1
|
Xu S, Onoda A. PsiPartition: Improved Site Partitioning for Genomic Data by Parameterized Sorting Indices and Bayesian Optimization. J Mol Evol 2024; 92:874-890. [PMID: 39636305 DOI: 10.1007/s00239-024-10215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Phylogenetics has been widely used in molecular biology to infer the evolutionary relationships among species. With the rapid development of sequencing technology, genomic data with thousands of sites become increasingly common in phylogenetic analysis, while heterogeneity among sites arises as one of the major challenges. A single homogeneous model is not sufficient to describe the evolution of all sites and partitioned models are often employed to model the evolution of heterogeneous sites by partitioning them into distinct groups and utilizing distinct evolutionary models for each group. It is crucial to determine the best partitioning, which greatly affects the reconstruction correctness of phylogeny. However, the best partitioning is usually intractable to obtain in practice. Traditional partitioning methods rely on heuristic algorithms or greedy search to determine the best ones in their solution space, are usually time consuming, and with no guarantee of optimality. In this study, we propose a novel partitioning approach, termed PsiPartition, based on the parameterized sorting indices of sites and Bayesian optimization. We apply our method to empirical datasets, and it performs significantly better compared to existing methods, in terms of Bayesian information criterion (BIC) and the corrected Akaike information criterion (AICc). We test PsiPartition on the simulated datasets with different site heterogeneity, alignment lengths, and number of loci. It is demonstrated that PsiPartition evidently and stably outperforms other methods in terms of the Robinson-Foulds (RF) distance between the true simulated trees and the reconstructed trees, especially on the data with more site heterogeneity. More importantly, our proposed Bayesian optimization-based method, for the first time, provides a new general framework to efficiently determine the optimal number of partitions. The corresponding reproducible source code and data are available at http://github.com/xu-shi-jie/PsiPartition .
Collapse
Affiliation(s)
- Shijie Xu
- Graduate School of Environmental Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, 060-0810, Hokkaido, Japan
| | - Akira Onoda
- Graduate School of Environmental Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, 060-0810, Hokkaido, Japan.
- Faculty of Environmental Earth Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, 060-0810, Hokkaido, Japan.
| |
Collapse
|
2
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Dornburg A, Zapfe KL, Williams R, Alfaro ME, Morris R, Adachi H, Flores J, Santini F, Near TJ, Frédérich B. Considering Decoupled Phenotypic Diversification Between Ontogenetic Phases in Macroevolution: An Example Using Triggerfishes (Balistidae). Syst Biol 2024; 73:434-454. [PMID: 38490727 DOI: 10.1093/sysbio/syae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/17/2024] Open
Abstract
Across the Tree of Life, most studies of phenotypic disparity and diversification have been restricted to adult organisms. However, many lineages have distinct ontogenetic phases that differ from their adult forms in morphology and ecology. Focusing disproportionately on the evolution of adult forms unnecessarily hinders our understanding of the pressures shaping evolution over time. Non-adult disparity patterns are particularly important to consider for coastal ray-finned fishes, which can have juvenile phases with distinct phenotypes. These juvenile forms are often associated with sheltered nursery environments, with phenotypic shifts between adults and juvenile stages that are readily apparent in locomotor morphology. Whether this ontogenetic variation in locomotor morphology reflects a decoupling of diversification dynamics between life stages remains unknown. Here we investigate the evolutionary dynamics of locomotor morphology between adult and juvenile triggerfishes. We integrate a time-calibrated phylogenetic framework with geometric morphometric approaches and measurement data of fin aspect ratio and incidence, and reveal a mismatch between morphospace occupancy, the evolution of morphological disparity, and the tempo of trait evolution between life stages. Collectively, our results illuminate how the heterogeneity of morpho-functional adaptations can decouple the mode and tempo of morphological diversification between ontogenetic stages.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Katerina L Zapfe
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Rachel Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UR, UK
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Richard Morris
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - Haruka Adachi
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - Joseph Flores
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - Francesco Santini
- Associazione Italiana per lo Studio della Biodiversità, Pisa 56100, Italy
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Bruno Frédérich
- Laboratory of Evolutionary Ecology, FOCUS, University of Liège, Quartier AGORA, Allée du six Août 11 (B6c), 4000 Liège, Belgium
| |
Collapse
|
4
|
Sharma S, Kumar S. Discovering Fragile Clades and Causal Sequences in Phylogenomics by Evolutionary Sparse Learning. Mol Biol Evol 2024; 41:msae131. [PMID: 38916040 PMCID: PMC11247346 DOI: 10.1093/molbev/msae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
Phylogenomic analyses of long sequences, consisting of many genes and genomic segments, reconstruct organismal relationships with high statistical confidence. But, inferred relationships can be sensitive to excluding just a few sequences. Currently, there is no direct way to identify fragile relationships and the associated individual gene sequences in species. Here, we introduce novel metrics for gene-species sequence concordance and clade probability derived from evolutionary sparse learning models. We validated these metrics using fungi, plant, and animal phylogenomic datasets, highlighting the ability of the new metrics to pinpoint fragile clades and the sequences responsible. The new approach does not necessitate the investigation of alternative phylogenetic hypotheses, substitution models, or repeated data subset analyses. Our methodology offers a streamlined approach to evaluating major inferred clades and identifying sequences that may distort reconstructed phylogenies using large datasets.
Collapse
Affiliation(s)
- Sudip Sharma
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
5
|
Weck BC, Santodomingo A, Serpa MCA, de Oliveira GM, Jorge FR, Muñoz-Leal S, Labruna MB. Isolation and molecular characterization of a novel relapsing fever group Borrelia from the white-eared opossum Didelphis albiventris in Brazil. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100193. [PMID: 39041050 PMCID: PMC11261286 DOI: 10.1016/j.crpvbd.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024]
Abstract
This study aimed to detect, isolate and to characterize by molecular methods a relapsing fever group (RFG) Borrelia in white-eared opossums (Didelphis albiventris) from Brazil. During 2015-2018, when opossums (Didelphis spp.) were captured in six municipalities of the state of São Paulo, Brazil, molecular analyses revealed the presence of a novel RFG Borrelia sp. in the blood of seven opossums (Didelphis albiventris), out of 142 sampled opossums (4.9% infection rate). All seven infected opossums were from a single location (Ribeirão Preto municipality). In a subsequent field study in Ribeirão Preto during 2021, two new opossums (D. albiventris) were captured, of which one contained borrelial DNA in its blood. Macerated tissues from this infected opossum were inoculated into laboratory animals (rodents and rabbits) and two big-eared opossums (Didelphis aurita), which had blood samples examined daily via dark-field microscopy. No spirochetes were visualized in the blood of the laboratory animals. Contrastingly, spirochetes were visualized in the blood of the two D. aurita opossums between 12 and 25 days after inoculation. Blood samples from these opossums were used for a multi-locus sequencing typing (MLST) based on six borrelial loci. Phylogenies inferred from MLST genes positioned the sequenced Borrelia genotype into the RFG borreliae clade basally to borreliae of the Asian-African group, forming a monophyletic group with another Brazilian isolate, "Candidatus B. caatinga". Based on this concatenated phylogenetic analysis, which supports that the new borrelial isolate corresponds to a putative new species, we propose the name "Candidatus Borrelia mimona".
Collapse
Affiliation(s)
- Barbara C. Weck
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva 87, São Paulo, SP, 05508-270, Brazil
| | - Adriana Santodomingo
- Department of Animal Science, Faculty of Veterinary Sciences, University of Concepción, Chillán, Ñuble, Chile
| | - Maria Carolina A. Serpa
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva 87, São Paulo, SP, 05508-270, Brazil
| | - Glauber M.B. de Oliveira
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva 87, São Paulo, SP, 05508-270, Brazil
| | - Felipe R. Jorge
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva 87, São Paulo, SP, 05508-270, Brazil
| | - Sebastián Muñoz-Leal
- Department of Animal Science, Faculty of Veterinary Sciences, University of Concepción, Chillán, Ñuble, Chile
| | - Marcelo B. Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva 87, São Paulo, SP, 05508-270, Brazil
| |
Collapse
|
6
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Plastid phylogenomics and cytonuclear discordance in Rubioideae, Rubiaceae. PLoS One 2024; 19:e0302365. [PMID: 38768140 PMCID: PMC11104678 DOI: 10.1371/journal.pone.0302365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
In this study of evolutionary relationships in the subfamily Rubioideae (Rubiaceae), we take advantage of the off-target proportion of reads generated via previous target capture sequencing projects based on nuclear genomic data to build a plastome phylogeny and investigate cytonuclear discordance. The assembly of off-target reads resulted in a comprehensive plastome dataset and robust inference of phylogenetic relationships, where most intratribal and intertribal relationships are resolved with strong support. While the phylogenetic results were mostly in agreement with previous studies based on plastome data, novel relationships in the plastid perspective were also detected. For example, our analyses of plastome data provide strong support for the SCOUT clade and its sister relationship to the remaining members of the subfamily, which differs from previous results based on plastid data but agrees with recent results based on nuclear genomic data. However, several instances of highly supported cytonuclear discordance were identified across the Rubioideae phylogeny. Coalescent simulation analysis indicates that while ILS could, by itself, explain the majority of the discordant relationships, plastome introgression may be the better explanation in some cases. Our study further indicates that plastomes across the Rubioideae are, with few exceptions, highly conserved and mainly conform to the structure, gene content, and gene order present in the majority of the flowering plants.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| |
Collapse
|
7
|
Santodomingo A, Thomas R, Thompson M, Robbiano S, Espinoza P, Muñoz-Leal S. Experimental transmission of a novel relapsing fever group Borrelia harbored by Ornithodoros octodontus (Ixodida: Argasidae) in Chile. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:241-252. [PMID: 38321309 DOI: 10.1007/s10493-023-00881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024]
Abstract
Tick-borne relapsing fever spirochetes of genus Borrelia thrive in enzootic cycles involving Ornithodoros spp. (Argasidae) mainly, and rodents. The isolation of these spirochetes usually involves a murine model in which ticks are fed and the spirochetes detected in blood several days later. Such an experiment also demonstrates that a given species of tick is competent in the transmission of the bacteria. Here, soft ticks Ornithodoros octodontus were collected in Northern Chile with the objective to experimentally determine its capacity to transmit a Borrelia sp. detected in a previous study. Two Guinea pigs (Cavia porcellus) were used to feed nymphs and adults of O. octodontus and the spirochetes in blood were inspected by dark-field microscopy and nested PCR. Although spirochetes were not seen in blood, DNA was detected in only one animal 11 days after the ticks were fed. Genetic sequences of Borrelia flaB, clpX, pepX, recG, rplB, and uvrA genes retrieved from DNA extraction of positive blood were employed to construct two phylogenetic analyses. On the one hand, the flaB tree showed the Borrelia sp. transmitted by O. octodontus clustering with Borrelia sp. Alcohuaz, which was previously detected in that same tick species. On the other hand, concatenated clpX-pepX-recG-rplB-uvrA demonstrated that the characterized spirochete branches together with "Candidatus Borrelia caatinga", a recently discovered species from Brazil. Based on the genetic profile presented in this study, the name "Candidatus Borrelia octodonta" is proposed for the species transmitted by O. octodontus. The fact that spirochetes were not observed in blood of guinea pigs, may reflect the occurrence of low spirochetemia, which could be explained because the susceptibility of infection varies depending on the rodent species that is used in experimental models. Although the vertebrate reservoir of "Ca. Borrelia octodonta" is still unknown, Octodon degus, a rodent species that is commonly parasitized by O. octodontus, should be a future target to elucidate this issue.
Collapse
Affiliation(s)
- Adriana Santodomingo
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Concepción, Chile.
| | - Richard Thomas
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Concepción, Chile
| | - Michele Thompson
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Concepción, Chile
| | - Sofía Robbiano
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Concepción, Chile
| | - Pablo Espinoza
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Concepción, Chile
- ONG Dosel, San Fabián, Chile
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
8
|
Winn JC, Maduna SN, Bester-van der Merwe AE. A comprehensive phylogenomic study unveils evolutionary patterns and challenges in the mitochondrial genomes of Carcharhiniformes: A focus on Triakidae. Genomics 2024; 116:110771. [PMID: 38147941 DOI: 10.1016/j.ygeno.2023.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The complex evolutionary patterns in the mitochondrial genome (mitogenome) of the most species-rich shark order, the Carcharhiniformes (ground sharks) has led to challenges in the phylogenomic reconstruction of the families and genera belonging to the order, particularly the family Triakidae (houndsharks). The current state of Triakidae phylogeny remains controversial, with arguments for both monophyly and paraphyly within the family. We hypothesize that this variability is triggered by the selection of different a priori partitioning schemes to account for site and gene heterogeneity within the mitogenome. Here we used an extensive statistical framework to select the a priori partitioning scheme for inference of the mitochondrial phylogenomic relationships within Carcharhiniformes, tested site heterogeneous CAT + GTR + G4 models and incorporated the multi-species coalescent model (MSCM) into our analyses to account for the influence of gene tree discordance on species tree inference. We included five newly assembled houndshark mitogenomes to increase resolution of Triakidae. During the assembly procedure, we uncovered a 714 bp-duplication in the mitogenome of Galeorhinus galeus. Phylogenetic reconstruction confirmed monophyly within Triakidae and the existence of two distinct clades of the expanded Mustelus genus. The latter alludes to potential evolutionary reversal of reproductive mode from placental to aplacental, suggesting that reproductive mode has played a role in the trajectory of adaptive divergence. These new sequences have the potential to contribute to population genomic investigations, species phylogeography delineation, environmental DNA metabarcoding databases and, ultimately, improved conservation strategies for these ecologically and economically important species.
Collapse
Affiliation(s)
- Jessica C Winn
- Molecular Breeding and Biodiversity Group, Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape 7602, South Africa
| | - Simo N Maduna
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, 9925 Svanvik, Norway
| | - Aletta E Bester-van der Merwe
- Molecular Breeding and Biodiversity Group, Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape 7602, South Africa.
| |
Collapse
|
9
|
Kang JS, Giang VNL, Park HS, Park YS, Cho W, Nguyen VB, Shim H, Waminal NE, Park JY, Kim HH, Yang TJ. Evolution of the Araliaceae family involved rapid diversification of the Asian Palmate group and Hydrocotyle specific mutational pressure. Sci Rep 2023; 13:22325. [PMID: 38102332 PMCID: PMC10724125 DOI: 10.1038/s41598-023-49830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
The Araliaceae contain many valuable species in medicinal and industrial aspects. We performed intensive phylogenomics using the plastid genome (plastome) and 45S nuclear ribosomal DNA sequences. A total of 66 plastome sequences were used, 13 of which were newly assembled in this study, 12 from new sequences, and one from existing data. While Araliaceae plastomes showed conserved genome structure, phylogenetic reconstructions based on four different plastome datasets revealed phylogenetic discordance within the Asian Palmate group. The divergence time estimation revealed that splits in two Araliaceae subfamilies and the clades exhibiting phylogenetic discordances in the Asian Palmate group occurred at two climatic optima, suggesting that global warming events triggered species divergence, particularly the rapid diversification of the Asian Palmate group during the Middle Miocene. Nucleotide substitution analyses indicated that the Hydrocotyloideae plastomes have undergone accelerated AT-biased mutations (C-to-T transitions) compared with the Aralioideae plastomes, and the acceleration may occur in their mitochondrial and nuclear genomes as well. This implies that members of the genus Hydrocotyle, the only aquatic plants in the Araliaceae, have experienced a distinct evolutionary history from the other species. We also discussed the intercontinental disjunction in the genus Panax and proposed a hypothesis to complement the previously proposed hypothesis. Our results provide the evolutionary trajectory of Araliaceae and advance our current understanding of the evolution of Araliaceae species.
Collapse
Affiliation(s)
- Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Vo Ngoc Linh Giang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, South Korea
| | - Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Woohyeon Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Van Binh Nguyen
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Faculty of Biology, Dalat University, Dalat, 670000, Vietnam
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Nomar Espinosa Waminal
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, 01795, South Korea
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Gatersleben, Germany
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Hee Kim
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, 01795, South Korea.
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
10
|
Steenwyk JL, Li Y, Zhou X, Shen XX, Rokas A. Incongruence in the phylogenomics era. Nat Rev Genet 2023; 24:834-850. [PMID: 37369847 PMCID: PMC11499941 DOI: 10.1038/s41576-023-00620-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Genome-scale data and the development of novel statistical phylogenetic approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved many of its branches. However, incongruence - the inference of conflicting evolutionary histories - remains pervasive in phylogenomic data, hampering our ability to reconstruct and interpret the tree of life. Biological factors, such as incomplete lineage sorting, horizontal gene transfer, hybridization, introgression, recombination and convergent molecular evolution, can lead to gene phylogenies that differ from the species tree. In addition, analytical factors, including stochastic, systematic and treatment errors, can drive incongruence. Here, we review these factors, discuss methodological advances to identify and handle incongruence, and highlight avenues for future research.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
11
|
San MH, Kawamura Y, Kimura K, Witharana EP, Shimogiri T, Aye SS, Min TT, Aung C, Khaing MM, Nagano Y. Characterization and organelle genome sequencing of Pyropia species from Myanmar. Sci Rep 2023; 13:15677. [PMID: 37735516 PMCID: PMC10514050 DOI: 10.1038/s41598-023-42262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Pyropia is a genus comprising red algae of the Bangiaceae family that is commonly found in intertidal zones worldwide. However, understanding of Pyropia species that are prone to tropical regions remains limited despite recent breakthroughs in genomic research. Within the realm of Pyropia species thriving in tropical regions, P. vietnamensis stands out as a widely recognized species. In this study, we aimed to investigate Pyropia species in the southwest coast of Myanmar using physiological and molecular approaches, culture-based analyses, chloroplast rbcL and nuclear SSU gene sequencing, and whole chloroplast and mitochondrial genome sequencing. Physiological analysis showed that the Myanmar samples were more heat-tolerant than their Japanese counterparts, including those of subtropical origin. Additionally, molecular characterization revealed that the Myanmar samples were closely related to P. vietnamensis from India. This study is the first to sequence the chloroplast and mitochondrial genomes of Pyropia species from tropical regions. A unique deletion event was observed within a ribosomal RNA gene cluster in the chloroplast genome of the studied Pyropia species, which is a deviation from the usual characteristics of most Pyropia species. This study improves current understanding of the physiological and molecular characteristics of this comparatively understudied Pyropia species that grows in tropical regions.
Collapse
Affiliation(s)
- Myat Htoo San
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan.
| | | | - Kei Kimura
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Saga University, Saga, Japan
| | | | - Takeshi Shimogiri
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | - Thu Thu Min
- Marine Science Department, Pathein University, Pathein, Myanmar
| | - Cherry Aung
- Marine Science Department, Myeik University, Myeik, Myanmar
| | | | - Yukio Nagano
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan.
- Graduate School of Advanced Health Science, Saga University, Saga, Japan.
| |
Collapse
|
12
|
Bujaki T, Van Looyen K, Rodrigue N. Measuring the relative contribution to predictive power of modern nucleotide substitution modeling approaches. BIOINFORMATICS ADVANCES 2023; 3:vbad091. [PMID: 37502274 PMCID: PMC10371494 DOI: 10.1093/bioadv/vbad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Traditional approaches to probabilistic phylogenetic inference have relied on information-theoretic criteria to select among a relatively small set of substitution models. These model selection criteria have recently been called into question when applied to richer models, including models that invoke mixtures of nucleotide frequency profiles. At the nucleotide level, we are therefore left without a clear picture of mixture models' contribution to overall predictive power relative to other modeling approaches. Here, we utilize a Bayesian cross-validation method to directly measure the predictive performance of a wide range of nucleotide substitution models. We compare the relative contributions of free nucleotide exchangeability parameters, gamma-distributed rates across sites, and mixtures of nucleotide frequencies with both finite and infinite mixture frameworks. We find that the most important contributor to a model's predictive power is the use of a sufficiently rich mixture of nucleotide frequencies. These results suggest that mixture models should be given greater consideration in nucleotide-level phylogenetic inference.
Collapse
Affiliation(s)
- Thomas Bujaki
- Department of Biology, Carleton University, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ontario K1S 5B6, Canada
| | | | - Nicolas Rodrigue
- Corresponding author. Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada. E-mail:
| |
Collapse
|
13
|
Fleming JF, Valero‐Gracia A, Struck TH. Identifying and addressing methodological incongruence in phylogenomics: A review. Evol Appl 2023; 16:1087-1104. [PMID: 37360032 PMCID: PMC10286231 DOI: 10.1111/eva.13565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
The availability of phylogenetic data has greatly expanded in recent years. As a result, a new era in phylogenetic analysis is dawning-one in which the methods we use to analyse and assess our data are the bottleneck to producing valuable phylogenetic hypotheses, rather than the need to acquire more data. This makes the ability to accurately appraise and evaluate new methods of phylogenetic analysis and phylogenetic artefact identification more important than ever. Incongruence in phylogenetic reconstructions based on different datasets may be due to two major sources: biological and methodological. Biological sources comprise processes like horizontal gene transfer, hybridization and incomplete lineage sorting, while methodological ones contain falsely assigned data or violations of the assumptions of the underlying model. While the former provides interesting insights into the evolutionary history of the investigated groups, the latter should be avoided or minimized as best as possible. However, errors introduced by methodology must first be excluded or minimized to be able to conclude that biological sources are the cause. Fortunately, a variety of useful tools exist to help detect such misassignments and model violations and to apply ameliorating measurements. Still, the number of methods and their theoretical underpinning can be overwhelming and opaque. Here, we present a practical and comprehensive review of recent developments in techniques to detect artefacts arising from model violations and poorly assigned data. The advantages and disadvantages of the different methods to detect such misleading signals in phylogenetic reconstructions are also discussed. As there is no one-size-fits-all solution, this review can serve as a guide in choosing the most appropriate detection methods depending on both the actual dataset and the computational power available to the researcher. Ultimately, this informed selection will have a positive impact on the broader field, allowing us to better understand the evolutionary history of the group of interest.
Collapse
|
14
|
Xian Q, Wang S, Liu Y, Kan S, Zhang W. Structure-Based GC Investigation Sheds New Light on ITS2 Evolution in Corydalis Species. Int J Mol Sci 2023; 24:ijms24097716. [PMID: 37175423 PMCID: PMC10178233 DOI: 10.3390/ijms24097716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Guanine and cytosine (GC) content is a fundamental component of genetic diversity and essential for phylogenetic analyses. However, the GC content of the ribosomal internal transcribed spacer 2 (ITS2) remains unknown, despite the fact that ITS2 is a widely used phylogenetic marker. Here, the ITS2 was high-throughput sequenced from 29 Corydalis species, and their GC contents were comparatively investigated in the context of ITS2's characteristic secondary structure and concerted evolution. Our results showed that the GC contents of ITS2 were 131% higher than those of their adjacent 5.8S regions, suggesting that ITS2 underwent GC-biased evolution. These GCs were distributed in a heterogeneous manner in the ITS2 secondary structure, with the paired regions being 130% larger than the unpaired regions, indicating that GC is chosen for thermodynamic stability. In addition, species with homogeneous ITS2 sequences were always GC-rich, supporting GC-biased gene conversion (gBGC), which occurred with ITS2's concerted evolution. The RNA substitution model inferred also showed a GC preference among base pair transformations, which again supports gBGC. Overall, structurally based GC investigation reveals that ITS2 evolves under structural stability and gBGC selection, significantly increasing its GC content.
Collapse
Affiliation(s)
- Qing Xian
- Marine College, Shandong University, Weihai 264209, China
| | - Suyin Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Yanyan Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
15
|
Santodomingo A, Thomas R, Robbiano S, Uribe JE, Parragué-Migone C, Cabello-Stom J, Vera-Otarola F, Valencia-Soto C, Moreira-Arce D, Hidalgo-Hermoso E, Muñoz-Leal S. Wild deer (Pudu puda) from Chile harbor a novel ecotype of Anaplasma phagocytophilum. Parasit Vectors 2023; 16:38. [PMID: 36707862 PMCID: PMC9883915 DOI: 10.1186/s13071-023-05657-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/07/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Deer species play an important role in the enzootic cycles of several Anaplasma species. While in the Northern Hemisphere ticks of genus Ixodes are well recognized vectors of these intracellular bacteria, less is known regarding the biological cycles of Anaplasma spp. in South America. METHODS Using PCR protocols and Sanger sequencing, we assessed the presence of Anaplasma spp. in blood and ticks collected on a native deer species (Pudu puda) from southern Chile. RESULTS Based on phylogenetic analyses of the 16S rRNA, gltA and groEL genes and calculation of average sequence divergence for groEL, our results bring to light a novel genovariant of Anaplasma phagocytophilum (named strain "Patagonia"). The strain represents a novel ecotype within the A. phagocytophilum species complex and was detected in both P. puda and their ticks. Using a larger matrix, denser taxon sampling and outgroup, our maximum-likelihood- and Bayesian-inferred phylogenies for groEL provide an accurate picture of the topology of A. phagocytophilum ecotypes and their evolutionary relationships. CONCLUSIONS This is the first report of an ecotype of A. phagocytophilum in South America. Our results provide novel insight into the genetic diversity and ecology of this complex of bacterial lineages. Further studies should elucidate the enzootic cycle of A. phagocytophilum strain "Patagonia" and assess its pathogenic potential for pudues, domestic animals and humans in the region.
Collapse
Affiliation(s)
- Adriana Santodomingo
- grid.5380.e0000 0001 2298 9663Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Richard Thomas
- grid.5380.e0000 0001 2298 9663Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Sofía Robbiano
- grid.5380.e0000 0001 2298 9663Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Juan E. Uribe
- grid.420025.10000 0004 1768 463XDepartment of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain ,grid.1214.60000 0000 8716 3312Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013 USA
| | - Catalina Parragué-Migone
- grid.5380.e0000 0001 2298 9663Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Javier Cabello-Stom
- Centro de Conservación de la Biodiversidad, Chiloé Silvestre, Nal Bajo, Chiloé, Chile
| | - Frank Vera-Otarola
- grid.442215.40000 0001 2227 4297Facultad de Ciencias de la Naturaleza, Sede de La Patagonia, Universidad San Sebastián, Puerto Montt, Chile
| | - Carola Valencia-Soto
- grid.442215.40000 0001 2227 4297Facultad de Ciencias de la Naturaleza, Sede de La Patagonia, Universidad San Sebastián, Puerto Montt, Chile
| | - Darío Moreira-Arce
- grid.412179.80000 0001 2191 5013Universidad de Santiago de Chile (USACH), Santiago, Chile ,grid.512671.6Institute of Ecology and Biodiversity (IEB), Santiago, Chile
| | | | - Sebastián Muñoz-Leal
- grid.5380.e0000 0001 2298 9663Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
16
|
Santodomingo A, Robbiano S, Thomas R, Parragué-Migone C, Cabello-Stom J, Vera-Otarola F, Valencia-Soto C, Moreira-Arce D, Moreno L, Hidalgo-Hermoso E, Muñoz-Leal S. A search for piroplasmids and spirochetes in threatened pudu (Pudu puda) and associated ticks from Southern Chile unveils a novel Babesia sp. and a variant of Borrelia chilensis. Transbound Emerg Dis 2022; 69:3737-3748. [PMID: 36317891 DOI: 10.1111/tbed.14743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Cervids are important hosts for ticks and although they are refractory to some tick-borne agents such as Borrelia, they do act as reservoirs for others such as Babesia. Babesia and Borrelia are commonly transmitted by Ixodes spp. associated with deer, and most of the knowledge on their biological cycles comes from northern latitudes of the globe. In this study, we performed genetic screenings to detect tick-borne agents in blood and Ixodes stilesi ticks collected from an insular population of threatened pudu (Pudu puda), a pygmy deer species that inhabits temperate rainforests of southern South America. Inferred by phylogenetic analyses for 18S rRNA, COI and cytb genes, our results unveiled a novel genospecies of Babesia (Babesia sp. pudui) genetically related to Babesia odocoilei, a species that infects Odocoileus virginianus deer in North America. Although blood of the deer was negative for Borrelia infection, multilocus sequencing typing performed in one I. stilesi tick revealed the occurrence of a novel genetic variant of Borrelia chilensis, differing 0.93% and 0.18% in flaB and pepX genes with the type of strain for the species, respectively. Such a genetic divergence could be the result of thousands of years of isolation because of recent glaciation events that separated pudus and their tick populations at Chiloé Island approximately 437,000 years ago. The finding of a Babesia sp. has no precedents for wild and domestic ungulates in Chile and shows a novel piroplasmid that must be considered now on in rehabilitation centres and zoos that attend pudu deer. Further research is now necessary to confirm pathogenic roles.
Collapse
Affiliation(s)
- Adriana Santodomingo
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Sofía Robbiano
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Richard Thomas
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Catalina Parragué-Migone
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | | | - Frank Vera-Otarola
- Escuela de Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Carola Valencia-Soto
- Escuela de Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Darío Moreira-Arce
- Departamento de Gestión Agraria, Universidad de Santiago de Chile, Santiago, Chile.,Institute of Ecology and Biodiversity (IEB), Santiago, Chile
| | - Lucila Moreno
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | | | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
17
|
Camacho MA, Cadar D, Horváth B, Merino-Viteri A, Murienne J. Revised phylogeny from complete mitochondrial genomes of phyllostomid bats resolves subfamilial classification. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Classically, molecular phylogenetic trees of Phyllostomidae have been inferred using a combination of a few mitochondrial and nuclear markers. However, there is still uncertainty in the relationships, especially among deep clades within the family. In this study, we provide newly sequenced complete mitochondrial genomes from 26 bat species, including genomes of 23 species reported here for the first time. By carefully analysing these genomes using maximum likelihood and Bayesian methods and different ingroup and outgroup samples, partition schemes and data types, we investigated the robustness and sensitivity of our phylogenetic results. The optimal topologies were those inferred from the complete data matrix of nucleotides, with complex and highly parameterized substitution models and partition schemes. Our results show a statistically robust picture of the evolutionary relationships between phyllostomid subfamilies and clarify hitherto uncertain relationships of Lonchorhininae and Macrotinae.
Collapse
Affiliation(s)
- M Alejandra Camacho
- Museo de Zoología (QCAZ), Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador , Quito, Pichincha , Ecuador
- Laboratoire Evolution et Diversité Biologique (UMR5174), CNRS, IRD, Université Paul Sabatier , Toulouse , France
| | - Dániel Cadar
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, BernhardNocht Institute for Tropical Medicine , Hamburg , Germany
| | - Balázs Horváth
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, BernhardNocht Institute for Tropical Medicine , Hamburg , Germany
| | - Andrés Merino-Viteri
- Museo de Zoología (QCAZ), Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador , Quito, Pichincha , Ecuador
- Laboratorio de Ecofisiología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católicadel Ecuador , Quito, Pichincha , Ecuador
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique (UMR5174), CNRS, IRD, Université Paul Sabatier , Toulouse , France
| |
Collapse
|
18
|
Hatami E, Jones KE, Kilian N. New Insights Into the Relationships Within Subtribe Scorzonerinae (Cichorieae, Asteraceae) Using Hybrid Capture Phylogenomics (Hyb-Seq). FRONTIERS IN PLANT SCIENCE 2022; 13:851716. [PMID: 35873957 PMCID: PMC9298463 DOI: 10.3389/fpls.2022.851716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Subtribe Scorzonerinae (Cichorieae, Asteraceae) contains 12 main lineages and approximately 300 species. Relationships within the subtribe, either at inter- or intrageneric levels, were largely unresolved in phylogenetic studies to date, due to the lack of phylogenetic signal provided by traditional Sanger sequencing markers. In this study, we employed a phylogenomics approach (Hyb-Seq) that targets 1,061 nuclear-conserved ortholog loci designed for Asteraceae and obtained chloroplast coding regions as a by-product of off-target reads. Our objectives were to evaluate the potential of the Hyb-Seq approach in resolving the phylogenetic relationships across the subtribe at deep and shallow nodes, investigate the relationships of major lineages at inter- and intrageneric levels, and examine the impact of the different datasets and approaches on the robustness of phylogenetic inferences. We analyzed three nuclear datasets: exon only, excluding all potentially paralogous loci; exon only, including loci that were only potentially paralogous in 1-3 samples; exon plus intron regions (supercontigs); and the plastome CDS region. Phylogenetic relationships were reconstructed using both multispecies coalescent and concatenation (Maximum Likelihood and Bayesian analyses) approaches. Overall, our phylogenetic reconstructions recovered the same monophyletic major lineages found in previous studies and were successful in fully resolving the backbone phylogeny of the subtribe, while the internal resolution of the lineages was comparatively poor. The backbone topologies were largely congruent among all inferences, but some incongruent relationships were recovered between nuclear and plastome datasets, which are discussed and assumed to represent cases of cytonuclear discordance. Considering the newly resolved phylogenies, a new infrageneric classification of Scorzonera in its revised circumscription is proposed.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Katy E. Jones
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Norbert Kilian
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
19
|
Mongiardino Koch N, Thompson JR, Hiley AS, McCowin MF, Armstrong AF, Coppard SE, Aguilera F, Bronstein O, Kroh A, Mooi R, Rouse GW. Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record. eLife 2022; 11:72460. [PMID: 35315317 PMCID: PMC8940180 DOI: 10.7554/elife.72460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/03/2022] [Indexed: 12/25/2022] Open
Abstract
Echinoids are key components of modern marine ecosystems. Despite a remarkable fossil record, the emergence of their crown group is documented by few specimens of unclear affinities, rendering their early history uncertain. The origin of sand dollars, one of its most distinctive clades, is also unclear due to an unstable phylogenetic context. We employ 18 novel genomes and transcriptomes to build a phylogenomic dataset with a near-complete sampling of major lineages. With it, we revise the phylogeny and divergence times of echinoids, and place their history within the broader context of echinoderm evolution. We also introduce the concept of a chronospace - a multidimensional representation of node ages - and use it to explore methodological decisions involved in time calibrating phylogenies. We find the choice of clock model to have the strongest impact on divergence times, while the use of site-heterogeneous models and alternative node prior distributions show minimal effects. The choice of loci has an intermediate impact, affecting mostly deep Paleozoic nodes, for which clock-like genes recover dates more congruent with fossil evidence. Our results reveal that crown group echinoids originated in the Permian and diversified rapidly in the Triassic, despite the relative lack of fossil evidence for this early diversification. We also clarify the relationships between sand dollars and their close relatives and confidently date their origins to the Cretaceous, implying ghost ranges spanning approximately 50 million years, a remarkable discrepancy with their rich fossil record.
Collapse
Affiliation(s)
- Nicolás Mongiardino Koch
- Department of Earth & Planetary Sciences, Yale University, New Haven, United States.,Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States
| | - Jeffrey R Thompson
- Department of Earth Sciences, Natural History Museum, London, United Kingdom.,University College London Center for Life's Origins and Evolution, London, United Kingdom
| | - Avery S Hiley
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States
| | - Marina F McCowin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States
| | - A Frances Armstrong
- Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, United States
| | - Simon E Coppard
- Bader International Study Centre, Queen's University, Herstmonceux Castle, East Sussex, United Kingdom
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Omri Bronstein
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Steinhardt Museum of Natural History, Tel-Aviv, Israel
| | - Andreas Kroh
- Department of Geology and Palaeontology, Natural History Museum Vienna, Vienna, Austria
| | - Rich Mooi
- Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, United States
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States
| |
Collapse
|
20
|
Porto DS, Dahdul WM, Lapp H, Balhoff JP, Vision TJ, Mabee PM, Uyeda J. Assessing Bayesian Phylogenetic Information Content of Morphological Data Using Knowledge from Anatomy Ontologies. Syst Biol 2022; 71:1290-1306. [PMID: 35285502 PMCID: PMC9558846 DOI: 10.1093/sysbio/syac022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/09/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022] Open
Abstract
Morphology remains a primary source of phylogenetic information for many groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a collection of randomly assembled and independent “parts”, but instead a set of dependent and hierarchically nested entities resulting from ontogeny and phylogeny. How do we make sense of these dependent and at times redundant characters? One promising approach is using ontologies—structured controlled vocabularies that summarize knowledge about different properties of anatomical entities, including developmental and structural dependencies. Here, we assess whether evolutionary patterns can explain the proximity of ontology-annotated characters within an ontology. To do so, we measure phylogenetic information across characters and evaluate if it matches the hierarchical structure given by ontological knowledge—in much the same way as across-species diversity structure is given by phylogeny. We implement an approach to evaluate the Bayesian phylogenetic information (BPI) content and phylogenetic dissonance among ontology-annotated anatomical data subsets. We applied this to data sets representing two disparate animal groups: bees (Hexapoda: Hymenoptera: Apoidea, 209 chars) and characiform fishes (Actinopterygii: Ostariophysi: Characiformes, 463 chars). For bees, we find that BPI is not substantially explained by anatomy since dissonance is often high among morphologically related anatomical entities. For fishes, we find substantial information for two clusters of anatomical entities instantiating concepts from the jaws and branchial arch bones, but among-subset information decreases and dissonance increases substantially moving to higher-level subsets in the ontology. We further applied our approach to address particular evolutionary hypotheses with an example of morphological evolution in miniature fishes. While we show that phylogenetic information does match ontology structure for some anatomical entities, additional relationships and processes, such as convergence, likely play a substantial role in explaining BPI and dissonance, and merit future investigation. Our work demonstrates how complex morphological data sets can be interrogated with ontologies by allowing one to access how information is spread hierarchically across anatomical concepts, how congruent this information is, and what sorts of processes may play a role in explaining it: phylogeny, development, or convergence. [Apidae; Bayesian phylogenetic information; Ostariophysi; Phenoscape; phylogenetic dissonance; semantic similarity.]
Collapse
Affiliation(s)
- Diego S Porto
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 926 West Campus Drive, Blacksburg, VA 24061, USA
| | - Wasila M Dahdul
- UCI Libraries,University of California, Irvine, Irvine, CA 92623, USA
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069, USA
| | - Hilmar Lapp
- Center for Genomic and Computational Biology, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - James P Balhoff
- Renaissance Computing Institute, University of North Carolina, 100 Europa Drive, Suite 540, Chapel Hill, NC 27517, USA
| | - Todd J Vision
- Department of Biology and School of Information and Library Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paula M Mabee
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069, USA
- Battelle, National Ecological Observatory Network, Boulder, CO 80301, USA
| | - Josef Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 926 West Campus Drive, Blacksburg, VA 24061, USA
| |
Collapse
|
21
|
Gonçalves RB, De Meira OM, Rosa B. Total-evidence dating and morphological partitioning: a novel approach to understand the phylogeny and biogeography of augochlorine bees (Hymenoptera: Apoidea). Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlab098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Augochlorini comprise 646 described bee species primarily distributed in the Neotropical region. According to molecular and morphological phylogenies, the tribe is monophyletic and subdivided into seven genus groups. Our main objective is to propose a revised phylogeny of Augochlorini based on a comprehensive data set including fossil species as terminals and new characters from the internal skeleton. We also aim to develop a total-evidence framework incorporating a morphological-partitioned homoplasy approach and molecular data and propose a detailed biogeographic and evolutionary scenario based on ancestor range estimation. Our results recovered Augochlorini and most genus groups as monophyletic, despite some uncertainties about monophyly of the Megalopta and Neocorynura groups. The position of the cleptoparasite Temonosoma is still uncertain. All analyses recovered Augochloropsis s.l. as related to the Megaloptidia group. Internal characters from the head, mesosoma and sting apparatus provided important synapomorphies for most internal nodes, genus groups and genera. Augochlorini diversification occurred in the uplands of the Neotropical region, especially the Brazilian Plateau. Multiple dispersals to Amazonia, Central America and North America with returns to the Atlantic endemism area were recovered in our analysis. Total evidence, including morphological partitioning, was shown to be a reliable approach for phylogenetic reconstruction.
Collapse
Affiliation(s)
- Rodrigo Barbosa Gonçalves
- Departamento de Zoologia, Universidade Federal do Paraná, Brazil, Cx. Postal 19020, 81531-980, Curitiba, PR,Brazil
| | - Odair Milioni De Meira
- Departamento de Zoologia, Universidade Federal do Paraná, Brazil, Cx. Postal 19020, 81531-980, Curitiba, PR,Brazil
| | - Brunnobueno Rosa
- Departamento de Zoologia, Universidade Federal do Paraná, Brazil, Cx. Postal 19020, 81531-980, Curitiba, PR,Brazil
| |
Collapse
|
22
|
Crotty SM, Holland BR. Comparing partitioned models to mixture models: Do information criteria apply? Syst Biol 2022; 71:1541-1548. [PMID: 35041002 PMCID: PMC9558833 DOI: 10.1093/sysbio/syac003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
The use of information criteria to distinguish between phylogenetic models has become ubiquitous within the field. However, the variety and complexity of available models are much greater now than when these practices were established. The literature shows an increasing trajectory of healthy skepticism with regard to the use of information theory-based model selection within phylogenetics. We add to this by analyzing the specific case of comparison between partition and mixture models. We argue from a theoretical basis that information criteria are inherently more likely to favor partition models over mixture models, and we then demonstrate this through simulation. Based on our findings, we suggest that partition and mixture models are not suitable for information-theory based model comparison. [AIC, BIC; information criteria; maximum likelihood; mixture models; partitioned model; phylogenetics.]
Collapse
Affiliation(s)
- Stephen M Crotty
- School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.,Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria.,ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, SA, Australia
| | - Barbara R Holland
- School of Natural Sciences (Mathematics), University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
23
|
Hsieh CL, Yu CC, Huang YL, Chung KF. Mahonia vs. Berberis Unloaded: Generic Delimitation and Infrafamilial Classification of Berberidaceae Based on Plastid Phylogenomics. FRONTIERS IN PLANT SCIENCE 2022; 12:720171. [PMID: 35069611 PMCID: PMC8770955 DOI: 10.3389/fpls.2021.720171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/15/2021] [Indexed: 05/12/2023]
Abstract
The early-diverging eudicot family Berberidaceae is composed of a morphologically diverse assemblage of disjunctly distributed genera long praised for their great horticultural and medicinal values. However, despite century-long studies, generic delimitation of Berberidaceae remains controversial and its tribal classification has never been formally proposed under a rigorous phylogenetic context. Currently, the number of accepted genera in Berberidaceae ranges consecutively from 13 to 19, depending on whether to define Berberis, Jeffersonia, and Podophyllum broadly, or to segregate these three genera further and recognize Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Dysosma, Diphylleia, and Sinopodophyllum, respectively. To resolve Berberidaceae's taxonomic disputes, we newly assembled 23 plastomes and, together with 85 plastomes from the GenBank, completed the generic sampling of the family. With 4 problematic and 14 redundant plastome sequences excluded, robust phylogenomic relationships were reconstructed based on 93 plastomes representing all 19 genera of Berberidaceae and three outgroups. Maximum likelihood phylogenomic relationships corroborated with divergence time estimation support the recognition of three subfamilies Berberidoideae, Nandinoideae, and Podophylloideae, with tribes Berberideae and Ranzanieae, Leonticeae and Nandineae, and Podophylleae, Achlydeae, Bongardieae tr. nov., Epimedieae, and Jeffersonieae tr. nov. in the former three subfamilies, respectively. By applying specifically stated criteria, our phylogenomic data also support the classification of 19 genera, recognizing Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Diphylleia, Dysosma, and Sinopodophyllum that are morphologically and evolutionarily distinct from Berberis, Jeffersonia, and Podophyllum, respectively. Comparison of plastome structures across Berberidaceae confirms inverted repeat expansion in the tribe Berberideae and reveals substantial length variation in accD gene caused by repeated sequences in Berberidoideae. Comparison of plastome tree with previous studies and nuclear ribosomal DNA (nrDNA) phylogeny also reveals considerable conflicts at different phylogenetic levels, suggesting that incomplete lineage sorting and/or hybridization had occurred throughout the evolutionary history of Berberidaceae and that Alloberberis and Moranothamnus could have resulted from reciprocal hybridization between Berberis and Mahonia in ancient times prior to the radiations of the latter two genera.
Collapse
Affiliation(s)
- Chia-Lun Hsieh
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Chieh Yu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Yu-Lan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuo-Fang Chung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
24
|
Van Damme K, Cornetti L, Fields PD, Ebert D. Whole-Genome Phylogenetic Reconstruction as a Powerful Tool to Reveal Homoplasy and Ancient Rapid Radiation in Waterflea Evolution. Syst Biol 2021; 71:777-787. [PMID: 34850935 PMCID: PMC9203061 DOI: 10.1093/sysbio/syab094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022] Open
Abstract
Although phylogeny estimation is notoriously difficult in radiations that occurred several hundred million years ago, phylogenomic approaches offer new ways to examine relationships among ancient lineages and evaluate hypotheses that are key to evolutionary biology. Here, we reconstruct the deep-rooted relationships of one of the oldest living arthropod clades, the branchiopod crustaceans, using a kaleidoscopic approach. We use concatenation and coalescent tree-building methods to analyze a large multigene data set at the nucleotide and amino acid level and examine gene tree versus species tree discordance. We unequivocally resolve long-debated relationships among extant orders of the Cladocera, the waterfleas, an ecologically relevant zooplankton group in global aquatic and marine ecosystems that is famous for its model systems in ecology and evolution. To build the data set, we assembled eight de novo genomes of key taxa including representatives of all extant cladoceran orders and suborders. Our phylogenetic analysis focused on a BUSCO-based set of 823 conserved single-copy orthologs shared among 23 representative taxa spanning all living branchiopod orders, including 11 cladoceran families. Our analysis supports the monophyly of the Cladocera and reveals remarkable homoplasy in their body plans. We found large phylogenetic distances between lineages with similar ecological specializations, indicating independent evolution in major body plans, such as in the pelagic predatory orders Haplopoda and Onychopoda (the “Gymnomera”). In addition, we assessed rapid cladogenesis by estimating relative timings of divergence in major lineages using reliable fossil-calibrated priors on eight nodes in the branchiopod tree, suggesting a Paleozoic origin around 325 Ma for the cladoceran ancestor and an ancient rapid radiation around 252 Ma at the Perm/Triassic boundary. These findings raise new questions about the roles of homoplasy and rapid radiation in the diversification of the cladocerans and help examine trait evolution from a genomic perspective in a functionally well understood, ancient arthropod group. [Cladocera; Daphnia; evolution; homoplasy; molecular clock; phylogenomics; systematics; waterfleas.]
Collapse
Affiliation(s)
- Kay Van Damme
- Centre for Academic Heritage and Archives & Ghent University Botanical Garden, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.,Tvärminne Zoological Station (TZS), University of Helsinki, J.A. Palménin tie 260, Hanko, Finland
| | - Luca Cornetti
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| | - Peter D Fields
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| | - Dieter Ebert
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| |
Collapse
|
25
|
Jacob Machado D, Scott R, Guirales S, Janies DA. Fundamental evolution of all Orthocoronavirinae including three deadly lineages descendent from Chiroptera-hosted coronaviruses: SARS-CoV, MERS-CoV and SARS-CoV-2. Cladistics 2021; 37:461-488. [PMID: 34570933 PMCID: PMC8239696 DOI: 10.1111/cla.12454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in humans in 2002. Despite reports showing Chiroptera as the original animal reservoir of SARS-CoV, many argue that Carnivora-hosted viruses are the most likely origin. The emergence of the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 also involves Chiroptera-hosted lineages. However, factors such as the lack of comprehensive phylogenies hamper our understanding of host shifts once MERS-CoV emerged in humans and Artiodactyla. Since 2019, the origin of SARS-CoV-2, causative agent of coronavirus disease 2019 (COVID-19), added to this episodic history of zoonotic transmission events. Here we introduce a phylogenetic analysis of 2006 unique and complete genomes of different lineages of Orthocoronavirinae. We used gene annotations to align orthologous sequences for total evidence analysis under the parsimony optimality criterion. Deltacoronavirus and Gammacoronavirus were set as outgroups to understand spillovers of Alphacoronavirus and Betacoronavirus among ten orders of animals. We corroborated that Chiroptera-hosted viruses are the sister group of SARS-CoV, SARS-CoV-2 and MERS-related viruses. Other zoonotic events were qualified and quantified to provide a comprehensive picture of the risk of coronavirus emergence among humans. Finally, we used a 250 SARS-CoV-2 genomes dataset to elucidate the phylogenetic relationship between SARS-CoV-2 and Chiroptera-hosted coronaviruses.
Collapse
Affiliation(s)
- Denis Jacob Machado
- Department of Bioinformatics and GenomicsUniversity of North Carolina at Charlotte9331 Robert D. Snyder RdCharlotteNC28223USA
| | - Rachel Scott
- Department of Bioinformatics and GenomicsUniversity of North Carolina at Charlotte9331 Robert D. Snyder RdCharlotteNC28223USA
| | - Sayal Guirales
- Department of Bioinformatics and GenomicsUniversity of North Carolina at Charlotte9331 Robert D. Snyder RdCharlotteNC28223USA
| | - Daniel A. Janies
- Department of Bioinformatics and GenomicsUniversity of North Carolina at Charlotte9331 Robert D. Snyder RdCharlotteNC28223USA
| |
Collapse
|
26
|
Accounting for the Biological Complexity of Pathogenic Fungi in Phylogenetic Dating. J Fungi (Basel) 2021; 7:jof7080661. [PMID: 34436200 PMCID: PMC8400180 DOI: 10.3390/jof7080661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
In the study of pathogen evolution, temporal dating of phylogenies provides information on when species and lineages may have diverged in the past. When combined with spatial and epidemiological data in phylodynamic models, these dated phylogenies can also help infer where and when outbreaks occurred, how pathogens may have spread to new geographic locations and/or niches, and how virulence or drug resistance has developed over time. Although widely applied to viruses and, increasingly, to bacterial pathogen outbreaks, phylogenetic dating is yet to be widely used in the study of pathogenic fungi. Fungi are complex organisms with several biological processes that could present issues with appropriate inference of phylogenies, clock rates, and divergence times, including high levels of recombination and slower mutation rates although with potentially high levels of mutation rate variation. Here, we discuss some of the key methodological challenges in accurate phylogeny reconstruction for fungi in the context of the temporal analyses conducted to date and make recommendations for future dating studies to aid development of a best practices roadmap in light of the increasing threat of fungal outbreaks and antifungal drug resistance worldwide.
Collapse
|
27
|
Ferrer Obiol J, James HF, Chesser RT, Bretagnolle V, González-Solís J, Rozas J, Riutort M, Welch AJ. Integrating Sequence Capture and Restriction Site-Associated DNA Sequencing to Resolve Recent Radiations of Pelagic Seabirds. Syst Biol 2021; 70:976-996. [PMID: 33512506 PMCID: PMC8357341 DOI: 10.1093/sysbio/syaa101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023] Open
Abstract
The diversification of modern birds has been shaped by a number of radiations. Rapid diversification events make reconstructing the evolutionary relationships among taxa challenging due to the convoluted effects of incomplete lineage sorting (ILS) and introgression. Phylogenomic data sets have the potential to detect patterns of phylogenetic incongruence, and to address their causes. However, the footprints of ILS and introgression on sequence data can vary between different phylogenomic markers at different phylogenetic scales depending on factors such as their evolutionary rates or their selection pressures. We show that combining phylogenomic markers that evolve at different rates, such as paired-end double-digest restriction site-associated DNA (PE-ddRAD) and ultraconserved elements (UCEs), allows a comprehensive exploration of the causes of phylogenetic discordance associated with short internodes at different timescales. We used thousands of UCE and PE-ddRAD markers to produce the first well-resolved phylogeny of shearwaters, a group of medium-sized pelagic seabirds that are among the most phylogenetically controversial and endangered bird groups. We found that phylogenomic conflict was mainly derived from high levels of ILS due to rapid speciation events. We also documented a case of introgression, despite the high philopatry of shearwaters to their breeding sites, which typically limits gene flow. We integrated state-of-the-art concatenated and coalescent-based approaches to expand on previous comparisons of UCE and RAD-Seq data sets for phylogenetics, divergence time estimation, and inference of introgression, and we propose a strategy to optimize RAD-Seq data for phylogenetic analyses. Our results highlight the usefulness of combining phylogenomic markers evolving at different rates to understand the causes of phylogenetic discordance at different timescales. [Aves; incomplete lineage sorting; introgression; PE-ddRAD-Seq; phylogenomics; radiations; shearwaters; UCEs.].
Collapse
Affiliation(s)
- Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Helen F James
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - R Terry Chesser
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, USA
| | - Vincent Bretagnolle
- Centre d’Études Biologiques de Chizé, CNRS & La Rochelle Université, 79360, Villiers en Bois, France
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | | |
Collapse
|
28
|
Conner WR, Delaney EK, Bronski MJ, Ginsberg PS, Wheeler TB, Richardson KM, Peckenpaugh B, Kim KJ, Watada M, Hoffmann AA, Eisen MB, Kopp A, Cooper BS, Turelli M. A phylogeny for the Drosophila montium species group: A model clade for comparative analyses. Mol Phylogenet Evol 2021; 158:107061. [PMID: 33387647 PMCID: PMC7946709 DOI: 10.1016/j.ympev.2020.107061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/22/2022]
Abstract
The Drosophila montium species group is a clade of 94 named species, closely related to the model species D. melanogaster. The montium species group is distributed over a broad geographic range throughout Asia, Africa, and Australasia. Species of this group possess a wide range of morphologies, mating behaviors, and endosymbiont associations, making this clade useful for comparative analyses. We use genomic data from 42 available species to estimate the phylogeny and relative divergence times within the montium species group, and its relative divergence time from D. melanogaster. To assess the robustness of our phylogenetic inferences, we use 3 non-overlapping sets of 20 single-copy coding sequences and analyze all 60 genes with both Bayesian and maximum likelihood methods. Our analyses support monophyly of the group. Apart from the uncertain placement of a single species, D. baimaii, our analyses also support the monophyly of all seven subgroups proposed within the montium group. Our phylograms and relative chronograms provide a highly resolved species tree, with discordance restricted to estimates of relatively short branches deep in the tree. In contrast, age estimates for the montium crown group, relative to its divergence from D. melanogaster, depend critically on prior assumptions concerning variation in rates of molecular evolution across branches, and hence have not been reliably determined. We discuss methodological issues that limit phylogenetic resolution - even when complete genome sequences are available - as well as the utility of the current phylogeny for understanding the evolutionary and biogeographic history of this clade.
Collapse
Affiliation(s)
- William R Conner
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA(1)
| | - Emily K Delaney
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Michael J Bronski
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Paul S Ginsberg
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA(1)
| | - Timothy B Wheeler
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA(1)
| | - Kelly M Richardson
- Bio21 Institute, School of BioScience, University of Melbourne, Victoria 3010, Australia
| | - Brooke Peckenpaugh
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA(1)
| | - Kevin J Kim
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Masayoshi Watada
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Ary A Hoffmann
- Bio21 Institute, School of BioScience, University of Melbourne, Victoria 3010, Australia
| | - Michael B Eisen
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA(1)
| | - Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
29
|
Daniel GM, Sole CL, Scholtz CH, Davis ALV. Historical diversification and biogeography of the endemic southern African dung beetle genus, Epirinus (Scarabaeidae: Scarabaeinae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
The role of the geological uplift and climatic changes during the late Cenozoic on the species diversification of southern African dung beetles is not fully understood. Therefore, we use a divergence-time-estimated phylogeny, macroevolutionary analyses and ecological niche modelling under different climatic scenarios to investigate diversification of the endemic southern African genus, Epirinus. We predict the ancestral range and vegetation type occupied by Epirinus and how late Cenozoic climatic fluctuations and resulting vegetation changes affected speciation and extinction of Epirinus species. Our results suggest that the genus originated in forest with radiation into three geographical centres: (a) north-east escarpment forest and highland grassland; (b) south-east forest; and (c) south-west lowlands to north-east uplands in open vegetation. Reduced speciation rates in the mid-Miocene and increased extinction rates during the drier and cooler Plio-Pleistocene coincide with the replacement of forest by grassland or savanna in southern Africa. The drier climate in southern Africa may have driven extensive contraction of shaded vegetation, forcing an adaptation of forest inhabitants to upland grassland environments, or driving Epirinus species to extinction. Our study supports hypothesis of climatically driven diversification of Epirinus whereas ecological niche modelling across different geological periods suggest that the south-east and, to a lesser extent, the west coast of South Africa as stable areas.
Collapse
Affiliation(s)
- Gimo M Daniel
- Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
- Department of Terrestrial Invertebrates, The National Museum, Bloemfontein, South Africa
| | - Catherine L Sole
- Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
| | - Clarke H Scholtz
- Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
| | - Adrian L V Davis
- Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
30
|
Spielman SJ. Relative Model Fit Does Not Predict Topological Accuracy in Single-Gene Protein Phylogenetics. Mol Biol Evol 2021; 37:2110-2123. [PMID: 32191313 PMCID: PMC7306691 DOI: 10.1093/molbev/msaa075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is regarded as best practice in phylogenetic reconstruction to perform relative model selection to determine an appropriate evolutionary model for the data. This procedure ranks a set of candidate models according to their goodness of fit to the data, commonly using an information theoretic criterion. Users then specify the best-ranking model for inference. Although it is often assumed that better-fitting models translate to increase accuracy, recent studies have shown that the specific model employed may not substantially affect inferences. We examine whether there is a systematic relationship between relative model fit and topological inference accuracy in protein phylogenetics, using simulations and real sequences. Simulations employed site-heterogeneous mechanistic codon models that are distinct from protein-level phylogenetic inference models, allowing us to investigate how protein models performs when they are misspecified to the data, as will be the case for any real sequence analysis. We broadly find that phylogenies inferred across models with vastly different fits to the data produce highly consistent topologies. We additionally find that all models infer similar proportions of false-positive splits, raising the possibility that all available models of protein evolution are similarly misspecified. Moreover, we find that the parameter-rich GTR (general time reversible) model, whose amino acid exchangeabilities are free parameters, performs similarly to models with fixed exchangeabilities, although the inference precision associated with GTR models was not examined. We conclude that, although relative model selection may not hinder phylogenetic analysis on protein data, it may not offer specific predictable improvements and is not a reliable proxy for accuracy.
Collapse
|
31
|
Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat Commun 2021; 12:1783. [PMID: 33741994 PMCID: PMC7979703 DOI: 10.1038/s41467-021-22074-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/24/2021] [Indexed: 11/08/2022] Open
Abstract
Resolving the relationships between the major lineages in the animal tree of life is necessary to understand the origin and evolution of key animal traits. Sponges, characterized by their simple body plan, were traditionally considered the sister group of all other animal lineages, implying a gradual increase in animal complexity from unicellularity to complex multicellularity. However, the availability of genomic data has sparked tremendous controversy as some phylogenomic studies support comb jellies taking this position, requiring secondary loss or independent origins of complex traits. Here we show that incorporating site-heterogeneous mixture models and recoding into partitioned phylogenomics alleviates systematic errors that hamper commonly-applied phylogenetic models. Testing on real datasets, we show a great improvement in model-fit that attenuates branching artefacts induced by systematic error. We reanalyse key datasets and show that partitioned phylogenomics does not support comb jellies as sister to other animals at either the supermatrix or partition-specific level.
Collapse
|
32
|
Abstract
The phylogeny of Neoaves, the largest clade of extant birds, has remained unclear despite intense study. The difficulty associated with resolving the early branches in Neoaves is likely driven by the rapid radiation of this group. However, conflicts among studies may be exacerbated by the data type analyzed. For example, analyses of coding exons typically yield trees that place Strisores (nightjars and allies) sister to the remaining Neoaves, while analyses of non-coding data typically yield trees where Mirandornites (flamingos and grebes) is the sister of the remaining Neoaves. Our understanding of data type effects is hampered by the fact that previous analyses have used different taxa, loci, and types of non-coding data. Herein, we provide strong corroboration of the data type effects hypothesis for Neoaves by comparing trees based on coding and non-coding data derived from the same taxa and gene regions. A simple analytical method known to minimize biases due to base composition (coding nucleotides as purines and pyrimidines) resulted in coding exon data with increased congruence to the non-coding topology using concatenated analyses. These results improve our understanding of the resolution of neoavian phylogeny and point to a challenge—data type effects—that is likely to be an important factor in phylogenetic analyses of birds (and many other taxonomic groups). Using our results, we provide a summary phylogeny that identifies well-corroborated relationships and highlights specific nodes where future efforts should focus.
Collapse
|
33
|
Puller V, Sagulenko P, Neher RA. Efficient inference, potential, and limitations of site-specific substitution models. Virus Evol 2020; 6:veaa066. [PMID: 33343922 PMCID: PMC7733610 DOI: 10.1093/ve/veaa066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Natural selection imposes a complex filter on which variants persist in a population resulting in evolutionary patterns that vary greatly along the genome. Some sites evolve close to neutrally, while others are highly conserved, allow only specific states, or only change in concert with other sites. On one hand, such constraints on sequence evolution can be to infer biological function, one the other hand they need to be accounted for in phylogenetic reconstruction. Phylogenetic models often account for this complexity by partitioning sites into a small number of discrete classes with different rates and/or state preferences. Appropriate model complexity is typically determined by model selection procedures. Here, we present an efficient algorithm to estimate more complex models that allow for different preferences at every site and explore the accuracy at which such models can be estimated from simulated data. Our iterative approximate maximum likelihood scheme uses information in the data efficiently and accurately estimates site-specific preferences from large data sets with moderately diverged sequences and known topology. However, the joint estimation of site-specific rates, and site-specific preferences, and phylogenetic branch length can suffer from identifiability problems, while ignoring variation in preferences across sites results in branch length underestimates. Site-specific preferences estimated from large HIV pol alignments show qualitative concordance with intra-host estimates of fitness costs. Analysis of these substitution models suggests near saturation of divergence after a few hundred years. Such saturation can explain the inability to infer deep divergence times of HIV and SIVs using molecular clock approaches and time-dependent rate estimates.
Collapse
Affiliation(s)
- Vadim Puller
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Klingelbergstrasse 61, Basel, Switzerland
| | - Pavel Sagulenko
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Richard A Neher
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Klingelbergstrasse 61, Basel, Switzerland
| |
Collapse
|
34
|
Tighe AJ, Gallagher MD, Carlsson J, Matejusova I, Swords F, Macqueen DJ, Ruane NM. Nanopore whole genome sequencing and partitioned phylogenetic analysis supports a new salmonid alphavirus genotype (SAV7). DISEASES OF AQUATIC ORGANISMS 2020; 142:203-211. [PMID: 33331288 DOI: 10.3354/dao03546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Salmon pancreas disease virus, more commonly known as salmonid alphavirus (SAV), is a single-stranded positive sense RNA virus and the causative agent of pancreas disease and sleeping disease in salmonids. In this study, a unique strain of SAV previously isolated from ballan wrasse was subjected to whole genome sequencing using nanopore sequencing. In order to accurately examine the evolutionary history of this strain in comparison to other SAV strains, a partitioned phylogenetic analysis was performed to account for variation in the rate of evolution for both individual genes and codon positions. Partitioning the genome alignments almost doubled the observed branch lengths in the phylogenetic tree when compared to the more common approach of applying one model of substitution across the genome and significantly increased the statistical fit of the best-fitting models of nucleotide substitution. Based on the genomic data, a valid case can be made for the viral strain examined in this study to be considered a new SAV genotype. In addition, this study adds to a growing number of studies in which SAV has been found to infect non-salmonid fish, and as such we have suggested that the viral species name be amended to the more inclusive 'piscine alphavirus'.
Collapse
Affiliation(s)
- Andrew J Tighe
- Fish Health Unit, Marine Institute, Oranmore H91 R673, Ireland
| | | | | | | | | | | | | |
Collapse
|
35
|
Simões TR, Caldwell MW, Pierce SE. Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biol 2020; 18:191. [PMID: 33287835 PMCID: PMC7720557 DOI: 10.1186/s12915-020-00901-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The vast majority of all life that ever existed on earth is now extinct and several aspects of their evolutionary history can only be assessed by using morphological data from the fossil record. Sphenodontian reptiles are a classic example, having an evolutionary history of at least 230 million years, but currently represented by a single living species (Sphenodon punctatus). Hence, it is imperative to improve the development and implementation of probabilistic models to estimate evolutionary trees from morphological data (e.g., morphological clocks), which has direct benefits to understanding relationships and evolutionary patterns for both fossil and living species. However, the impact of model choice on morphology-only datasets has been poorly explored. RESULTS Here, we investigate the impact of a wide array of model choices on the inference of evolutionary trees and macroevolutionary parameters (divergence times and evolutionary rates) using a new data matrix on sphenodontian reptiles. Specifically, we tested different clock models, clock partitioning, taxon sampling strategies, sampling for ancestors, and variations on the fossilized birth-death (FBD) tree model parameters through time. We find a strong impact on divergence times and background evolutionary rates when applying widely utilized approaches, such as allowing for ancestors in the tree and the inappropriate assumption of diversification parameters being constant through time. We compare those results with previous studies on the impact of model choice to molecular data analysis and provide suggestions for improving the implementation of morphological clocks. Optimal model combinations find the radiation of most major lineages of sphenodontians to be in the Triassic and a gradual but continuous drop in morphological rates of evolution across distinct regions of the phenotype throughout the history of the group. CONCLUSIONS We provide a new hypothesis of sphenodontian classification, along with detailed macroevolutionary patterns in the evolutionary history of the group. Importantly, we provide suggestions to avoid overestimated divergence times and biased parameter estimates using morphological clocks. Partitioning relaxed clocks offers methodological limitations, but those can be at least partially circumvented to reveal a detailed assessment of rates of evolution across the phenotype and tests of evolutionary mosaicism.
Collapse
Affiliation(s)
- Tiago R Simões
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Michael W Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Stephanie E Pierce
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
36
|
Sulistyo BP, Larsson KH, Haelewaters D, Ryberg M. Multigene phylogeny and taxonomic revision of Atheliales s.l.: Reinstatement of three families and one new family, Lobuliciaceae fam. nov. Fungal Biol 2020; 125:239-255. [PMID: 33622540 DOI: 10.1016/j.funbio.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/21/2020] [Accepted: 11/22/2020] [Indexed: 01/16/2023]
Abstract
Atheliales (Agaricomycetes, Basidiomycota) is an order mostly composed of corticioid fungi, containing roughly 100 described species in 20 genera. Members exhibit remarkable ecological diversity, including saprotrophs, ectomycorrhizal symbionts, facultative parasites of plants or lichens, and symbionts of termites. Ectomycorrhizal members are well known because they often form a major part of boreal and temperate fungal communities. However, Atheliales is generally understudied, and molecular data are scarce. Furthermore, the order is riddled with many taxonomic problems; some genera are non-monophyletic and several species have been shown to be more closely related to other orders. We investigated the phylogenetic position of genera that are currently listed in Atheliales sensu lato by employing an Agaricomycetes-wide dataset with emphasis on Atheliales including the type species of genera therein. A phylogenetic analysis based on 5.8S, LSU, rpb2, and tef1 (excluding third codon) retrieved Atheliales in subclass Agaricomycetidae, as sister to Lepidostromatales. In addition, a number of Atheliales genera were retrieved in other orders with strong support: Byssoporia in Russulales, Digitatispora in Agaricales, Hypochnella in Polyporales, Lyoathelia in Hymenochaetales, and Pteridomyces in Trechisporales. Based on this result, we assembled another dataset focusing on the clade with Atheliales sensu stricto and representatives from Lepidostromatales and Boletales as outgroups, based on ITS (ITS1-5.8S-ITS2), LSU, rpb2, and tef1. The reconstructed phylogeny of Atheliales returned five distinct lineages, which we propose here as families. Lobulicium, a monotypic genus with a distinct morphology of seven-lobed basidiospores, was placed as sister to the rest of Atheliales. A new family is proposed to accommodate this genus, Lobuliciaceae fam. nov. The remaining four lineages can be named following the family-level classification by Jülich (1982), and thus we opted to use the names Atheliaceae, Byssocorticiaceae, Pilodermataceae, and Tylosporaceae, albeit with amended circumscriptions.
Collapse
Affiliation(s)
- Bobby P Sulistyo
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| | - Karl-Henrik Larsson
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, NO-0318, Oslo, Norway; Gothenburg Global Diversity Centre, P.O. Box 461, 405 30, Göteborg, Sweden.
| | - Danny Haelewaters
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Department of Botany and Plant Pathology, Purdue University, West Lafayette, USA.
| | - Martin Ryberg
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| |
Collapse
|
37
|
Le Kim T, Le Sy V. mPartition: A Model-Based Method for Partitioning Alignments. J Mol Evol 2020; 88:641-652. [PMID: 32864711 DOI: 10.1007/s00239-020-09963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Maximum likelihood (ML) analysis of nucleotide or amino-acid alignments is widely used to infer evolutionary relationships among species. Computing the likelihood of a phylogenetic tree from such alignments is a complicated task because the evolutionary processes typically vary across sites. A number of studies have shown that partitioning alignments into sub-alignments of sites, where each sub-alignment is analyzed using a different model of evolution (e.g., GTR + I + G), is a sensible strategy. Current partitioning methods group sites into subsets based on the inferred rates of evolution at the sites. However, these do not provide sufficient information to adequately reflect the substitution processes of characters at the sites. Moreover, the site rate-based methods group all invariant sites into one subset, potentially resulting in wrong phylogenetic trees. In this study, we propose a partitioning method, called mPartition, that combines not only the evolutionary rates but also substitution models at sites to partition alignments. Analyses of different partitioning methods on both real and simulated datasets showed that mPartition was better than the other partitioning methods tested. Notably, mPartition overcame the pitfall of grouping all invariant sites into one subset. Using mPartition may lead to increased accuracy of ML-based phylogenetic inference, especially for multiple loci or whole genome datasets.
Collapse
Affiliation(s)
- Thu Le Kim
- University of Engineering and Technology, Vietnam National University Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, 10000, Vietnam.,Hanoi University of Science and Technology, 1st Dai Co Viet, Hai Ba Trung, Hanoi, 10000, Vietnam
| | - Vinh Le Sy
- University of Engineering and Technology, Vietnam National University Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, 10000, Vietnam.
| |
Collapse
|
38
|
de Bernadi Schneider A, Jacob Machado D, Guirales S, Janies DA. FLAVi: An Enhanced Annotator for Viral Genomes of Flaviviridae. Viruses 2020; 12:E892. [PMID: 32824044 PMCID: PMC7472247 DOI: 10.3390/v12080892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Responding to the ongoing and severe public health threat of viruses of the family Flaviviridae, including dengue, hepatitis C, West Nile, yellow fever, and Zika, demands a greater understanding of how these viruses emerge and spread. Updated phylogenies are central to this understanding. Most cladograms of Flaviviridae focus on specific lineages and ignore outgroups, hampering the efficacy of the analysis to test ingroup monophyly and relationships. This is due to the lack of annotated Flaviviridae genomes, which has gene content variation among genera. This variation makes analysis without partitioning difficult. Therefore, we developed an annotation pipeline for the genera of Flaviviridae (Flavirirus, Hepacivirus, Pegivirus, and Pestivirus, named "Fast Loci Annotation of Viruses" (FLAVi; http://flavi-web.com/), that combines ab initio and homology-based strategies. FLAVi recovered 100% of the genes in Flavivirus and Hepacivirus genomes. In Pegivirus and Pestivirus, annotation efficiency was 100% except for one partition each. There were no false positives. The combined phylogenetic analysis of multiple genes made possible by annotation has clear impacts over the tree topology compared to phylogenies that we inferred without outgroups or data partitioning. The final tree is largely congruent with previous hypotheses and adds evidence supporting the close phylogenetic relationship between dengue and Zika.
Collapse
Affiliation(s)
- Adriano de Bernadi Schneider
- AntiViral Research Center, Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (S.G.); (D.A.J.)
| | - Sayal Guirales
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (S.G.); (D.A.J.)
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (S.G.); (D.A.J.)
| |
Collapse
|
39
|
Areces-Berazain F, Wang Y, Hinsinger DD, Strijk JS. Plastome comparative genomics in maples resolves the infrageneric backbone relationships. PeerJ 2020; 8:e9483. [PMID: 32742784 PMCID: PMC7365138 DOI: 10.7717/peerj.9483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Maples (Acer) are among the most diverse and ecologically important tree genera of the north-temperate forests. They include species highly valued as ornamentals and as a source of timber and sugar products. Previous phylogenetic studies employing plastid markers have not provided sufficient resolution, particularly at deeper nodes, leaving the backbone of the maple plastid tree essentially unresolved. We provide the plastid genome sequences of 16 species of maples spanning the sectional diversity of the genus and explore the utility of these sequences as a source of information for genetic and phylogenetic studies in this group. We analyzed the distribution of different types of repeated sequences and the pattern of codon usage, and identified variable regions across the plastome. Maximum likelihood and Bayesian analyses using two partitioning strategies were performed with these and previously published sequences. The plastomes ranged in size from 155,212 to 157,023 bp and had structure and gene content except for Acer palmatum (sect. Palmata), which had longer inverted repeats and an additional copy of the rps19 gene. Two genes, rps2 and rpl22, were found to be truncated at different positions and might be non-functional in several species. Most dispersed repeats, SSRs, and overall variation were detected in the non-coding sequences of the LSC and SSC regions. Fifteen loci, most of which have not been used before in the genus, were identified as the most variable and potentially useful as molecular markers for barcoding and genetic studies. Both ML and Bayesian analyses produced similar results irrespective of the partitioning strategy used. The plastome-based tree largely supported the topology inferred in previous studies using cp markers while providing resolution to the backbone relationships but was highly incongruous with a recently published nuclear tree presenting an opportunity for further research to investigate the causes of discordance, and particularly the role of hybridization in the diversification of the genus. Plastome sequences are valuable tools to resolve deep-level relationships within Acer. The variable loci and SSRs identified in this study will facilitate the development of markers for ecological and evolutionary studies in the genus. This study underscores the potential of plastid genome sequences to improve our understanding of the evolution of maples.
Collapse
Affiliation(s)
- Fabiola Areces-Berazain
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos
| | - Yixi Wang
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Damien D. Hinsinger
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commisariat à l’Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Joeri S. Strijk
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
40
|
Wang E, Zhang D, Braun MS, Hotz-Wagenblatt A, Pärt T, Arlt D, Schmaljohann H, Bairlein F, Lei F, Wink M. Can Mitogenomes of the Northern Wheatear (Oenanthe oenanthe) Reconstruct Its Phylogeography and Reveal the Origin of Migrant Birds? Sci Rep 2020; 10:9290. [PMID: 32518318 PMCID: PMC7283232 DOI: 10.1038/s41598-020-66287-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
The Northern Wheatear (Oenanthe oenanthe, including the nominate and the two subspecies O. o. leucorhoa and O. o. libanotica) and the Seebohm’s Wheatear (Oenanthe seebohmi) are today regarded as two distinct species. Before, all four taxa were regarded as four subspecies of the Northern Wheatear. Their classification has exclusively been based on ecological and morphological traits, while their molecular characterization is still missing. With this study, we used next-generation sequencing to assemble 117 complete mitochondrial genomes covering O. o. oenanthe, O. o. leucorhoa and O. seebohmi. We compared the resolution power of each individual mitochondrial marker and concatenated marker sets to reconstruct the phylogeny and estimate speciation times of three taxa. Moreover, we tried to identify the origin of migratory wheatears caught on Helgoland (Germany) and on Crete (Greece). Mitogenome analysis revealed two different ancient lineages that separated around 400,000 years ago. Both lineages consisted of a mix of subspecies and species. The phylogenetic trees, as well as haplotype networks are incongruent with the present morphology-based classification. Mitogenome could not distinguish these presumed species. The genetic panmixia among present populations and taxa might be the consequence of mitochondrial introgression between ancient wheatear populations.
Collapse
Affiliation(s)
- Erjia Wang
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Dezhi Zhang
- Key laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, UniversityMerops apiaster. J. Divers of Chinese Academy of Sciences, Beijing, China
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Omics IT and Data Management Core Facility, German Cancer Research Center, Heidelberg University, Heidelberg, Germany
| | - Tomas Pärt
- Department of Ecology, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Debora Arlt
- Department of Ecology, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Heiko Schmaljohann
- Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany.,Institute for Biology und Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Franz Bairlein
- Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany
| | - Fumin Lei
- Key laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, UniversityMerops apiaster. J. Divers of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
41
|
Abstract
Knowing phylogenetic relationships among species is fundamental for many studies in biology. An accurate phylogenetic tree underpins our understanding of the major transitions in evolution, such as the emergence of new body plans or metabolism, and is key to inferring the origin of new genes, detecting molecular adaptation, understanding morphological character evolution and reconstructing demographic changes in recently diverged species. Although data are ever more plentiful and powerful analysis methods are available, there remain many challenges to reliable tree building. Here, we discuss the major steps of phylogenetic analysis, including identification of orthologous genes or proteins, multiple sequence alignment, and choice of substitution models and inference methodologies. Understanding the different sources of errors and the strategies to mitigate them is essential for assembling an accurate tree of life.
Collapse
|
42
|
Sun X, Yu D, Xie Z, Dong J, Ding Y, Yao H, Greenslade P. Phylomitogenomic analyses on collembolan higher taxa with enhanced taxon sampling and discussion on method selection. PLoS One 2020; 15:e0230827. [PMID: 32282807 PMCID: PMC7153868 DOI: 10.1371/journal.pone.0230827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Collembola are a basal group of Hexapoda renowned for both unique morphological characters and significant ecological roles. However, a robust and plausible phylogenetic relationship between its deeply divergent lineages has yet to be achieved. We carried out a mitophylogenomic study based on a so far the most comprehensive mitochondrial genome dataset. Our data matrix contained mitogenomes of 31 species from almost all major families of all four orders, with 16 mitogenomes newly sequenced and annotated. We compared the linear arrangements of genes along mitochondria across species. Then we conducted 13 analyses each under a different combination of character coding, partitioning scheme and heterotachy models, and assessed their performance in phylogenetic inference. Several hypothetical tree topologies were also tested. Mitogenomic structure comparison revealed that most species share the same gene order of putative ancestral pancrustacean pattern, while seven species from Onychiuridae, Poduridae and Symphypleona bear different levels of gene rearrangements, indicating phylogenetic signals. Tomoceroidea was robustly recovered for the first time in the presence of all its families and subfamilies. Monophyly of Onychiuroidea was supported using unpartitioned models alleviating LBA. Paronellidae was revealed polyphyletic with two subfamilies inserted independently into Entomobryidae. Although Entomobryomorpha has not been well supported, more than half of the analyses obtained convincing topologies by placing Tomoceroidea within or near remaining Entomobryomorpha. The relationship between elongate-shaped and spherical-shaped collembolans still remained ambiguous, but Neelipleona tend to occupy the basal position in most trees. This study showed that mitochondrial genomes could provide important information for reconstructing the relationships among Collembola when suitable analytical approaches are implemented. Of all the data refining and model selecting schemes used in this study, the combination of nucleotide sequences, partitioning model and exclusion of third codon positions performed better in generating more reliable tree topology and higher node supports than others.
Collapse
Affiliation(s)
- Xin Sun
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Daoyuan Yu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- * E-mail: ,
| | - Zhijing Xie
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Dong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yinhuan Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Yao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Penelope Greenslade
- Environmental Management, School of Applied and Biomedical Science, Federation University, Ballarat, Victoria, Australia
- Division of Biology, Australian National University, Australian Capital Territory, Australia
| |
Collapse
|
43
|
Wolski GJ, Nowicka-Krawczyk P. Resurrection of the Plagiothecium longisetum Lindb. and proposal of the new species-P. angusticellum. PLoS One 2020; 15:e0230237. [PMID: 32160254 PMCID: PMC7065767 DOI: 10.1371/journal.pone.0230237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/25/2020] [Indexed: 11/25/2022] Open
Abstract
Plagiothecium longisetum was described by Lindberg in 1872, based on Maximowicz materials from Japan. In the 1970s, this species was synonymized with P. nemorale. However, a polyphasic approach applied to the investigation of the P. nemorale sensu lato showed a clear separation between the specimens of former P. longisetum and the type of P. nemorale. Morphological features and molecular analyses provide evidence that those two groups are distinct, as well as allowed to describe the new species. The results are strongly supported by the statistical analyses of morphometric features and phylogenetic analyses based on concatenated nuclear and chloroplast DNA markers. The maximum likelihood (ML) and Bayesian inference (BI) analyses of ITS, rps4 and rpl16 regions place both species outside the P. nemorale group. The distinctions between individual species, reflected by the morphological features-easy to observe-and the molecular data, provide a scientific foundation for the resurrection of P. longisetum Lindb. and establishment of a new species-P. angusticellum sp. nov.
Collapse
Affiliation(s)
- Grzegorz J. Wolski
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paulina Nowicka-Krawczyk
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
44
|
Phillips AJ, Dornburg A, Zapfe KL, Anderson FE, James SW, Erséus C, Moriarty Lemmon E, Lemmon AR, Williams BW. Phylogenomic Analysis of a Putative Missing Link Sparks Reinterpretation of Leech Evolution. Genome Biol Evol 2020; 11:3082-3093. [PMID: 31214691 PMCID: PMC6598468 DOI: 10.1093/gbe/evz120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Leeches (Hirudinida) comprise a charismatic, yet often maligned group of worms. Despite their ecological, economic, and medical importance, a general consensus on the phylogenetic relationships of major hirudinidan lineages is lacking. This absence of a consistent, robust phylogeny of early-diverging lineages has hindered our understanding of the underlying processes that enabled evolutionary diversification of this clade. Here, we used an anchored hybrid enrichment-based phylogenomic approach, capturing hundreds of loci to investigate phylogenetic relationships among major hirudinidan lineages and their closest living relatives. We recovered Branchiobdellida as sister to a clade that includes all major lineages of hirudinidans and Acanthobdella, casting doubt on the utility of Acanthobdella as a “missing link” between hirudinidans and the clitellate group formerly known as Oligochaeta. Further, our results corroborate the reciprocal monophyly of jawed and proboscis-bearing leeches. Our phylogenomic resolution of early-diverging leeches provides a useful framework for illuminating the evolution of key adaptations and host–symbiont associations that have allowed leeches to colonize a wide diversity of habitats worldwide.
Collapse
Affiliation(s)
- Anna J Phillips
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia
| | - Alex Dornburg
- North Carolina Museum of Natural Sciences, Research Laboratory, Raleigh, North Carolina
| | - Katerina L Zapfe
- North Carolina Museum of Natural Sciences, Research Laboratory, Raleigh, North Carolina.,Department of Biological Sciences, Clemson University
| | | | | | - Christer Erséus
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | | | - Alan R Lemmon
- Department of Scientific Computing, Florida State University
| | - Bronwyn W Williams
- North Carolina Museum of Natural Sciences, Research Laboratory, Raleigh, North Carolina
| |
Collapse
|
45
|
Wang HC, Susko E, Roger AJ. The Relative Importance of Modeling Site Pattern Heterogeneity Versus Partition-Wise Heterotachy in Phylogenomic Inference. Syst Biol 2020; 68:1003-1019. [PMID: 31140564 DOI: 10.1093/sysbio/syz021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/04/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Large taxa-rich genome-scale data sets are often necessary for resolving ancient phylogenetic relationships. But accurate phylogenetic inference requires that they are analyzed with realistic models that account for the heterogeneity in substitution patterns amongst the sites, genes and lineages. Two kinds of adjustments are frequently used: models that account for heterogeneity in amino acid frequencies at sites in proteins, and partitioned models that accommodate the heterogeneity in rates (branch lengths) among different proteins in different lineages (protein-wise heterotachy). Although partitioned and site-heterogeneous models are both widely used in isolation, their relative importance to the inference of correct phylogenies has not been carefully evaluated. We conducted several empirical analyses and a large set of simulations to compare the relative performances of partitioned models, site-heterogeneous models, and combined partitioned site heterogeneous models. In general, site-homogeneous models (partitioned or not) performed worse than site heterogeneous, except in simulations with extreme protein-wise heterotachy. Furthermore, simulations using empirically-derived realistic parameter settings showed a marked long-branch attraction (LBA) problem for analyses employing protein-wise partitioning even when the generating model included partitioning. This LBA problem results from a small sample bias compounded over many single protein alignments. In some cases, this problem was ameliorated by clustering similarly-evolving proteins together into larger partitions using the PartitionFinder method. Similar results were obtained under simulations with larger numbers of taxa or heterogeneity in simulating topologies over genes. For an empirical Microsporidia test data set, all but one tested site-heterogeneous models (with or without partitioning) obtain the correct Microsporidia+Fungi grouping, whereas site-homogenous models (with or without partitioning) did not. The single exception was the fully partitioned site-heterogeneous analysis that succumbed to the compounded small sample LBA bias. In general unless protein-wise heterotachy effects are extreme, it is more important to model site-heterogeneity than protein-wise heterotachy in phylogenomic analyses. Complete protein-wise partitioning should be avoided as it can lead to a serious LBA bias. In cases of extreme protein-wise heterotachy, approaches that cluster similarly-evolving proteins together and coupled with site-heterogeneous models work well for phylogenetic estimation.
Collapse
Affiliation(s)
- Huai-Chun Wang
- Department of Mathematics and Statistics, Dalhousie University, 6316 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, 6316 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
46
|
Duchêne DA, Tong KJ, Foster CSP, Duchêne S, Lanfear R, Ho SYW. Linking Branch Lengths across Sets of Loci Provides the Highest Statistical Support for Phylogenetic Inference. Mol Biol Evol 2019; 37:1202-1210. [DOI: 10.1093/molbev/msz291] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AbstractEvolution leaves heterogeneous patterns of nucleotide variation across the genome, with different loci subject to varying degrees of mutation, selection, and drift. In phylogenetics, the potential impacts of partitioning sequence data for the assignment of substitution models are well appreciated. In contrast, the treatment of branch lengths has received far less attention. In this study, we examined the effects of linking and unlinking branch-length parameters across loci or subsets of loci. By analyzing a range of empirical data sets, we find consistent support for a model in which branch lengths are proportionate between subsets of loci: gene trees share the same pattern of branch lengths, but form subsets that vary in their overall tree lengths. These models had substantially better statistical support than models that assume identical branch lengths across gene trees, or those in which genes form subsets with distinct branch-length patterns. We show using simulations and empirical data that the complexity of the branch-length model with the highest support depends on the length of the sequence alignment and on the numbers of taxa and loci in the data set. Our findings suggest that models in which branch lengths are proportionate between subsets have the highest statistical support under the conditions that are most commonly seen in practice. The results of our study have implications for model selection, computational efficiency, and experimental design in phylogenomics.
Collapse
Affiliation(s)
- David A Duchêne
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - K Jun Tong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Charles S P Foster
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sebastián Duchêne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert Lanfear
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
47
|
Paenibacillus lutrae sp. nov., A Chitinolytic Species Isolated from A River Otter in Castril Natural Park, Granada, Spain. Microorganisms 2019; 7:microorganisms7120637. [PMID: 31810255 PMCID: PMC6955709 DOI: 10.3390/microorganisms7120637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 11/16/2022] Open
Abstract
A highly chitinolytic facultative anaerobic, chemoheterotrophic, endospore-forming, Gram-stain-positive, rod-shaped bacterial strain N10T was isolated from the feces of a river otter in the Castril Natural Park (Granada, Spain). It is a slightly halophilic, motile, catalase-, oxidase-, ACC deaminase- and C4 and C8 lipase-positive strain. It is aerobic, respiratory and has a fermentative metabolism using oxygen as an electron acceptor, produces acids from glucose and can fix nitrogen. Phylogenetic analysis of the 16S rRNA gene sequence, multilocus sequence analysis (MLSA) of 16S rRNA, gyrB, recA and rpoB, as well as phylogenomic analyses indicate that strain N10T is a novel species of the genus Paenibacillus, with the highest 16S rRNA sequence similarity (95.4%) to P. chitinolyticus LMG 18047T and <95% similarity to other species of the genus Paenibacillus. Digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANIb) were 21.1% and <75%, respectively. Its major cellular fatty acids were anteiso-C15:0, C16:0, and iso-C15:0. G + C content ranged between 45%–50%. Using 16S rRNA phylogenetic and in silico phylogenomic analyses, together with chemotaxonomic and phenotypic data, we demonstrate that type strain N10T (= CECT 9541T =LMG 30535T) is a novel species of genus Paenibacillus and the name Paenibacillus lutrae sp. nov. is proposed.
Collapse
|
48
|
Rosa BB, Melo GAR, Barbeitos MS. Homoplasy-Based Partitioning Outperforms Alternatives in Bayesian Analysis of Discrete Morphological Data. Syst Biol 2019; 68:657-671. [PMID: 30649562 DOI: 10.1093/sysbio/syz001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 11/12/2022] Open
Abstract
Bayesian analysis of morphological data is becoming increasingly popular mainly (but not only) because it allows for time-calibrated phylogenetic inference using relaxed morphological clocks and tip dating whenever fossils are available. As with molecular data, recent studies have shown that modeling among-character rate variation (ACRV) in morphological matrices greatly improves phylogenetic inference. In a likelihood framework this may be accomplished, for instance, by employing a hidden Markov model to assign characters to rate categories drawn from a (discretized) $\Gamma$ distribution and/or by partitioning data sets according to rate heterogeneity and estimating per-partition branch lengths, conditioned on a single topology. While the first approach is available in many phylogenetic analysis software, there is still no clear consensus on how to partition data, except perhaps in the simplest cases (e.g., "by codon" partitioning of coding sequences). Additionally, there is a trade-off between improvement in likelihood scores and the number of free parameters in the analysis, which rises quickly with the number of partitions. This trade-off may be dealt with by employing statistics that penalize overfitting of complex models, such as Akaike or Bayesian information criteria, or the more recently introduced stepping-stone method for marginal likelihood approximation. We applied the latter to three distinct matrices of discrete morphological data and demonstrated that sorting characters by homoplasy scores (obtained from implied weighting parsimony analysis) outperformed other partitioning strategies (anatomically-based and PartitionFinder2). The method was in fact so efficient in segregating characters by rates of evolution that no within-partition ACRV modeling was necessary, while among-partition rate variation was adequately accommodated by rate multipliers. We conclude that partitioning by homoplasy is a powerful and easy-to-implement strategy to address ACRV in complex data sets. We provide some guidelines focusing on morphological matrices, although this approach may be also applicable to molecular data sets.
Collapse
Affiliation(s)
- Brunno B Rosa
- Laboratório de Biologia Comparada de Hymenoptera, Departamento de Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, Curitiba 81530-980, Brazil
| | - Gabriel A R Melo
- Laboratório de Biologia Comparada de Hymenoptera, Departamento de Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, Curitiba 81530-980, Brazil
| | - Marcos S Barbeitos
- Laboratório de Evolução dos Organismos Marinhos, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba 81530-980, Brazil
| |
Collapse
|
49
|
Cabra-García J, Hormiga G. Exploring the impact of morphology, multiple sequence alignment and choice of optimality criteria in phylogenetic inference: a case study with the Neotropical orb-weaving spider genus Wagneriana (Araneae: Araneidae). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
We present a total evidence phylogenetic analysis of the Neotropical orb-weaving spider genus Wagneriana and discuss the phylogenetic impacts of methodological choices. We analysed 167 phenotypic characters and nine loci scored for 115 Wagneriana and outgroups, including 46 newly sequenced species. We compared total evidence analyses and molecular-only analyses to evaluate the impact of phenotypic evidence, and we performed analyses using the programs POY, TNT, RAxML, GARLI, IQ-TREE and MrBayes to evaluate the effects of multiple sequence alignment and optimality criteria. In all analyses, Wagneriana carimagua and Wagneriana uropygialis were nested in the genera Parawixia and Alpaida, respectively, and the remaining species of Wagneriana fell into three main clades, none of which formed a pair of sister taxa. However, sister-group relationships among the main clades and their internal relationships were strongly influenced by methodological choices. Alignment methods had comparable topological effects to those of optimality criteria in terms of ‘subtree pruning and regrafting’ moves. The inclusion of phenotypic evidence, 2.80–3.05% of the total evidence matrices, increased support irrespective of the optimality criterion used. The monophyly of some groups was recovered only after the addition of morphological characters. A new araneid genus, Popperaneus gen. nov., is erected, and Paraverrucosa is resurrected. Four new synonymies and seven new combinations are proposed.
Collapse
Affiliation(s)
- Jimmy Cabra-García
- Departamento de Biología, Universidad del Valle, Cali, AA, Colombia
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo Hormiga
- The George Washington University, Department of Biological Sciences, Washington, DC, USA
| |
Collapse
|
50
|
Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, Edwards SV. Whole-Genome Analyses Resolve the Phylogeny of Flightless Birds (Palaeognathae) in the Presence of an Empirical Anomaly Zone. Syst Biol 2019; 68:937-955. [PMID: 31135914 PMCID: PMC6857515 DOI: 10.1093/sysbio/syz019] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/06/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023] Open
Abstract
Palaeognathae represent one of the two basal lineages in modern birds, and comprise the volant (flighted) tinamous and the flightless ratites. Resolving palaeognath phylogenetic relationships has historically proved difficult, and short internal branches separating major palaeognath lineages in previous molecular phylogenies suggest that extensive incomplete lineage sorting (ILS) might have accompanied a rapid ancient divergence. Here, we investigate palaeognath relationships using genome-wide data sets of three types of noncoding nuclear markers, together totaling 20,850 loci and over 41 million base pairs of aligned sequence data. We recover a fully resolved topology placing rheas as the sister to kiwi and emu + cassowary that is congruent across marker types for two species tree methods (MP-EST and ASTRAL-II). This topology is corroborated by patterns of insertions for 4274 CR1 retroelements identified from multispecies whole-genome screening, and is robustly supported by phylogenomic subsampling analyses, with MP-EST demonstrating particularly consistent performance across subsampling replicates as compared to ASTRAL. In contrast, analyses of concatenated data supermatrices recover rheas as the sister to all other nonostrich palaeognaths, an alternative that lacks retroelement support and shows inconsistent behavior under subsampling approaches. While statistically supporting the species tree topology, conflicting patterns of retroelement insertions also occur and imply high amounts of ILS across short successive internal branches, consistent with observed patterns of gene tree heterogeneity. Coalescent simulations and topology tests indicate that the majority of observed topological incongruence among gene trees is consistent with coalescent variation rather than arising from gene tree estimation error alone, and estimated branch lengths for short successive internodes in the inferred species tree fall within the theoretical range encompassing the anomaly zone. Distributions of empirical gene trees confirm that the most common gene tree topology for each marker type differs from the species tree, signifying the existence of an empirical anomaly zone in palaeognaths.
Collapse
Affiliation(s)
- Alison Cloutier
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Department of Ornithology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Timothy B Sackton
- Informatics Group, Harvard University, 28 Oxford Street, Cambridge, MA 02138, USA
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Department of Ornithology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Michele Clamp
- Informatics Group, Harvard University, 28 Oxford Street, Cambridge, MA 02138, USA
| | - Allan J Baker
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, Ontario M5S 3B2, Canada
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Department of Ornithology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|