1
|
Dantas AG, Nunes BC, Nunes N, Galante P, Asprino PF, Ota VK, Melaragno MI. Next-generation sequencing profiling of miRNAs in individuals with 22q11.2 deletion syndrome revealed altered expression of miR-185-5p. Hum Genomics 2024; 18:64. [PMID: 38872198 PMCID: PMC11170780 DOI: 10.1186/s40246-024-00625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/25/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The 22q11.2 deletion syndrome (22q11.2DS) is a microdeletion syndrome with highly variable phenotypic manifestations, even though most patients present the typical 3 Mb microdeletion, usually affecting the same ~ 106 genes. One of the genes affected by this deletion is DGCR8, which plays a crucial role in miRNA biogenesis. Therefore, the haploinsufficiency of DGCR8 due to this microdeletion can alter the modulation of the expression of several miRNAs involved in a range of biological processes. RESULTS In this study, we used next-generation sequencing to evaluate the miRNAs profiles in the peripheral blood of 12 individuals with typical 22q11DS compared to 12 healthy matched controls. We used the DESeq2 package for differential gene expression analysis and the DIANA-miTED dataset to verify the expression of differentially expressed miRNAs in other tissues. We used miRWalk to predict the target genes of differentially expressed miRNAs. Here, we described two differentially expressed miRNAs in patients compared to controls: hsa-miR-1304-3p, located outside the 22q11.2 region, upregulated in patients, and hsa-miR-185-5p, located in the 22q11.2 region, which showed downregulation. Expression of miR-185-5p is observed in tissues frequently affected in patients with 22q11DS, and previous studies have reported its downregulation in individuals with 22q11DS. hsa-miR-1304-3p has low expression in blood and, thus, needs more validation, though using a sensitive technology allowed us to identify differences in expression between patients and controls. CONCLUSIONS Thus, lower expression of miR-185-5p can be related to the 22q11.2 deletion and DGCR8 haploinsufficiency, leading to phenotypic consequences in 22q11.2DS patients, while higher expression of hsa-miR-1304-3p might be related to individual genomic variances due to the heterogeneous background of the Brazilian population.
Collapse
Affiliation(s)
- Anelisa Gollo Dantas
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz Carvalho Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Natália Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Pedro Galante
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | | | - Vanessa Kiyomi Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Vespasiani DM, Jacobs GS, Cook LE, Brucato N, Leavesley M, Kinipi C, Ricaut FX, Cox MP, Gallego Romero I. Denisovan introgression has shaped the immune system of present-day Papuans. PLoS Genet 2022; 18:e1010470. [PMID: 36480515 PMCID: PMC9731433 DOI: 10.1371/journal.pgen.1010470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022] Open
Abstract
Modern humans have admixed with multiple archaic hominins. Papuans, in particular, owe up to 5% of their genome to Denisovans, a sister group to Neanderthals whose remains have only been identified in Siberia and Tibet. Unfortunately, the biological and evolutionary significance of these introgression events remain poorly understood. Here we investigate the function of both Denisovan and Neanderthal alleles characterised within a set of 56 genomes from Papuan individuals. By comparing the distribution of archaic and non-archaic variants we assess the consequences of archaic admixture across a multitude of different cell types and functional elements. We observe an enrichment of archaic alleles within cis-regulatory elements and transcribed regions of the genome, with Denisovan variants strongly affecting elements active within immune-related cells. We identify 16,048 and 10,032 high-confidence Denisovan and Neanderthal variants that fall within annotated cis-regulatory elements and with the potential to alter the affinity of multiple transcription factors to their cognate DNA motifs, highlighting a likely mechanism by which introgressed DNA can impact phenotypes. Lastly, we experimentally validate these predictions by testing the regulatory potential of five Denisovan variants segregating within Papuan individuals, and find that two are associated with a significant reduction of transcriptional activity in plasmid reporter assays. Together, these data provide support for a widespread contribution of archaic DNA in shaping the present levels of modern human genetic diversity, with different archaic ancestries potentially affecting multiple phenotypic traits within non-Africans.
Collapse
Affiliation(s)
- Davide M. Vespasiani
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Australia
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - Guy S. Jacobs
- Department of Archaeology, University of Cambridge, Cambridge, Uniteed Kingdom
| | - Laura E. Cook
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Australia
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - Nicolas Brucato
- Laboratoire de Evolution et Diversite Biologique, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Matthew Leavesley
- School of Humanities and Social Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
- College of Arts, Society and Education, James Cook University, Cairns, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, Australia
| | - Christopher Kinipi
- School of Humanities and Social Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - François-Xavier Ricaut
- Laboratoire de Evolution et Diversite Biologique, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Murray P. Cox
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Irene Gallego Romero
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Australia
- School of Biosciences, University of Melbourne, Parkville, Australia
- Center for Stem Cell Systems, University of Melbourne, Parkville, Australia
- Center for Genomics, Evolution and Medicine, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
3
|
Koller D, Wendt FR, Pathak GA, De Lillo A, De Angelis F, Cabrera-Mendoza B, Tucci S, Polimanti R. Denisovan and Neanderthal archaic introgression differentially impacted the genetics of complex traits in modern populations. BMC Biol 2022; 20:249. [PMID: 36344982 PMCID: PMC9641937 DOI: 10.1186/s12915-022-01449-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Introgression from extinct Neanderthal and Denisovan human species has been shown to contribute to the genetic pool of modern human populations and their phenotypic spectrum. Evidence of how Neanderthal introgression shaped the genetics of human traits and diseases has been extensively studied in populations of European descent, with signatures of admixture reported for instance in genes associated with pigmentation, immunity, and metabolic traits. However, limited information is currently available about the impact of archaic introgression on other ancestry groups. Additionally, to date, no study has been conducted with respect to the impact of Denisovan introgression on the health and disease of modern populations. Here, we compare the way evolutionary pressures shaped the genetics of complex traits in East Asian and European populations, and provide evidence of the impact of Denisovan introgression on the health of East Asian and Central/South Asian populations. RESULTS Leveraging genome-wide association statistics from the Biobank Japan and UK Biobank, we assessed whether Denisovan and Neanderthal introgression together with other evolutionary genomic signatures were enriched for the heritability of physiological and pathological conditions in populations of East Asian and European descent. In EAS, Denisovan-introgressed loci were enriched for coronary artery disease heritability (1.69-fold enrichment, p=0.003). No enrichment for archaic introgression was observed in EUR. We also performed a phenome-wide association study of Denisovan and Neanderthal alleles in six ancestry groups available in the UK Biobank. In EAS, the Denisovan-introgressed SNP rs62391664 in the major histocompatibility complex region was associated with albumin/globulin ratio (beta=-0.17, p=3.57×10-7). Neanderthal-introgressed alleles were associated with psychiatric and cognitive traits in EAS (e.g., "No Bipolar or Depression"-rs79043717 beta=-1.5, p=1.1×10-7), and with blood biomarkers (e.g., alkaline phosphatase-rs11244089 beta=0.1, p=3.69×10-116) and red hair color (rs60733936 beta=-0.86, p=4.49×10-165) in EUR. In the other ancestry groups, Neanderthal alleles were associated with several traits, also including the use of certain medications (e.g., Central/South East Asia: indapamide - rs732632 beta=-2.38, p=5.22×10-7). CONCLUSIONS Our study provides novel evidence regarding the impact of archaic introgression on the genetics of complex traits in worldwide populations, highlighting the specific contribution of Denisovan introgression in EAS populations.
Collapse
Affiliation(s)
- Dora Koller
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, 08028, Spain
| | - Frank R Wendt
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Antonella De Lillo
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Flavio De Angelis
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, 06511, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, 06516, USA.
- VA CT Healthcare Center, West Haven, CT, 06516, USA.
| |
Collapse
|
4
|
Villegas-Mirón P, Gallego A, Bertranpetit J, Laayouni H, Espinosa-Parrilla Y. Signatures of genetic variation in human microRNAs point to processes of positive selection and population-specific disease risks. Hum Genet 2022; 141:1673-1693. [PMID: 35249174 PMCID: PMC9522702 DOI: 10.1007/s00439-021-02423-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022]
Abstract
The occurrence of natural variation in human microRNAs has been the focus of numerous studies during the last 20 years. Most of them have been focused on the role of specific mutations in disease, while a minor proportion seek to analyse microRNA diversity in the genomes of human populations. We analyse the latest human microRNA annotations in the light of the most updated catalogue of genetic variation provided by the 1000 Genomes Project. By means of the in silico analysis of microRNA genetic variation we show that the level of evolutionary constraint of these sequences is governed by the interplay of different factors, like their evolutionary age or genomic location. The role of mutations in the shaping of microRNA-driven regulatory interactions is emphasized with the acknowledgement that, while the whole microRNA sequence is highly conserved, the seed region shows a pattern of higher genetic diversity that appears to be caused by the dramatic frequency shifts of a fraction of human microRNAs. We highlight the participation of these microRNAs in population-specific processes by identifying that not only the seed, but also the loop, are particularly differentiated regions among human populations. The quantitative computational comparison of signatures of population differentiation showed that candidate microRNAs with the largest differences are enriched in variants implicated in gene expression levels (eQTLs), selective sweeps and pathological processes. We explore the implication of these evolutionary-driven microRNAs and their SNPs in human diseases, such as different types of cancer, and discuss their role in population-specific disease risk.
Collapse
Affiliation(s)
- Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Alicia Gallego
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain.
| | - Yolanda Espinosa-Parrilla
- Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
- Laboratorio de Medicina Molecular-LMM, Centro Asistencial, Docente Y de Investigación-CADI, Universidad de Magallanes, Punta Arenas, Chile.
- Interuniversity Center on Healthy Aging, Punta Arenas, Chile.
| |
Collapse
|
5
|
García‐Campos C, Modesto‐Mata M, Martinón‐Torres M, Martín‐Francés L, Martínez de Pinillos M, Arsuaga JL, Bermúdez de Castro JM. Similarities and differences in the dental tissue proportions of the deciduous and permanent canines of Early and Middle Pleistocene human populations. J Anat 2022; 240:339-356. [PMID: 34611899 PMCID: PMC8742968 DOI: 10.1111/joa.13558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
The two- and three-dimensional assessment of dental tissues has become routine in human taxonomic studies throughout the years. Nonetheless, most of our knowledge of the variability of the enamel and dentine dimensions of the human evolutionary lineage comes from the study of permanent dentition, and particularly from molars. This leads to a biased view of the variability of these features. Due to their early formation and rapid development, the deciduous teeth allow more simplified inferences regarding the processes involved in the dental tissue development of each group. Therefore, their study could be very valuable in dental palaeohistology. In this research, we have explored the dental tissue proportions of the deciduous canines belonging to some human samples of the Early and Middle Pleistocene. The purpose of this was to discuss the meaning of the similarities and differences observed in their histological pattern, as well as to evaluate the degree of covariance with that observed in the permanent dentition of these populations. Our results show that, although there are some similarities in the dental tissue proportions between the deciduous and permanent canines of the study samples, the two dental classes do not provide a similar or comparable pictures of the dental tissue pattern present in the dentition of fossil hominins. Future works on the dental tissue patterns of the anterior and posterior dentition, including deciduous teeth, of fossil samples, may help to shed light on this hypothesis.
Collapse
Affiliation(s)
| | | | - María Martinón‐Torres
- Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
- Anthropology DepartmentUniversity College LondonLondonUK
| | - Laura Martín‐Francés
- Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
- Anthropology DepartmentUniversity College LondonLondonUK
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES)TarragonaSpain
| | | | - Juan Luis Arsuaga
- Centro MixtoUCM‐ISCIII de Evolución y Comportamiento HumanosMadridSpain
| | - José María Bermúdez de Castro
- Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
- Anthropology DepartmentUniversity College LondonLondonUK
| |
Collapse
|
6
|
Smith RW, Non AL. Assessing the achievements and uncertain future of paleoepigenomics. Epigenomics 2021; 14:167-173. [PMID: 34850636 DOI: 10.2217/epi-2021-0382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Rick Wa Smith
- Department of Sociology and Anthropology, George Mason University, Fairfax, VA 22030, USA
| | - Amy L Non
- Department of Anthropology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Torruella-Loran I, Ramirez Viña MK, Zapata-Contreras D, Muñoz X, Garcia-Ramallo E, Bonet C, Gonzalez CA, Sala N, Espinosa-Parrilla Y. rs12416605:C>T in MIR938 associates with gastric cancer through affecting the regulation of the CXCL12 chemokine gene. Mol Genet Genomic Med 2019; 7:e832. [PMID: 31273931 PMCID: PMC6687864 DOI: 10.1002/mgg3.832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNAs are small regulatory RNAs with important roles in carcinogenesis. Genetic variants in these regulatory molecules may contribute to disease. We aim to identify allelic variants in microRNAs as susceptibility factors to gastric cancer using association studies and functional approaches. Methods Twenty‐one single nucleotide variants potentially functional, because of their location in either the seed, mature or precursor region of 22 microRNAs, were selected for association studies. Genetic association with gastric cancer in 365 cases and 1,284 matched controls (European Prospective Investigation into Cancer and Nutrition Cohort) was analysed using logistic regression. MicroRNA overexpression, transcriptome analysis, and target gene validation experiments were performed for functional studies. Results rs3746444:T>C, in the seed of MIR499A and mature MIR499B, associated with the cardia adenocarcinoma location; rs12416605:C>T, in the seed of MIR938, associated with the diffuse subtype; and rs2114358:T>C, in the precursor MIR1206, associated with the noncardia phenotype. In all cases, the association was inverse, indicating a protective affect against gastric cancer of the three minor allelic variants. MIR499 rs3746444:T>C and MIR1206 rs2114358:T>C are reported to affect the expression of these miRNAs, but the effect of MIR938 rs12416605:C>T is unknown yet. Functional approaches showed that the expression of MIR938 is affected by rs12416605:C>T and revealed that MIR938 could regulate a subset of cancer‐related genes in an allele‐specific fashion. Furthermore, we demonstrated that CXCL12, a chemokine participating in gastric cancer metastasis, is specifically regulated by only one of the rs12416605:C>T alleles. Conclusion rs12416605 appears to be involved in gastric cancer by affecting the regulatory function of MIR938 on genes related to this cancer type, particularly on CXCL12 posttranscriptional regulation.
Collapse
Affiliation(s)
- Ignasi Torruella-Loran
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology (Universitat Pompeu Fabra-CSIC), Barcelona, Spain
| | - María Karla Ramirez Viña
- School of Medicine, Universidad de Magallanes, Punta Arenas, Chile.,Laboratory of Molecular Medicine LMM, Center for Education, Healthcare and Investigation CADI, Universidad de Magallanes, Punta Arenas, Chile
| | - Daniela Zapata-Contreras
- School of Medicine, Universidad de Magallanes, Punta Arenas, Chile.,Laboratory of Molecular Medicine LMM, Center for Education, Healthcare and Investigation CADI, Universidad de Magallanes, Punta Arenas, Chile
| | - Xavier Muñoz
- Molecular Epidemiology Group, Translational Research Laboratory, Catalan Institute of Oncology-IDIBELL, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Garcia-Ramallo
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology (Universitat Pompeu Fabra-CSIC), Barcelona, Spain
| | - Catalina Bonet
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-Bellvitge Biomedical Research Institute (ICO-IDIBELL), Barcelona, Spain
| | - Carlos A Gonzalez
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-Bellvitge Biomedical Research Institute (ICO-IDIBELL), Barcelona, Spain
| | - Núria Sala
- Molecular Epidemiology Group, Translational Research Laboratory, Catalan Institute of Oncology-IDIBELL, Barcelona, Spain.,Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-Bellvitge Biomedical Research Institute (ICO-IDIBELL), Barcelona, Spain
| | - Yolanda Espinosa-Parrilla
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology (Universitat Pompeu Fabra-CSIC), Barcelona, Spain.,School of Medicine, Universidad de Magallanes, Punta Arenas, Chile.,Laboratory of Molecular Medicine LMM, Center for Education, Healthcare and Investigation CADI, Universidad de Magallanes, Punta Arenas, Chile
| | | |
Collapse
|
8
|
Silvert M, Quintana-Murci L, Rotival M. Impact and Evolutionary Determinants of Neanderthal Introgression on Transcriptional and Post-Transcriptional Regulation. Am J Hum Genet 2019; 104:1241-1250. [PMID: 31155285 DOI: 10.1016/j.ajhg.2019.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Archaic admixture is increasingly recognized as an important source of diversity in modern humans, and Neanderthal haplotypes cover 1%-3% of the genome of present-day Eurasians. Recent work has shown that archaic introgression has contributed to human phenotypic diversity, mostly through the regulation of gene expression. Yet the mechanisms through which archaic variants alter gene expression and the forces driving the introgression landscape at regulatory regions remain elusive. Here, we explored the impact of archaic introgression on transcriptional and post-transcriptional regulation. We focused on promoters and enhancers across 127 different tissues as well as on microRNA (miRNA)-mediated regulation. Although miRNAs themselves harbor few archaic variants, we found that some of these variants may have a strong impact on miRNA-mediated gene regulation. Enhancers were by far the regulatory elements most affected by archaic introgression: up to one-third of the tissues we tested presented significant enrichments. Specifically, we found strong enrichments of archaic variants in adipose-related tissues and primary T cells, even after accounting for various genomic and evolutionary confounders such as recombination rate and background selection. Interestingly, we identified signatures of adaptive introgression at enhancers of some key regulators of adipogenesis, raising the interesting hypothesis of a possible adaptation of early Eurasians to colder climates. Collectively, this study sheds new light on the mechanisms through which archaic admixture has impacted gene regulation in Eurasians and, more generally, increases our understanding of the contribution of Neanderthals to the regulation of acquired immunity and adipose homeostasis in modern humans.
Collapse
|
9
|
Motifome comparison between modern human, Neanderthal and Denisovan. BMC Genomics 2018; 19:472. [PMID: 29914355 PMCID: PMC6006668 DOI: 10.1186/s12864-018-4710-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/22/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The availability of the genomes of two archaic humans, Neanderthal and Denisovan, and that of modern humans provides researchers an opportunity to investigate genetic differences between these three subspecies on a genome-wide scale. Here we describe an algorithm that predicts statistically significant motifs based on the difference between a given motif's actual and expected distributions. The algorithm was previously applied to plants but was modified for this work. RESULTS The result of applying the algorithm to the human, Neanderthal, and Denisovan genomes is a catalog of potential regulatory motifs in these three human subspecies. We examined the distributions of these motifs in genetic elements including human retroviruses, human accelerated regions, and human accelerated conserved noncoding sequences regions. Differences in these distributions could be the origin of differences in phenotype between the three subspecies. Twenty significant motifs common to all three genomes were found; thirty-three were found in endogenous retroviruses in Neanderthal and Denisovan. Ten of these motifs mapped to the 22 bp core of MiR-1304. The core of this genetic element regulates the ENAM and AMTN genes, which take part in odontogenesis and whose 3' UTRs contained significant motifs. The introns of 20 genes were found to contain a large number of significant motifs, which were also overrepresented in 49 human accelerated regions. These genes include NAV2, SorCS2, TRAPPC9, GRID1, PRDM16, CAMTA1, and ASIC which are all involved in neuroregulation. Further analysis of these genes using the GO database indicates that many are associated with neurodevelopment. Also, varying numbers of significant motifs were found to occur in regions of the Neanderthal and Denisovan genomes that are missing from the human genome, suggesting further functional differences between modern and archaic humans. CONCLUSION Although Neanderthal and Denisovan are now extinct, detailed examination of elements from their genomes can shed light on possible phenotypic and cognitive differences between these two archaic human subspecies and modern humans. Genetic similarities and differences between these three subspecies and other fossil hominids would also be of interest.
Collapse
|
10
|
McLean E, Bhattarai R, Hughes BW, Mahalingam K, Bagasra O. Computational identification of mutually homologous Zika virus miRNAs that target microcephaly genes. Libyan J Med 2018; 12:1304505. [PMID: 28385119 PMCID: PMC5418939 DOI: 10.1080/19932820.2017.1304505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Zika virus (ZIKV) has been associated with a variety of neuropathologies, including microcephaly. We hypothesize that ZIKV genes activate host microRNAs (miRNAs) causing dysfunctional development of human fetal brains. Objectives/methods A bioinformatics search for miRNA genome-wide binding sites in the prototypic ZIKV (strain MR766) was undertaken to hunt for miRNAs with significant similarities with MCPH genetic sequences responsible for inducing MCHP in human fetal brains. Results Six ZIKV miRNAs were found to share mutual homology with 12 MCPH genetic sequences responsible for inducing MCPH. Noteworthy was miR-1304, which expressed 100% identity to six different MCPH genes. Conclusions We suggest that following infection of fetal neurons ZIKV may modulate the action of various miRNAs, and miR-1304 in particular, resulting in microcephaly.
Collapse
Affiliation(s)
- Ewen McLean
- a Department of Biology, South Carolina Center for Biotechnology , Claflin University , SC , USA
| | - Roshan Bhattarai
- a Department of Biology, South Carolina Center for Biotechnology , Claflin University , SC , USA
| | - Brandon W Hughes
- a Department of Biology, South Carolina Center for Biotechnology , Claflin University , SC , USA
| | - Kuhanandha Mahalingam
- b Information Technology and Department of Computer Science & Mathematics , Claflin University , Orangeburg , SC , USA
| | - Omar Bagasra
- a Department of Biology, South Carolina Center for Biotechnology , Claflin University , SC , USA
| |
Collapse
|
11
|
Lin JJ, Chin TY, Chen CP, Chan HL, Wu TY. Zika virus: An emerging challenge for obstetrics and gynecology. Taiwan J Obstet Gynecol 2017; 56:585-592. [PMID: 29037541 DOI: 10.1016/j.tjog.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 10/18/2022] Open
Abstract
Microcephaly is a rare birth defect, however, the re-emerging mosquito and sexual transmitted flavivirus, Zika virus (ZIKV), had changed the situation and caused an urgent challenge for the obstetrics and gynecology. This review will brief summarize the epidemiology and virology of ZIKV. And compared the animal models that had developed for the ZIKV infections. These animal models will be benefit for the development of vaccines and anti-ZIKV drugs. Furthermore, the genes that are involved in the causation of microcephaly were also summarized. Finally, the Wnt signal is critical for the brain development as well as innate immune response. Based on previous literatures, we proposed that ZIKV-induced microcephaly might result from the influence of Wnt/β-catenin signaling pathway through the regulation of miRNA-34.
Collapse
Affiliation(s)
- Jhe-Jhih Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli, Taiwan
| | - Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Neanderthal and Denisova tooth protein variants in present-day humans. PLoS One 2017; 12:e0183802. [PMID: 28902892 PMCID: PMC5597096 DOI: 10.1371/journal.pone.0183802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/13/2017] [Indexed: 12/15/2022] Open
Abstract
Environment parameters, diet and genetic factors interact to shape tooth morphostructure. In the human lineage, archaic and modern hominins show differences in dental traits, including enamel thickness, but variability also exists among living populations. Several polymorphisms, in particular in the non-collagenous extracellular matrix proteins of the tooth hard tissues, like enamelin, are involved in dental structure variation and defects and may be associated with dental disorders or susceptibility to caries. To gain insights into the relationships between tooth protein polymorphisms and dental structural morphology and defects, we searched for non-synonymous polymorphisms in tooth proteins from Neanderthal and Denisova hominins. The objective was to identify archaic-specific missense variants that may explain the dental morphostructural variability between extinct and modern humans, and to explore their putative impact on present-day dental phenotypes. Thirteen non-collagenous extracellular matrix proteins specific to hard dental tissues have been selected, searched in the publicly available sequence databases of Neanderthal and Denisova individuals and compared with modern human genome data. A total of 16 non-synonymous polymorphisms were identified in 6 proteins (ameloblastin, amelotin, cementum protein 1, dentin matrix acidic phosphoprotein 1, enamelin and matrix Gla protein). Most of them are encoded by dentin and enamel genes located on chromosome 4, previously reported to show signs of archaic introgression within Africa. Among the variants shared with modern humans, two are ancestral (common with apes) and one is the derived enamelin major variant, T648I (rs7671281), associated with a thinner enamel and specific to the Homo lineage. All the others are specific to Neanderthals and Denisova, and are found at a very low frequency in modern Africans or East and South Asians, suggesting that they may be related to particular dental traits or disease susceptibility in these populations. This modern regional distribution of archaic dental polymorphisms may reflect persistence of archaic variants in some populations and may contribute in part to the geographic dental variations described in modern humans.
Collapse
|
13
|
MicroRNA-1304 suppresses human non-small cell lung cancer cell growth in vitro by targeting heme oxygenase-1. Acta Pharmacol Sin 2017; 38:110-119. [PMID: 27641735 DOI: 10.1038/aps.2016.92] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/24/2016] [Indexed: 12/25/2022] Open
Abstract
Previous studies have shown that microRNA-1304 (miR-1304) is dysregulated in certain types of cancers, including non-small cell lung cancer (NSCLC), and might be involved in tumor survival and/or growth. In this study we investigated the direct target of miR-1304 and its function in NSCLC in vitro. Human lung adenocarcinoma cell lines (A549 and NCI-H1975) were studied. The cell proliferation and survival were investigated via cell counting, MTT and colony-formation assays. Cell apoptosis and cell cycle were examined using annexin V-PE/7-AAD and PI staining assays, respectively. The dual-luciferase reporter assay was used to verify post-transcriptional regulation of heme oxygenase-1 (HO-1) by miR-1304. CRISPR/Cas9 was used to deplete endogenous miR-1304. Overexpression of MiR-1304 significantly decreased the number and viability of NSCLC cells and colony formation, and induced cell apoptosis and G0/G1 phase cell cycle arrest. HO-1 was demonstrated to be a direct target of miR-1304 in NSCLC cells. Restoration of HO-1 expression by hemin (20 μmol/L) abolished the inhibition of miR-1304 on cell growth and rescued miR-1304-induced apoptosis in A549 cells. Suppression of endogenous miR-1304 with anti-1304 significantly increased HO-1 expression and promoted cell growth and survival in A549 cells. In 17 human NSCLC tissue samples, miR-1304 expression was significantly decreased, while HO-1 expression was significantly increased as compared to normal lung tissues. MicroRNA-1304 is a tumor suppressor and HO-1 is its direct target in NSCLC. The results suggest the potential for miR-1304 as a therapeutic target for NSCLC.
Collapse
|
14
|
Torruella-Loran I, Laayouni H, Dobon B, Gallego A, Balcells I, Garcia-Ramallo E, Espinosa-Parrilla Y. MicroRNA Genetic Variation: From Population Analysis to Functional Implications of Three Allele Variants Associated with Cancer. Hum Mutat 2016; 37:1060-73. [PMID: 27397105 DOI: 10.1002/humu.23045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/25/2016] [Indexed: 12/31/2022]
Abstract
Nucleotide variants in microRNA regions have been associated with disease; nevertheless, few studies still have addressed the allele-dependent effect of these changes. We studied microRNA genetic variation in human populations and found that while low-frequency variants accumulate indistinctly in microRNA regions, the mature and seed regions tend to be depleted of high-frequency variants, probably as a result of purifying selection. Comparison of pairwise population fixation indexes among regions showed that the seed had higher population fixation indexes than the other regions, suggesting the existence of local adaptation in the seed region. We further performed functional studies of three microRNA variants associated with cancer (rs2910164:C > G in MIR146A, rs11614913:C > T in MIR196A2, and rs3746444:A > G in both MIR499A and MIR499B). We found differences in the expression between alleles and in the regulation of several genes involved in cancer, such as TP53, KIT, CDH1, CLH, and TERT, which may result in changes in regulatory networks related to tumorigenesis. Furthermore, luciferase-based assays showed that MIR499A could be regulating the cadherin CDH1 and the cell adhesion molecule CLH1 in an allele-dependent fashion. A better understanding of the effect of microRNA variants associated with disease could be key in our way to a more personalized medicine.
Collapse
Affiliation(s)
- Ignasi Torruella-Loran
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, (Universitat Pompeu Fabra-CSIC), Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, (Universitat Pompeu Fabra-CSIC), Barcelona, Catalonia, Spain.,Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva (GBE), Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Begoña Dobon
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, (Universitat Pompeu Fabra-CSIC), Barcelona, Catalonia, Spain
| | - Alicia Gallego
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, (Universitat Pompeu Fabra-CSIC), Barcelona, Catalonia, Spain
| | - Ingrid Balcells
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, (Universitat Pompeu Fabra-CSIC), Barcelona, Catalonia, Spain
| | - Eva Garcia-Ramallo
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, (Universitat Pompeu Fabra-CSIC), Barcelona, Catalonia, Spain
| | - Yolanda Espinosa-Parrilla
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, (Universitat Pompeu Fabra-CSIC), Barcelona, Catalonia, Spain. .,School of Medicine, University of Magallanes, Punta Arenas, Chile.
| |
Collapse
|
15
|
Functional Implications of Human-Specific Changes in Great Ape microRNAs. PLoS One 2016; 11:e0154194. [PMID: 27105073 PMCID: PMC4841587 DOI: 10.1371/journal.pone.0154194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/10/2016] [Indexed: 12/29/2022] Open
Abstract
microRNAs are crucial post-transcriptional regulators of gene expression involved in a wide range of biological processes. Although microRNAs are highly conserved among species, the functional implications of existing lineage-specific changes and their role in determining differences between humans and other great apes have not been specifically addressed. We analyzed the recent evolutionary history of 1,595 human microRNAs by looking at their intra- and inter-species variation in great apes using high-coverage sequenced genomes of 82 individuals including gorillas, orangutans, bonobos, chimpanzees and humans. We explored the strength of purifying selection among microRNA regions and found that the seed and mature regions are under similar and stronger constraint than the precursor region. We further constructed a comprehensive catalogue of microRNA species-specific nucleotide substitutions among great apes and, for the first time, investigated the biological relevance that human-specific changes in microRNAs may have had in great ape evolution. Expression and functional analyses of four microRNAs (miR-299-3p, miR-503-3p, miR-508-3p and miR-541-3p) revealed that lineage-specific nucleotide substitutions and changes in the length of these microRNAs alter their expression as well as the repertoires of target genes and regulatory networks. We suggest that the studied molecular changes could have modified crucial microRNA functions shaping phenotypes that, ultimately, became human-specific. Our work provides a frame to study the impact that regulatory changes may have in the recent evolution of our species.
Collapse
|
16
|
Gokhman D, Meshorer E, Carmel L. Epigenetics: It's Getting Old. Past Meets Future in Paleoepigenetics. Trends Ecol Evol 2016; 31:290-300. [DOI: 10.1016/j.tree.2016.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 01/08/2023]
|
17
|
Koufaris C. Human and primate-specific microRNAs in cancer: Evolution, and significance in comparison with more distantly-related research models. Bioessays 2016; 38:286-94. [DOI: 10.1002/bies.201500135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Costas Koufaris
- Department of Cytogenetics and Genomics; Cyprus institute of Neurology and Genetics; Nicosia Cyprus
| |
Collapse
|
18
|
Der Sarkissian C, Allentoft ME, Ávila-Arcos MC, Barnett R, Campos PF, Cappellini E, Ermini L, Fernández R, da Fonseca R, Ginolhac A, Hansen AJ, Jónsson H, Korneliussen T, Margaryan A, Martin MD, Moreno-Mayar JV, Raghavan M, Rasmussen M, Velasco MS, Schroeder H, Schubert M, Seguin-Orlando A, Wales N, Gilbert MTP, Willerslev E, Orlando L. Ancient genomics. Philos Trans R Soc Lond B Biol Sci 2015; 370:20130387. [PMID: 25487338 PMCID: PMC4275894 DOI: 10.1098/rstb.2013.0387] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.
Collapse
Affiliation(s)
- Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Morten E Allentoft
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - María C Ávila-Arcos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ross Barnett
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Paula F Campos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Enrico Cappellini
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Luca Ermini
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Fernández
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Rute da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Aurélien Ginolhac
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Anders J Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Hákon Jónsson
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Thorfinn Korneliussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ashot Margaryan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Michael D Martin
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Maanasa Raghavan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rasmussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Marcela Sandoval Velasco
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Schroeder
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Nathan Wales
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Major transitions in human evolution revisited: a tribute to ancient DNA. J Hum Evol 2014; 79:4-20. [PMID: 25532800 DOI: 10.1016/j.jhevol.2014.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/06/2014] [Accepted: 06/19/2014] [Indexed: 11/23/2022]
Abstract
The origin and diversification of modern humans have been characterized by major evolutionary transitions and demographic changes. Patterns of genetic variation within modern populations can help with reconstructing this ∼200 thousand year-long population history. However, by combining this information with genomic data from ancient remains, one can now directly access our evolutionary past and reveal our population history in much greater detail. This review outlines the main recent achievements in ancient DNA research and illustrates how the field recently moved from the polymerase chain reaction (PCR) amplification of short mitochondrial fragments to whole-genome sequencing and thereby revisited our own history. Ancient DNA research has revealed the routes that our ancestors took when colonizing the planet, whom they admixed with, how they domesticated plant and animal species, how they genetically responded to changes in lifestyle, and also, which pathogens decimated their populations. These approaches promise to soon solve many pending controversies about our own origins that are indecipherable from modern patterns of genetic variation alone, and therefore provide an extremely powerful toolkit for a new generation of molecular anthropologists.
Collapse
|
20
|
Loher P, Londin ER, Rigoutsos I. IsomiR expression profiles in human lymphoblastoid cell lines exhibit population and gender dependencies. Oncotarget 2014; 5:8790-802. [PMID: 25229428 PMCID: PMC4226722 DOI: 10.18632/oncotarget.2405] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023] Open
Abstract
For many years it was believed that each mature microRNA (miRNA) existed as a single entity with fixed endpoints and a 'static' and unchangeable primary sequence. However, recent evidence suggests that mature miRNAs are more 'dynamic' and that each miRNA precursor arm gives rise to multiple isoforms, the isomiRs. Here we report on our identification of numerous and abundant isomiRs in the lymphoblastoid cell lines (LCLs) of 452 men and women from five different population groups. Unexpectedly, we find that these isomiRs exhibit an expression profile that is population-dependent and gender-dependent. This is important as it indicates that the LCLs of each gender/population combination have their own unique collection of mature miRNA transcripts. Moreover, each identified isomiR has its own characteristic abundance that remains consistent across biological replicates indicating that these are not degradation products. The primary sequences of identified isomiRs differ from the known miRBase miRNA either at their 5´-endpoint (leads to a different 'seed' sequence and suggests a different targetome), their 3´-endpoint, or both simultaneously. Our analysis of Argonaute PAR-CLIP data from LCLs supports the association of many of these newly identified isomiRs with the Argonaute silencing complex and thus their functional roles through participation in the RNA interference pathway.
Collapse
Affiliation(s)
- Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA
| | - Eric R. Londin
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
21
|
Perdomo-Sabogal A, Kanton S, Walter MBC, Nowick K. The role of gene regulatory factors in the evolutionary history of humans. Curr Opin Genet Dev 2014; 29:60-7. [PMID: 25215414 DOI: 10.1016/j.gde.2014.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 01/01/2023]
Abstract
Deciphering the molecular basis of how modern human phenotypes have evolved is one of the most fascinating challenges in biology. Here, we will focus on the roles of gene regulatory factors (GRFs), in particular transcription factors (TFs) and long non-coding RNAs (lncRNAs) during human evolution. We will present examples of TFs and lncRNAs that have changed or show signs of positive selection in humans compared to chimpanzees, in modern humans compared to archaic humans, or within modern human populations. On the basis of current knowledge about the functions of these GRF genes, we speculate that they have been involved in speciation as well as in shaping phenotypes such as brain functions, skeletal morphology, and metabolic processes.
Collapse
Affiliation(s)
- Alvaro Perdomo-Sabogal
- TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | - Sabina Kanton
- TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | - Maria Beatriz C Walter
- TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | - Katja Nowick
- TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| |
Collapse
|
22
|
Ahmed M, Liang P. Study of Modern Human Evolution via Comparative Analysis with the Neanderthal Genome. Genomics Inform 2013; 11:230-8. [PMID: 24465235 PMCID: PMC3897851 DOI: 10.5808/gi.2013.11.4.230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/11/2022] Open
Abstract
Many other human species appeared in evolution in the last 6 million years that have not been able to survive to modern times and are broadly known as archaic humans, as opposed to the extant modern humans. It has always been considered fascinating to compare the modern human genome with that of archaic humans to identify modern human-specific sequence variants and figure out those that made modern humans different from their predecessors or cousin species. Neanderthals are the latest humans to become extinct, and many factors made them the best representatives of archaic humans. Even though a number of comparisons have been made sporadically between Neanderthals and modern humans, mostly following a candidate gene approach, the major breakthrough took place with the sequencing of the Neanderthal genome. The initial genome-wide comparison, based on the first draft of the Neanderthal genome, has generated some interesting inferences regarding variations in functional elements that are not shared by the two species and the debated admixture question. However, there are certain other genetic elements that were not included or included at a smaller scale in those studies, and they should be compared comprehensively to better understand the molecular make-up of modern humans and their phenotypic characteristics. Besides briefly discussing the important outcomes of the comparative analyses made so far between modern humans and Neanderthals, we propose that future comparative studies may include retrotransposons, pseudogenes, and conserved non-coding regions, all of which might have played significant roles during the evolution of modern humans.
Collapse
Affiliation(s)
- Musaddeque Ahmed
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
23
|
Lalueza-Fox C. Agreements and Misunderstandings among Three Scientific Fields. CURRENT ANTHROPOLOGY 2013. [DOI: 10.1086/673387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Dean MC, Rosas A, Estalrrich A, García-Tabernero A, Huguet R, Lalueza-Fox C, Bastir M, de la Rasilla M. Longstanding dental pathology in Neandertals from El Sidrón (Asturias, Spain) with a probable familial basis. J Hum Evol 2013; 64:678-86. [PMID: 23615378 DOI: 10.1016/j.jhevol.2013.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 10/26/2022]
Abstract
Two Neandertal specimens from El Sidrón, northern Spain, show evidence of retained left mandibular deciduous canines. These individuals share the same mitochondrial (mtDNA) haplotype, indicating they are maternally related and suggesting a potential heritable basis for these dental anomalies. Radiographs and medical CT scans provide evidence of further, more extensive dental pathology in one of these specimens. An anomalous deciduous canine crown morphology that developed before birth subsequently suffered a fracture of the crown exposing the pulp sometime after eruption into functional occlusion. This led to death of the tooth, periapical granuloma formation and arrested deciduous canine root growth at an estimated age of 2.5 years. At some point the underlying permanent canine tooth became horizontally displaced and came to lie low in the trabecular bone of the mandibular corpus. A dentigerous cyst then developed around the crown. Anterior growth displacement of the mandible continued around the stationary permanent canine, leaving it posteriorly positioned in the mandibular corpus by the end of the growth period beneath the third permanent molar roots, which, in turn, suggests a largely horizontal growth vector. Subsequent longstanding repeated infections of the expanding cyst cavity are evidenced by bouts of bone deposition and resorption of the boundary walls of the cyst cavity. This resulted in the establishment of two permanent bony drainage sinuses, one through the buccal plate of the alveolar bone anteriorly, immediately beneath the infected deciduous canine root, and the other through the buccal plate anterior to the mesial root of the first permanent molar. It is probable that this complicated temporal sequence of dental pathologies had an initial heritable trigger that progressed in an unusually complex way in one of these individuals. During life, this individual may have been largely unaware of this ongoing pathology.
Collapse
Affiliation(s)
- M C Dean
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Disotell TR. Archaic human genomics. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 149 Suppl 55:24-39. [PMID: 23124308 DOI: 10.1002/ajpa.22159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
For much of the 20th century, the predominant view of human evolutionary history was derived from the fossil record. Homo erectus was seen arising in Africa from an earlier member of the genus and then spreading throughout the Old World and into the Oceania. A regional continuity model of anagenetic change from H. erectus via various intermediate archaic species into the modern humans in each of the regions inhabited by H. erectus was labeled the multiregional model of human evolution (MRE). A contrasting model positing a single origin, in Africa, of anatomically modern H. sapiens with some populations later migrating out of Africa and replacing the local archaic populations throughout the world with complete replacement became known as the recent African origin (RAO) model. Proponents of both models used different interpretations of the fossil record to bolster their views for decades. In the 1980s, molecular genetic techniques began providing evidence from modern human variation that allowed not only the different models of modern human origins to be tested but also the exploration demographic history and the types of selection that different regions of the genome and even specific traits had undergone. The majority of researchers interpreted these data as strongly supporting the RAO model, especially analyses of mitochondrial DNA (mtDNA). Extrapolating backward from modern patterns of variation and using various calibration points and substitution rates, a consensus arose that saw modern humans evolving from an African population around 200,000 years ago. Much later, around 50,000 years ago, a subset of this population migrated out of Africa replacing Neanderthals in Europe and western Asia as well as archaics in eastern Asia and Oceania. mtDNA sequences from more than two-dozen Neanderthals and early modern humans re-enforced this consensus. In 2010, however, the complete draft genomes of Neanderthals and of heretofore unknown hominins from Siberia, called Denisovans, demonstrated gene flow between these archaic human species and modern Eurasians but not sub-Saharan Africans. Although the levels of gene flow may be very limited, this unexpected finding does not fit well with either the RAO model or MRE model. More thorough sampling of modern human diversity, additional fossil discoveries, and the sequencing of additional hominin fossils are necessary to throw light onto our origins and our history.
Collapse
Affiliation(s)
- Todd R Disotell
- Center for Study of Human Origins, Department of Anthropology, New York University, New York, NY 10003, USA.
| |
Collapse
|