1
|
Ferreira Sa Antunes T, Huguet-Tapia JC, Elena SF, Folimonova SY. Intra-Host Citrus Tristeza Virus Populations during Prolonged Infection Initiated by a Well-Defined Sequence Variant in Nicotiana benthamiana. Viruses 2024; 16:1385. [PMID: 39339861 PMCID: PMC11437405 DOI: 10.3390/v16091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Due to the error-prone nature of viral RNA-dependent RNA polymerases, the replication of RNA viruses results in a diversity of viral genomes harboring point mutations, deletions, insertions, and genome rearrangements. Citrus tristeza virus (CTV), a causal agent of diseases of economically important citrus species, shows intrinsic genetic stability. While the virus appears to have some mechanism that limits the accumulation of single-nucleotide variants, the production of defective viral genomes (DVGs) during virus infection has been reported for certain variants of CTV. The intra-host diversity generated during plant infection with variant T36 (CTV-T36) remains unclear. To address this, we analyzed the RNA species accumulated in the initially infected and systemic leaves of Nicotiana benthamiana plants inoculated with an infectious cDNA clone of CTV-T36, which warranted that infection was initiated by a known, well-defined sequence variant of the virus. CTV-T36 limited the accumulation of single-nucleotide mutants during infection. With that, four types of DVGs-deletions, insertions, and copy- and snap-backs-were found in all the samples, with deletions and insertions being the most common types. Hot-spots across the genome for DVG recombination and short direct sequence repeats suggest that sequence complementarity could mediate DVG formation. In conclusion, our study illustrates the formation of diverse DVGs during CTV-T36 infection. To the best of our knowledge, this is the first study that has analyzed the genetic variability and recombination of a well-defined sequence variant of CTV in an herbaceous host.
Collapse
Affiliation(s)
| | - José C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (T.F.S.A.); (J.C.H.-T.)
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, 46980 Valencia, Spain;
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (T.F.S.A.); (J.C.H.-T.)
| |
Collapse
|
2
|
Nyirakanani C, Tamisier L, Bizimana JP, Rollin J, Nduwumuremyi A, Bigirimana VDP, Selmi I, Lasois L, Vanderschuren H, Massart S. Going beyond consensus genome sequences: An innovative SNP-based methodology reconstructs different Ugandan cassava brown streak virus haplotypes at a nationwide scale in Rwanda. Virus Evol 2023; 9:vead053. [PMID: 37692897 PMCID: PMC10491861 DOI: 10.1093/ve/vead053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/14/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023] Open
Abstract
Cassava Brown Streak Disease (CBSD), which is caused by cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), represents one of the most devastating threats to cassava production in Africa, including in Rwanda where a dramatic epidemic in 2014 dropped cassava yield from 3.3 million to 900,000 tonnes (1). Studying viral genetic diversity at the genome level is essential in disease management, as it can provide valuable information on the origin and dynamics of epidemic events. To fill the current lack of genome-based diversity studies of UCBSV, we performed a nationwide survey of cassava ipomovirus genomic sequences in Rwanda by high-throughput sequencing (HTS) of pools of plants sampled from 130 cassava fields in thirteen cassava-producing districts, spanning seven agro-ecological zones with contrasting climatic conditions and different cassava cultivars. HTS allowed the assembly of a nearly complete consensus genome of UCBSV in twelve districts. The phylogenetic analysis revealed high homology between UCBSV genome sequences, with a maximum of 0.8 per cent divergence between genomes at the nucleotide level. An in-depth investigation based on Single Nucleotide Polymorphisms (SNPs) was conducted to explore the genome diversity beyond the consensus sequences. First, to ensure the validity of the result, a panel of SNPs was confirmed by independent reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing. Furthermore, the combination of fixation index (FST) calculation and Principal Component Analysis (PCA) based on SNP patterns identified three different UCBSV haplotypes geographically clustered. The haplotype 2 (H2) was restricted to the central regions, where the NAROCAS 1 cultivar is predominantly farmed. RT-PCR and Sanger sequencing of individual NAROCAS1 plants confirmed their association with H2. Haplotype 1 was widely spread, with a 100 per cent occurrence in the Eastern region, while Haplotype 3 was only found in the Western region. These haplotypes' associations with specific cultivars or regions would need further confirmation. Our results prove that a much more complex picture of genetic diversity can be deciphered beyond the consensus sequences, with practical implications on virus epidemiology, evolution, and disease management. Our methodology proposes a high-resolution analysis of genome diversity beyond the consensus between and within samples. It can be used at various scales, from individual plants to pooled samples of virus-infected plants. Our findings also showed how subtle genetic differences could be informative on the potential impact of agricultural practices, as the presence and frequency of a virus haplotype could be correlated with the dissemination and adoption of improved cultivars.
Collapse
Affiliation(s)
- Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
- Department of Crop Sciences, School of Agriculture and Food Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze 210, Rwanda
| | - Lucie Tamisier
- Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
| | - Jean Pierre Bizimana
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
- Department of Research, Rwanda Agriculture and Animal Resources Development Board, Huye 5016, Rwanda
| | - Johan Rollin
- Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
- Department of Research, DNAVision, Gosselies, Charleroi 6041, Belgium
| | - Athanase Nduwumuremyi
- Department of Research, Rwanda Agriculture and Animal Resources Development Board, Huye 5016, Rwanda
| | - Vincent de Paul Bigirimana
- Department of Crop Sciences, School of Agriculture and Food Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze 210, Rwanda
| | - Ilhem Selmi
- Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
| | - Ludivine Lasois
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
- Tropical Crop Improvement Laboratory, Department of Biosystems, Katholieke Universiteit Leuven, Heverlee, Leuven 3001, Belgium
| | - Sébastien Massart
- Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
| |
Collapse
|
3
|
Koloniuk I, Matyášová A, Brázdová S, Veselá J, Přibylová J, Várallyay E, Fránová J. Analysis of Virus-Derived siRNAs in Strawberry Plants Co-Infected with Multiple Viruses and Their Genotypes. PLANTS (BASEL, SWITZERLAND) 2023; 12:2564. [PMID: 37447124 DOI: 10.3390/plants12132564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Plants can be infected with multiple viruses. High-throughput sequencing tools have enabled numerous discoveries of multi-strain infections, when more than one viral strain or divergent genomic variant infects a single plant. Here, we investigated small interfering RNAs (siRNAs) in a single strawberry plant co-infected with several strains of strawberry mottle virus (SMoV), strawberry crinkle virus (SCV) and strawberry virus 1 (StrV-1). A range of plants infected with subsets of the initial viral species and strains that were obtained by aphid-mediated transmission were also evaluated. Using high-throughput sequencing, we characterized the small RNA fractions associated with different genotypes of these three viruses and determined small RNA hotspot regions in viral genomes. A comparison of virus-specific siRNA (vsiRNA) abundance with relative viral concentrations did not reveal any consistent agreement. Strawberry mottle virus strains exhibiting considerable variations in concentrations were found to be associated with comparable quantities of vsiRNAs. Additionally, by estimating the specificity of siRNAs to different viral strains, we observed that a substantial pool of vsiRNAs could target all SMoV strains, while strain-specific vsiRNAs predominantly targeted rhabdoviruses, SCV and StrV-1. This highlights the intricate nature and potential interference of the antiviral response within a single infected plant when multiple viruses are present.
Collapse
Affiliation(s)
- Igor Koloniuk
- Institute of Plant Molecular Biology, Department of Plant Virology, Biology Centre CAS, 370 05 Ceske Budejovice, Czech Republic
| | - Alena Matyášová
- Institute of Plant Molecular Biology, Department of Plant Virology, Biology Centre CAS, 370 05 Ceske Budejovice, Czech Republic
| | - Sára Brázdová
- Institute of Plant Molecular Biology, Department of Plant Virology, Biology Centre CAS, 370 05 Ceske Budejovice, Czech Republic
- Faculty of Agriculture, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | - Jana Veselá
- Institute of Plant Molecular Biology, Department of Plant Virology, Biology Centre CAS, 370 05 Ceske Budejovice, Czech Republic
| | - Jaroslava Přibylová
- Institute of Plant Molecular Biology, Department of Plant Virology, Biology Centre CAS, 370 05 Ceske Budejovice, Czech Republic
| | - Eva Várallyay
- Genomics Research Group, Institute of Plant Protection, Department of Plant Pathology, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Gödöllő, Hungary
| | - Jana Fránová
- Institute of Plant Molecular Biology, Department of Plant Virology, Biology Centre CAS, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
4
|
Moreno‐Pérez MG, Bera S, McLeish M, Fraile A, García‐Arenal F. Reversion of a resistance-breaking mutation shows reversion costs and high virus diversity at necrotic local lesions. MOLECULAR PLANT PATHOLOGY 2023; 24:142-153. [PMID: 36435959 PMCID: PMC9831284 DOI: 10.1111/mpp.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
An instance of host range evolution relevant to plant virus disease control is resistance breaking. Resistance breaking can be hindered by across-host fitness trade-offs generated by negative effects of resistance-breaking mutations on the virus fitness in susceptible hosts. Different mutations in pepper mild mottle virus (PMMoV) coat protein result in the breaking in pepper plants of the resistance determined by the L3 resistance allele. Of these, mutation M138N is widespread in PMMoV populations, despite associated fitness penalties in within-host multiplication and survival. The stability of mutation M138N was analysed by serial passaging in L3 resistant plants. Appearance on passaging of necrotic local lesions (NLL), indicating an effective L3 resistance, showed reversion to nonresistance-breaking phenotypes was common. Most revertant genotypes had the mutation N138K, which affects the properties of the virus particle, introducing a penalty of reversion. Hence, the costs of reversion may determine the evolution of resistance-breaking in addition to resistance-breaking costs. The genetic diversity of the virus population in NLL was much higher than in systemically infected tissues, and included mutations reported to break L3 resistance other than M138N. Infectivity assays on pepper genotypes with different L alleles showed high phenotypic diversity in respect to L alleles in NLL, including phenotypes not reported in nature. Thus, high diversity at NLL may potentiate the appearance of genotypes that enable the colonization of new host genotypes or species. Collectively, the results of this study contribute to better understanding the evolutionary dynamics of resistance breaking and host-range expansions.
Collapse
Affiliation(s)
- Manuel G. Moreno‐Pérez
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Michael McLeish
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Fernando García‐Arenal
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| |
Collapse
|
5
|
Plant Virus Adaptation to New Hosts: A Multi-scale Approach. Curr Top Microbiol Immunol 2023; 439:167-196. [PMID: 36592246 DOI: 10.1007/978-3-031-15640-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.
Collapse
|
6
|
Rodríguez‐Pastor R, Shafran Y, Knossow N, Gutiérrez R, Harrus S, Zaman L, Lenski RE, Barrick JE, Hawlena H. A road map for in vivo evolution experiments with blood-borne parasitic microbes. Mol Ecol Resour 2022; 22:2843-2859. [PMID: 35599628 PMCID: PMC9796859 DOI: 10.1111/1755-0998.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/14/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023]
Abstract
Laboratory experiments in which blood-borne parasitic microbes evolve in their animal hosts offer an opportunity to study parasite evolution and adaptation in real time and under natural settings. The main challenge of these experiments is to establish a protocol that is both practical over multiple passages and accurately reflects natural transmission scenarios and mechanisms. We provide a guide to the steps that should be considered when designing such a protocol, and we demonstrate its use via a case study. We highlight the importance of choosing suitable ancestral genotypes, treatments, number of replicates per treatment, types of negative controls, dependent variables, covariates, and the timing of checkpoints for the experimental design. We also recommend specific preliminary experiments to determine effective methods for parasite quantification, transmission, and preservation. Although these methodological considerations are technical, they also often have conceptual implications. To this end, we encourage other researchers to design and conduct in vivo evolution experiments with blood-borne parasitic microbes, despite the challenges that the work entails.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Pastor
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Yarden Shafran
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Nadav Knossow
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Ricardo Gutiérrez
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental SciencesThe Hebrew University of JerusalemRehovotIsrael
| | - Shimon Harrus
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental SciencesThe Hebrew University of JerusalemRehovotIsrael
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, The Center for the Study of Complex Systems (CSCS)University of MichiganAnn ArborMichiganUSA
| | - Richard E. Lenski
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
| | - Jeffrey E. Barrick
- Department of Molecular BiosciencesThe University of Texas AustinAustinTexasUSA
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| |
Collapse
|
7
|
Analysis of the Contribution of Intrinsic Disorder in Shaping Potyvirus Genetic Diversity. Viruses 2022; 14:v14091959. [PMID: 36146764 PMCID: PMC9504506 DOI: 10.3390/v14091959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022] Open
Abstract
Intrinsically disordered regions (IDRs) are abundant in the proteome of RNA viruses. The multifunctional properties of these regions are widely documented and their structural flexibility is associated with the low constraint in their amino acid positions. Therefore, from an evolutionary stand point, these regions could have a greater propensity to accumulate non-synonymous mutations (NS) than highly structured regions (ORs, or 'ordered regions'). To address this hypothesis, we compared the distribution of non-synonymous mutations (NS), which we relate here to mutational robustness, in IDRs and ORs in the genome of potyviruses, a major genus of plant viruses. For this purpose, a simulation model was built and used to distinguish a possible selection phenomenon in the biological datasets from randomly generated mutations. We analyzed several short-term experimental evolution datasets. An analysis was also performed on the natural diversity of three different species of potyviruses reflecting their long-term evolution. We observed that the mutational robustness of IDRs is significantly higher than that of ORs. Moreover, the substitutions in the ORs are very constrained by the conservation of the physico-chemical properties of the amino acids. This feature is not found in the IDRs where the substitutions tend to be more random. This reflects the weak structural constraints in these regions, wherein an amino acid polymorphism is naturally conserved. In the course of evolution, potyvirus IDRs and ORs follow different evolutive paths with respect to their mutational robustness. These results have forced the authors to consider the hypothesis that IDRs and their associated amino acid polymorphism could constitute a potential adaptive reservoir.
Collapse
|
8
|
Hasiów-Jaroszewska B, Boezen D, Zwart MP. Metagenomic Studies of Viruses in Weeds and Wild Plants: A Powerful Approach to Characterise Variable Virus Communities. Viruses 2021; 13:1939. [PMID: 34696369 PMCID: PMC8539035 DOI: 10.3390/v13101939] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
High throughput sequencing (HTS) has revolutionised virus detection and discovery, allowing for the untargeted characterisation of whole viromes. Viral metagenomics studies have demonstrated the ubiquity of virus infection - often in the absence of disease symptoms - and tend to discover many novel viruses, highlighting the small fraction of virus biodiversity described to date. The majority of the studies using high-throughput sequencing to characterise plant viromes have focused on economically important crops, and only a small number of studies have considered weeds and wild plants. Characterising the viromes of wild plants is highly relevant, as these plants can affect disease dynamics in crops, often by acting as viral reservoirs. Moreover, the viruses in unmanaged systems may also have important effects on wild plant populations and communities. Here, we review metagenomic studies on weeds and wild plants to show the benefits and limitations of this approach and identify knowledge gaps. We consider key genomics developments that are likely to benefit the field in the near future. Although only a small number of HTS studies have been performed on weeds and wild plants, these studies have already discovered many novel viruses, demonstrated unexpected trends in virus distributions, and highlighted the potential of metagenomics as an approach.
Collapse
Affiliation(s)
- Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Węgorka 20, 60-318 Poznań, Poland
| | - Dieke Boezen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (D.B.); (M.P.Z.)
| | - Mark P. Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (D.B.); (M.P.Z.)
| |
Collapse
|
9
|
Mero HR, Lyantagaye SL, Bongcam-Rudloff E. Why has permanent control of cassava brown streak disease in Sub-Saharan Africa remained a dream since the 1930s? INFECTION GENETICS AND EVOLUTION 2021; 94:105001. [PMID: 34271188 DOI: 10.1016/j.meegid.2021.105001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Effective control of ipomoviruses that cause cassava brown streak disease (CBSD) in Africa has remained problematic despite eight remarkable decades (1930-2021) of research efforts. Molecular mechanisms underlying resistance breakdown in genetically improved cassava are still unknown. The vast genetic diversity of cassava brown streak viruses, which is crucial for the improvement of routine reverse transcription polymerase chain reaction (RT-qPCR) assays in CBSD-endemic regions of Africa, is controversial and underrepresented. From a molecular epidemiology viewpoint, this review discusses the reasons for why permanent control of CBSD is difficult in the modern era, even with the presence of diverse in silico and omics tools, recombinant DNA, and high throughput next-generation sequencing technologies. Following an extensive nucleotide data search in the National Centre for Biotechnology Information (NCBI) database and a literature review in PubMed and Scopus, we report that genomic data of 87.62% (474/541) strains of cassava brown streak virus are missing due to poor sequencing capacity in Africa. The evolution dynamics of viral virulence and pathogenicity has not yet been fully explored from the available 67 (12.38%) genomic sequences, owing to poor bioinformatics capacity. Tanzania and Zambia have the highest and lowest disease inoculum pressure, correspondingly. Knowledge gaps in molecular biology and the overall molecular pathogenesis of CBSD viruses impede effective disease control in Africa. Recommendations for possible solutions to the research questions, controversies, and hypotheses raised in this study serve as a roadmap for the invention of more effective CBSD control methods.
Collapse
Affiliation(s)
- Herieth Rhodes Mero
- University of Dar es Salaam, Mkwawa University College of Education (MUCE), Department of Biological Sciences, P. O. BOX 2513, Iringa, Tanzania.; Swedish University of Agricultural Sciences (SLU), SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, PO Box 7054 750 07, Uppsala, Sweden.
| | | | - Erik Bongcam-Rudloff
- Swedish University of Agricultural Sciences (SLU), SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, PO Box 7054 750 07, Uppsala, Sweden
| |
Collapse
|
10
|
Zanardo LG, Trindade TA, Mar TB, Barbosa TMC, Milanesi DF, Alves MS, Lima RRPN, Zerbini FM, Janssen A, Mizubuti ESG, Elliot SL, Carvalho CM. Experimental evolution of cowpea mild mottle virus reveals recombination-driven reduction in virulence accompanied by increases in diversity and viral fitness. Virus Res 2021; 303:198389. [PMID: 33716182 DOI: 10.1016/j.virusres.2021.198389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022]
Abstract
Major themes in pathogen evolution are emergence, evolution of virulence, host adaptation and the processes that underlie them. RNA viruses are of particular interest due to their rapid evolution. The in vivo molecular evolution of an RNA plant virus was demonstrated here using a necrotic isolate of cowpea mild mottle virus (CPMMV) and a susceptible soybean genotype submitted to serial inoculations. We show that the virus lost the capacity to cause necrosis after six passages through the host plant. When a severe bottleneck was imposed, virulence reduction occurred in the second passage. The change to milder symptoms had fitness benefits for the virus (higher RNA accumulation) and for its vector, the whitefly Bemisia tabaci. Genetic polymorphisms were highest in ORF1 (viral replicase) and were independent of the symptom pattern. Recombination was a major contributor to this diversity - even with the strong genetic bottleneck, recombination events and hot spots were detected within ORF1. Virulence reduction was associated with different sites in ORF1 associated to recombination events in both experiments. Overall, the results demonstrate that the reduction in virulence was a consequence of the emergence of new variants, driven by recombination. Besides providing details of the evolutionary mechanisms behind a reduction in virulence and its effect under viral and vector fitness, we propose that this recombination-driven switch in virulence allows the pathogen to rapidly adapt to a new host and, potentially, switch back.
Collapse
Affiliation(s)
- Larissa G Zanardo
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tiago A Trindade
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Talita B Mar
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tarsiane M C Barbosa
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Diogo F Milanesi
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Murilo S Alves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Roberta R P N Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Arne Janssen
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil; IBED, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eduardo S G Mizubuti
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Simon L Elliot
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Claudine M Carvalho
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
11
|
Alcaide C, Sardanyés J, Elena SF, Gómez P. Increasing temperature alters the within-host competition of viral strains and influences virus genetic variability. Virus Evol 2021; 7:veab017. [PMID: 33815829 PMCID: PMC8007957 DOI: 10.1093/ve/veab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Environmental conditions can affect viral accumulation, virulence and adaptation, which have implications in the disease outcomes and efficiency of control measures. Concurrently, mixed viral infections are relevant in plants, being their epidemiology shaped by within-host virus–virus interactions. However, the extent in which the combined effect of variations in abiotic components of the plant ecological niche and the prevalence of mixed infections affect the evolutionary dynamics of viral populations is not well understood. Here, we explore the interplay between ecological and evolutionary factors during viral infections and show that isolates of two strains of Pepino mosaic potexvirus coexisted in tomato plants in a temperature-dependent continuum between neutral and antagonistic interactions. After a long-term infection, the mutational analysis of the evolved viral genomes revealed strain-specific single-nucleotide polymorphisms that were modulated by the interaction between the type of infection and temperature. These results suggest that the temperature is an ecological driver of virus-virus interactions, with an effect on the genetic diversity of individual viruses that are co-infecting an individual host. This research provides insights into the effect that changes in host growth temperatures might have on the evolutionary dynamics of viral populations in mixed infections.
Collapse
Affiliation(s)
- Cristina Alcaide
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
- Dynamical Systems and Computational Virology Associated Unit Instituto de Biología Integrativa de Sistemas (I2SysBio) - CRM, Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Santiago F Elena
- I2SysBio, CSIC-Universitat de València, Paterna, 46980 València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
- Corresponding author: E-mail:
| |
Collapse
|
12
|
McLeish MJ, Fraile A, García-Arenal F. Population Genomics of Plant Viruses: The Ecology and Evolution of Virus Emergence. PHYTOPATHOLOGY 2021; 111:32-39. [PMID: 33210987 DOI: 10.1094/phyto-08-20-0355-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The genomics era has revolutionized studies of adaptive evolution by monitoring large numbers of loci throughout the genomes of many individuals. Ideally, the investigation of emergence in plant viruses requires examining the population dynamics of both virus and host, their interactions with each other, with other organisms and the abiotic environment. Genetic mechanisms that affect demographic processes are now being studied with high-throughput technologies, traditional genetics methods, and new computational tools for big-data. In this review, we discuss the utility of these approaches to monitor and detect changes in virus populations within cells and individuals, and over wider areas across species and communities of ecosystems. The advent of genomics in virology has fostered a multidisciplinary approach to tackling disease risk. The ability to make sense of the information now generated in this integrated setting is by far the most substantial obstacle to the ultimate goal of plant virology to minimize the threats to food security posed by disease. To achieve this goal, it is imperative to understand and forecast how populations respond to future changes in complex natural systems.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
13
|
Ruark-Seward CL, Bonville B, Kennedy G, Rasmussen DA. Evolutionary dynamics of Tomato spotted wilt virus within and between alternate plant hosts and thrips. Sci Rep 2020; 10:15797. [PMID: 32978446 PMCID: PMC7519039 DOI: 10.1038/s41598-020-72691-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) is a generalist pathogen with one of the broadest known host ranges among RNA viruses. To understand how TSWV adapts to different hosts, we experimentally passaged viral populations between two alternate hosts, Emilia sochifolia and Datura stramonium, and an obligate vector in which it also replicates, western flower thrips (Frankliniella occidentalis). Deep sequencing viral populations at multiple time points allowed us to track the evolutionary dynamics of viral populations within and between hosts. High levels of viral genetic diversity were maintained in both plants and thrips between transmission events. Rapid fluctuations in the frequency of amino acid variants indicated strong host-specific selection pressures on proteins involved in viral movement (NSm) and replication (RdRp). While several genetic variants showed opposing fitness effects in different hosts, fitness effects were generally positively correlated between hosts indicating that positive rather than antagonistic pleiotropy is pervasive. These results suggest that high levels of genetic diversity together with the positive pleiotropic effects of mutations have allowed TSWV to rapidly adapt to new hosts and expand its host range.
Collapse
Affiliation(s)
- Casey L Ruark-Seward
- Department of Entomology and Plant Pathology, North Carolina State University, Ricks Hall 312, 1 Lampe Drive, Raleigh, NC, 27607, USA
| | - Brian Bonville
- Department of Entomology and Plant Pathology, North Carolina State University, Ricks Hall 312, 1 Lampe Drive, Raleigh, NC, 27607, USA
| | - George Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Ricks Hall 312, 1 Lampe Drive, Raleigh, NC, 27607, USA
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Ricks Hall 312, 1 Lampe Drive, Raleigh, NC, 27607, USA. .,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
14
|
Gibbs AJ, Hajizadeh M, Ohshima K, Jones RA. The Potyviruses: An Evolutionary Synthesis Is Emerging. Viruses 2020; 12:E132. [PMID: 31979056 PMCID: PMC7077269 DOI: 10.3390/v12020132] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022] Open
Abstract
In this review, encouraged by the dictum of Theodosius Dobzhansky that "Nothing in biology makes sense except in the light of evolution", we outline the likely evolutionary pathways that have resulted in the observed similarities and differences of the extant molecules, biology, distribution, etc. of the potyvirids and, especially, its largest genus, the potyviruses. The potyvirids are a family of plant-infecting RNA-genome viruses. They had a single polyphyletic origin, and all share at least three of their genes (i.e., the helicase region of their CI protein, the RdRp region of their NIb protein and their coat protein) with other viruses which are otherwise unrelated. Potyvirids fall into 11 genera of which the potyviruses, the largest, include more than 150 distinct viruses found worldwide. The first potyvirus probably originated 15,000-30,000 years ago, in a Eurasian grass host, by acquiring crucial changes to its coat protein and HC-Pro protein, which enabled it to be transmitted by migrating host-seeking aphids. All potyviruses are aphid-borne and, in nature, infect discreet sets of monocotyledonous or eudicotyledonous angiosperms. All potyvirus genomes are under negative selection; the HC-Pro, CP, Nia, and NIb genes are most strongly selected, and the PIPO gene least, but there are overriding virus specific differences; for example, all turnip mosaic virus genes are more strongly conserved than those of potato virus Y. Estimates of dN/dS (ω) indicate whether potyvirus populations have been evolving as one or more subpopulations and could be used to help define species boundaries. Recombinants are common in many potyvirus populations (20%-64% in five examined), but recombination seems to be an uncommon speciation mechanism as, of 149 distinct potyviruses, only two were clear recombinants. Human activities, especially trade and farming, have fostered and spread both potyviruses and their aphid vectors throughout the world, especially over the past five centuries. The world distribution of potyviruses, especially those found on islands, indicates that potyviruses may be more frequently or effectively transmitted by seed than experimental tests suggest. Only two meta-genomic potyviruses have been recorded from animal samples, and both are probably contaminants.
Collapse
Affiliation(s)
- Adrian J. Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia
| | - Mohammad Hajizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Kazusato Ohshima
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan;
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-2410 Korimoto, Kagoshima 890-0065, Japan
| | - Roger A.C. Jones
- Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
15
|
Identification of Loci Associated with Enhanced Virulence in Spodoptera litura Nucleopolyhedrovirus Isolates Using Deep Sequencing. Viruses 2019; 11:v11090872. [PMID: 31533344 PMCID: PMC6783950 DOI: 10.3390/v11090872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Spodoptera litura is an emerging pest insect in cotton and arable crops in Central Asia. To explore the possibility of using baculoviruses as biological control agents instead of chemical pesticides, in a previous study we characterized a number of S. litura nucleopolyhedrovirus (SpltNPV) isolates from Pakistan. We found significant differences in speed of kill, an important property of a biological control agent. Here we set out to understand the genetic basis of these differences in speed of kill, by comparing the genome of the fast-killing SpltNPV-Pak-TAX1 isolate with that of the slow-killing SpltNPV-Pak-BNG isolate. These two isolates and the SpltNPV-G2 reference strain from China were deep sequenced with Illumina. As expected, the two Pakistani isolates were closely related with >99% sequence identity, whereas the Chinese isolate was more distantly related. We identified two loci that may be associated with the fast action of the SpltNPV-Pak-TAX1 isolate. First, an analysis of rates of synonymous and non-synonymous mutations identified neutral to positive selection on open reading frame (ORF) 122, encoding a viral fibroblast growth factor (vFGF) that is known to affect virulence in other baculoviruses. Second, the homologous repeat region hr17, a putative enhancer of transcription and origin of replication, is absent in SpltNPV-Pak-TAX1 suggesting it may also affect virulence. Additionally, we found there is little genetic variation within both Pakistani isolates, and we identified four genes under positive selection in both isolates that may have played a role in adaptation of SpltNPV to conditions in Central Asia. Our results contribute to the understanding of the enhanced activity of SpltNPV-Pak-TAX1, and may help to select better SpltNPV isolates for the control of S. litura in Pakistan and elsewhere.
Collapse
|
16
|
Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A. Evolution and ecology of plant viruses. Nat Rev Microbiol 2019; 17:632-644. [PMID: 31312033 DOI: 10.1038/s41579-019-0232-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
The discovery of the first non-cellular infectious agent, later determined to be tobacco mosaic virus, paved the way for the field of virology. In the ensuing decades, research focused on discovering and eliminating viral threats to plant and animal health. However, recent conceptual and methodological revolutions have made it clear that viruses are not merely agents of destruction but essential components of global ecosystems. As plants make up over 80% of the biomass on Earth, plant viruses likely have a larger impact on ecosystem stability and function than viruses of other kingdoms. Besides preventing overgrowth of genetically homogeneous plant populations such as crop plants, some plant viruses might also promote the adaptation of their hosts to changing environments. However, estimates of the extent and frequencies of such mutualistic interactions remain controversial. In this Review, we focus on the origins of plant viruses and the evolution of interactions between these viruses and both their hosts and transmission vectors. We also identify currently unknown aspects of plant virus ecology and evolution that are of practical importance and that should be resolvable in the near future through viral metagenomics.
Collapse
Affiliation(s)
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Paterna, València, Spain.,The Santa Fe Institute, Santa Fe, NM, USA
| | | | - Philippe Roumagnac
- CIRAD, UMR BGPI, Montpellier, France.,BGPI, CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
17
|
Endless Forms: Within-Host Variation in the Structure of the West Nile Virus RNA Genome during Serial Passage in Bird Hosts. mSphere 2019; 4:4/3/e00291-19. [PMID: 31243074 PMCID: PMC6595145 DOI: 10.1128/msphere.00291-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The enzymes that copy RNA genomes lack proofreading, and viruses that possess RNA genomes, such as West Nile virus, rapidly diversify into swarms of mutant lineages within a host. Intrahost variation of the primary genomic sequence of RNA viruses has been studied extensively because the extent of this variation shapes key virus phenotypes. However, RNA genomes also form complex secondary structures based on within-genome nucleotide complementarity, which are critical regulators of the cyclization of the virus genome that is necessary for efficient replication and translation. We sought to characterize variation in these secondary structures within populations of West Nile virus during serial passage in three bird species. Our study indicates that the intrahost population of West Nile virus is a diverse assortment of RNA secondary structures that should be considered in future analyses of intrahost viral diversity, but some regions that are critical for genome cyclization are conserved within hosts. Besides potential impacts on viral replication, structural diversity can influence the efficacy of small RNA antiviral therapies. RNA viruses are infamous for their high rates of mutation, which produce swarms of genetic variants within individual hosts. To date, analyses of intrahost genetic diversity have focused on the primary genome sequence. However, virus phenotypes are shaped not only by primary sequence but also by the secondary structures into which this sequence folds. Such structures enable viral replication, translation, and binding of small RNAs, yet within-host variation at the structural level has not been adequately explored. We characterized the structural diversity of the 5′ untranslated region (UTR) of populations of West Nile virus (WNV) that had been subject to five serial passages in triplicate in each of three bird species. Viral genomes were sampled from host serum samples at each passage (n = 45 populations) and subjected to next-generation sequencing. For populations derived from passages 1, 3, and 5 (n = 9 populations), we predicted the impact of each mutation occurring at a frequency of ≥1% on the secondary structure of the 5′ UTR. As expected, mutations in double-stranded (DS) regions of the 5′ UTR stem structures caused structural changes of significantly greater magnitude than did mutations in single-stranded (SS) regions. Despite the greater impact of mutations in DS regions, mutations in DS and SS regions occurred at similar frequencies, with no evidence of enhanced selection against mutation in DS regions. In contrast, mutations in two regions that mediate genome cyclization and thereby regulate replication and translation, the 5′ cyclization sequence and the UAR flanking stem (UFS), were suppressed in all three hosts. IMPORTANCE The enzymes that copy RNA genomes lack proofreading, and viruses that possess RNA genomes, such as West Nile virus, rapidly diversify into swarms of mutant lineages within a host. Intrahost variation of the primary genomic sequence of RNA viruses has been studied extensively because the extent of this variation shapes key virus phenotypes. However, RNA genomes also form complex secondary structures based on within-genome nucleotide complementarity, which are critical regulators of the cyclization of the virus genome that is necessary for efficient replication and translation. We sought to characterize variation in these secondary structures within populations of West Nile virus during serial passage in three bird species. Our study indicates that the intrahost population of West Nile virus is a diverse assortment of RNA secondary structures that should be considered in future analyses of intrahost viral diversity, but some regions that are critical for genome cyclization are conserved within hosts. Besides potential impacts on viral replication, structural diversity can influence the efficacy of small RNA antiviral therapies.
Collapse
|
18
|
Existing Host Range Mutations Constrain Further Emergence of RNA Viruses. J Virol 2019; 93:JVI.01385-18. [PMID: 30463962 DOI: 10.1128/jvi.01385-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
RNA viruses are capable of rapid host shifting, typically due to a point mutation that confers expanded host range. As additional point mutations are necessary for further expansions, epistasis among host range mutations can potentially affect the mutational neighborhood and frequency of niche expansion. We mapped the mutational neighborhood of host range expansion using three genotypes of the double-stranded RNA (dsRNA) bacteriophage φ6 (wild type and two isogenic host range mutants) on the novel host Pseudomonas syringae pv. atrofaciens. Both Sanger sequencing of 50 P. syringae pv. atrofaciens mutant clones for each genotype and population Illumina sequencing revealed the same high-frequency mutations allowing infection of P. syringae pv. atrofaciens. Wild-type φ6 had at least nine different ways of mutating to enter the novel host, eight of which are in p3 (host attachment protein gene), and 13/50 clones had unchanged p3 genes. However, the two isogenic mutants had dramatically restricted neighborhoods: only one or two mutations, all in p3. Deep sequencing revealed that wild-type clones without mutations in p3 likely had changes in p12 (morphogenic protein), a region that was not polymorphic for the two isogenic host range mutants. Sanger sequencing confirmed that 10/13 of the wild-type φ6 clones had nonsynonymous mutations in p12, and 2 others had point mutations in p9 and p5. None of these genes had previously been associated with host range expansion in φ6. We demonstrate, for the first time, epistatic constraint in an RNA virus due to host range mutations themselves, which has implications for models of serial host range expansion.IMPORTANCE RNA viruses mutate rapidly and frequently expand their host ranges to infect novel hosts, leading to serial host shifts. Using an RNA bacteriophage model system (Pseudomonas phage φ6), we studied the impact of preexisting host range mutations on another host range expansion. Results from both clonal Sanger and Illumina sequencing show that extant host range mutations dramatically narrow the neighborhood of potential host range mutations compared to that of wild-type φ6. This research suggests that serial host-shifting viruses may follow a small number of molecular paths to enter additional novel hosts. We also identified new genes involved in φ6 host range expansion, expanding our knowledge of this important model system in experimental evolution.
Collapse
|
19
|
Nurtay A, Hennessy MG, Sardanyés J, Alsedà L, Elena SF. Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits: a bifurcation analysis. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181179. [PMID: 30800366 PMCID: PMC6366233 DOI: 10.1098/rsos.181179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
We investigate the dynamics of a wild-type viral strain which generates mutant strains differing in phenotypic properties for infectivity, virulence and mutation rates. We study, by means of a mathematical model and bifurcation analysis, conditions under which the wild-type and mutant viruses, which compete for the same host cells, can coexist. The coexistence conditions are formulated in terms of the basic reproductive numbers of the strains, a maximum value of the mutation rate and the virulence of the pathogens. The analysis reveals that parameter space can be divided into five regions, each with distinct dynamics, that are organized around degenerate Bogdanov-Takens and zero-Hopf bifurcations, the latter of which gives rise to a curve of transcritical bifurcations of periodic orbits. These results provide new insights into the conditions by which viral populations may contain multiple coexisting strains in a stable manner.
Collapse
Affiliation(s)
- Anel Nurtay
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Parc Científic UV, Paterna, València 46980, Spain
| | - Matthew G. Hennessy
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| | - Lluís Alsedà
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Parc Científic UV, Paterna, València 46980, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
20
|
Gao F, Du Z, Shen J, Yang H, Liao F. Genetic diversity and molecular evolution of Ornithogalum mosaic virus based on the coat protein gene sequence. PeerJ 2018; 6:e4550. [PMID: 29607262 PMCID: PMC5877448 DOI: 10.7717/peerj.4550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/08/2018] [Indexed: 02/05/2023] Open
Abstract
Ornithogalum mosaic virus (OrMV) has a wide host range and affects the production of a variety of ornamentals. In this study, the coat protein (CP) gene of OrMVwas used to investigate the molecular mechanisms underlying the evolution of this virus. The 36 OrMV isolates fell into two groups which have significant subpopulation differentiation with an FST value of 0.470. One isolate was identified as a recombinant and the other 35 recombination-free isolates could be divided into two major clades under different evolutionary constraints with dN/dS values of 0.055 and 0.028, respectively, indicating a role of purifying selection in the differentiation of OrMV. In addition, the results from analysis of molecular variance (AMOVA) indicated that the effect of host species on the genetic divergence of OrMV is greater than that of geography. Furthermore, OrMV isolates from the genera Ornithogalum, Lachenalia and Diuri tended to group together, indicating that OrMV diversification was maintained, in part, by host-driven adaptation.
Collapse
Affiliation(s)
- Fangluan Gao
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhenguo Du
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianguo Shen
- Inspection and Quarantine Technology Center, Fujian Exit-Entry, Inspection and Quarantine Bureau, Fuzhou, Fujian, China
| | - Hongkai Yang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Furong Liao
- Inspection and Quarantine Technology Center, Xiamen Exit-Entry Inspection and Quarantine Bureau, Xiamen, Fujian, China
| |
Collapse
|
21
|
Picard C, Dallot S, Brunker K, Berthier K, Roumagnac P, Soubeyrand S, Jacquot E, Thébaud G. Exploiting Genetic Information to Trace Plant Virus Dispersal in Landscapes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:139-160. [PMID: 28525307 DOI: 10.1146/annurev-phyto-080516-035616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During the past decade, knowledge of pathogen life history has greatly benefited from the advent and development of molecular epidemiology. This branch of epidemiology uses information on pathogen variation at the molecular level to gain insights into a pathogen's niche and evolution and to characterize pathogen dispersal within and between host populations. Here, we review molecular epidemiology approaches that have been developed to trace plant virus dispersal in landscapes. In particular, we highlight how virus molecular epidemiology, nourished with powerful sequencing technologies, can provide novel insights at the crossroads between the blooming fields of landscape genetics, phylogeography, and evolutionary epidemiology. We present existing approaches and their limitations and contributions to the understanding of plant virus epidemiology.
Collapse
Affiliation(s)
- Coralie Picard
- UMR BGPI, INRA, Montpellier SupAgro, CIRAD, 34398, Montpellier Cedex 5, France;
| | - Sylvie Dallot
- UMR BGPI, INRA, Montpellier SupAgro, CIRAD, 34398, Montpellier Cedex 5, France;
| | - Kirstyn Brunker
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | | | - Philippe Roumagnac
- UMR BGPI, INRA, Montpellier SupAgro, CIRAD, 34398, Montpellier Cedex 5, France;
| | | | - Emmanuel Jacquot
- UMR BGPI, INRA, Montpellier SupAgro, CIRAD, 34398, Montpellier Cedex 5, France;
| | - Gaël Thébaud
- UMR BGPI, INRA, Montpellier SupAgro, CIRAD, 34398, Montpellier Cedex 5, France;
| |
Collapse
|
22
|
Wu B, Zwart MP, Sánchez-Navarro JA, Elena SF. Within-host Evolution of Segments Ratio for the Tripartite Genome of Alfalfa Mosaic Virus. Sci Rep 2017; 7:5004. [PMID: 28694514 PMCID: PMC5504059 DOI: 10.1038/s41598-017-05335-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022] Open
Abstract
The existence of multipartite viruses is an intriguing mystery in evolutionary virology. Several hypotheses suggest benefits that should outweigh the costs of a reduced transmission efficiency and of segregation of coadapted genes associated with encapsidating each segment into a different particle. Advantages range from increasing genome size despite high mutation rates, faster replication, more efficient selection resulting from reassortment during mixed infections, better regulation of gene expression, or enhanced virion stability and cell-to-cell movement. However, support for these hypotheses is scarce. Here we report experiments testing whether an evolutionary stable equilibrium exists for the three genomic RNAs of Alfalfa mosaic virus (AMV). Starting infections with different segment combinations, we found that the relative abundance of each segment evolves towards a constant ratio. Population genetic analyses show that the segment ratio at this equilibrium is determined by frequency-dependent selection. Replication of RNAs 1 and 2 was coupled and collaborative, whereas the replication of RNA 3 interfered with the replication of the other two. We found that the equilibrium solution is slightly different for the total amounts of RNA produced and encapsidated, suggesting that competition exists between all RNAs during encapsidation. Finally, we found that the observed equilibrium appears to be host-species dependent.
Collapse
Affiliation(s)
- Beilei Wu
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- Institute of Theoretical Physics, University of Cologne, Cologne, Germany
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
- Instituto de Biología Integrativa de Sistemas (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Valencia, Spain.
- The Santa Fe Institute, New Mexico, USA.
| |
Collapse
|
23
|
Jang C, Wang R, Wells J, Leon F, Farman M, Hammond J, Goodin MM. Genome sequence variation in the constricta strain dramatically alters the protein interaction and localization map of Potato yellow dwarf virus. J Gen Virol 2017; 98:1526-1536. [PMID: 28635588 PMCID: PMC5656794 DOI: 10.1099/jgv.0.000771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022] Open
Abstract
The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12 792 nt long and organized into seven ORFs with the gene order 3'-N-X-P-Y-M-G-L-5', which encodes the nucleocapsid, phospho, movement, matrix, glyco, and RNA-dependent RNA polymerase proteins, respectively, except for X, which is of unknown function. Cloned ORFs for each gene, except L, were used to construct a protein interaction and localization map (PILM) for this virus, which shares greater than 80 % amino acid similarity in all ORFs except X and P with the sanguinolenta strain of this species (SYDV). Protein localization patterns and interactions unique to each viral strain were identified, resulting in strain-specific PILMs. Localization of CYDV and SYDV proteins in virus-infected cells mapped subcellular loci likely to be sites of replication, morphogenesis and movement.
Collapse
Affiliation(s)
- Chanyong Jang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Renyuan Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Joseph Wells
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Fabian Leon
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - John Hammond
- USDA-ARS, United States National Arboretum, Beltsville, MD, USA
| | - Michael M. Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
24
|
Deep sequencing for discovery and evolutionary analysis of plant viruses. Virus Res 2016; 239:82-86. [PMID: 27876625 DOI: 10.1016/j.virusres.2016.11.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/18/2016] [Indexed: 11/21/2022]
Abstract
The advent of next generation sequencing (NGS), or deep sequencing, has allowed great advances to be made in discovery, diagnostics, and evolutionary studies in plant viruses. Various methods have been used for enrichment for virus-specific nucleic acids, each of which have some drawbacks. Many novel viruses have been discovered in plants by NGS technologies, and there is a good deal of promise for more comprehensive studies in virus evolution. However, each aspect of using NGS has its caveats that need to be considered, and there is still a need for better tools of analysis, as well as method for validation of sequence variation.
Collapse
|
25
|
Stenger DC, Krugner R, Nouri S, Ferriol I, Falk BW, Sisterson MS. Sequence polymorphism in an insect RNA virus field population: A snapshot from a single point in space and time reveals stochastic differences among and within individual hosts. Virology 2016; 498:209-217. [PMID: 27598532 DOI: 10.1016/j.virol.2016.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 02/02/2023]
Abstract
Population structure of Homalodisca coagulata Virus-1 (HoCV-1) among and within field-collected insects sampled from a single point in space and time was examined. Polymorphism in complete consensus sequences among single-insect isolates was dominated by synonymous substitutions. The mutant spectrum of the C2 helicase region within each single-insect isolate was unique and dominated by nonsynonymous singletons. Bootstrapping was used to correct the within-isolate nonsynonymous:synonymous arithmetic ratio (N:S) for RT-PCR error, yielding an N:S value ~one log-unit greater than that of consensus sequences. Probability of all possible single-base substitutions for the C2 region predicted N:S values within 95% confidence limits of the corrected within-isolate N:S when the only constraint imposed was viral polymerase error bias for transitions over transversions. These results indicate that bottlenecks coupled with strong negative/purifying selection drive consensus sequences toward neutral sequence space, and that most polymorphism within single-insect isolates is composed of newly-minted mutations sampled prior to selection.
Collapse
Affiliation(s)
- Drake C Stenger
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757, USA.
| | - Rodrigo Krugner
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757, USA
| | - Shahideh Nouri
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Inmaculada Ferriol
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Mark S Sisterson
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757, USA
| |
Collapse
|
26
|
Jo Y, Choi H, Kim SM, Kim SL, Lee BC, Cho WK. Integrated analyses using RNA-Seq data reveal viral genomes, single nucleotide variations, the phylogenetic relationship, and recombination for Apple stem grooving virus. BMC Genomics 2016; 17:579. [PMID: 27507588 PMCID: PMC4977635 DOI: 10.1186/s12864-016-2994-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/03/2016] [Indexed: 02/08/2023] Open
Abstract
Background Next-generation sequencing (NGS) provides many possibilities for plant virology research. In this study, we performed integrated analyses using plant transcriptome data for plant virus identification using Apple stem grooving virus (ASGV) as an exemplar virus. We used 15 publicly available transcriptome libraries from three different studies, two mRNA-Seq studies and a small RNA-Seq study. Results We de novo assembled nearly complete genomes of ASGV isolates Fuji and Cuiguan from apple and pear transcriptomes, respectively, and identified single nucleotide variations (SNVs) of ASGV within the transcriptomes. We demonstrated the application of NGS raw data to confirm viral infections in the plant transcriptomes. In addition, we compared the usability of two de novo assemblers, Trinity and Velvet, for virus identification and genome assembly. A phylogenetic tree revealed that ASGV and Citrus tatter leaf virus (CTLV) are the same virus, which was divided into two clades. Recombination analyses identified six recombination events from 21 viral genomes. Conclusions Taken together, our in silico analyses using NGS data provide a successful application of plant transcriptomes to reveal extensive information associated with viral genome assembly, SNVs, phylogenetic relationships, and genetic recombination. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2994-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yeonhwa Jo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hoseong Choi
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sang-Min Kim
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Sun-Lim Kim
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Bong Choon Lee
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea. .,The Taejin Genome Institute, Gadam-gil 61, Hoeongseong, 25239, Republic of Korea.
| |
Collapse
|
27
|
Measurements of Intrahost Viral Diversity Are Extremely Sensitive to Systematic Errors in Variant Calling. J Virol 2016; 90:6884-95. [PMID: 27194763 DOI: 10.1128/jvi.00667-16] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/11/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED With next-generation sequencing technologies, it is now feasible to efficiently sequence patient-derived virus populations at a depth of coverage sufficient to detect rare variants. However, each sequencing platform has characteristic error profiles, and sample collection, target amplification, and library preparation are additional processes whereby errors are introduced and propagated. Many studies account for these errors by using ad hoc quality thresholds and/or previously published statistical algorithms. Despite common usage, the majority of these approaches have not been validated under conditions that characterize many studies of intrahost diversity. Here, we use defined populations of influenza virus to mimic the diversity and titer typically found in patient-derived samples. We identified single-nucleotide variants using two commonly employed variant callers, DeepSNV and LoFreq. We found that the accuracy of these variant callers was lower than expected and exquisitely sensitive to the input titer. Small reductions in specificity had a significant impact on the number of minority variants identified and subsequent measures of diversity. We were able to increase the specificity of DeepSNV to >99.95% by applying an empirically validated set of quality thresholds. When applied to a set of influenza virus samples from a household-based cohort study, these changes resulted in a 10-fold reduction in measurements of viral diversity. We have made our sequence data and analysis code available so that others may improve on our work and use our data set to benchmark their own bioinformatics pipelines. Our work demonstrates that inadequate quality control and validation can lead to significant overestimation of intrahost diversity. IMPORTANCE Advances in sequencing technology have made it feasible to sequence patient-derived viral samples at a level sufficient for detection of rare mutations. These high-throughput, cost-effective methods are revolutionizing the study of within-host viral diversity. However, the techniques are error prone, and the methods commonly used to control for these errors have not been validated under the conditions that characterize patient-derived samples. Here, we show that these conditions affect measurements of viral diversity. We found that the accuracy of previously benchmarked analysis pipelines was greatly reduced under patient-derived conditions. By carefully validating our sequencing analysis using known control samples, we were able to identify biases in our method and to improve our accuracy to acceptable levels. Application of our modified pipeline to a set of influenza virus samples from a cohort study provided a realistic picture of intrahost diversity and suggested the need for rigorous quality control in such studies.
Collapse
|
28
|
Hillung J, García-García F, Dopazo J, Cuevas JM, Elena SF. The transcriptomics of an experimentally evolved plant-virus interaction. Sci Rep 2016; 6:24901. [PMID: 27113435 PMCID: PMC4845063 DOI: 10.1038/srep24901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/07/2016] [Indexed: 01/14/2023] Open
Abstract
Models of plant-virus interaction assume that the ability of a virus to infect a host genotype depends on the matching between virulence and resistance genes. Recently, we evolved tobacco etch potyvirus (TEV) lineages on different ecotypes of Arabidopsis thaliana, and found that some ecotypes selected for specialist viruses whereas others selected for generalists. Here we sought to evaluate the transcriptomic basis of such relationships. We have characterized the transcriptomic responses of five ecotypes infected with the ancestral and evolved viruses. Genes and functional categories differentially expressed by plants infected with local TEV isolates were identified, showing heterogeneous responses among ecotypes, although significant parallelism existed among lineages evolved in the same ecotype. Although genes involved in immune responses were altered upon infection, other functional groups were also pervasively over-represented, suggesting that plant resistance genes were not the only drivers of viral adaptation. Finally, the transcriptomic consequences of infection with the generalist and specialist lineages were compared. Whilst the generalist induced very similar perturbations in the transcriptomes of the different ecotypes, the perturbations induced by the specialist were divergent. Plant defense mechanisms were activated when the infecting virus was specialist but they were down-regulated when infecting with generalist.
Collapse
Affiliation(s)
- Julia Hillung
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - Francisco García-García
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012 València, Spain
| | - Joaquín Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012 València, Spain
- Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), 46012 València, Spain
- Functional Genomics Node, INB at CIPF, 46012 València, Spain
| | - José M. Cuevas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA
| |
Collapse
|
29
|
Bartels M, French R, Graybosch RA, Tatineni S. Triticum mosaic virus exhibits limited population variation yet shows evidence of parallel evolution after replicated serial passage in wheat. Virology 2016; 492:92-100. [PMID: 26914507 DOI: 10.1016/j.virol.2016.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 10/22/2022]
Abstract
An infectious cDNA clone of Triticum mosaic virus (TriMV) (genus Poacevirus; family Potyviridae) was used to establish three independent lineages in wheat to examine intra-host population diversity levels within protein 1 (P1) and coat protein (CP) cistrons over time. Genetic variation was assessed at passages 9, 18 and 24 by single-strand conformation polymorphism, followed by nucleotide sequencing. The founding P1 region genotype was retained at high frequencies in most lineage/passage populations, while the founding CP genotype disappeared after passage 18 in two lineages. We found that rare TriMV genotypes were present only transiently and lineages followed independent evolutionary trajectories, suggesting that genetic drift dominates TriMV evolution. These results further suggest that experimental populations of TriMV exhibit lower mutant frequencies than that of Wheat streak mosaic virus (genus Tritimovirus; family Potyviridae) in wheat. Nevertheless, there was evidence for parallel evolution at a synonymous site in the TriMV CP cistron.
Collapse
Affiliation(s)
- Melissa Bartels
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Roy French
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Robert A Graybosch
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|