1
|
Meng QL, Qiang CG, Li JL, Geng MF, Ren NN, Cai Z, Wang MX, Jiao ZH, Zhang FM, Song XJ, Ge S. Genetic architecture of ecological divergence between Oryza rufipogon and Oryza nivara. Mol Ecol 2024; 33:e17268. [PMID: 38230514 DOI: 10.1111/mec.17268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Ecological divergence due to habitat difference plays a prominent role in the formation of new species, but the genetic architecture during ecological speciation and the mechanism underlying phenotypic divergence remain less understood. Two wild ancestors of rice (Oryza rufipogon and Oryza nivara) are a progenitor-derivative species pair with ecological divergence and provide a unique system for studying ecological adaptation/speciation. Here, we constructed a high-resolution linkage map and conducted a quantitative trait locus (QTL) analysis of 19 phenotypic traits using an F2 population generated from a cross between the two Oryza species. We identified 113 QTLs associated with interspecific divergence of 16 quantitative traits, with effect sizes ranging from 1.61% to 34.1% in terms of the percentage of variation explained (PVE). The distribution of effect sizes of QTLs followed a negative exponential, suggesting that a few genes of large effect and many genes of small effect were responsible for the phenotypic divergence. We observed 18 clusters of QTLs (QTL hotspots) on 11 chromosomes, significantly more than that expected by chance, demonstrating the importance of coinheritance of loci/genes in ecological adaptation/speciation. Analysis of effect direction and v-test statistics revealed that interspecific differentiation of most traits was driven by divergent natural selection, supporting the argument that ecological adaptation/speciation would proceed rapidly under coordinated selection on multiple traits. Our findings provide new insights into the understanding of genetic architecture of ecological adaptation and speciation in plants and help effective manipulation of specific genes or gene cluster in rice breeding.
Collapse
Affiliation(s)
- Qing-Lin Meng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Gen Qiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Long Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Fan Geng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning-Ning Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhe Cai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Mei-Xia Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Hui Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian-Jun Song
- Key Laboratory of Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Wang M, Huang L, Kou Y, Li D, Hu W, Fan D, Cheng S, Yang Y, Zhang Z. Differentiation of Morphological Traits and Genome-Wide Expression Patterns between Rice Subspecies Indica and Japonica. Genes (Basel) 2023; 14:1971. [PMID: 37895320 PMCID: PMC10606143 DOI: 10.3390/genes14101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Changes in gene expression patterns can lead to the variation of morphological traits. This phenomenon is particularly evident in recent evolution events such as crop domestication and responses to environmental stress, where alterations in expression levels can efficiently give rise to domesticated syndromes and adaptive phenotypes. Rice (Oryza sativa L.), one of the world's most crucial cereal crops, comprises two morphologically distinct subspecies, Indica and Japonica. To investigate the morphological divergence between these two rice subspecies, this study planted a total of 315 landrace individuals of both Indica and Japonica under identical cultivation conditions. Out of the 16 quantitative traits measured in this study, 12 exhibited significant differences between the subspecies. To determine the genetic divergence between Indica and Japonica at the whole-genome sequence level, we constructed a phylogenetic tree using a resequencing dataset encompassing 95 rice landrace accessions. The samples formed two major groups that neatly corresponded to the two subspecies, Indica and Japonica. Furthermore, neighbor-joining (NJ) trees based on the expression quantity of effectively expressed genes (EEGs) across five different tissues categorized 12 representative samples into two major clades aligning with the two subspecies. These results imply that divergence in genome-wide expression levels undergoes stabilizing selection under non-stressful conditions, with evolutionary trends in expression levels mirroring sequence variation levels. This study further supports the pivotal role of changes in genome-wide expression regulation in the divergence of the two rice subspecies, Indica and Japonica.
Collapse
Affiliation(s)
- Meixia Wang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
| | - Lei Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China;
| | - Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Danqi Li
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China
| | - Wan Hu
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China
| | - Dengmei Fan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
| | - Shanmei Cheng
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
| | - Yi Yang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
| | - Zhiyong Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.); (D.L.); (W.H.); (D.F.); (S.C.); (Y.Y.)
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| |
Collapse
|
3
|
Li J, Sun K, Dai W, Leng H, Li A, Feng J. Extensive Adaptive Variation in Gene Expression within and between Closely Related Horseshoe Bats (Chiroptera, Rhinolophus) Revealed by Three Organs. Animals (Basel) 2022; 12:ani12233432. [PMID: 36496954 PMCID: PMC9741297 DOI: 10.3390/ani12233432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In the process of species differentiation and adaption, the relative influence of natural selection on gene expression variation often remains unclear (especially its impact on phenotypic divergence). In this study, we used differentially expressed genes from brain, cochlea, and liver samples collected from two species of bats to determine the gene expression variation forced by natural selection when comparing at the interspecific (Rhinolophus siamensis and R. episcopus episcopus) and the intraspecific (R. e. episcopus and R. episcopus spp.) levels. In both cases, gene expression variation was extensively adaptive (>66.0%) and mainly governed by directional selection, followed by stabilizing selection, and finally balancing selection. The expression variation related to acoustic signals (resting frequency, RF) and body size (forearm length, FA) was also widely governed by natural selection (>69.1%). Different functional patterns of RF- or FA-related adaptive expression variation were found between the two comparisons, which manifested as abundant immune-related regulations between subspecies (indicating a relationship between immune response and phenotypic adaption). Our study verifies the extensive adaptive expression variation between both species and subspecies and provides insight into the effects of natural selection on species differentiation and adaptation as well as phenotypic divergence at the expression level.
Collapse
Affiliation(s)
- Jun Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
- Correspondence: (K.S.); (J.F.)
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (K.S.); (J.F.)
| |
Collapse
|
4
|
Lou F, Liu M, Han Z, Gao T. Comparative transcriptome reveals the thermal stress response differences between Heilongjiang population and Xinjiang population of Lota lota. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100960. [PMID: 35042124 DOI: 10.1016/j.cbd.2022.100960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Some cold-water fishes are particularly sensitive to the water temperature increasing caused by current global warming. However, the alterations in the physiology and behavior of infraspecific populations living in heterogeneous landscapes in response to water temperature increasing were significantly different. Consequently, understanding the impact of temperature increasing on different populations may be crucial for the conservation of cold-water fishes in the context of global warming. The burbot is the only freshwater specie in Gadiformes. To better understand the differences of different populations of burbot under similar thermal stress, Lota lota was selected as the research objects. Firstly, RNA-seq was applied to identify the transcriptomic responses of Heilongjiang population exposed to three temperature gradients (0 °C, 18 °C and 28 °C). Compared with 0 °C, 4216 and 12,657 genes were significantly differentially expressed at 18 °C and 28 °C, respectively. Meanwhile, 49 genes were significantly differentially expressed in three temperature pairs and these genes were presumed to involve in stress response process, immunologic process, reproductive process, development process, material metabolism process, signal transduction process, spermatogenesis process and cell apoptosis process. The response differences of two L. lota populations to similar thermal stress were compared and the results showed that they have different gene expression responses (the number of differentially expression genes and biological processes). The lower annual temperature of the Heilongjiang River might make it more sensitive to temperature increasing. Based on the comparative transcriptome analyses, 12 orthologous genes were considered as the potential regulators of L. lota preference for cold-water environment and these genes are potentially related to the immunologic process, reproductive process, development process, signal transduction process, and cell apoptosis process. Those results can provide basic information for the rational development of conservation strategies of different L. lota populations under the background of global warming.
Collapse
Affiliation(s)
- Fangrui Lou
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Manhong Liu
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
5
|
Unraveling regulatory divergence, heterotic malleability, and allelic imbalance switching in rice due to drought stress. Sci Rep 2021; 11:13489. [PMID: 34188147 PMCID: PMC8241847 DOI: 10.1038/s41598-021-92938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/17/2021] [Indexed: 01/10/2023] Open
Abstract
The indica ecotypes, IR64, an elite drought-susceptible variety adapted to irrigated ecosystem, and Apo (IR55423-01 or NSIC RC9), a moderate drought-tolerant upland genotype together with their hybrid (IR64 × Apo) were exposed to non- and water-stress conditions. By sequencing (RNA-seq) these genotypes, we were able to map genes diverging in cis and/or trans factors. Under non-stress condition, cis dominantly explains (11.2%) regulatory differences, followed by trans (8.9%). Further analysis showed that water-limiting condition largely affects trans and cis + trans factors. On the molecular level, cis and/or trans regulatory divergence explains their genotypic differences and differential drought response. Between the two parental genotypes, Apo appears to exhibit more photosynthetic efficiency even under water-limiting condition and is ascribed to trans. Statistical analyses showed that regulatory divergence is significantly influenced by environmental conditions. Likewise, the mode of parental expression inheritance which drives heterosis (HET) is significantly affected by environmental conditions indicating the malleability of heterosis to external factors. Further analysis revealed that the HET class, dominance, was significantly enriched under water-stress condition. We also identified allelic imbalance switching in which several genes prefer IR64- (or Apo-) specific allele under non-stress condition but switched to Apo- (or IR64-) specific allele when exposed to water-stress condition.
Collapse
|
6
|
Fajardo TVM, Quecini V. Comparative transcriptome analyses between cultivated and wild grapes reveal conservation of expressed genes but extensive rewiring of co-expression networks. PLANT MOLECULAR BIOLOGY 2021; 106:1-20. [PMID: 33538951 DOI: 10.1007/s11103-021-01122-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The transcriptomes of wild and cultivated grapes consists of similar expressed genes but distinct wiring of co-expressed modules associated with environmental conditions. Grapevine is an important fruit crop worldwide, with high economic value and widespread distribution. Commercial production is based on Vitis vinifera, and, to a lesser extent, on hybrids with American grapes, such as V. labrusca. Wild grape relatives are important sources of resistance against biotic and abiotic factors; however, their global gene expression patterns remain poorly characterized. We associated genome-wide transcript profiling to phenotypic analyses to investigate the responses of cultivated and wild vines to vineyard conditions. The expressed genes in the Vitis reference transcriptome are largely shared by wild grapes, V. labrusca hybrids and vinifera cultivars. In contrast, significant differential regulation between wild and vinifera genotypes represents 80% of gene expression variation, regardless of the environment. In wild grapes, genes associated to regulatory processes are downregulated, whereas those involved in metabolic pathways are upregulated, in comparison to vinifera. Photosynthesis-related ontologies are overrepresented in the induced genes, in agreement with higher contents of chlorophyll in wild grapes. Co-regulated gene network analyses provide evidence of more complex transcriptome organization in vinifera. In wild grapes, genes involved in signaling pathways of stress-related hormones are overrepresented in modules associated with the environment. Consensus network analyses revealed high preservation within co-regulated gene modules between cultivated and wild grapes, but divergent relationships among the expression clusters. In conclusion, the distinct phenotypes of wild and cultivated grapes are underlain by differences in gene expression, but also by distinct higher-order organization of the transcriptome and contrasting association of co-expressed gene clusters with the environment.
Collapse
Affiliation(s)
- Thor V M Fajardo
- Embrapa Uva e Vinho (Brazilian Agricultural Research Corporation, Grape and Wine Research Center), Rua Livramento, 515, Bento Gonçalves, RS, 95701-008, Brazil
| | - Vera Quecini
- Embrapa Uva e Vinho (Brazilian Agricultural Research Corporation, Grape and Wine Research Center), Rua Livramento, 515, Bento Gonçalves, RS, 95701-008, Brazil.
| |
Collapse
|
7
|
Wos G, Bohutínská M, Nosková J, Mandáková T, Kolář F. Parallelism in gene expression between foothill and alpine ecotypes in Arabidopsis arenosa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1211-1224. [PMID: 33258160 DOI: 10.1111/tpj.15105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Parallel adaptation results from the independent evolution of similar traits between closely related lineages and allows us to test to what extent evolution is repeatable. Similar gene expression changes are often detected but the identity of genes shaped by parallel selection and the causes of expression parallelism remain largely unknown. By comparing genomes and transcriptomes of four distinct foothill-alpine population pairs across four treatments, we addressed the genetic underpinnings, plasticity and functional consequences of gene expression parallelism in alpine adaptation. Seeds of eight populations of Arabidopsis arenosa were raised under four treatments that differed in temperature and irradiance, factors varying strongly with elevation. Parallelism in differential gene expression between the foothill and alpine ecotypes was quantified by RNA-seq in leaves of young plants. By manipulating temperature and irradiance, we also tested for parallelism in plasticity (i.e., gene-environment interaction, GEI). In spite of global non-parallel patterns transcriptome wide, we found significant parallelism in gene expression at the level of individual loci with an over-representation of genes involved in biotic stress response. In addition, we demonstrated significant parallelism in GEI, indicating a shared differential response of the originally foothill versus alpine populations to environmental variation across mountain regions. A fraction of genes showing expression parallelism also encompassed parallel outliers for genomic differentiation, with greater enrichment of such variants in cis-regulatory elements in some mountain regions. In summary, our results suggest frequent evolutionary repeatability in gene expression changes associated with the colonization of a challenging environment that combines constitutive expression differences and plastic interaction with the surrounding environment.
Collapse
Affiliation(s)
- Guillaume Wos
- Department of Botany, Charles University, Prague, 128 01, Czech Republic
| | - Magdalena Bohutínská
- Department of Botany, Charles University, Prague, 128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| | - Jana Nosková
- Department of Botany, Charles University, Prague, 128 01, Czech Republic
| | - Terezie Mandáková
- Central European Institute of Technology and Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Filip Kolář
- Department of Botany, Charles University, Prague, 128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| |
Collapse
|
8
|
Pang H, Chen Q, Li Y, Wang Z, Wu L, Yang Q, Zheng X. Comparative analysis of the transcriptomes of two rice subspecies during domestication. Sci Rep 2021; 11:3660. [PMID: 33574456 PMCID: PMC7878495 DOI: 10.1038/s41598-021-83162-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/28/2021] [Indexed: 11/11/2022] Open
Abstract
Two subspecies of rice, Oryza sativa ssp. indica and O. sativa ssp. japonica, with reproductive isolation and differences in morphology and phenotypic differences, were established during the process of rice domestication. To understand how domestication has changed the transcriptomes of the two rice subspecies and given rise to the phenotypic differences, we obtained approximately 700 Gb RNA-Seq data from 26 indica and 25 japonica accessions, and identified 97,005 transcribed fragments and 4579 novel transcriptionally active regions. The two rice subspecies had significantly different gene expression profiles, we identified 1,357 (3.3% in all genes) differentially expressed genes (DEGs) between indica and japonica rice. Combining existing gene function studies, it is found that some of these differential genes are related to the differentiation of the two subspecies, such as grain shape and cold tolerance, etc. Functional annotation of these DEGs indicates that they are involved in cell wall biosynthesis and reproductive processes. Furthermore, compared with the non-DEGs, the DEGs from both subspecies had more 5'flanking regions with low polymorphism to divergence ratios, indicating a stronger positive selection pressure on the regulation of the DEGs. This study improves our understanding of the rice genome by comparatively analyzing the transcriptomes of indica and japonica rice and identifies DEGs those may be responsible for the reproductive isolation and phenotypic differences between the two rice subspecies.
Collapse
Affiliation(s)
- Hongbo Pang
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Qiang Chen
- Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Yueying Li
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Ze Wang
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Longkun Wu
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Qingwen Yang
- Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoming Zheng
- Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
9
|
Luo Z, Xiong J, Xia H, Ma X, Gao M, Wang L, Liu G, Yu X, Luo L. Transcriptomic divergence between upland and lowland ecotypes contributes to rice adaptation to a drought-prone agroecosystem. Evol Appl 2020; 13:2484-2496. [PMID: 33005236 PMCID: PMC7513727 DOI: 10.1111/eva.13054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Transcriptomic divergence drives plant ecological adaptation. Upland rice is differentiated in drought tolerance from lowland rice during its adaptation to the drought-prone environment. They provide a good system to learn the evolution of drought tolerance in rice. METHODS AND RESULTS We estimate morphological differences between the two rice ecotypes under well-watered and drought conditions, as well as their genetic and transcriptomic divergences by the high-throughput sequencing. Upland rice possesses higher expression diversity than lowland rice does. Thousands of genes exhibit expression divergences between the two rice ecotypes, which contributes to their morphological differences in drought tolerance. These transcriptomic divergences contribute to drought adaptation of upland rice during its domestication. Mutations in transcriptional regulatory regions, which cause presence and absence of cis-elements, are the cause of expression divergence. About 15.3% transcriptionally selected genes also receive sequence-based selection in upland or lowland ecotype. Some highly differentiated genes promote the transcriptomic divergence between rice ecotypes via gene co-expression network. In addition, we also detected transcriptomic trade-offs between drought tolerance and productivity. DISCUSSION Many key genes, which promote transcriptomic adaptation to drought in upland rice, have great prospective in breeding water-saving and drought-resistant rice. Meanwhile, appropriate strategies are required in breeding to overcome the potential transcriptomic trade-off.
Collapse
Affiliation(s)
- Zhi Luo
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| | - Jie Xiong
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| | - Hui Xia
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center Shanghai China
| | - Min Gao
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| | - Lei Wang
- Shanghai Agrobiological Gene Center Shanghai China
| | - Guolan Liu
- Shanghai Agrobiological Gene Center Shanghai China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center Shanghai China
| | - Lijun Luo
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| |
Collapse
|
10
|
Koch EL, Guillaume F. Restoring ancestral phenotypes is a general pattern in gene expression evolution during adaptation to new environments in Tribolium castaneum. Mol Ecol 2020; 29:3938-3953. [PMID: 32844494 DOI: 10.1111/mec.15607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Plasticity and evolution are two processes allowing populations to respond to environmental changes, but how both are related and impact each other remains controversial. We studied plastic and evolutionary responses in gene expression of Tribolium castaneum after exposure of the beetles to new environments that differed from ancestral conditions in temperature, humidity or both. Using experimental evolution with 10 replicated lines per condition, we were able to demonstrate adaptation after 20 generations. We measured whole-transcriptome gene expression with RNA-sequencing to infer evolutionary and plastic changes. We found more evidence for changes in mean expression (shift in the intercept of reaction norms) in adapted lines than for changes in plasticity (shifts in slopes). Plasticity was mainly preserved in selected lines and was responsible for a large part of the phenotypic divergence in expression between ancestral and new conditions. However, we found that genes with the largest evolutionary changes in expression also evolved reduced plasticity and often showed expression levels closer to the ancestral stage. Results obtained in the three different conditions were similar, suggesting that restoration of ancestral expression levels during adaptation is a general evolutionary pattern. With a larger sample in the most stressful condition, we were able to detect a positive correlation between the proportion of genes with reversion of the ancestral plastic response and mean fitness per selection line.
Collapse
Affiliation(s)
- Eva L Koch
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Zheng XM, Chen J, Pang HB, Liu S, Gao Q, Wang JR, Qiao WH, Wang H, Liu J, Olsen KM, Yang QW. Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication. SCIENCE ADVANCES 2019; 5:eaax3619. [PMID: 32064312 PMCID: PMC6989341 DOI: 10.1126/sciadv.aax3619] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/30/2019] [Indexed: 05/17/2023]
Abstract
Genomes carry millions of noncoding variants, and identifying the tiny fraction with functional consequences is a major challenge for genomics. We assessed the role of selection on long noncoding RNAs (lncRNAs) for domestication-related changes in rice grains. Among 3363 lncRNA transcripts identified in early developing panicles, 95% of those with differential expression (329 lncRNAs) between Oryza sativa ssp. japonica and wild rice were significantly down-regulated in the domestication event. Joint genome and transcriptome analyses reveal that directional selection on lncRNAs altered the expression of energy metabolism genes during domestication. Transgenic experiments and population analyses with three focal lncRNAs illustrate that selection on these loci led to increased starch content and grain weight. Together, our findings indicate that genome-wide selection for lncRNA down-regulation was an important mechanism for the emergence of rice domestication traits.
Collapse
Affiliation(s)
- X. M. Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J. Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - H. B. Pang
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - S. Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Q. Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J. R. Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - W. H. Qiao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - H. Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J. Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding author. (Q.W.Y.); (K.M.O.); (J.L.)
| | - K. M. Olsen
- Biology Department, Campus Box 1137, Washington University, St. Louis, MO 63130, USA
- Corresponding author. (Q.W.Y.); (K.M.O.); (J.L.)
| | - Q. W. Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding author. (Q.W.Y.); (K.M.O.); (J.L.)
| |
Collapse
|
12
|
Cai Z, Zhou L, Ren NN, Xu X, Liu R, Huang L, Zheng XM, Meng QL, Du YS, Wang MX, Geng MF, Chen WL, Jing CY, Zou XH, Guo J, Chen CB, Zeng HZ, Liang YT, Wei XH, Guo YL, Zhou HF, Zhang FM, Ge S. Parallel Speciation of Wild Rice Associated with Habitat Shifts. Mol Biol Evol 2019; 36:875-889. [PMID: 30861529 PMCID: PMC6501882 DOI: 10.1093/molbev/msz029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The occurrence of parallel speciation strongly implies the action of natural selection. However, it is unclear how general a phenomena parallel speciation is since it was only shown in a small number of animal species. In particular, the adaptive process and mechanisms underlying the process of parallel speciation remain elusive. Here, we used an integrative approach incorporating population genomics, common garden, and crossing experiments to investigate parallel speciation of the wild rice species Oryza nivara from O. rufipogon. We demonstrated that O. nivara originated multiple times from different O. rufipogon populations and revealed that different O. nivara populations have evolved similar phenotypes under divergent selection, a reflection of recurrent local adaptation of ancient O. rufipogon populations to dry habitats. Almost completed premating isolation was detected between O. nivara and O. rufipogon in the absence of any postmating barriers between and within these species. These results suggest that flowering time is a “magic” trait that contributes to both local adaptation and reproductive isolation in the origin of wild rice species. Our study thus demonstrates a convincing case of parallel ecological speciation as a consequence of adaptation to new environments.
Collapse
Affiliation(s)
- Zhe Cai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lian Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning-Ning Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lei Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Ming Zheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qing-Lin Meng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Su Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Xia Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Fan Geng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Li Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chun-Yan Jing
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Hui Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Cheng-Bin Chen
- Guangxi Academy Agricultural Sciences, Nanning, Guangxi, China
| | - Hua-Zhong Zeng
- Guangxi Academy Agricultural Sciences, Nanning, Guangxi, China
| | - Yun-Tao Liang
- Guangxi Academy Agricultural Sciences, Nanning, Guangxi, China
| | - Xing-Hua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Fei Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Lou F, Han Z, Gao T. Transcriptomic Responses of Two Ecologically Divergent Populations of Japanese Mantis Shrimp ( Oratosquilla oratoria) under Thermal Stress. Animals (Basel) 2019; 9:ani9070399. [PMID: 31262058 PMCID: PMC6680513 DOI: 10.3390/ani9070399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/28/2019] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Rising ocean temperature would change the seawater chemistry and affect the external and internal physiology of crustaceans due to their lack of certain efficient temperature regulators. In addition, the infraspecific populations of crustaceans might also have different response strategies to the rising of temperature. Therefore, we identified the transcriptomic variations to the same thermal stress between ecologically divergent populations of Oratosquilla oratoria. The aim of this study was to investigate the population-specific function genes and relevant pathways in response to thermal stress in O. oratoria. The results showed that gene-expressed variation was in a population-specific pattern, which indicated that the local environment could lead to the evolvement of changes in gene regulation, ultimately leading to adaptive divergences. Additionally, we found several genes with large pleiotropic effects in the Zhoushan population, which might indicate that the regulation mechanisms of the Zhoushan population were more efficient than those of the Qingdao population under same thermal stress. The results provided some novel insights into the local adaptive differences of the infraspecific populations of O. oratoria and other crustaceans. Abstract Crustaceans are generally considered more sensitive to ocean warming due to their lack of certain efficient regulators. However, the alterations in the physiology and behavior of crustaceans in response to thermal stress differ vastly even among the infraspecific populations of heterogeneous landscapes. Consequently, understanding the impact of temperature fluctuation on crustacean infraspecific populations might be essential for maintaining a sustainable persistence of populations at existing locations. In the present study, we chose the Japanese mantis shrimp (Oratosquilla oratoria) as the representative crustacean population, and conducted transcriptome analyses in two divergent O. oratoria populations (the Zhoushan and Qingdao populations) under same thermal stress (20–28 °C) to identify the population-specific expression response to thermal stress. The results showed significant differences in gene expressions, GO terms and metabolic pathways between the two populations. We hypothesized that intraspecific mutations in the same or different genes might lead to thermal adaptive divergences. Temperature increases from 20–28 °C produced significant enrichment in GO terms and altered the metabolic pathways in the Zhoushan population despite the lack of differentially expressed unigenes. Therefore, several functional genes with large pleiotropic effects may underlie the response to thermal stress in the Zhoushan population. Furthermore, the most significantly enriched biological processes of the Qingdao population were associated with the state or activity of cells and its significant enriched pathways with genetic information processing as well as immune and environmental information processing. In contrast, the differentially regulated unigenes of the Zhoushan population were primarily involved in the regulatory cellular and transcription processes and the most significant pathways found were metabolic and digestive. Consequently, the regulatory mechanisms of the Zhoushan population are probably more efficient than those of the Qingdao population under the same thermal stress.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
- Fishery College, Ocean University of China, Qingdao 266003, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
14
|
Ng WL, Wu W, Zou P, Zhou R. Comparative transcriptomics sheds light on differential adaptation and species diversification between two Melastoma species and their F 1 hybrid. AOB PLANTS 2019; 11:plz019. [PMID: 31037213 PMCID: PMC6481908 DOI: 10.1093/aobpla/plz019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Variation in gene expression has been shown to promote adaptive divergence, and can lead to speciation. The plant genus Melastoma, thought to have diversified through adaptive radiation, provides an excellent model for the study of gene expressional changes during adaptive differentiation and following interspecific hybridization. In this study, we performed RNA-seq on M. candidum, M. sanguineum and their F1 hybrid, to investigate the role of gene expression in species diversification within the genus. Reference transcriptomes were assembled using combined data from both parental species, resulting in 50 519 and 48 120 transcripts for the leaf and flower petal, after removing redundancy. Differential expression analysis uncovered 3793 and 2116 differentially expressed (DE) transcripts, most of which are between M. candidum and M. sanguineum. Differential expression was observed for genes related to light responses, as well as genes that regulate the development of leaf trichomes, a trait that among others is thought to protect plants against sunlight, suggesting the differential adaptation of the species to sunlight intensity. The analysis of positively selected genes between the two species also revealed possible differential adaptation to other abiotic stresses such as drought and temperature. In the hybrid, almost all possible modes of expression were observed at the DE transcripts, although at most transcripts, the expression levels were similar to that of either parent instead of being intermediate. A small number of transgressively expressed transcripts that matched genes known to promote plant growth and adaptation to stresses in new environments were also found, possibly explaining the vigour observed in the hybrid. The findings in this study provided insights into the role of gene expression in the diversification of Melastoma, which we believe is an important example for more cross-taxa comparisons in the future.
Collapse
Affiliation(s)
- Wei Lun Ng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wei Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peishan Zou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Gao H, Wang Y, Li W, Gu Y, Lai Y, Bi Y, He C. Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5089-5104. [PMID: 30113693 PMCID: PMC6184420 DOI: 10.1093/jxb/ery291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/31/2018] [Indexed: 05/22/2023]
Abstract
Soybean (Glycine max) was domesticated from its wild relative Glycine soja. However, the genetic variations underlying soybean domestication are not well known. Comparative transcriptomics revealed that a small portion of the orthologous genes might have been fast evolving. In contrast, three gene expression clusters were identified as divergent by their expression patterns, which occupied 37.44% of the total genes, hinting at an essential role for gene expression alteration in soybean domestication. Moreover, the most divergent stage in gene expression between wild and cultivated soybeans occurred during seed development around the cotyledon stage (15 d after fertilization, G15). A module in which the co-expressed genes were significantly down-regulated at G15 of wild soybeans was identified. The divergent clusters and modules included substantial differentially expressed genes (DEGs) between wild and cultivated soybeans related to cell division, storage compound accumulation, hormone response, and seed maturation processes. Chromosomal-linked DEGs, quantitative trait loci controlling seed weight and oil content, and selection sweeps revealed candidate DEGs at G15 in the fruit-related divergence of G. max and G. soja. Our work establishes a transcriptomic selection mechanism for altering gene expression during soybean domestication, thus shedding light on the molecular networks underlying soybean seed development and breeding strategy.
Collapse
Affiliation(s)
- Huihui Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Wei Li
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yongzhe Gu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongcai Lai
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yingdong Bi
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Haritha G, Malathi S, Divya B, Swamy BPM, Mangrauthia SK, Sarla N. Oryza nivara Sharma et Shastry. COMPENDIUM OF PLANT GENOMES 2018. [DOI: 10.1007/978-3-319-71997-9_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Passow CN, Brown AP, Arias-Rodriguez L, Yee MC, Sockell A, Schartl M, Warren WC, Bustamante C, Kelley JL, Tobler M. Complexities of gene expression patterns in natural populations of an extremophile fish (Poecilia mexicana, Poeciliidae). Mol Ecol 2017; 26:4211-4225. [PMID: 28598519 PMCID: PMC5731456 DOI: 10.1111/mec.14198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022]
Abstract
Variation in gene expression can provide insights into organismal responses to environmental stress and physiological mechanisms mediating adaptation to habitats with contrasting environmental conditions. We performed an RNA-sequencing experiment to quantify gene expression patterns in fish adapted to habitats with different combinations of environmental stressors, including the presence of toxic hydrogen sulphide (H2 S) and the absence of light in caves. We specifically asked how gene expression varies among populations living in different habitats, whether population differences were consistent among organs, and whether there is evidence for shared expression responses in populations exposed to the same stressors. We analysed organ-specific transcriptome-wide data from four ecotypes of Poecilia mexicana (nonsulphidic surface, sulphidic surface, nonsulphidic cave and sulphidic cave). The majority of variation in gene expression was correlated with organ type, and the presence of specific environmental stressors elicited unique expression differences among organs. Shared patterns of gene expression between populations exposed to the same environmental stressors increased with levels of organismal organization (from transcript to gene to physiological pathway). In addition, shared patterns of gene expression were more common between populations from sulphidic than populations from cave habitats, potentially indicating that physiochemical stressors with clear biochemical consequences can constrain the diversity of adaptive solutions that mitigate their adverse effects. Overall, our analyses provided insights into transcriptional variation in a unique system, in which adaptation to H2 S and darkness coincide. Functional annotations of differentially expressed genes provide a springboard for investigating physiological mechanisms putatively underlying adaptation to extreme environments.
Collapse
Affiliation(s)
| | - Anthony P. Brown
- Department of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Muh-Ching Yee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Manfred Schartl
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany
- Texas A&M Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX, USA
| | - Wesley C. Warren
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Joanna L. Kelley
- Department of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
18
|
Yang J, Yue M, Niu C, Ma XF, Li ZH. Comparative Analysis of the Complete Chloroplast Genome of Four Endangered Herbals of Notopterygium. Genes (Basel) 2017; 8:E124. [PMID: 28422071 PMCID: PMC5406871 DOI: 10.3390/genes8040124] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
Notopterygium H. de Boissieu (Apiaceae) is an endangered perennial herb endemic to China. A good knowledge of phylogenetic evolution and population genomics is conducive to the establishment of effective management and conservation strategies of the genus Notopterygium. In this study, the complete chloroplast (cp) genomes of four Notopterygium species (N. incisum C. C. Ting ex H. T. Chang, N. oviforme R. H. Shan, N. franchetii H. de Boissieu and N. forrestii H. Wolff) were assembled and characterized using next-generation sequencing. We investigated the gene organization, order, size and repeat sequences of the cp genome and constructed the phylogenetic relationships of Notopterygium species based on the chloroplast DNA and nuclear internal transcribed spacer (ITS) sequences. Comparative analysis of plastid genome showed that the cp DNA are the standard double-stranded molecule, ranging from 157,462 bp (N. oviforme) to 159,607 bp (N. forrestii) in length. The circular DNA each contained a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeats (IRs). The cp DNA of four species contained 85 protein-coding genes, 37 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes, respectively. We determined the marked conservation of gene content and sequence evolutionary rate in the cp genome of four Notopterygium species. Three genes (psaI, psbI and rpoA) were possibly under positive selection among the four sampled species. Phylogenetic analysis showed that four Notopterygium species formed a monophyletic clade with high bootstrap support. However, the inconsistent interspecific relationships with the genus Notopterygium were identified between the cp DNA and ITS markers. The incomplete lineage sorting, convergence evolution or hybridization, gene infiltration and different sampling strategies among species may have caused the incongruence between the nuclear and cp DNA relationships. The present results suggested that Notopterygium species may have experienced a complex evolutionary history and speciation process.
Collapse
Affiliation(s)
- Jiao Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Chuan Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xiong-Feng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
19
|
Zhou T, Chen C, Wei Y, Chang Y, Bai G, Li Z, Kanwal N, Zhao G. Comparative Transcriptome and Chloroplast Genome Analyses of Two Related Dipteronia Species. FRONTIERS IN PLANT SCIENCE 2016; 7:1512. [PMID: 27790228 PMCID: PMC5061820 DOI: 10.3389/fpls.2016.01512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/23/2016] [Indexed: 05/21/2023]
Abstract
Dipteronia (order Sapindales) is an endangered genus endemic to China and has two living species, D.sinensis and D. dyeriana. The plants are closely related to the genus Acer, which is also classified in the order Sapindales. Evolutionary studies on Dipteronia have been hindered by the paucity of information on their genomes and plastids. Here, we used next generation sequencing to characterize the transcriptomes and complete chloroplast genomes of both Dipteronia species. A comparison of the transcriptomes of both species identified a total of 7814 orthologs. Estimation of selection pressures using Ka/Ks ratios showed that only 30 of 5435 orthologous pairs had a ratio significantly >1, i.e., showing positive selection. However, 4041 orthologs had a Ka/Ks < 0.5 (p < 0.05), suggesting that most genes had likely undergone purifying selection. Based on orthologous unigenes, 314 single copy nuclear genes (SCNGs) were identified. Through a combination of de novo and reference guided assembly, plastid genomes were obtained; that of D. sinensis was 157,080 bp and that of D. dyeriana was 157,071 bp. Both plastid genomes encoded 87 protein coding genes, 40 tRNAs, and 8 rRNAs; no significant differences were detected in the size, gene content, and organization of the two plastomes. We used the whole chloroplast genomes to determine the phylogeny of D. sinensis and D. dyeriana and confirmed that the two species were highly divergent. Overall, our study provides comprehensive transcriptomic and chloroplast genomic resources, which will be valuable for future evolutionary studies of Dipteronia.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Chen Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Yue Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Yongxia Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Guoqing Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi ProvinceXi'an, China
| | - Zhonghu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Nazish Kanwal
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
- *Correspondence: Guifang Zhao
| |
Collapse
|