoding of information by Ca2+ binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca2+ binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca2+ signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca2+ signaling specificity.
Collapse
Affiliation(s)
- Linda Beckmann
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Oliver Batistič
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany.,College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
39
|
Cd(2+) sensitivity and permeability of a low voltage-activated Ca(2+) channel with CatSper-like selectivity filter. Cell Calcium 2016; 60:41-50. [PMID: 27134080 DOI: 10.1016/j.ceca.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/21/2016] [Accepted: 03/30/2016] [Indexed: 11/22/2022]
Abstract
CatSper is a sperm-specific Ca(2+) channel that plays an essential role in the male fertility. However, its biophysical properties have been poorly characterized mainly due to its deficient heterologous expression. As other voltage-gated Ca(2+) channels (CaVs), CatSper possesses a conserved Ca(2+)-selective filter motif ([T/S]x[D/E]xW) in the pore region. Interestingly, CatSper conserves four aspartic acids (DDDD) as the negatively charged residues in this motif while high voltage-activated CaVs have four glutamic acids (EEEE) and low voltage-activated CaVs possess two glutamic acids and two aspartic acids (EEDD). Previous studies based on site-directed mutagenesis of L- and T-type channels showed that the number of D seems to have a negative correlation with their cadmium (Cd(2+)) sensitivity. These results suggest that CatSper (DDDD) would have low sensitivity to Cd(2+). To explore Cd(2+)-sensitivity and -permeability of CatSper, we performed two types of experiments: 1) Electrophysiological analysis of heterologously expressed human CaV3.1 channel and three pore mutants (DEDD, EDDD and DDDD), 2) Cd(2+) imaging of human spermatozoa with FluoZin-1. Electrophysiological studies showed a significant increase in Cd(2+) and manganese (Mn(2+)) currents through the CaV3.1 mutants as well as a reduction in the inhibitory effect of Cd(2+) on the Ca(2+) current. In fluorescence imaging with human sperm, we observed an increase in Cd(2+) influx potentiated by progesterone, a potent activator of CatSper. These results support our hypothesis, namely that Cd(2+)-sensitivity and -permeability are related to the absolute number of D in the Ca(2+)-selective filter independently to the type of the Cav channels.
Collapse
|
40
|
Sharma V, O'Halloran DM. Nematode Sodium Calcium Exchangers: A Surprising Lack of Transport. Bioinform Biol Insights 2016; 10:1-4. [PMID: 26848260 PMCID: PMC4737524 DOI: 10.4137/bbi.s37130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/28/2015] [Accepted: 01/02/2016] [Indexed: 12/14/2022] Open
Abstract
Na+/Ca2+ exchangers are low-affinity, high-capacity transporters that rapidly transport calcium against a gradient of Na+ ions. Na+/Ca2+ exchangers are divided into three groups based upon substrate specificity: Na+/Ca2+ exchangers (NCX), Na+/Ca2+/K+ exchangers (NCKX), and Ca2+/cation exchangers (NCLX). In mammals, there are three NCX genes, five NCKX genes, and a single NCLX gene. The genome of the nematode Caenorhabditis elegans contains 10 Na+/Ca2+ exchanger genes: three NCX, five NCLX, and two NCKX genes. In a previous study, we characterized the structural and taxonomic specializations within the family of Na+/Ca2+ exchangers across the phylum Nematoda and observed a complex picture of Na+/Ca2+ exchanger evolution across diverse nematode species. We noted multiple cases of putative gene gain and loss and, most surprisingly, did not detect members of the NCLX type of exchangers within subsets of nematode species. In this commentary, we discuss these findings and speculate on the functional outcomes and physiology of these observations. Our data highlight the importance of studying diverse systems in order to get a deeper understanding of the evolution and regulation of Ca2+ signaling critical for animal function.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, Washington, DC, USA.; Institute for Neuroscience, The George Washington University, Washington, DC, USA
| |
Collapse
|
41
|
Brunet T, Arendt D. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150043. [PMID: 26598726 PMCID: PMC4685582 DOI: 10.1098/rstb.2015.0043] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization-contraction-secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an 'emergency response' to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory-effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system.
Collapse
Affiliation(s)
- Thibaut Brunet
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg 69012, Germany
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg 69012, Germany
| |
Collapse
|
42
|
Bais S, Churgin MA, Fang-Yen C, Greenberg RM. Evidence for Novel Pharmacological Sensitivities of Transient Receptor Potential (TRP) Channels in Schistosoma mansoni. PLoS Negl Trop Dis 2015; 9:e0004295. [PMID: 26655809 PMCID: PMC4676680 DOI: 10.1371/journal.pntd.0004295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis, caused by parasitic flatworms of the genus Schistosoma, is a neglected tropical disease affecting hundreds of millions globally. Praziquantel (PZQ), the only drug currently available for treatment and control, is largely ineffective against juvenile worms, and reports of PZQ resistance lend added urgency to the need for development of new therapeutics. Ion channels, which underlie electrical excitability in cells, are validated targets for many current anthelmintics. Transient receptor potential (TRP) channels are a large family of non-selective cation channels. TRP channels play key roles in sensory transduction and other critical functions, yet the properties of these channels have remained essentially unexplored in parasitic helminths. TRP channels fall into several (7-8) subfamilies, including TRPA and TRPV. Though schistosomes contain genes predicted to encode representatives of most of the TRP channel subfamilies, they do not appear to have genes for any TRPV channels. Nonetheless, we find that the TRPV1-selective activators capsaicin and resiniferatoxin (RTX) induce dramatic hyperactivity in adult worms; capsaicin also increases motility in schistosomula. SB 366719, a highly-selective TRPV1 antagonist, blocks the capsaicin-induced hyperactivity in adults. Mammalian TRPA1 is not activated by capsaicin, yet knockdown of the single predicted TRPA1-like gene (SmTRPA) in S. mansoni effectively abolishes capsaicin-induced responses in adult worms, suggesting that SmTRPA is required for capsaicin sensitivity in these parasites. Based on these results, we hypothesize that some schistosome TRP channels have novel pharmacological sensitivities that can be targeted to disrupt normal parasite neuromuscular function. These results also have implications for understanding the phylogeny of metazoan TRP channels and may help identify novel targets for new or repurposed therapeutics.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew A. Churgin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert M. Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
43
|
Kim HS, Kim JE, Frailey D, Nohe A, Duncan R, Czymmek KJ, Kang S. Roles of three Fusarium oxysporum calcium ion (Ca2+) channels in generating Ca2+ signatures and controlling growth. Fungal Genet Biol 2015; 82:145-57. [DOI: 10.1016/j.fgb.2015.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022]
|
44
|
Heiss AA, Lee WJ, Ishida KI, Simpson AGB. Cultivation and Characterisation of New Species of Apusomonads (the Sister Group to Opisthokonts), Including Close Relatives of Thecamonas (Chelonemonas n. gen.). J Eukaryot Microbiol 2015; 62:637-49. [PMID: 25912654 DOI: 10.1111/jeu.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/15/2014] [Accepted: 12/28/2014] [Indexed: 11/29/2022]
Abstract
Apusomonads comprise an understudied and undersampled group of heterotrophic flagellates that is closely related to opisthokonts, the supergroup containing animals and fungi. We cultured representatives of a new clade of apusomonads, Chelonemonas n. gen., which is sister to marine forms of Thecamonas in SSU rRNA gene phylogenies. Scanning electron microscopy shows that members of Chelonemonas have a hexagonal patterning to their submembranous pellicle, which is not known to exist in other apusomonads. We propose that the subfamily Thecamonadinae refer to the marine Thecamonas/Chelonomonas clade. We also report two new strains of Multimonas, one of which is genetically divergent from previously described strains, and here described as a new species, Multimonas koreensis. Both strains of Multimonas have appendages on their dorsal surface that could be extrusomes, and a frilled appearance to the border of their pellicle. Explorations of taxon sampling in SSU rRNA gene phylogenies confirm the new strains' evolutionary affinities, but do not resolve relationships among the five main apusomonad clades. These phylogenies also separate the freshwater species "Thecamonas" oxoniensis from the marine members of the genus Thecamonas. The new strains described here may provide valuable genetic and morphological data for evaluating the relationships and evolution of apusomonads.
Collapse
Affiliation(s)
- Aaron A Heiss
- Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Won J Lee
- Department of Urban Environmental Engineering, Kyungnam University, Changwon, 631-701, Korea
| | - Ken-ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Alastair G B Simpson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Canadian Institute for Advanced Research, Program in Integrated Microbial Diversity
| |
Collapse
|
45
|
Alzayady KJ, Sebé-Pedrós A, Chandrasekhar R, Wang L, Ruiz-Trillo I, Yule DI. Tracing the Evolutionary History of Inositol, 1, 4, 5-Trisphosphate Receptor: Insights from Analyses of Capsaspora owczarzaki Ca2+ Release Channel Orthologs. Mol Biol Evol 2015; 32:2236-53. [PMID: 25911230 DOI: 10.1093/molbev/msv098] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cellular Ca(2+) homeostasis is tightly regulated and is pivotal to life. Inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) are the major ion channels that regulate Ca(2+) release from intracellular stores. Although these channels have been extensively investigated in multicellular organisms, an appreciation of their evolution and the biology of orthologs in unicellular organisms is largely lacking. Extensive phylogenetic analyses reveal that the IP3R gene superfamily is ancient and diverged into two subfamilies, IP3R-A and IP3R-B/RyR, at the dawn of Opisthokonta. IP3R-B/RyR further diversified into IP3R-B and RyR at the stem of Filozoa. Subsequent evolution and speciation of Holozoa is associated with duplication of IP3R-A and RyR genes, and loss of IP3R-B in the vertebrate lineages. To gain insight into the properties of IP3R important for the challenges of multicellularity, the IP3R-A and IP3R-B family orthologs were cloned from Capsaspora owczarzaki, a close unicellular relative to Metazoa (designated as CO.IP3R-A and CO.IP3R-B). Both proteins were targeted to the endoplasmic reticulum. However, CO.IP3R-A, but strikingly not CO.IP3R-B, bound IP3, exhibited robust Ca(2+) release activity and associated with mammalian IP3Rs. These data indicate strongly that CO.IP3R-A as an exemplar of ancestral IP3R-A orthologs forms bona fide IP3-gated channels. Notably, however, CO.IP3R-A appears not to be regulated by Ca(2+), ATP or Protein kinase A-phosphorylation. Collectively, our findings explore the origin, conservation, and diversification of IP3R gene families and provide insight into the functionality of ancestral IP3Rs and the added specialization of these proteins in Metazoa.
Collapse
Affiliation(s)
- Kamil J Alzayady
- Department of Pharmacology and Physiology, University of Rochester
| | - Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona, Catalonia, Spain
| | | | - Liwei Wang
- Department of Pharmacology and Physiology, University of Rochester
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona, Catalonia, Spain Departament de Genètica, Universitat de Barcelona, Barcelona, Catalonia, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester
| |
Collapse
|
46
|
Evolutionary dynamics of metazoan TRP channels. Pflugers Arch 2015; 467:2043-53. [DOI: 10.1007/s00424-015-1705-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
47
|
Evolution of acidic Ca2+ stores and their resident Ca2+-permeable channels. Cell Calcium 2015; 57:222-30. [DOI: 10.1016/j.ceca.2014.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 11/18/2022]
|
48
|
Abstract
Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss.
Collapse
|
49
|
Moscatiello R, Zaccarin M, Ercolin F, Damiani E, Squartini A, Roveri A, Navazio L. Identification of ferredoxin II as a major calcium binding protein in the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. BMC Microbiol 2015; 15:16. [PMID: 25648224 PMCID: PMC4322793 DOI: 10.1186/s12866-015-0352-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Legumes establish with rhizobial bacteria a nitrogen-fixing symbiosis which is of the utmost importance for both plant nutrition and a sustainable agriculture. Calcium is known to act as a key intracellular messenger in the perception of symbiotic signals by both the host plant and the microbial partner. Regulation of intracellular free Ca(2+) concentration, which is a fundamental prerequisite for any Ca(2+)-based signalling system, is accomplished by complex mechanisms including Ca(2+) binding proteins acting as Ca(2+) buffers. In this work we investigated the occurrence of Ca(2+) binding proteins in Mesorhizobium loti, the specific symbiotic partner of the model legume Lotus japonicus. RESULTS A soluble, low molecular weight protein was found to share several biochemical features with the eukaryotic Ca(2+)-binding proteins calsequestrin and calreticulin, such as Stains-all blue staining on SDS-PAGE, an acidic isoelectric point and a Ca(2+)-dependent shift of electrophoretic mobility. The protein was purified to homogeneity by an ammonium sulfate precipitation procedure followed by anion-exchange chromatography on DEAE-Cellulose and electroendosmotic preparative electrophoresis. The Ca(2+) binding ability of the M. loti protein was demonstrated by (45)Ca(2+)-overlay assays. ESI-Q-TOF MS/MS analyses of the peptides generated after digestion with either trypsin or endoproteinase AspN identified the rhizobial protein as ferredoxin II and confirmed the presence of Ca(2+) adducts. CONCLUSIONS The present data indicate that ferredoxin II is a major Ca(2+) binding protein in M. loti that may participate in Ca(2+) homeostasis and suggest an evolutionarily ancient origin for protein-based Ca(2+) regulatory systems.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| | - Mattia Zaccarin
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| | - Flavia Ercolin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| | - Ernesto Damiani
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020, Legnaro, Padova, Italy.
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
50
|
Cai X, Wang X, Patel S, Clapham DE. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view. Cell Calcium 2014; 57:166-73. [PMID: 25498309 PMCID: PMC4355082 DOI: 10.1016/j.ceca.2014.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 11/15/2022]
Abstract
The basic principles of Ca(2+) regulation emerged early in prokaryotes. Ca(2+) signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca(2+) concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca(2+) signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca(2+) exchangers and four-domain voltage-gated Ca(2+) channels. Newly identified evolutionary evidence suggests that the distinct Ca(2+) signaling machineries in animals, plants and fungi likely originated from an ancient Ca(2+) signaling machinery prior to early eukaryotic radiation.
Collapse
Affiliation(s)
- Xinjiang Cai
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA.
| | - Xiangbing Wang
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - David E Clapham
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|