1
|
Li F, Wang W, Cheng H, Li M. Genome-wide analysis reveals the contributors to fast molecular evolution of the Chinese hook snout carp ( Opsariichthys bidens). Comput Struct Biotechnol J 2024; 23:2465-2477. [PMID: 38882676 PMCID: PMC11179538 DOI: 10.1016/j.csbj.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
Variations in molecular evolutionary rate have been widely investigated among lineages and genes. However, it remains an open question whether fast rate of molecular evolution is driven by natural selection or random drift, and how the fast rate is linked to metabolic rate. Additionally, previous studies on fast molecular evolution have been largely restricted to concatenated matrix of genes or a few specifically selected genes, but less is known for individual genes at the genome-wide level. Here we addressed these questions using more than 5000 single-copy orthologous (SCO) genes through comparative genomic and phylogenetic analyses among fishes, with a special focus on a newly-sequenced clupeocephalan fish the Chinese hook snout carp Opsariichthys bidens. We showed O. bidens displays significantly higher mean substitution rate and more fast-evolving SCO genes (2172 genes) than most fishes studied here. The rapidly evolving genes are enriched in highly conserved and very basic functions such as translation and ribosome that are critical for biological fitness. We further revealed that ∼25 % of these fast-evolving genes exhibit a constant increase of substitution rate from the common ancestor down to the present, suggesting a neglected but important contribution from ancestral states. Model fitting showed that ∼85 % of fast-evolving genes exclusive to O. bidens and related species follow the adaptive evolutionary model rather than random-drift model, and 7.6 % of fast-evolving genes identified in O. bidens have experienced positive selection, both indicating the reflection of adaptive selection. Finally, metabolic rate was observed to be linked with substitution rate in a gene-specific manner. Overall, our findings reveal fast molecular evolution of SCO genes at genome-wide level in O. bidens, and uncover the evolutionary and ecological contributors to it.
Collapse
Affiliation(s)
- Fengbo Li
- Zhejiang Institute of Freshwater Fisheries, 999 Hangchangqiao South Road, Huzhou 313001, China
| | - Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, China
| | - Haihua Cheng
- Zhejiang Institute of Freshwater Fisheries, 999 Hangchangqiao South Road, Huzhou 313001, China
| | - Ming Li
- Jinhua Fisheries Technology Extension Center, 828 Shuanglong South Street, Jinhua 321013, China
| |
Collapse
|
2
|
Ruesink-Bueno IL, Drews A, O’Connor EA, Westerdahl H. Expansion of MHC-IIB Has Constrained the Evolution of MHC-IIA in Passerines. Genome Biol Evol 2024; 16:evae236. [PMID: 39462092 PMCID: PMC11562119 DOI: 10.1093/gbe/evae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/22/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
The major histocompatibility complex (MHC) is central in adaptive immunity, with the highly polymorphic MHC genes encoding antigen-presenting molecules. Two MHC class II (MHC-II) loci, DA1 and DA2, predate the radiation of extant birds and persist throughout much of the avian phylogeny. Within each locus, the MHC-II molecules are encoded by A-genes (DAA) and B-genes (DAB), which are arranged in A-B dyads. However, in passerines (order Passeriformes), the DA2 locus has been lost, and the ancestral A-B dyad at the DA1 locus has been replaced by a putatively single A-gene (DAA1) and an array of highly polymorphic B-genes (DAB1). In this study, we genotyped the DAA1 gene of 15 passerine species and confirmed that passerines possess just one copy of DAA1. We then compared selection patterns in DAA1 between passerines and nonpasserines and found that exon 2, which encodes the antigen-presenting domain, has been subject to weaker positive selection and stronger negative selection in passerines compared with nonpasserines. Additional comparisons showed that the patterns of selection in the passerine DAA1 gene are unlikely to be related to the loss of the DA2 locus. Instead, our findings suggest that the expansion of DAB1 (MHC-IIB) has imposed an evolutionary constraint on the passerine DAA1 (MHC-IIA) gene. We speculate that this constraint may be the result of each DAA1 chain forming heterodimers with many different DAB1 chains.
Collapse
Affiliation(s)
| | - Anna Drews
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Lund, Sweden
| | - Emily Amelia O’Connor
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Lund, Sweden
| | - Helena Westerdahl
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Ferguson S, Bar-Ness YD, Borevitz J, Jones A. A telomere-to-telomere Eucalyptus regnans genome: unveiling haplotype variance in structure and genes within one of the world's tallest trees. BMC Genomics 2024; 25:913. [PMID: 39350032 PMCID: PMC11443909 DOI: 10.1186/s12864-024-10810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Eucalyptus regnans (Mountain Ash) is an Australian native giant tree species which form forests that are among the highest known carbon-dense biomasses in the world. To enhance genomic studies in this ecologically important species, we assembled a high-quality, mostly telomere-to-telomere complete, chromosome-level, haplotype-resolved reference genome. We sampled a single tree, the Centurion, which is currently a contender for the world's tallest flowering plant. RESULTS Using long-read sequencing data (PacBio HiFi, Oxford Nanopore ultra-long reads) and chromosome conformation capture data (Hi-C), we assembled the most contiguous and complete Eucalyptus reference genome to date. For each haplotype, we observed contig N50s exceeding 36 Mbp, scaffold N50s exceeding 43 Mbp, and genome BUSCO completeness exceeding 99%. The assembled genome revealed extensive structural variations between the two haplotypes, consisting mostly of insertions, deletions, duplications and translocations. Analysis of gene content revealed haplotype-specific genes, which were enriched in functional categories related to transcription, energy production and conservation. Additionally, many genes reside within structurally rearranged regions, particularly duplications, suggesting that haplotype-specific variation may contribute to environmental adaptation in the species. CONCLUSIONS Our study provides a foundation for future research into E. regnans environmental adaptation, and the high-quality genome will be a powerful resource for conservation of carbon-dense giant tree forests.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | - Justin Borevitz
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
4
|
Jauhal AA, Constantine R, Newcomb R. Conservation and selective pressures shaping baleen whale olfactory receptor genes supports their use of olfaction in the marine environment. Mol Ecol 2024; 33:e17497. [PMID: 39161105 DOI: 10.1111/mec.17497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The relative importance of various sensory modalities can shift in response to evolutionary transitions, resulting in changes to underlying gene families encoding their reception systems. The rapid birth-and-death process underlying the evolution of the large olfactory receptor (OR) gene family has accelerated genomic-level change for the sense of smell in particular. The transition from the land to sea in marine mammals is an attractive model for understanding the influence of habitat shifts on sensory systems, with the retained OR repertoire of baleen whales contrasting with its loss in toothed whales. In this study, we examine to what extent the transition from a terrestrial to a marine environment has influenced the evolution of baleen whale OR repertoires. We developed Gene Mining Pipeline (GMPipe) (https://github.com/AprilJauhal/GMPipe), which can accurately identify large numbers of candidate OR genes. GMPipe identified 707 OR sequences from eight baleen whale species. These repertoires exhibited distinct family count distributions compared to terrestrial mammals, including signs of relative expansion in families OR10, OR11 and OR13. While many receptors have been lost or show signs of random drift in baleen whales, others exhibit signs of evolving under purifying or positive selection. Over 85% of OR genes could be sorted into orthologous groups of sequences containing at least four homologous sequences. Many of these groups, particularly from family OR10, presented signs of relative expansion and purifying selective pressure. Overall, our results suggest that the relatively small size of baleen whale OR repertoires result from specialisation to novel olfactory landscapes, as opposed to random drift.
Collapse
Affiliation(s)
- April A Jauhal
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant & Food Research, Auckland, New Zealand
| | | | - Richard Newcomb
- The New Zealand Institute for Plant & Food Research, Auckland, New Zealand
| |
Collapse
|
5
|
Rossetto IH, Ludington AJ, Simões BF, Van Cao N, Sanders KL. Dynamic Expansions and Retinal Expression of Spectrally Distinct Short-Wavelength Opsin Genes in Sea Snakes. Genome Biol Evol 2024; 16:evae150. [PMID: 38985750 PMCID: PMC11316226 DOI: 10.1093/gbe/evae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
The photopigment-encoding visual opsin genes that mediate color perception show great variation in copy number and adaptive function across vertebrates. An open question is how this variation has been shaped by the interaction of lineage-specific structural genomic architecture and ecological selection pressures. We contribute to this issue by investigating the expansion dynamics and expression of the duplicated Short-Wavelength-Sensitive-1 opsin (SWS1) in sea snakes (Elapidae). We generated one new genome, 45 resequencing datasets, 10 retinal transcriptomes, and 81 SWS1 exon sequences for sea snakes, and analyzed these alongside 16 existing genomes for sea snakes and their terrestrial relatives. Our analyses revealed multiple independent transitions in SWS1 copy number in the marine Hydrophis clade, with at least three lineages having multiple intact SWS1 genes: the previously studied Hydrophis cyanocinctus and at least two close relatives of this species; Hydrophis atriceps and Hydrophis fasciatus; and an individual Hydrophis curtus. In each lineage, gene copy divergence at a key spectral tuning site resulted in distinct UV and Violet/Blue-sensitive SWS1 subtypes. Both spectral variants were simultaneously expressed in the retinae of H. cyanocinctus and H. atriceps, providing the first evidence that these SWS1 expansions confer novel phenotypes. Finally, chromosome annotation for nine species revealed shared structural features in proximity to SWS1 regardless of copy number. If these features are associated with SWS1 duplication, expanded opsin complements could be more common in snakes than is currently recognized. Alternatively, selection pressures specific to aquatic environments could favor improved chromatic distinction in just some lineages.
Collapse
Affiliation(s)
- Isaac H Rossetto
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alastair J Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bruno F Simões
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Nguyen Van Cao
- Department of Aquaculture Biotechnology, Vietnamese Academy of Science and Technology, Institute of Oceanography, Nha Trang, Khánh Hòa, Vietnam
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
6
|
Nunes WVB, Oliveira DS, Dias GDR, Carvalho AB, Caruso ÍP, Biselli JM, Guegen N, Akkouche A, Burlet N, Vieira C, Carareto CMA. A comprehensive evolutionary scenario for the origin and neofunctionalization of the Drosophila speciation gene Odysseus (OdsH). G3 (BETHESDA, MD.) 2024; 14:jkad299. [PMID: 38156703 PMCID: PMC10917504 DOI: 10.1093/g3journal/jkad299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Odysseus (OdsH) was the first speciation gene described in Drosophila related to hybrid sterility in offspring of mating between Drosophila mauritiana and Drosophila simulans. Its origin is attributed to the duplication of the gene unc-4 in the subgenus Sophophora. By using a much larger sample of Drosophilidae species, we showed that contrary to what has been previously proposed, OdsH origin occurred 62 MYA. Evolutionary rates, expression, and transcription factor-binding sites of OdsH evidence that it may have rapidly experienced neofunctionalization in male sexual functions. Furthermore, the analysis of the OdsH peptide allowed the identification of mutations of D. mauritiana that could result in incompatibility in hybrids. In order to find if OdsH could be related to hybrid sterility, beyond Sophophora, we explored the expression of OdsH in Drosophila arizonae and Drosophila mojavensis, a pair of sister species with incomplete reproductive isolation. Our data indicated that OdsH expression is not atypical in their male-sterile hybrids. In conclusion, we have proposed that the origin of OdsH occurred earlier than previously proposed, followed by neofunctionalization. Our results also suggested that its role as a speciation gene might be restricted to D. mauritiana and D. simulans.
Collapse
Affiliation(s)
- William Vilas Boas Nunes
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Daniel Siqueira Oliveira
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Guilherme de Rezende Dias
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS sl A2-075, 373 Carlos Chagas Filho Avenue, 21941-971 Rio de Janeiro, Brazil
| | - Antonio Bernardo Carvalho
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS sl A2-075, 373 Carlos Chagas Filho Avenue, 21941-971 Rio de Janeiro, Brazil
| | - Ícaro Putinhon Caruso
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
| | - Joice Matos Biselli
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
| | - Nathalie Guegen
- Faculté de Médecine, iGReD, Université Clermont Auvergne, CNRS, INSERM, 4 Bd Claude Bernard, 63000 Clermont-Ferrande, France
| | - Abdou Akkouche
- Faculté de Médecine, iGReD, Université Clermont Auvergne, CNRS, INSERM, 4 Bd Claude Bernard, 63000 Clermont-Ferrande, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Claudia M A Carareto
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
| |
Collapse
|
7
|
Liao BY, Weng MP, Chang TY, Chang AYF, Ching YH, Wu CH. Degeneration of the Olfactory System in a Murid Rodent that Evolved Diurnalism. Mol Biol Evol 2024; 41:msae037. [PMID: 38376543 PMCID: PMC10906987 DOI: 10.1093/molbev/msae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/03/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
In mammalian research, it has been debated what can initiate an evolutionary tradeoff between different senses, and the phenomenon of sensory tradeoff in rodents, the most abundant mammalian clade, is not evident. The Nile rat (Arvicanthis niloticus), a murid rodent, recently adapted to a diurnal niche through an evolutionary acquisition of daylight vision with enhanced visual acuity. As such, this model provides an opportunity for a cross-species investigation where comparative morphological and multi-omic analyses of the Nile rat are made with its closely related nocturnal species, e.g. the mouse (Mus musculus) and the rat (Rattus norvegicus). Thus, morphological examinations were performed, and evolutionary reductions in relative sizes of turbinal bone surfaces, the cribriform plate, and the olfactory bulb were discovered in Nile rats. Subsequently, we compared multiple murid genomes, and profiled olfactory epithelium transcriptomes of mice and Nile rats at various ages with RNA sequencing. The results further demonstrate that, in comparison with mouse olfactory receptor (OR) genes, Nile rat OR genes have experienced less frequent gain, more frequent loss, and more frequent expression reduction during their evolution. Furthermore, functional degeneration of coding sequences in the Nile rat lineage was found in OR genes, yet not in other genes. Taken together, these results suggest that acquisition of improved vision in the Nile rat has been accompanied by degeneration of both olfaction-related anatomical structures and OR gene repertoires, consistent with the hypothesis of an olfaction-vision tradeoff initiated by the switch from a nocturnal to a diurnal lifestyle in mammals.
Collapse
Affiliation(s)
- Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan, Republic of China
| | - Meng-Pin Weng
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan, Republic of China
| | - Ting-Yan Chang
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan, Republic of China
| | - Andrew Ying-Fei Chang
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan, Republic of China
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Taiwan, Republic of China
| | - Chia-Hwa Wu
- Laboratory Animal Center, National Health Research Institutes, Taiwan, Republic of China
| |
Collapse
|
8
|
Onodera W, Kawasaki K, Oishi M, Aoki S, Asahi T. Functional Divergence and Origin of the Vertebrate Praja Family. J Mol Evol 2024; 92:21-29. [PMID: 38158403 DOI: 10.1007/s00239-023-10150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
The Praja family is an E3 ubiquitin ligase, promoting polyubiquitination and subsequent degradation of substrates. It comprises two paralogs, praja1 and praja2. Prior research suggests these paralogs have undergone functional divergence, with examples, such as their distinct roles in neurite outgrowth. However, the specific evolutionary trajectories of each paralog remain largely unexplored preventing mechanistic understanding of functional differences between paralogs. Here, we investigated the phylogeny and divergence of the vertebrate Praja family through molecular evolutionary analysis. Phylogenetic examination of the vertebrate praja revealed that praja1 and praja2 originated from the common ancestor of placentals via gene duplication, with praja1 evolving at twice the rate of praja2 shortly after the duplication. Moreover, a unique evolutionary trajectory for praja1 relative to other vertebrate Praja was indicated, as evidenced by principal component analysis on GC content, codon usage frequency, and amino acid composition. Subsequent motif/domain comparison revealed conserved N terminus and C terminus in praja1 and praja2, together with praja1-specific motifs, including nuclear localization signal and Ala-Gly-Ser repeats. The nuclear localization signal was demonstrated to be functional in human neuroblastoma SH-SY5Y cells using deletion mutant, while praja2 was exclusively expressed in the nucleus. These discoveries contribute to a more comprehensive understanding of the Praja family's phylogeny and suggest a functional divergence between praja1 and praja2. Specifically, the shift of praja1 into the nucleus implies the degradation of novel substrates located in the nucleus as an evolutionary consequence.
Collapse
Affiliation(s)
- Wataru Onodera
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-0056, Japan.
| | - Kotaro Kawasaki
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-0056, Japan
| | - Mizuho Oishi
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-0056, Japan
| | - Shiho Aoki
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-0056, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-0056, Japan.
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda-Tsurumaki, Shinjuku, Tokyo, 162-0041, Japan.
| |
Collapse
|
9
|
Singleton M, Eisen M. Leveraging genomic redundancy to improve inference and alignment of orthologous proteins. G3 (BETHESDA, MD.) 2023; 13:jkad222. [PMID: 37770067 PMCID: PMC10700111 DOI: 10.1093/g3journal/jkad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Identifying protein sequences with common ancestry is a core task in bioinformatics and evolutionary biology. However, methods for inferring and aligning such sequences in annotated genomes have not kept pace with the increasing scale and complexity of the available data. Thus, in this work, we implemented several improvements to the traditional methodology that more fully leverage the redundancy of closely related genomes and the organization of their annotations. Two highlights include the application of the more flexible k-clique percolation algorithm for identifying clusters of orthologous proteins and the development of a novel technique for removing poorly supported regions of alignments with a phylogenetic hidden Markov model (phylo-HMM). In making the latter, we wrote a fully documented Python package Homomorph that implements standard HMM algorithms and created a set of tutorials to promote its use by a wide audience. We applied the resulting pipeline to a set of 33 annotated Drosophila genomes, generating 22,813 orthologous groups and 8,566 high-quality alignments.
Collapse
Affiliation(s)
- Marc Singleton
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Michael Eisen
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Feng P, Liang X, Yu H, Dong X, Liang Q, Dai C. The evolution of bitter taste receptor gene in primates: Gene duplication and selection. Ecol Evol 2023; 13:e10610. [PMID: 37841228 PMCID: PMC10571502 DOI: 10.1002/ece3.10610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
Bitter taste perception plays an important role in preventing animals from digesting poisonous and harmful substances. In primates, especially the Cercopithecidae species, most species feed on plants; thus, it is reasonable to speculate that most of the bitter taste receptor genes (T2Rs) of primates are under purifying selection to maintain the functional stability of bitter taste perception. Gene duplication has happened in T2Rs frequently, and what will be the fate of T2Rs copies is another question we are concerned about. To answer these questions, we selected the T2Rs of primates reported in another study and conducted corresponding selective pressure analyses to determine what kind of selective pressure was acting on them. Further, we carried out selective pressure analyses on gene copies and their corresponding ancestors by considering several possible situations. The results showed that among the 25 gene groups examined here, 15 groups are subject to purifying selection and others are under relaxed selection, with many positively selected sites detected. Gene copies existed in several groups, but only some groups (clade1_a1-b2, clade1_c-c2, clade1_d1-d3, clade1_f1-f2, T2R10, T2R13, and T2R42) have positively selected sites, inferring that they may have some relation to functional divergence. Taken together, T2Rs in primates are under diverse selective pressures, and most gene copies are subject to the same selective pressures. In such cases, the copies may be just to keep the function conservative, and more copies can increase the quantity of the bitter taste receptor, raise the efficiency of bitter substance recognition, and finally enhance the fitness of feeding during the evolutionary course of primates. This study can improve our understanding of T2Rs evolution in primates.
Collapse
Affiliation(s)
- Ping Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of ChinaGuangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinGuangxiChina
| | - Xinyue Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of ChinaGuangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinGuangxiChina
| | - Hongling Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of ChinaGuangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinGuangxiChina
| | - Xiaoyan Dong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of ChinaGuangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinGuangxiChina
| | - Qiufang Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of ChinaGuangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinGuangxiChina
| | - Chuanyin Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of ChinaGuangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinGuangxiChina
| |
Collapse
|
11
|
Erić K, Veselinović MS, Patenković A, Davidović S, Erić P, Stamenković-Radak M, Tanasković M. Population History Shapes Responses to Different Temperature Regimes in Drosophila subobscura. Life (Basel) 2023; 13:1333. [PMID: 37374116 DOI: 10.3390/life13061333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Drosophila subobscura is considered a good model species for investigation of a population's ability to adapt and cope with climate changes. Decade long research has shown that inversion frequencies change in response to environmental factors indicating their role in adaptation to novel environments. The mechanisms behind organisms' responses to temperature are complex, involving changes in physiology, behavior, gene expression and regulation. On the other hand, a population's ability to respond to suboptimal conditions depends on standing genetic variation and population history. In order to elucidate the role of local adaptation in population response to the changing temperature, we investigated the response to temperature in D. subobscura individuals originating from two different altitudes by combining traditional cytogenetic techniques with assessing the levels of Hsp70 protein expression. Inversion polymorphism was assessed in the flies sampled from natural populations and in flies reared in laboratory conditions at three different temperatures after five and sixteen generations and Hsp70 protein expression profile in 12th generation flies at the basal level and after heat shock induction. Our results indicate that local adaptation and population history influence population response to the changing temperature.
Collapse
Affiliation(s)
- Katarina Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | | | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Pavle Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | | | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| |
Collapse
|
12
|
Ferguson S, Jones A, Murray K, Schwessinger B, Borevitz JO. Interspecies genome divergence is predominantly due to frequent small scale rearrangements in Eucalyptus. Mol Ecol 2023; 32:1271-1287. [PMID: 35810343 DOI: 10.1111/mec.16608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022]
Abstract
Synteny, the ordering of sequences within homologous chromosomes, must be maintained within the genomes of sexually reproducing species for the sharing of alleles and production of viable, reproducing offspring. However, when the genomes of closely related species are compared, a loss of synteny is often observed. Unequal homologous recombination is the primary mechanism behind synteny loss, occurring more often in transposon rich regions, and resulting in the formation of chromosomal rearrangements. To examine patterns of synteny among three closely related, interbreeding, and wild Eucalyptus species, we assembled their genomes using long-read DNA sequencing and de novo assembly. We identify syntenic and rearranged regions between these genomes and estimate that ~48% of our genomes remain syntenic while ~36% is rearranged. We observed that rearrangements highly fragment microsynteny. Our results suggest that synteny between these species is primarily lost through small-scale rearrangements, not through sequence loss, gain, or sequence divergence. Further examination of identified rearrangements suggests that rearrangements may be altering the phenotypes of Eucalyptus species. Our study also underscores that the use of single reference genomes in genomic variation studies could lead to reference bias, especially given the scale at which we show potentially adaptive loci have highly diverged, deleted, duplicated and/or rearranged. This study provides an unbiased framework to look at potential speciation and adaptive loci among a rapidly radiating foundation species of woodland trees that are free from selective breeding seen in most crop species.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.,Weigel Department, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Justin O Borevitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
13
|
Overexpression of TgERF1, a Transcription Factor from Tectona grandis, Increases Tolerance to Drought and Salt Stress in Tobacco. Int J Mol Sci 2023; 24:ijms24044149. [PMID: 36835560 PMCID: PMC9961280 DOI: 10.3390/ijms24044149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Teak (Tectona grandis) is one of the most important wood sources, and it is cultivated in tropical regions with a significant market around the world. Abiotic stresses are an increasingly common and worrying environmental phenomenon because it causes production losses in both agriculture and forestry. Plants adapt to these stress conditions by activation or repression of specific genes, and they synthesize numerous stress proteins to maintain their cellular function. For example, APETALA2/ethylene response factor (AP2/ERF) was found to be involved in stress signal transduction. A search in the teak transcriptome database identified an AP2/ERF gene named TgERF1 with a key AP2/ERF domain. We then verified that the TgERF1 expression is rapidly induced by Polyethylene Glycol (PEG), NaCl, and exogenous phytohormone treatments, suggesting a potential role in drought and salt stress tolerance in teak. The full-length coding sequence of TgERF1 gene was isolated from teak young stems, characterized, cloned, and constitutively overexpressed in tobacco plants. In transgenic tobacco plants, the overexpressed TgERF1 protein was localized exclusively in the cell nucleus, as expected for a transcription factor. Furthermore, functional characterization of TgERF1 provided evidence that TgERF1 is a promising candidate gene to be used as selective marker on plant breeding intending to improve plant stress tolerance.
Collapse
|
14
|
Tao W, Li R, Li T, Li Z, Li Y, Cui L. The evolutionary patterns, expression profiles, and genetic diversity of expanded genes in barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1168124. [PMID: 37180392 PMCID: PMC10171312 DOI: 10.3389/fpls.2023.1168124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/28/2023] [Indexed: 05/16/2023]
Abstract
Gene duplication resulting from whole-genome duplication (WGD), small-scale duplication (SSD), or unequal hybridization plays an important role in the expansion of gene families. Gene family expansion can also mediate species formation and adaptive evolution. Barley (Hordeum vulgare) is the world's fourth largest cereal crop, and it contains valuable genetic resources due to its ability to tolerate various types of environmental stress. In this study, 27,438 orthogroups in the genomes of seven Poaceae were identified, and 214 of them were significantly expanded in barley. The evolutionary rates, gene properties, expression profiles, and nucleotide diversity between expanded and non-expanded genes were compared. Expanded genes evolved more rapidly and experienced lower negative selection. Expanded genes, including their exons and introns, were shorter, they had fewer exons, their GC content was lower, and their first exons were longer compared with non-expanded genes. Codon usage bias was also lower for expanded genes than for non-expanded genes; the expression levels of expanded genes were lower than those of non-expanded genes, and the expression of expanded genes showed higher tissue specificity than that of non-expanded genes. Several stress-response-related genes/gene families were identified, and these genes could be used to breed barley plants with greater resistance to environmental stress. Overall, our analysis revealed evolutionary, structural, and functional differences between expanded and non-expanded genes in barley. Additional studies are needed to clarify the functions of the candidate genes identified in our study and evaluate their utility for breeding barley plants with greater stress resistance.
Collapse
Affiliation(s)
- Wenjing Tao
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ruiying Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhimin Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- *Correspondence: Yihan Li, ; Licao Cui,
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- *Correspondence: Yihan Li, ; Licao Cui,
| |
Collapse
|
15
|
Genome-Wide Identification and Expression Analysis of Kinesin Family in Barley ( Hordeum vulgare). Genes (Basel) 2022; 13:genes13122376. [PMID: 36553643 PMCID: PMC9778244 DOI: 10.3390/genes13122376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Kinesin, as a member of the molecular motor protein superfamily, plays an essential function in various plants' developmental processes. Especially at the early stages of plant growth, including influences on plants' growth rate, yield, and quality. In this study, we did a genome-wide identification and expression profile analysis of the kinesin family in barley. Forty-two HvKINs were identified and screened from the barley genome, and a generated phylogenetic tree was used to compare the evolutionary relationships between Rice and Arabidopsis. The protein structure prediction, physicochemical properties, and bioinformatics of the HvKINs were also dissected. Our results reveal the important regulatory roles of HvKIN genes in barley growth. We found many cis- elements related to GA3 and ABA in homeopathic elements of the HvKIN gene and verified them by QRT-PCR, indicating their potential role in the barley kinesin family. The current study revealed the biological functions of barley kinesin genes in barley and will aid in further investigating the kinesin in other plant species.
Collapse
|
16
|
Yim WC, Swain ML, Ma D, An H, Bird KA, Curdie DD, Wang S, Ham HD, Luzuriaga-Neira A, Kirkwood JS, Hur M, Solomon JKQ, Harper JF, Kosma DK, Alvarez-Ponce D, Cushman JC, Edger PP, Mason AS, Pires JC, Tang H, Zhang X. The final piece of the Triangle of U: Evolution of the tetraploid Brassica carinata genome. THE PLANT CELL 2022; 34:4143-4172. [PMID: 35961044 PMCID: PMC9614464 DOI: 10.1093/plcell/koac249] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/24/2022] [Indexed: 05/05/2023]
Abstract
Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.
Collapse
Affiliation(s)
| | | | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - David D Curdie
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Samuel Wang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hyun Don Ham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Juan K Q Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Annaliese S Mason
- Plant Breeding Department, INRES, The University of Bonn, Bonn 53115, Germany
| | - J Chris Pires
- Division of Biological Sciences, Bond Life Sciences Center, , University of Missouri, Columbia, Missouri 65211, USA
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Cellier MFM. Nramp: Deprive and conquer? Front Cell Dev Biol 2022; 10:988866. [PMID: 36313567 PMCID: PMC9606685 DOI: 10.3389/fcell.2022.988866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Solute carriers 11 (Slc11) evolved from bacterial permease (MntH) to eukaryotic antibacterial defense (Nramp) while continuously mediating proton (H+)-dependent manganese (Mn2+) import. Also, Nramp horizontal gene transfer (HGT) toward bacteria led to mntH polyphyly. Prior demonstration that evolutionary rate-shifts distinguishing Slc11 from outgroup carriers dictate catalytic specificity suggested that resolving Slc11 family tree may provide a function-aware phylogenetic framework. Hence, MntH C (MC) subgroups resulted from HGTs of prototype Nramp (pNs) parologs while archetype Nramp (aNs) correlated with phagocytosis. PHI-Blast based taxonomic profiling confirmed MntH B phylogroup is confined to anaerobic bacteria vs. MntH A (MA)’s broad distribution; suggested niche-related spread of MC subgroups; established that MA-variant MH, which carries ‘eukaryotic signature’ marks, predominates in archaea. Slc11 phylogeny shows MH is sister to Nramp. Site-specific analysis of Slc11 charge network known to interact with the protonmotive force demonstrates sequential rate-shifts that recapitulate Slc11 evolution. 3D mapping of similarly coevolved sites across Slc11 hydrophobic core revealed successive targeting of discrete areas. The data imply that pN HGT could advantage recipient bacteria for H+-dependent Mn2+ acquisition and Alphafold 3D models suggest conformational divergence among MC subgroups. It is proposed that Slc11 originated as a bacterial stress resistance function allowing Mn2+-dependent persistence in conditions adverse for growth, and that archaeal MH could contribute to eukaryogenesis as a Mn2+ sequestering defense perhaps favoring intracellular growth-competent bacteria.
Collapse
|
18
|
Prabh N, Rödelsperger C. Multiple Pristionchus pacificus genomes reveal distinct evolutionary dynamics between de novo candidates and duplicated genes. Genome Res 2022; 32:1315-1327. [PMID: 35618417 PMCID: PMC9341508 DOI: 10.1101/gr.276431.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/20/2022] [Indexed: 01/03/2023]
Abstract
The birth of new genes is a major molecular innovation driving phenotypic diversity across all domains of life. Although repurposing of existing protein-coding material by duplication is considered the main process of new gene formation, recent studies have discovered thousands of transcriptionally active sequences as a rich source of new genes. However, differential loss rates have to be assumed to reconcile the high birth rates of these incipient de novo genes with the dominance of ancient gene families in individual genomes. Here, we test this rapid turnover hypothesis in the context of the nematode model organism Pristionchus pacificus We extended the existing species-level phylogenomic framework by sequencing the genomes of six divergent P. pacificus strains. We used these data to study the evolutionary dynamics of different age classes and categories of origin at a population level. Contrasting de novo candidates with new families that arose by duplication and divergence from known genes, we find that de novo candidates are typically shorter, show less expression, and are overrepresented on the sex chromosome. Although the contribution of de novo candidates increases toward young age classes, multiple comparisons within the same age class showed significantly higher attrition in de novo candidates than in known genes. Similarly, young genes remain under weak evolutionary constraints with de novo candidates representing the fastest evolving subcategory. Altogether, this study provides empirical evidence for the rapid turnover hypothesis and highlights the importance of the evolutionary timescale when quantifying the contribution of different mechanisms toward new gene formation.
Collapse
Affiliation(s)
- Neel Prabh
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Gera T, Jonas F, More R, Barkai N. Evolution of binding preferences among whole-genome duplicated transcription factors. eLife 2022; 11:73225. [PMID: 35404235 PMCID: PMC9000951 DOI: 10.7554/elife.73225] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/20/2022] [Indexed: 01/10/2023] Open
Abstract
Throughout evolution, new transcription factors (TFs) emerge by gene duplication, promoting growth and rewiring of transcriptional networks. How TF duplicates diverge was studied in a few cases only. To provide a genome-scale view, we considered the set of budding yeast TFs classified as whole-genome duplication (WGD)-retained paralogs (~35% of all specific TFs). Using high-resolution profiling, we find that ~60% of paralogs evolved differential binding preferences. We show that this divergence results primarily from variations outside the DNA-binding domains (DBDs), while DBD preferences remain largely conserved. Analysis of non-WGD orthologs revealed uneven splitting of ancestral preferences between duplicates, and the preferential acquiring of new targets by the least conserved paralog (biased neo/sub-functionalization). Interactions between paralogs were rare, and, when present, occurred through weak competition for DNA-binding or dependency between dimer-forming paralogs. We discuss the implications of our findings for the evolutionary design of transcriptional networks.
Collapse
Affiliation(s)
- Tamar Gera
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Roye More
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science
| |
Collapse
|
20
|
Yuan Z, Yang H, Pan L, Zhao W, Liang L, Gatera A, Tucker MR, Xu D. Systematic identification and expression profiles of the BAHD superfamily acyltransferases in barley (Hordeum vulgare). Sci Rep 2022; 12:5063. [PMID: 35332203 PMCID: PMC8948222 DOI: 10.1038/s41598-022-08983-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
BAHD superfamily acyltransferases play an important role in catalyzing and regulating secondary metabolism in plants. Despite this, there is relatively little information regarding the BAHD superfamily in barley. In this study, we identified 116 HvBAHD acyltransferases from the barley genome. Based on phylogenetic analysis and classification in model monocotyledonous and dicotyledonous plants, we divided the genes into eight groups, I-a, I-b, II, III-a, III-b, IV, V-a and V-b. The Clade IV genes, including Agmatine Coumarol Transferase (ACT) that is associated with resistance of plants to Gibberella fungi, were absent in Arabidopsis. Cis-regulatory element analysis of the HvBAHDs showed that the genes respond positively to GA3 treatment. In-silico expression and qPCR analysis showed the HvBAHD genes are expressed in a range of tissues and developmental stages, and highly enriched in the seedling stage, consistent with diverse roles. Single nucleotide polymorphism (SNP) scanning analysis revealed that the natural variation in the coding regions of the HvBAHDs is low and the sequences have been conserved during barley domestication. Our results reveal the complexity of the HvBAHDs and will help facilitate their analysis in further studies.
Collapse
Affiliation(s)
- Zhen Yuan
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Hongliang Yang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Leiwen Pan
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Wenhui Zhao
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Lunping Liang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Anicet Gatera
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Dawei Xu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
21
|
Williams AM, Carter OG, Forsythe ES, Mendoza HK, Sloan DB. Gene duplication and rate variation in the evolution of plastid ACCase and Clp genes in angiosperms. Mol Phylogenet Evol 2022; 168:107395. [PMID: 35033670 PMCID: PMC9673162 DOI: 10.1016/j.ympev.2022.107395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022]
Abstract
While the chloroplast (plastid) is known for its role in photosynthesis, it is also involved in many other metabolic pathways essential for plant survival. As such, plastids contain an extensive suite of enzymes required for non-photosynthetic processes. The evolution of the associated genes has been especially dynamic in flowering plants (angiosperms), including examples of gene duplication and extensive rate variation. We examined the role of ongoing gene duplication in two key plastid enzymes, the acetyl-CoA carboxylase (ACCase) and the caseinolytic protease (Clp), responsible for fatty acid biosynthesis and protein turnover, respectively. In plants, there are two ACCase complexes-a homomeric version present in the cytosol and a heteromeric version present in the plastid. Duplications of the nuclear-encoded homomeric ACCase gene and retargeting of one resultant protein to the plastid have been previously reported in multiple species. We find that these retargeted homomeric ACCase proteins exhibit elevated rates of sequence evolution, consistent with neofunctionalization and/or relaxation of selection. The plastid Clp complex catalytic core is composed of nine paralogous proteins that arose via ancient gene duplication in the cyanobacterial/plastid lineage. We show that further gene duplication occurred more recently in the nuclear-encoded core subunits of this complex, yielding additional paralogs in many species of angiosperms. Moreover, in six of eight cases, subunits that have undergone recent duplication display increased rates of sequence evolution relative to those that have remained single copy. We also compared substitution patterns between pairs of Clp core paralogs to gain insight into post-duplication evolutionary routes. These results show that gene duplication and rate variation continue to shape the plastid proteome.
Collapse
Affiliation(s)
- Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States; Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States.
| | - Olivia G Carter
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Hannah K Mendoza
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
22
|
Vance Z, Niezabitowski L, Hurst LD, McLysaght A. Evidence from Drosophila Supports Higher Duplicability of Faster Evolving Genes. Genome Biol Evol 2022; 14:6501445. [PMID: 35018456 PMCID: PMC8765793 DOI: 10.1093/gbe/evac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
The faster rate of evolution of duplicated genes relative to singletons has been well documented in multiple lineages. This observation has generally been attributed to a presumed release from constraint following creation of a redundant, duplicate copy. However, it is not obvious that the relationship operates in this direction. An alternative possibility—that the faster rate of evolution predates the duplication event and the observed differences result from a higher propensity to duplicate in fast-evolving genes—has been tested in primates and in insects. However, these studies arrived at different conclusions and clarity is needed on whether these contrasting results relate to differences in methodology or legitimate biological differences between the lineages selected. Here, we test whether duplicable genes are faster evolving independent of duplication in the Drosophila lineage and find that our results support the conclusion that faster evolving genes are more likely to duplicate, in agreement with previous work in primates. Our findings indicate that this characteristic of gene duplication is not restricted to a single lineage and has broad implications for the interpretation of the impact of gene duplication. We identify a subset of “singletons” which defy the general trends and appear to be faster evolving. Further investigation implicates homology detection failure and suggests that these may be duplicable genes with unidentifiable paralogs.
Collapse
Affiliation(s)
- Zoe Vance
- Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | | | - Laurence D Hurst
- Department of Biology and Biochemistry, University of Bath, United Kingdom
| | - Aoife McLysaght
- Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| |
Collapse
|
23
|
Xie D, Chen G, Meng X, Wang H, Bi X, Fang M, Yang C, Zhou Y, Long E, Feng S. Comparable Number of Genes Having Experienced Positive Selection among Great Ape Species. Animals (Basel) 2021; 11:ani11113264. [PMID: 34827995 PMCID: PMC8614513 DOI: 10.3390/ani11113264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary It is of great interest to quantify adaptive evolution in human lineage by studying genes under positive selection, since these genes could reveal insights into our own adaptive evolutionary history compared to our closely related species and often these genes are functionally important. We used the great apes as the subjects to detect gene-level adaptive evolution signals in all the great ape lineages and investigated the evolutionary patterns and functional relevance of these adaptive evolution signals. Even the differences in population size among these closely related great apes have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments, we found that they experienced comparable numbers of positive selection. Notably, we identified several genes that offer insights into great ape and human evolution. For example, SOD1, a gene associated with aging in humans, experienced positive selection in the common ancestor of the great ape and this positive selection may contribute to the aging evolution in great apes. Overall, an updated list of positively selected genes reported by this study not only informs us of adaptive evolution during great ape evolution, but is also helpful to the further study of non-human primate models for disease and other fields. Abstract Alleles that cause advantageous phenotypes with positive selection contribute to adaptive evolution. Investigations of positive selection in protein-coding genes rely on the accuracy of orthology, models, the quality of assemblies, and alignment. Here, based on the latest genome assemblies and gene annotations, we present a comparative analysis on positive selection in four great ape species and identify 211 high-confidence positively selected genes (PSGs). Even the differences in population size among these closely related great apes have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments, we found that they experienced comparable numbers of positive selection. We also uncovered that more than half of multigene families exhibited signals of positive selection, suggesting that imbalanced positive selection resulted in the functional divergence of duplicates. Moreover, at the expression level, although positive selection led to a more non-uniform pattern across tissues, the correlation between positive selection and expression patterns is diverse. Overall, this updated list of PSGs is of great significance for the further study of the phenotypic evolution in great apes.
Collapse
Affiliation(s)
- Duo Xie
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
- Correspondence: (D.X.); (S.F.)
| | - Guangji Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Xiaoyu Meng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (X.M.); (H.W.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Haotian Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (X.M.); (H.W.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Xupeng Bi
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Miaoquan Fang
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Chentao Yang
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Yang Zhou
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Erping Long
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA;
| | - Shaohong Feng
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
- Correspondence: (D.X.); (S.F.)
| |
Collapse
|
24
|
Begum T, Serrano‐Serrano ML, Robinson‐Rechavi M. Performance of a phylogenetic independent contrast method and an improved pairwise comparison under different scenarios of trait evolution after speciation and duplication. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tina Begum
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Martha Liliana Serrano‐Serrano
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Marc Robinson‐Rechavi
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| |
Collapse
|
25
|
Yohe LR, Leiser-Miller LB, Kaliszewska ZA, Donat P, Santana SE, Dávalos LM. Diversity in olfactory receptor repertoires is associated with dietary specialization in a genus of frugivorous bat. G3 (BETHESDA, MD.) 2021; 11:jkab260. [PMID: 34568918 PMCID: PMC8473985 DOI: 10.1093/g3journal/jkab260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Mammalian olfactory receptor genes (ORs) are a diverse family of genes encoding proteins that directly interact with environmental chemical cues. ORs evolve via gene duplication in a birth-death fashion, neofunctionalizing and pseudogenizing over time. Olfaction is a primary sense used for food detection in plant-visiting bats, but the relationship between dietary specialization and OR repertoire diversity is unclear. Within neotropical Leaf-nosed bats (Phyllostomidae), many lineages are plant specialists, and some have a distinct OR repertoire compared to insectivorous species. Yet, whether specialization on particular plant genera is associated with the evolution of specialized, less diverse OR repertoires has never been tested. Using targeted sequence capture, we sequenced the OR repertoires of three sympatric species of short-tailed fruit bats (Carollia), which vary in their degree of specialization on the fruits of Piper plants. We characterized orthologous vs duplicated receptors among Carollia species, and explored the diversity and redundancy of the receptor gene repertoire. At the species level, the most dedicated Piper specialist, Carollia castanea, had lower OR diversity compared to the two generalists (C. sowelli and C. perspicillata), but we discovered a few unique sets of ORs within C. castanea with high redundancy of similar gene duplicates. These unique receptors potentially enable C. castanea to detect Piper fruit odorants better than its two congeners. Carollia perspicillata, the species with the most generalist diet, had a higher diversity of intact receptors, suggesting the ability to detect a wider range of odorant molecules. Variation among ORs may be a factor in the coexistence of these sympatric species, facilitating the exploitation of different plant resources. Our study sheds light on how gene duplication and changes in OR diversity may play a role in dietary adaptations and underlie ecological interactions between bats and plants.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | - Paul Donat
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sharlene E Santana
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Consortium for Inter-Disciplinary Environmental Research, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
26
|
Hauzman E, Pierotti MER, Bhattacharyya N, Tashiro JH, Yovanovich CAM, Campos PF, Ventura DF, Chang BSW. Simultaneous expression of UV and violet SWS1 opsins expands the visual palette in a group of freshwater snakes. Mol Biol Evol 2021; 38:5225-5240. [PMID: 34562092 PMCID: PMC8662652 DOI: 10.1093/molbev/msab285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Snakes are known to express a rod visual opsin and two cone opsins, only (SWS1, LWS), a reduced palette resulting from their supposedly fossorial origins. Dipsadid snakes in the genus Helicops are highly visual predators that successfully invaded freshwater habitats from ancestral terrestrial-only habitats. Here, we report the first case of multiple SWS1 visual pigments in a vertebrate, simultaneously expressed in different photoreceptors and conferring both UV and violet sensitivity to Helicops snakes. Molecular analysis and in vitro expression confirmed the presence of two functional SWS1 opsins, likely the result of recent gene duplication. Evolutionary analyses indicate that each sws1 variant has undergone different evolutionary paths with strong purifying selection acting on the UV-sensitive copy and dN/dS ∼1 on the violet-sensitive copy. Site-directed mutagenesis points to the functional role of a single amino acid substitution, Phe86Val, in the large spectral shift between UV and violet opsins. In addition, higher densities of photoreceptors and SWS1 cones in the ventral retina suggest improved acuity in the upper visual field possibly correlated with visually guided behaviors. The expanded visual opsin repertoire and specialized retinal architecture are likely to improve photon uptake in underwater and terrestrial environments, and provide the neural substrate for a gain in chromatic discrimination, potentially conferring unique color vision in the UV–violet range. Our findings highlight the innovative solutions undertaken by a highly specialized lineage to tackle the challenges imposed by the invasion of novel photic environments and the extraordinary diversity of evolutionary trajectories taken by visual opsin-based perception in vertebrates.
Collapse
Affiliation(s)
- Einat Hauzman
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Michele E R Pierotti
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Nihar Bhattacharyya
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Juliana H Tashiro
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, São Paulo, Brazil
| | - Carola A M Yovanovich
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Pollyanna F Campos
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Dora F Ventura
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Belinda S W Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Yohe LR, Fabbri M, Hanson M, Bhullar BAS. Olfactory receptor gene evolution is unusually rapid across Tetrapoda and outpaces chemosensory phenotypic change. Curr Zool 2021; 66:505-514. [PMID: 34484311 DOI: 10.1093/cz/zoaa051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chemosensation is the most ubiquitous sense in animals, enacted by the products of complex gene families that detect environmental chemical cues and larger-scale sensory structures that process these cues. While there is a general conception that olfactory receptor (OR) genes evolve rapidly, the universality of this phenomenon across vertebrates, and its magnitude, are unclear. The supposed correlation between molecular rates of chemosensory evolution and phenotypic diversity of chemosensory systems is largely untested. We combine comparative genomics and sensory morphology to test whether OR genes and olfactory phenotypic traits evolve at faster rates than other genes or traits. Using published genomes, we identified ORs in 21 tetrapods, including amphibians, reptiles, birds, and mammals and compared their rates of evolution to those of orthologous non-OR protein-coding genes. We found that, for all clades investigated, most OR genes evolve nearly an order of magnitude faster than other protein-coding genes, with many OR genes showing signatures of diversifying selection across nearly all taxa in this study. This rapid rate of evolution suggests that chemoreceptor genes are in "evolutionary overdrive," perhaps evolving in response to the ever-changing chemical space of the environment. To obtain complementary morphological data, we stained whole fixed specimens with iodine, µCT-scanned the specimens, and digitally segmented chemosensory and nonchemosensory brain regions. We then estimated phenotypic variation within traits and among tetrapods. While we found considerable variation in chemosensory structures, they were no more diverse than nonchemosensory regions. We suggest chemoreceptor genes evolve quickly in reflection of an ever-changing chemical space, whereas chemosensory phenotypes and processing regions are more conserved because they use a standardized or constrained architecture to receive and process a range of chemical cues.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| | - Matteo Fabbri
- Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| | - Michael Hanson
- Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
28
|
Begum T, Robinson-Rechavi M. Special Care Is Needed in Applying Phylogenetic Comparative Methods to Gene Trees with Speciation and Duplication Nodes. Mol Biol Evol 2021; 38:1614-1626. [PMID: 33169790 PMCID: PMC8042747 DOI: 10.1093/molbev/msaa288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
How gene function evolves is a central question of evolutionary biology. It can be investigated by comparing functional genomics results between species and between genes. Most comparative studies of functional genomics have used pairwise comparisons. Yet it has been shown that this can provide biased results, as genes, like species, are phylogenetically related. Phylogenetic comparative methods should be used to correct for this, but they depend on strong assumptions, including unbiased tree estimates relative to the hypothesis being tested. Such methods have recently been used to test the “ortholog conjecture,” the hypothesis that functional evolution is faster in paralogs than in orthologs. Although pairwise comparisons of tissue specificity (τ) provided support for the ortholog conjecture, phylogenetic independent contrasts did not. Our reanalysis on the same gene trees identified problems with the time calibration of duplication nodes. We find that the gene trees used suffer from important biases, due to the inclusion of trees with no duplication nodes, to the relative age of speciations and duplications, to systematic differences in branch lengths, and to non-Brownian motion of tissue specificity on many trees. We find that incorrect implementation of phylogenetic method in empirical gene trees with duplications can be problematic. Controlling for biases allows successful use of phylogenetic methods to study the evolution of gene function and provides some support for the ortholog conjecture using three different phylogenetic approaches.
Collapse
Affiliation(s)
- Tina Begum
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
29
|
Onodera W, Asahi T, Sawamura N. Rapid evolution of mammalian APLP1 as a synaptic adhesion molecule. Sci Rep 2021; 11:11305. [PMID: 34050225 PMCID: PMC8163877 DOI: 10.1038/s41598-021-90737-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
Amyloid precursor protein (APP) family members are involved in essential neuronal development including neurite outgrowth, neuronal migration and maturation of synapse and neuromuscular junction. Among the APP gene family members, amyloid precursor-like protein 1 (APLP1) is selectively expressed in neurons and has specialized functions during synaptogenesis. Although a potential role for APLP1 in neuronal evolution has been indicated, its precise evolutionary and functional contributions are unknown. This study shows the molecular evolution of the vertebrate APP family based on phylogenetic analysis, while contrasting the evolutionary differences within the APP family. Phylogenetic analysis showed 15 times higher substitution rate that is driven by positive selection at the stem branch of the mammalian APLP1, resulting in dissimilar protein sequences compared to APP/APLP2. Docking simulation identified one positively selected site in APLP1 that alters the heparin-binding site, which could affect its function, and dimerization rate. Furthermore, the evolutionary rate covariation between the mammalian APP family and synaptic adhesion molecules (SAMs) was confirmed, indicating that only APLP1 has evolved to gain synaptic adhesion property. Overall, our results suggest that the enhanced synaptogenesis property of APLP1 as one of the SAMs may have played a role in mammalian brain evolution.
Collapse
Affiliation(s)
- Wataru Onodera
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan.,Research Organization for Nano & Life Innovation, Waseda University, #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan
| | - Naoya Sawamura
- Research Organization for Nano & Life Innovation, Waseda University, #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan. .,Green Computing Systems Research Organization, Waseda University, Shinjuku, Japan.
| |
Collapse
|
30
|
Fernández R, Marcet-Houben M, Legeai F, Richard G, Robin S, Wucher V, Pegueroles C, Gabaldón T, Tagu D. Selection following Gene Duplication Shapes Recent Genome Evolution in the Pea Aphid Acyrthosiphon pisum. Mol Biol Evol 2021; 37:2601-2615. [PMID: 32359152 PMCID: PMC7475028 DOI: 10.1093/molbev/msaa110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ecology of insects is as wide as their diversity, which reflects their high capacity of adaptation in most of the environments of our planet. Aphids, with over 4,000 species, have developed a series of adaptations including a high phenotypic plasticity and the ability to feed on the phloem sap of plants, which is enriched in sugars derived from photosynthesis. Recent analyses of aphid genomes have indicated a high level of shared ancestral gene duplications that might represent a basis for genetic innovation and broad adaptations. In addition, there are a large number of recent, species-specific gene duplications whose role in adaptation remains poorly understood. Here, we tested whether duplicates specific to the pea aphid Acyrthosiphon pisum are related to genomic innovation by combining comparative genomics, transcriptomics, and chromatin accessibility analyses. Consistent with large levels of neofunctionalization, we found that most of the recent pairs of gene duplicates evolved asymmetrically, showing divergent patterns of positive selection and gene expression. Genes under selection involved a plethora of biological functions, suggesting that neofunctionalization and tissue specificity, among other evolutionary mechanisms, have orchestrated the evolution of recent paralogs in the pea aphid and may have facilitated host-symbiont cooperation. Our comprehensive phylogenomics analysis allowed us to tackle the history of duplicated genes to pave the road toward understanding the role of gene duplication in ecological adaptation.
Collapse
Affiliation(s)
- Rosa Fernández
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Animal Biodiversity and Evolution, Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.,Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
| | - Fabrice Legeai
- IGEPP, INRAE, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France.,INRIA, IRISA, Genscale, Campus Beaulieu, Rennes, France
| | - Gautier Richard
- IGEPP, INRAE, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Stéphanie Robin
- IGEPP, INRAE, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France.,INRIA, IRISA, GenOuest Core Facility, Campus Beaulieu, Rennes, France
| | - Valentin Wucher
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Cinta Pegueroles
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.,Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
| | - Denis Tagu
- IGEPP, INRAE, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| |
Collapse
|
31
|
Zhong X, Lundberg M, Råberg L. Divergence in Coding Sequence and Expression of Different Functional Categories of Immune Genes between Two Wild Rodent Species. Genome Biol Evol 2021; 13:6132239. [PMID: 33565592 PMCID: PMC7936018 DOI: 10.1093/gbe/evab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Differences in immune function between species could be a result of interspecific divergence in coding sequence and/or expression of immune genes. Here, we investigate how the degree of divergence in coding sequence and expression differs between functional categories of immune genes, and if differences between categories occur independently of other factors (expression level, pleiotropy). To this end, we compared spleen transcriptomes of wild-caught yellow-necked mice and bank voles. Immune genes expressed in the spleen were divided into four categories depending on the function of the encoded protein: pattern recognition receptors (PRR); signal transduction proteins; transcription factors; and cyto- and chemokines and their receptors. Genes encoding PRR and cyto-/chemokines had higher sequence divergence than genes encoding signal transduction proteins and transcription factors, even when controlling for potentially confounding factors. Genes encoding PRR also had higher expression divergence than genes encoding signal transduction proteins and transcription factors. There was a positive correlation between expression divergence and coding sequence divergence, in particular for PRR genes. We propose that this is a result of that divergence in PRR coding sequence leads to divergence in PRR expression through positive feedback of PRR ligand binding on PRR expression. When controlling for sequence divergence, expression divergence of PRR genes did not differ from other categories. Taken together, the results indicate that coding sequence divergence of PRR genes is a major cause of differences in immune function between species.
Collapse
Affiliation(s)
| | | | - Lars Råberg
- Department of Biology, Lund University, Sweden
| |
Collapse
|
32
|
Hua Z. Diverse Evolution in 111 Plant Genomes Reveals Purifying and Dosage Balancing Selection Models for F-Box Genes. Int J Mol Sci 2021; 22:E871. [PMID: 33467195 PMCID: PMC7829749 DOI: 10.3390/ijms22020871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
The F-box proteins function as substrate receptors to determine the specificity of Skp1-Cul1-F-box ubiquitin ligases. Genomic studies revealed large and diverse sizes of the F-box gene superfamily across plant species. Our previous studies suggested that the plant F-box gene superfamily is under genomic drift evolution promoted by epigenomic programming. However, how the size of the superfamily drifts across plant genomes is currently unknown. Through a large-scale genomic and phylogenetic comparison of the F-box gene superfamily covering 110 green plants and one red algal species, I discovered four distinct groups of plant F-box genes with diverse evolutionary processes. While the members in Clusters 1 and 2 are species/lineage-specific, those in Clusters 3 and 4 are present in over 46 plant genomes. Statistical modeling suggests that F-box genes from the former two groups are skewed toward fewer species and more paralogs compared to those of the latter two groups whose presence frequency and sizes in plant genomes follow a random statistical model. The enrichment of known Arabidopsis F-box genes in Clusters 3 and 4, along with comprehensive biochemical evidence showing that Arabidopsis members in Cluster 4 interact with the Arabidopsis Skp1-like 1 (ASK1), demonstrates over-representation of active F-box genes in these two groups. Collectively, I propose purifying and dosage balancing selection models to explain the lineage/species-specific duplications and expansions of F-box genes in plant genomes. The purifying selection model suggests that most, if not all, lineage/species-specific F-box genes are detrimental and are thus kept at low frequencies in plant genomes.
Collapse
Affiliation(s)
- Zhihua Hua
- Interdisciplinary Program in Molecular and Cellular Biology, Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
33
|
Leclère L, Nir TS, Bazarsky M, Braitbard M, Schneidman-Duhovny D, Gat U. Dynamic Evolution of the Cthrc1 Genes, a Newly Defined Collagen-Like Family. Genome Biol Evol 2020; 12:3957-3970. [PMID: 32022859 PMCID: PMC7058181 DOI: 10.1093/gbe/evaa020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Collagen triple helix repeat containing protein 1 (Cthrc1) is a secreted glycoprotein reported to regulate collagen deposition and to be linked to the Transforming growth factor β/Bone morphogenetic protein and the Wnt/planar cell polarity pathways. It was first identified as being induced upon injury to rat arteries and was found to be highly expressed in multiple human cancer types. Here, we explore the phylogenetic and evolutionary trends of this metazoan gene family, previously studied only in vertebrates. We identify Cthrc1 orthologs in two distant cnidarian species, the sea anemone Nematostella vectensis and the hydrozoan Clytia hemisphaerica, both of which harbor multiple copies of this gene. We find that Cthrc1 clade-specific diversification occurred multiple times in cnidarians as well as in most metazoan clades where we detected this gene. Many other groups, such as arthropods and nematodes, have entirely lost this gene family. Most vertebrates display a single highly conserved gene, and we show that the sequence evolutionary rate of Cthrc1 drastically decreased within the gnathostome lineage. Interestingly, this reduction coincided with the origin of its conserved upstream neighboring gene, Frizzled 6 (FZD6), which in mice has been shown to functionally interact with Cthrc1. Structural modeling methods further reveal that the yet uncharacterized C-terminal domain of Cthrc1 is similar in structure to the globular C1q superfamily domain, also found in the C-termini of collagens VIII and X. Thus, our studies show that the Cthrc1 genes are a collagen-like family with a variable short collagen triple helix domain and a highly conserved C-terminal domain structure resembling the C1q family.
Collapse
Affiliation(s)
- Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Tal S Nir
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Michael Bazarsky
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Merav Braitbard
- Department of Biochemistry, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- Department of Biochemistry, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel.,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Uri Gat
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
34
|
Alvarez-Ponce D. Richard Dickerson, Molecular Clocks, and Rates of Protein Evolution. J Mol Evol 2020; 89:122-126. [PMID: 33205299 DOI: 10.1007/s00239-020-09973-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/07/2020] [Indexed: 12/29/2022]
Abstract
Proteins approximately behave as molecular clocks, accumulating amino acid replacements at a more or less constant rate. Nonetheless, each protein displays a characteristic rate of evolution: whereas some proteins remain largely unaltered over large periods of time, others can rapidly accumulate amino acid replacements. An article by Richard Dickerson, published in the first issue of the Journal of Molecular Evolution (J Mol Evol 1:26-45, 1971), described the first analysis in which the rates of evolution of many proteins were compared, and the differences were interpreted in the light of their function. When comparing the sequences of fibrinopeptides, hemoglobin, and cytochrome c of different species, he observed a linear relationship between the number of amino acid replacements and divergence time. Remarkably, fibrinopeptides had evolved fast, cytochrome c had evolved slowly, and hemoglobin exhibited an intermediate rate of evolution. As the Journal of Molecular Evolution celebrates its 50th anniversary, I highlight this landmark article and reflect on its impact on the field of Molecular Evolution.
Collapse
Affiliation(s)
- David Alvarez-Ponce
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557, USA.
| |
Collapse
|
35
|
Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, Xie D, Chen G, Guo C, Faircloth BC, Petersen B, Wang Z, Zhou Q, Diekhans M, Chen W, Andreu-Sánchez S, Margaryan A, Howard JT, Parent C, Pacheco G, Sinding MHS, Puetz L, Cavill E, Ribeiro ÂM, Eckhart L, Fjeldså J, Hosner PA, Brumfield RT, Christidis L, Bertelsen MF, Sicheritz-Ponten T, Tietze DT, Robertson BC, Song G, Borgia G, Claramunt S, Lovette IJ, Cowen SJ, Njoroge P, Dumbacher JP, Ryder OA, Fuchs J, Bunce M, Burt DW, Cracraft J, Meng G, Hackett SJ, Ryan PG, Jønsson KA, Jamieson IG, da Fonseca RR, Braun EL, Houde P, Mirarab S, Suh A, Hansson B, Ponnikas S, Sigeman H, Stervander M, Frandsen PB, van der Zwan H, van der Sluis R, Visser C, Balakrishnan CN, Clark AG, Fitzpatrick JW, Bowman R, Chen N, Cloutier A, Sackton TB, Edwards SV, Foote DJ, Shakya SB, Sheldon FH, Vignal A, Soares AER, Shapiro B, González-Solís J, Ferrer-Obiol J, Rozas J, Riutort M, Tigano A, Friesen V, Dalén L, Urrutia AO, Székely T, Liu Y, Campana MG, Corvelo A, Fleischer RC, Rutherford KM, Gemmell NJ, Dussex N, Mouritsen H, Thiele N, Delmore K, Liedvogel M, Franke A, Hoeppner MP, Krone O, Fudickar AM, Milá B, Ketterson ED, Fidler AE, Friis G, Parody-Merino ÁM, Battley PF, Cox MP, Lima NCB, Prosdocimi F, Parchman TL, Schlinger BA, Loiselle BA, Blake JG, Lim HC, Day LB, Fuxjager MJ, Baldwin MW, Braun MJ, Wirthlin M, Dikow RB, Ryder TB, Camenisch G, Keller LF, DaCosta JM, Hauber ME, Louder MIM, Witt CC, McGuire JA, Mudge J, Megna LC, Carling MD, Wang B, Taylor SA, Del-Rio G, Aleixo A, Vasconcelos ATR, Mello CV, Weir JT, Haussler D, Li Q, Yang H, Wang J, Lei F, Rahbek C, Gilbert MTP, Graves GR, Jarvis ED, Paten B, Zhang G. Dense sampling of bird diversity increases power of comparative genomics. Nature 2020; 587:252-257. [PMID: 33177665 PMCID: PMC7759463 DOI: 10.1038/s41586-020-2873-9] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.
Collapse
Affiliation(s)
- Shaohong Feng
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- BGI-Shenzhen, Shenzhen, China
| | - Josefin Stiller
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Deng
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joel Armstrong
- UC Santa Cruz Genomics Institute, UC Santa Cruz, Santa Cruz, CA, USA
| | - Qi Fang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Hart Reeve
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Duo Xie
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Guangji Chen
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Chunxue Guo
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Brant C Faircloth
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Bent Petersen
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zongji Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- MOE Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, UC Santa Cruz, Santa Cruz, CA, USA
| | - Wanjun Chen
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Sergio Andreu-Sánchez
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ashot Margaryan
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | | | | | - George Pacheco
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Holger S Sinding
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lara Puetz
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emily Cavill
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ângela M Ribeiro
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Jon Fjeldså
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Peter A Hosner
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robb T Brumfield
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Les Christidis
- Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Thomas Sicheritz-Ponten
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Gerald Borgia
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Santiago Claramunt
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Irby J Lovette
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - Saul J Cowen
- Biodiversity and Conservation Science, Department of Biodiversity Conservation and Attractions, Perth, Western Australia, Australia
| | - Peter Njoroge
- Ornithology Section, Zoology Department, National Museums of Kenya, Nairobi, Kenya
| | | | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
- Evolution, Behavior, and Ecology, Division of Biology, University of California San Diego, La Jolla, CA, USA
| | - Jérôme Fuchs
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Western Australia, Perth, Australia
| | - David W Burt
- UQ Genomics, University of Queensland, Brisbane, Queensland, Australia
| | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| | | | - Shannon J Hackett
- Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Peter G Ryan
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
| | - Knud Andreas Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ian G Jamieson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Rute R da Fonseca
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Peter Houde
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Alexander Suh
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Suvi Ponnikas
- Department of Biology, Lund University, Lund, Sweden
| | - Hanna Sigeman
- Department of Biology, Lund University, Lund, Sweden
| | - Martin Stervander
- Department of Biology, Lund University, Lund, Sweden
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC, USA
| | | | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Carina Visser
- Department of Animal Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | - Reed Bowman
- Avian Ecology Program, Archbold Biological Station, Venus, FL, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Alison Cloutier
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | | | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Dustin J Foote
- Department of Biology, East Carolina University, Greenville, NC, USA
- Sylvan Heights Bird Park, Scotland Neck, NC, USA
| | - Subir B Shakya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Frederick H Sheldon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Alain Vignal
- GenPhySE, INRA, INPT, INP-ENVT, Université de Toulouse, Castanet-Tolosan, France
| | - André E R Soares
- Laboratório Nacional de Computação Científica, Petrópolis, Brazil
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona, Barcelona, Spain
| | - Joan Ferrer-Obiol
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Julio Rozas
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Marta Riutort
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Anna Tigano
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Vicki Friesen
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Araxi O Urrutia
- Milner Centre for Evolution, University of Bath, Bath, UK
- Instituto de Ecologia, UNAM, Mexico City, Mexico
| | - Tamás Székely
- Milner Centre for Evolution, University of Bath, Bath, UK
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Michael G Campana
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA
| | | | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA
| | - Kim M Rutherford
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Nicolas Dussex
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Henrik Mouritsen
- AG Neurosensory Sciences, Institut für Biologie und Umweltwissenschaften, University of Oldenburg, Oldenburg, Germany
| | - Nadine Thiele
- AG Neurosensory Sciences, Institut für Biologie und Umweltwissenschaften, University of Oldenburg, Oldenburg, Germany
| | - Kira Delmore
- Biology Department, Texas A&M University, College Station, TX, USA
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Miriam Liedvogel
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Oliver Krone
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Adam M Fudickar
- Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
| | - Borja Milá
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | | | - Andrew Eric Fidler
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Guillermo Friis
- Center for Genomics and Systems Biology, Department of Biology, New York University - Abu Dhabi, Abu Dhabi, UAE
| | | | - Phil F Battley
- Wildlife and Ecology Group, Massey University, Palmerston North, New Zealand
| | - Murray P Cox
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Nicholas Costa Barroso Lima
- Laboratório Nacional de Computação Científica, Petrópolis, Brazil
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, Brazil
| | | | - Barney A Schlinger
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Bette A Loiselle
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
- Center for Latin American Studies, University of Florida, Gainesville, FL, USA
| | - John G Blake
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Haw Chuan Lim
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Lainy B Day
- Department of Biology and Neuroscience Minor, University of Mississippi, University, MS, USA
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | | | - Michael J Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, MD, USA
| | - Morgan Wirthlin
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rebecca B Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC, USA
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, DC, USA
| | - Glauco Camenisch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew I M Louder
- Department of Biology, East Carolina University, Greenville, NC, USA
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- International Research Center for Neurointelligence, University of Tokyo, Tokyo, Japan
| | - Christopher C Witt
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology, Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Libby C Megna
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Matthew D Carling
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Biao Wang
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Glaucia Del-Rio
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Alexandre Aleixo
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | | | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Jason T Weir
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - David Haussler
- UC Santa Cruz Genomics Institute, UC Santa Cruz, Santa Cruz, CA, USA
| | - Qiye Li
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | | | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
- Institute of Ecology, Peking University, Beijing, China
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gary R Graves
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Erich D Jarvis
- Duke University Medical Center, Durham, NC, USA
- The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, UC Santa Cruz, Santa Cruz, CA, USA.
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
36
|
Zeng X, Sheng J, Zhu F, Wei T, Zhao L, Hu X, Zheng X, Zhou F, Hu Z, Diao Y, Jin S. Genetic, transcriptional, and regulatory landscape of monolignol biosynthesis pathway in Miscanthus × giganteus. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:179. [PMID: 33117433 PMCID: PMC7590476 DOI: 10.1186/s13068-020-01819-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Miscanthus × giganteus is widely recognized as a promising lignocellulosic biomass crop due to its advantages of high biomass production, low environmental impacts, and the potential to be cultivated on marginal land. However, the high costs of bioethanol production still limit the current commercialization of lignocellulosic bioethanol. The lignin in the cell wall and its by-products released in the pretreatment step is the main component inhibiting the enzymatic reactions in the saccharification and fermentation processes. Hence, genetic modification of the genes involved in lignin biosynthesis could be a feasible strategy to overcome this barrier by manipulating the lignin content and composition of M. × giganteus. For this purpose, the essential knowledge of these genes and understanding the underlying regulatory mechanisms in M. × giganteus is required. RESULTS In this study, MgPAL1, MgPAL5, Mg4CL1, Mg4CL3, MgHCT1, MgHCT2, MgC3'H1, MgCCoAOMT1, MgCCoAOMT3, MgCCR1, MgCCR2, MgF5H, MgCOMT, and MgCAD were identified as the major monolignol biosynthetic genes in M. × giganteus based on genetic and transcriptional evidence. Among them, 12 genes were cloned and sequenced. By combining transcription factor binding site prediction and expression correlation analysis, MYB46, MYB61, MYB63, WRKY24, WRKY35, WRKY12, ERF021, ERF058, and ERF017 were inferred to regulate the expression of these genes directly. On the basis of these results, an integrated model was summarized to depict the monolignol biosynthesis pathway and the underlying regulatory mechanism in M. × giganteus. CONCLUSIONS This study provides a list of potential gene targets for genetic improvement of lignocellulosic biomass quality of M. × giganteus, and reveals the genetic, transcriptional, and regulatory landscape of the monolignol biosynthesis pathway in M. × giganteus.
Collapse
Affiliation(s)
- Xiaofei Zeng
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 People’s Republic of China
| | - Jiajing Sheng
- School of Life Sciences, Nantong University, Nantong, 226019 People’s Republic of China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Fenglin Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Tianzi Wei
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 People’s Republic of China
| | - Lingling Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Xiaohu Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Xingfei Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Fasong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Ying Diao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Surong Jin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
37
|
Recurrent sequence evolution after independent gene duplication. BMC Evol Biol 2020; 20:98. [PMID: 32770961 PMCID: PMC7414715 DOI: 10.1186/s12862-020-01660-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background Convergent and parallel evolution provide unique insights into the mechanisms of natural selection. Some of the most striking convergent and parallel (collectively recurrent) amino acid substitutions in proteins are adaptive, but there are also many that are selectively neutral. Accordingly, genome-wide assessment has shown that recurrent sequence evolution in orthologs is chiefly explained by nearly neutral evolution. For paralogs, more frequent functional change is expected because additional copies are generally not retained if they do not acquire their own niche. Yet, it is unknown to what extent recurrent sequence differentiation is discernible after independent gene duplications in different eukaryotic taxa. Results We develop a framework that detects patterns of recurrent sequence evolution in duplicated genes. This is used to analyze the genomes of 90 diverse eukaryotes. We find a remarkable number of families with a potentially predictable functional differentiation following gene duplication. In some protein families, more than ten independent duplications show a similar sequence-level differentiation between paralogs. Based on further analysis, the sequence divergence is found to be generally asymmetric. Moreover, about 6% of the recurrent sequence evolution between paralog pairs can be attributed to recurrent differentiation of subcellular localization. Finally, we reveal the specific recurrent patterns for the gene families Hint1/Hint2, Sco1/Sco2 and vma11/vma3. Conclusions The presented methodology provides a means to study the biochemical underpinning of functional differentiation between paralogs. For instance, two abundantly repeated substitutions are identified between independently derived Sco1 and Sco2 paralogs. Such identified substitutions allow direct experimental testing of the biological role of these residues for the repeated functional differentiation. We also uncover a diverse set of families with recurrent sequence evolution and reveal trends in the functional and evolutionary trajectories of this hitherto understudied phenomenon.
Collapse
|
38
|
Martínez-Vicente P, Farré D, Engel P, Angulo A. Divergent Traits and Ligand-Binding Properties of the Cytomegalovirus CD48 Gene Family. Viruses 2020; 12:v12080813. [PMID: 32731344 PMCID: PMC7472110 DOI: 10.3390/v12080813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022] Open
Abstract
The genesis of gene families by the capture of host genes and their subsequent duplication is a crucial process in the evolution of large DNA viruses. CD48 is a cell surface molecule that interacts via its N-terminal immunoglobulin (Ig) domain with the cell surface receptor 2B4 (CD244), regulating leukocyte cytotoxicity. We previously reported the presence of five CD48 homologs (vCD48s) in two related cytomegaloviruses, and demonstrated that one of them, A43, binds 2B4 and acts as a soluble CD48 decoy receptor impairing NK cell function. Here, we have characterized the rest of these vCD48s. We show that they are highly glycosylated proteins that display remarkably distinct features: divergent biochemical properties, cellular locations, and temporal expression kinetics. In contrast to A43, none of them interacts with 2B4. Consistent with this, molecular modeling of the N-terminal Ig domains of these vCD48s evidences notable changes as compared to CD48, suggesting that they interact with alternative targets. Accordingly, we demonstrate that one of them, S30, tightly binds CD2, a crucial T- and NK-cell adhesion and costimulatory molecule. Thus, our findings show how a key host immune receptor gene captured by a virus can be subsequently remodeled to evolve new immunoevasins with altered binding properties.
Collapse
Affiliation(s)
- Pablo Martínez-Vicente
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (D.F.); (P.E.)
- Correspondence: (P.M.-V.); (A.A.)
| | - Domènec Farré
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (D.F.); (P.E.)
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (D.F.); (P.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (D.F.); (P.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
- Correspondence: (P.M.-V.); (A.A.)
| |
Collapse
|
39
|
Monihan SM, Magness CA, Ryu CH, McMahon MM, Beilstein MA, Schumaker KS. Duplication and functional divergence of a calcium sensor in the Brassicaceae. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2782-2795. [PMID: 31989164 PMCID: PMC7210777 DOI: 10.1093/jxb/eraa031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/27/2020] [Indexed: 05/09/2023]
Abstract
The presence of varied numbers of CALCINEURIN B-LIKE10 (CBL10) calcium sensor genes in species across the Brassicaceae and the demonstrated role of CBL10 in salt tolerance in Arabidopsis thaliana and Eutrema salsugineum provided a unique opportunity to determine if CBL10 function is modified in different species and linked to salt tolerance. Salinity effects on species growth and cross-species complementation were used to determine the extent of conservation and divergence of CBL10 function in four species representing major lineages within the core Brassicaceae (A. thaliana, E. salsugineum, Schrenkiella parvula, and Sisymbrium irio) as well as the first diverging lineage (Aethionema arabicum). Evolutionary and functional analyses indicate that CBL10 duplicated within expanded lineage II of the Brassicaceae and that, while portions of CBL10 function are conserved across the family, there are species-specific variations in CBL10 function. Paralogous CBL10 genes within a species diverged in expression and function probably contributing to the maintenance of the duplicated gene pairs. Orthologous CBL10 genes diverged in function in a species-specific manner, suggesting that functions arose post-speciation. Multiple CBL10 genes and their functional divergence may have expanded calcium-mediated signaling responses and contributed to the ability of certain members of the Brassicaceae to maintain growth in salt-affected soils.
Collapse
Affiliation(s)
- Shea M Monihan
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Choong-Hwan Ryu
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Mark A Beilstein
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Karen S Schumaker
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
- Correspondence:
| |
Collapse
|
40
|
Alvarez-Ponce D, Aguilar-Rodríguez J, Fares MA. Molecular Chaperones Accelerate the Evolution of Their Protein Clients in Yeast. Genome Biol Evol 2020; 11:2360-2375. [PMID: 31297528 PMCID: PMC6735891 DOI: 10.1093/gbe/evz147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2019] [Indexed: 12/23/2022] Open
Abstract
Protein stability is a major constraint on protein evolution. Molecular chaperones, also known as heat-shock proteins, can relax this constraint and promote protein evolution by diminishing the deleterious effect of mutations on protein stability and folding. This effect, however, has only been stablished for a few chaperones. Here, we use a comprehensive chaperone–protein interaction network to study the effect of all yeast chaperones on the evolution of their protein substrates, that is, their clients. In particular, we analyze how yeast chaperones affect the evolutionary rates of their clients at two very different evolutionary time scales. We first study the effect of chaperone-mediated folding on protein evolution over the evolutionary divergence of Saccharomyces cerevisiae and S. paradoxus. We then test whether yeast chaperones have left a similar signature on the patterns of standing genetic variation found in modern wild and domesticated strains of S. cerevisiae. We find that genes encoding chaperone clients have diverged faster than genes encoding non-client proteins when controlling for their number of protein–protein interactions. We also find that genes encoding client proteins have accumulated more intraspecific genetic diversity than those encoding non-client proteins. In a number of multivariate analyses, controlling by other well-known factors that affect protein evolution, we find that chaperone dependence explains the largest fraction of the observed variance in the rate of evolution at both evolutionary time scales. Chaperones affecting rates of protein evolution mostly belong to two major chaperone families: Hsp70s and Hsp90s. Our analyses show that protein chaperones, by virtue of their ability to buffer destabilizing mutations and their role in modulating protein genotype–phenotype maps, have a considerable accelerating effect on protein evolution.
Collapse
Affiliation(s)
- David Alvarez-Ponce
- Biology Department, University of Nevada, Reno.,Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - José Aguilar-Rodríguez
- Department of Biology, Stanford University, CA.,Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Mario A Fares
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain.,Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Ireland
| |
Collapse
|
41
|
Hunnicutt KE, Tiley GP, Williams RC, Larsen PA, Blanco MB, Rasoloarison RM, Campbell CR, Zhu K, Weisrock DW, Matsunami H, Yoder AD. Comparative Genomic Analysis of the Pheromone Receptor Class 1 Family (V1R) Reveals Extreme Complexity in Mouse Lemurs (Genus, Microcebus) and a Chromosomal Hotspot across Mammals. Genome Biol Evol 2020; 12:3562-3579. [PMID: 31555816 PMCID: PMC6944220 DOI: 10.1093/gbe/evz200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2019] [Indexed: 12/14/2022] Open
Abstract
Sensory gene families are of special interest for both what they can tell us about molecular evolution and what they imply as mediators of social communication. The vomeronasal type-1 receptors (V1Rs) have often been hypothesized as playing a fundamental role in driving or maintaining species boundaries given their likely function as mediators of intraspecific mate choice, particularly in nocturnal mammals. Here, we employ a comparative genomic approach for revealing patterns of V1R evolution within primates, with a special focus on the small-bodied nocturnal mouse and dwarf lemurs of Madagascar (genera Microcebus and Cheirogaleus, respectively). By doubling the existing genomic resources for strepsirrhine primates (i.e. the lemurs and lorises), we find that the highly speciose and morphologically cryptic mouse lemurs have experienced an elaborate proliferation of V1Rs that we argue is functionally related to their capacity for rapid lineage diversification. Contrary to a previous study that found equivalent degrees of V1R diversity in diurnal and nocturnal lemurs, our study finds a strong correlation between nocturnality and V1R elaboration, with nocturnal lemurs showing elaborate V1R repertoires and diurnal lemurs showing less diverse repertoires. Recognized subfamilies among V1Rs show unique signatures of diversifying positive selection, as might be expected if they have each evolved to respond to specific stimuli. Furthermore, a detailed syntenic comparison of mouse lemurs with mouse (genus Mus) and other mammalian outgroups shows that orthologous mammalian subfamilies, predicted to be of ancient origin, tend to cluster in a densely populated region across syntenic chromosomes that we refer to as a V1R "hotspot."
Collapse
Affiliation(s)
- Kelsie E Hunnicutt
- Department of Biology, Duke University, Durham, North Carolina
- Department of Biological Sciences, University of Denver, Denver, Colorado
| | - George P Tiley
- Department of Biology, Duke University, Durham, North Carolina
| | - Rachel C Williams
- Department of Biology, Duke University, Durham, North Carolina
- Duke Lemur Center, Duke University, Durham, North Carolina
| | - Peter A Larsen
- Department of Biology, Duke University, Durham, North Carolina
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | | | - Rodin M Rasoloarison
- Behavioral Ecology and Sociobiology Unit, German Primate Centre, Göttingen, Germany
- Département de Biologie Animale, Université d’Antananarivo, Madagascar, Antananarivo, Madagascar
| | - C Ryan Campbell
- Department of Biology, Duke University, Durham, North Carolina
| | - Kevin Zhu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, Kentucky
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, North Carolina
| |
Collapse
|
42
|
Rödelsperger C, Prabh N, Sommer RJ. New Gene Origin and Deep Taxon Phylogenomics: Opportunities and Challenges. Trends Genet 2019; 35:914-922. [DOI: 10.1016/j.tig.2019.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/29/2019] [Indexed: 01/22/2023]
|
43
|
Modahl CM, Brahma RK, Koh CY, Shioi N, Kini RM. Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents. Annu Rev Anim Biosci 2019; 8:91-116. [PMID: 31702940 DOI: 10.1146/annurev-animal-021419-083626] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Snake venoms are primarily composed of proteins and peptides, and these toxins have developed high selectivity to their biological targets. This makes venoms interesting for exploration into protein evolution and structure-function relationships. A single venom protein superfamily can exhibit a variety of pharmacological effects; these variations in activity originate from differences in functional sites, domains, posttranslational modifications, and the formations of toxin complexes. In this review, we discuss examples of how the major venom protein superfamilies have diversified, as well as how newer technologies in the omics fields, such as genomics, transcriptomics, and proteomics, can be used to characterize both known and unknown toxins.Because toxins are bioactive molecules with a rich diversity of activities, they can be useful as therapeutic and diagnostic agents, and successful examples of toxin applications in these areas are also reviewed. With the current rapid pace of technology, snake venom research and its applications will only continue to expand.
Collapse
Affiliation(s)
- Cassandra M Modahl
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| | - Rajeev Kungur Brahma
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077;
| | - Narumi Shioi
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , , .,Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan;
| | - R Manjunatha Kini
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| |
Collapse
|
44
|
Wu B, Cox MP. Greater genetic and regulatory plasticity of retained duplicates in Epichloë endophytic fungi. Mol Ecol 2019; 28:5103-5114. [PMID: 31614039 PMCID: PMC7004115 DOI: 10.1111/mec.15275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022]
Abstract
Gene duplicates can act as a source of genetic material from which new functions arise. Most duplicated genes revert to single copy genes and only a small proportion are retained. However, it remains unclear why some duplicate genes persist in the genome for an extended time. We investigate this question by analysing retained gene duplicates in the fungal genus Epichloë, ascomycete fungi that form close endophytic symbioses with their host grasses. Retained duplicates within this genus have two independent origins, but both long pre-date the origin and diversification of the genus Epichloë. We find that loss of retained duplicates within the genus is frequent and often associated with speciation. Retained duplicates have faster evolutionary rates (Ka) and show relaxed selection (Ka/Ks) compared to single copy genes. Both features are time-dependent. Through comparison of conspecific strains, we find greater evolutionary rates in coding regions and sequence divergence in regulatory regions of retained duplicates than single copy genes, with this pattern more pronounced for strains adapted to different grass host species. Consistent with this sequence divergence in regulatory regions, transcriptome analyses show greater expression variation of retained duplicates than single copy genes. This suggest that cis-regulatory changes make important contributions to the expression patterns of retained duplicates. Coupled with supporting observations from the model yeast Saccharomyces cerevisiae, these data suggest that genetic robustness and regulatory plasticity are common drivers behind the retention of duplicated genes in fungi.
Collapse
Affiliation(s)
- Baojun Wu
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
45
|
Gangele K, Jamsandekar M, Mishra A, Poluri KM. Unraveling the evolutionary origin of ELR motif using fish CXC chemokine CXCL8. FISH & SHELLFISH IMMUNOLOGY 2019; 93:17-27. [PMID: 31310848 DOI: 10.1016/j.fsi.2019.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 05/19/2023]
Abstract
Chemokines are chemotactic proteins involved in host defense through the migration of immune-regulatory cells to the site of infection. Interleukin-8 (CXCL8/IL8) is the most studied "ELR-CXC chemokine/neutrophil activating chemokine (NAC) that regulate neutrophil trafficking during infections and inflammation by binding to its cognate G-protein coupled receptors CXCR1/CXCR2. The "ELR" motif of NAC chemokines is essential for the CXCR1/CXCR2 receptor activation. In order to understand the evolutionary origin of "ELR" motif in the CXC chemokines, a thorough evolutionary study of CXCL8 gene from various fishes and primates was performed. Phylogenetic analysis revealed that the CXCL8 gene can be classified into four distinct lineages (CXCL8-L1a, CXCL8-L1b, CXCL8-L2, and CXCL8-L3), where CXCL8-L1a is the fastest evolving lineage and CXCL8-L3 is the slowest. Selection analysis suggested that The "ELR/DLR" motif containing branches (gadoid and coelacanth) are positively selected. The probable evolutionary trend of "ELR" motif suggested that this motif in ancestor CXCL8 is evolved from the GGR of Lamprey (Agnatha), followed by duplication giving rise to two main motifs in CXCL8 "NXH" in L3 lineage and "ELR/DLR" in L1a/L1b lineages. Although, structural analysis suggested that the overall topology of the CXCL8 proteins is similar, differences do exist at the individual structural elements among the members of different lineages. Functional distance analysis suggested that the CXCL8-L3 lineage is more distant compared to the CXCL8-L1a and L1b lineages from the inferred ancestor. Functional divergence analysis between different lineages suggested that most of the selected residues are important for receptor or glycosaminoglycan binding. Such a functional diversification can be attributed to the novel set of functions adopted by CXCL8 in various species.
Collapse
Affiliation(s)
- Krishnakant Gangele
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Minal Jamsandekar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
46
|
Hajheidari M, Koncz C, Bucher M. Chromatin Evolution-Key Innovations Underpinning Morphological Complexity. FRONTIERS IN PLANT SCIENCE 2019; 10:454. [PMID: 31031789 PMCID: PMC6474313 DOI: 10.3389/fpls.2019.00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
The history of life consists of a series of major evolutionary transitions, including emergence and radiation of complex multicellular eukaryotes from unicellular ancestors. The cells of multicellular organisms, with few exceptions, contain the same genome, however, their organs are composed of a variety of cell types that differ in both structure and function. This variation is largely due to the transcriptional activity of different sets of genes in different cell types. This indicates that complex transcriptional regulation played a key role in the evolution of complexity in eukaryotes. In this review, we summarize how gene duplication and subsequent evolutionary innovations, including the structural evolution of nucleosomes and chromatin-related factors, contributed to the complexity of the transcriptional system and provided a basis for morphological diversity.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Csaba Koncz
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Biological Research Center, Institute of Plant Biology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
47
|
Joshi R, Heinz A, Fan Q, Guo S, Monia B, Schmelzer CEH, Weiss AS, Batie M, Parameshwaran H, Varisco BM. Role for Cela1 in Postnatal Lung Remodeling and Alpha-1 Antitrypsin-Deficient Emphysema. Am J Respir Cell Mol Biol 2019; 59:167-178. [PMID: 29420065 DOI: 10.1165/rcmb.2017-0361oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency-related emphysema is the fourth leading indication for lung transplant. Chymotrypsin-like elastase 1 (Cela1) is a digestive protease that is expressed during lung development in association with regions of elastin remodeling, exhibits stretch-dependent expression during lung regeneration, and binds lung elastin in a stretch-dependent manner. AAT covalently neutralizes Cela1 in vitro. We sought to determine the role of Cela1 in postnatal lung physiology, whether it interacted with AAT in vivo, and to detect any effects it may have in the context of AAT deficiency. The lungs of Cela1-/- mice had aberrant lung elastin structure and higher elastance as assessed with the flexiVent system. On the basis of in situ zymography with ex vivo lung stretch, Cela1 was solely responsible for stretch-inducible lung elastase activity. By mass spectrometry, Cela1 degraded mature elastin similarly to pancreatic elastase. Cela1 promoter and protein sequences were phylogenetically distinct in the placental mammal lineage, suggesting an adaptive role for lung-expressed Cela1 in this clade. A 6-week antisense oligonucleotide mouse model of AAT deficiency resulted in emphysema with increased Cela1 mRNA and reduction of approximately 70 kD Cela1, consistent with covalent binding of Cela1 by AAT. Cela1-/- mice were completely protected against emphysema in this model. Cela1 was increased in human AAT-deficient emphysema. Cela1 is important in physiologic and pathologic stretch-dependent remodeling processes in the postnatal lung. AAT is an important regulator of this process. Our findings provide proof of concept for the development of anti-Cela1 therapies to prevent and/or treat AAT-deficient emphysema.
Collapse
Affiliation(s)
| | - Andrea Heinz
- 2 Martin Luther University, Halle-Wittenberg, Germany.,3 University of Copenhagen, Copenhagen, Denmark
| | - Qiang Fan
- 1 Division of Critical Care Medicine and
| | - Shuling Guo
- 4 Ionis Pharmaceuticals, La Jolla, California
| | - Brett Monia
- 4 Ionis Pharmaceuticals, La Jolla, California
| | - Christian E H Schmelzer
- 2 Martin Luther University, Halle-Wittenberg, Germany.,5 Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle-Wittenberg, Germany
| | - Anthony S Weiss
- 6 Charles Perkins Centre.,7 Life and Environmental Sciences, and.,8 Bosch Institute, University of Sydney, Sydney, Australia
| | - Matthew Batie
- 9 Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Brian M Varisco
- 1 Division of Critical Care Medicine and.,11 Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
48
|
Abstract
An attractive and long-standing hypothesis regarding the evolution of genes after duplication posits that the duplication event creates new evolutionary possibilities by releasing a copy of the gene from constraint. Apparent support was found in numerous analyses, particularly, the observation of higher rates of evolution in duplicated as compared with singleton genes. Could it, instead, be that more duplicable genes (owing to mutation, fixation, or retention biases) are intrinsically faster evolving? To uncouple the measurement of rates of evolution from the determination of duplicate or singleton status, we measure the rates of evolution in singleton genes in outgroup primate lineages but classify these genes as to whether they have duplicated or not in a crown group of great apes. We find that rates of evolution are higher in duplicable genes prior to the duplication event. In part this is owing to a negative correlation between coding sequence length and rate of evolution, coupled with a bias toward smaller genes being more duplicable. The effect is masked by difference in expression rate between duplicable genes and singletons. Additionally, in contradiction to the classical assumption, we find no convincing evidence for an increase in dN/dS after duplication, nor for rate asymmetry between duplicates. We conclude that high rates of evolution of duplicated genes are not solely a consequence of the duplication event, but are rather a predictor of duplicability. These results are consistent with a model in which successful gene duplication events in mammals are skewed toward events of minimal phenotypic impact.
Collapse
Affiliation(s)
- Áine N O'Toole
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, Somerset, United Kingdom
| | - Aoife McLysaght
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
49
|
Pegueroles C, Iraola-Guzmán S, Chorostecki U, Ksiezopolska E, Saus E, Gabaldón T. Transcriptomic analyses reveal groups of co-expressed, syntenic lncRNAs in four species of the genus Caenorhabditis. RNA Biol 2019; 16:320-329. [PMID: 30691342 PMCID: PMC6380332 DOI: 10.1080/15476286.2019.1572438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 01/13/2019] [Indexed: 01/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a heterogeneous class of genes that do not code for proteins. Since lncRNAs (or a fraction thereof) are expected to be functional, many efforts have been dedicated to catalog lncRNAs in numerous organisms, but our knowledge of lncRNAs in non vertebrate species remains very limited. Here, we annotated lncRNAs using transcriptomic data from the same larval stage of four Caenorhabditis species. The number of annotated lncRNAs in self-fertile nematodes was lower than in out-crossing species. We used a combination of approaches to identify putatively homologous lncRNAs: synteny, sequence conservation, and structural conservation. We classified a total of 1,532 out of 7,635 genes from the four species into families of lncRNAs with conserved synteny and expression at the larval stage, suggesting that a large fraction of the predicted lncRNAs may be species specific. Despite both sequence and local secondary structure seem to be poorly conserved, sequences within families frequently shared BLASTn hits and short sequence motifs, which were more likely to be unpaired in the predicted structures. We provide the first multi-species catalog of lncRNAs in nematodes and identify groups of lncRNAs with conserved synteny and expression, that share exposed motifs.
Collapse
Affiliation(s)
- Cinta Pegueroles
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Uciel Chorostecki
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Ester Saus
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
50
|
Wang L, Ma H, Lin J. Angiosperm-Wide and Family-Level Analyses of AP2/ ERF Genes Reveal Differential Retention and Sequence Divergence After Whole-Genome Duplication. FRONTIERS IN PLANT SCIENCE 2019; 10:196. [PMID: 30863419 PMCID: PMC6399210 DOI: 10.3389/fpls.2019.00196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/05/2019] [Indexed: 05/21/2023]
Abstract
Plants are immobile and often face stressful environmental conditions, prompting the evolution of genes regulating environmental responses. Such evolution is achieved largely through gene duplication and subsequent divergence. One of the most important gene families involved in regulating plant environmental responses and development is the AP2/ERF superfamily; however, the evolutionary history of these genes is unclear across angiosperms and in major angiosperm families adapted to various ecological niches. Specifically, the impact on gene copy number of whole-genome duplication events occurring around the time of the origins of several plant families is unknown. Here, we present the first angiosperm-wide comparative study of AP2/ERF genes, identifying 75 Angiosperm OrthoGroups (AOGs), each derived from an ancestral angiosperm gene copy. Among these AOGs, 21 retain duplicates with increased copy number in many angiosperm lineages, while the remaining 54 AOGs tend to maintain low copy number. Further analyses of multiple species in the Brassicaceae family indicated that family-specific duplicates experienced differential selective pressures in coding regions, with some paralogs showing signs of positive selection. Further, cis regulatory elements also exhibit extensive divergence between duplicates in Arabidopsis. Moreover, comparison of expression levels suggested that AP2/ERF genes with frequently retained duplicates are enriched for broad expression patterns, offering increased opportunities for functional diversification via changes in expression patterns, and providing a mechanism for repeated duplicate retention in some AOGs. Our results represent the most comprehensive evolutionary history of the AP2/ERF gene family, and support the hypothesis that AP2/ERF genes with broader expression patterns are more likely to be retained as duplicates than those with narrower expression profiles, which could lead to a higher chance of duplicate gene subfunctionalization. The greater tendency of some AOGs to retain duplicates, allowing expression and functional divergence, may facilitate the evolution of complex signaling networks in response to new environmental conditions.
Collapse
Affiliation(s)
- Linbo Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Juan Lin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|