1
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Espregueira Themudo G, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O'Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BMC Genomics 2024; 25:1025. [PMID: 39487448 PMCID: PMC11529218 DOI: 10.1186/s12864-024-10899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium ) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, VIC, Australia.
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, 27858, USA
| | - Maximina H Yun
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
- Historia Natural C.J. Marinkelle, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Simon T Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale, Seychelles
| | | | - Victor L N Araújo
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Lorenzo V Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4810, Australia
| | - Gary M Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, KS, 66045, USA
| | - Ying Chen
- Biology Department, Queen's University, Kingston, ON, Canada
| | - Angelica Crottini
- Centro de Investigação Em Biodiversidade E Recursos Genéticos, CIBIOInBIO Laboratório AssociadoUniversidade Do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, I-50019, Italy
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Jessica M da Silva
- Evolutionary Genomics and Wildlife Management, Foundational Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands, Cape Town, 7735, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Robert D Denton
- Department of Biology, Marian University, Indianapolis, IN, 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Department of Life Science, Konrad-Lorenz-Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões Matosinhos, Avenida General Norton de Matos, Matosinhos, S/N, Portugal
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, UK
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, UK
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A Levis
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, 1015, Biophore, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, , Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Kevin P Mulder
- Faculty of Veterinary Medicine, Wildlife Health Ghent, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Mary J O'Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | | | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476, Potsdam, Germany
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, Belfast, BT7 1NN, UK
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, UK
| | - Anthony A Snead
- Department of Biology, New York University, New York, NY, USA
| | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Adam M M Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | | | - Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
2
|
Tarvin RD, Coleman JL, Donoso DA, Betancourth-Cundar M, López-Hervas K, Gleason KS, Sanders JR, Smith JM, Ron SR, Santos JC, Sedio BE, Cannatella DC, Fitch R. Passive accumulation of alkaloids in inconspicuously colored frogs refines the evolutionary paradigm of acquired chemical defenses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593697. [PMID: 38798461 PMCID: PMC11118485 DOI: 10.1101/2024.05.13.593697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration - passive accumulation - that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.
Collapse
Affiliation(s)
- Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Jeffrey L. Coleman
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, TX 78712 USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - David A. Donoso
- Grupo de Investigación en Ecología Evolutiva en los Trópicos (EETROP), Universidad de las Américas, Quito, Ecuador
- Ecological Networks Lab, Technische Universität Darmstadt, Darmstadt, Germany
| | - Mileidy Betancourth-Cundar
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia, 111711
- Department of Biology, Stanford University, Palo Alto, CA, 94305, USA
| | | | - Kimberly S. Gleason
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA
| | - J. Ryan Sanders
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA
| | - Jacqueline M. Smith
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan C. Santos
- Department of Biological Sciences, St John’s University, NY, USA 11439
| | - Brian E. Sedio
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, TX 78712 USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - David C. Cannatella
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, TX 78712 USA
| | - Richard Fitch
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
3
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Themudo GE, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O’Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601086. [PMID: 39005434 PMCID: PMC11244923 DOI: 10.1101/2024.06.27.601086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A. Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, USA 27858
| | - Maximina H. Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
- Museo de Historia Natural C.J. Marinkelle, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Simon T. Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale Seychelles
| | | | - Victor L. N. Araújo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Lorenzo V. Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4810, Australia
| | - Gary M. Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M. Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O. Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, Kansas 66045, USA
| | - Ying Chen
- Biology Department, Queen’s University, Kingston, Ontario, Canada
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169– 007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Jessica M. da Silva
- Evolutionary Genomics and Wildlife Management, Foundatonal Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands 7735, Cape Town, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa
| | - Robert D. Denton
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Konrad-Lorenz-Institute of Ethology, Department of Life Science, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos, Portugal
| | - Katherine A. Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, United Kingdom
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A. Levis
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Kevin P. Mulder
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, D-06108 Halle (Saale), Germany
| | - Mary J. O’Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Museum Avenue, CF10 3AX Cardiff, United Kingdom
| | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology; Faculty of Biological Sciences; Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476 Potsdam, Germany
| | - David W. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karin S. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D. Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen’s University Belfast, Belfast, BT7 1NN, Northern Ireland, United Kingdom
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, United Kingdom
| | | | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany
| | - Adam M. M. Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | | | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
4
|
López-Hervas K, Santos JC, Ron SR, Betancourth-Cundar M, Cannatella DC, Tarvin RD. Deep divergences among inconspicuously colored clades of Epipedobates poison frogs. Mol Phylogenet Evol 2024; 195:108065. [PMID: 38531492 DOI: 10.1016/j.ympev.2024.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
Poison frogs (Dendrobatidae) are famous for their aposematic species, having a combination of diverse color patterns and defensive skin toxins, yet most species in this family are inconspicuously colored and considered non-aposematic. Epipedobates is among the youngest genus-level clades of Dendrobatidae that includes both aposematic and inconspicuous species. Using Sanger-sequenced mitochondrial and nuclear markers, we demonstrate deep genetic divergences among inconspicuous species of Epipedobates but relatively shallow genetic divergences among conspicuous species. Our phylogenetic analysis includes broad geographic sampling of the inconspicuous lineages typically identified as E. boulengeri and E. espinosai, which reveals two putative new species, one in west-central Colombia (E. sp. 1) and the other in north-central Ecuador (E. aff. espinosai). We conclude that E. darwinwallacei is a junior subjective synonym of E. espinosai. We also clarify the geographic distributions of inconspicuous Epipedobates species including the widespread E. boulengeri. We provide a qualitative assessment of the phenotypic diversity in each nominal species, with a focus on the color and pattern of inconspicuous species. We conclude that Epipedobates contains eight known valid species, six of which are inconspicuous. A relaxed molecular clock analysis suggests that the most recent common ancestor of Epipedobates is ∼11.1 million years old, which nearly doubles previous estimates. Last, genetic information points to a center of species diversity in the Chocó at the southwestern border of Colombia with Ecuador. A Spanish translation of this text is available in the supplementary materials.
Collapse
Affiliation(s)
- Karem López-Hervas
- Facultad de Ciencias Biológicas y Ambientales, Universidad Central del Ecuador, Quito, Ecuador; Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan C Santos
- Department of Biological Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - David C Cannatella
- Department of Integrative Biology and Biodiversity Center, University of Texas, Austin, TX 78712, USA
| | - Rebecca D Tarvin
- Department of Integrative Biology and Biodiversity Center, University of Texas, Austin, TX 78712, USA; Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Bodawatta KH, Hu H, Schalk F, Daniel JM, Maiah G, Koane B, Iova B, Beemelmanns C, Poulsen M, Jønsson KA. Multiple mutations in the Nav1.4 sodium channel of New Guinean toxic birds provide autoresistance to deadly batrachotoxin. Mol Ecol 2024; 33:e16878. [PMID: 36779590 DOI: 10.1111/mec.16878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
Toxicity has evolved multiple times across the tree of life and serves important functions related to hunting, defence and parasite deterrence. Toxins are produced either in situ by the toxic organism itself or associated symbionts, or acquired through diet. The ability to exploit toxins from external sources requires adaptations that prevent toxic effects on the consumer (autoresistance). Here, we examine genomic adaptations that could facilitate autoresistance to the diet-acquired potent neurotoxic alkaloid batrachotoxin (BTX) in New Guinean toxic birds. Our work documents two new toxic bird species and shows that toxic birds carry multiple mutations in the SCN4A gene that are under positive selection. This gene encodes the most common vertebrate muscle Nav channel (Nav1.4). Molecular docking results indicate that some of the mutations that are present in the pore-forming segment of the Nav channel, where BTX binds, could reduce its binding affinity. These mutations should therefore prevent the continuous opening of the sodium channels that BTX binding elicits, thereby preventing muscle paralysis and ultimately death. Although these mutations are different from those present in Neotropical Phyllobates poison dart frogs, they occur in the same segments of the Nav1.4 channel. Consequently, in addition to uncovering a greater diversity of toxic bird species than previously known, our work provides an intriguing example of molecular-level convergent adaptations allowing frogs and birds to ingest and use the same neurotoxin. This suggests that genetically modified Nav1.4 channels represent a key adaptation to BTX tolerance and exploitation across vertebrates.
Collapse
Affiliation(s)
- Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Haofu Hu
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Felix Schalk
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Jena, Germany
| | - Jan-Martin Daniel
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Jena, Germany
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Gibson Maiah
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Bonny Koane
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Bulisa Iova
- PNG National Museum and Art Gallery, Port Moresby, Papua New Guinea
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, Jena, Germany
- Department Anti-infectives from Microbiota, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Universität des Saarlandes, Saarbrücken, Germany
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Gonzalez M, Carazzone C. Eco-Metabolomics Applied to the Chemical Ecology of Poison Frogs (Dendrobatoidea). J Chem Ecol 2023; 49:570-598. [PMID: 37594619 PMCID: PMC10725362 DOI: 10.1007/s10886-023-01443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023]
Abstract
Amphibians are one of the most remarkable sources of unique natural products. Biogenic amines, peptides, bufodienolides, alkaloids, and volatile organic compounds have been characterized in different species. The superfamily Dendrobatoidea represents one of the most enigmatic cases of study in chemical ecology because their skin secretome is composed by a complex mixture (i.e. cocktail) of highly lethal and noxious unique alkaloid structures. While chemical defences from dendrobatoids (families Dendrobatidae and Aromobatidae) have been investigated employing ecological, behavioral, phylogenetic and evolutionary perspectives, studies about the analytical techniques needed to perform the chemical characterization have been neglected for many years. Therefore, our aim is to summarize the current methods applied for the characterization of chemical profiles in dendrobatoids and to illustrate innovative Eco-metabolomics strategies that could be translated to this study model. This approach could be extended to natural products other than alkaloids and implemented for the chemical analysis of different species of dendrobatoids employing both low- and high-resolution mass spectrometers. Here, we overview important biological features to be considered, procedures that could be applied to perform the chemical characterization, steps and tools to perform an Eco-metabolomic analysis, and a final discussion about future perspectives.
Collapse
Affiliation(s)
- Mabel Gonzalez
- Department of Chemistry, Universidad de los Andes, 4976, Bogotá, AA, Colombia.
- Department of Biology, Stanford University, Palo Alto, CA, 94305, USA.
| | - Chiara Carazzone
- Department of Chemistry, Universidad de los Andes, 4976, Bogotá, AA, Colombia.
| |
Collapse
|
7
|
York JM, Borghese CM, George AA, Cannatella DC, Zakon HH. A potential cost of evolving epibatidine resistance in poison frogs. BMC Biol 2023; 21:144. [PMID: 37370119 DOI: 10.1186/s12915-023-01637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Some dendrobatid poison frogs sequester the toxin epibatidine as a defense against predators. We previously identified an amino acid substitution (S108C) at a highly conserved site in a nicotinic acetylcholine receptor β2 subunit of dendrobatid frogs that decreases sensitivity to epibatidine in the brain-expressing α4β2 receptor. Introduction of S108C to the orthologous high-sensitivity human receptor similarly decreased sensitivity to epibatidine but also decreased sensitivity to acetylcholine, a potential cost if this were to occur in dendrobatids. This decrease in the acetylcholine sensitivity manifested as a biphasic acetylcholine concentration-response curve consistent with the addition of low-sensitivity receptors. Surprisingly, the addition of the β2 S108C into the α4β2 receptor of the dendrobatid Epipedobates anthonyi did not change acetylcholine sensitivity, appearing cost-free. We proposed that toxin-bearing dendrobatids may have additional amino acid substitutions protecting their receptors from alterations in acetylcholine sensitivity. To test this, in the current study, we compared the dendrobatid receptor to its homologs from two non-dendrobatid frogs. RESULTS The introduction of S108C into the α4β2 receptors of two non-dendrobatid frogs also does not affect acetylcholine sensitivity suggesting no additional dendrobatid-specific substitutions. However, S108C decreased the magnitude of neurotransmitter-induced currents in Epipedobates and the non-dendrobatid frogs. We confirmed that decreased current resulted from fewer receptors in the plasma membrane in Epipedobates using radiolabeled antibodies against the receptors. To test whether S108C alteration of acetylcholine sensitivity in the human receptor was due to (1) adding low-sensitivity binding sites by changing stoichiometry or (2) converting existing high- to low-sensitivity binding sites with no stoichiometric alteration, we made concatenated α4β2 receptors in stoichiometry with only high-sensitivity sites. S108C substitutions decreased maximal current and number of immunolabeled receptors but no longer altered acetylcholine sensitivity. CONCLUSIONS The most parsimonious explanation of our current and previous work is that the S108C substitution renders the β2 subunit less efficient in assembling/trafficking, thereby decreasing the number of receptors in the plasma membrane. Thus, while β2 S108C protects dendrobatids against sequestered epibatidine, it incurs a potential physiological cost of disrupted α4β2 receptor function.
Collapse
Affiliation(s)
- Julia M York
- Department of Neuroscience, The University of Texas, Austin, TX, USA
- Department of Integrative Biology, and Biodiversity Center, The University of Texas, Austin, TX, USA
| | | | - Andrew A George
- Department of Neurobiology, The Barrow Neurological Institute, Phoenix, AZ, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - David C Cannatella
- Department of Integrative Biology, and Biodiversity Center, The University of Texas, Austin, TX, USA
| | - Harold H Zakon
- Department of Neuroscience, The University of Texas, Austin, TX, USA.
- Department of Integrative Biology, and Biodiversity Center, The University of Texas, Austin, TX, USA.
| |
Collapse
|
8
|
York JM, Borghese CM, George AA, Cannatella DC, Zakon HH. A potential cost of evolving epibatidine resistance in poison frogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522789. [PMID: 36711899 PMCID: PMC9882002 DOI: 10.1101/2023.01.04.522789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Some poison arrow frogs sequester the toxin epibatidine as a defense against predators. We previously identified a single amino acid substitution (S108C) at a highly conserved site in a neuronal nicotinic acetylcholine receptor (nAChR) ß2 subunit that prevents epibatidine from binding to this receptor. When placed in a homologous mammalian nAChR this substitution minimized epibatidine binding but also perturbed acetylcholine binding, a clear cost. However, in the nAChRs of poison arrow frogs, this substitution appeared to have no detrimental effect on acetylcholine binding and, thus, appeared cost-free. Results The introduction of S108C into the α4β2 nAChRs of non-dendrobatid frogs also does not affect ACh sensitivity, when these receptors are expressed in Xenopus laevis oocytes. However, α4β2 nAChRs with C108 had a decreased magnitude of neurotransmitter-induced currents in all species tested ( Epipedobates anthonyi , non-dendrobatid frogs, as well as human), compared with α4β2 nAChRs with the conserved S108. Immunolabeling of frog or human α4β2 nAChRs in the plasma membrane using radiolabeled antibody against the β2 nAChR subunit shows that C108 significantly decreased the number of cell-surface α4β2 nAChRs, compared with S108. Conclusions While S108C protects these species against sequestered epibatidine, it incurs a potential physiological cost of disrupted α4β2 nAChR function. These results may explain the high conservation of a serine at this site in vertebrates, as well as provide an example of a tradeoff between beneficial and deleterious effects of an evolutionary change. They also provide important clues for future work on assembly and trafficking of this important neurotransmitter receptor.
Collapse
|
9
|
Reimche JS, Del Carlo RE, Brodie ED, McGlothlin JW, Schlauch K, Pfrender ME, Brodie ED, Leblanc N, Feldman CR. The road not taken: Evolution of tetrodotoxin resistance in the Sierra garter snake (Thamnophis couchii) by a path less traveled. Mol Ecol 2022; 31:3827-3843. [PMID: 35596742 DOI: 10.1111/mec.16538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
The repeated evolution of tetrodotoxin (TTX) resistance provides a model for testing hypotheses about the mechanisms of convergent evolution. This poison is broadly employed as a potent antipredator defense, blocking voltage-gated sodium channels (Nav ) in muscles and nerves, paralyzing and sometimes killing predators. Resistance in taxa bearing this neurotoxin and a few predators appears to come from convergent replacements in specific Nav residues that interact with TTX. This stereotyped genetic response suggests molecular and phenotypic evolution may be constrained and predictable. Here, we investigate the extent of mechanistic convergence in garter snakes (Thamnophis) that prey on TTX-bearing newts (Taricha) by examining the physiological and genetic basis of TTX resistance in the Sierra garter snake (Th. couchii). We characterize variation in this predatory adaptation across populations at several biological scales: whole-animal TTX resistance; skeletal muscle resistance, functional genetic variation in three Nav encoding loci; and levels of gene expression for one of these loci. We found Th. couchii possess extensive geographic variation in resistance at the whole-animal and skeletal muscle levels. As in other Thamnophis, resistance at both levels is highly correlated, suggesting convergence across the biological levels linking organism to organ. However, Th. couchii shows no functional variation in Nav loci among populations or difference in candidate gene expression. Local variation in TTX resistance in Th. couchii cannot be explained by the same relationship between genotype and phenotype seen in other taxa. Thus, historical contingencies may lead different species of Thamnophis down alternative routes to local adaptation.
Collapse
Affiliation(s)
- Jessica S Reimche
- Department of Biology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA.,Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA
| | - Robert E Del Carlo
- Department of Pharmacology and 4Program in Cellular and Molecular Pharmacology and Physiology, University of Nevada, Reno, NV, USA
| | - Edmund D Brodie
- Department of Biology, Utah State University, Logan, UT, USA
| | - Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Edmund D Brodie
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Normand Leblanc
- Department of Pharmacology and 4Program in Cellular and Molecular Pharmacology and Physiology, University of Nevada, Reno, NV, USA
| | - Chris R Feldman
- Department of Biology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA.,Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
10
|
van Thiel J, Khan MA, Wouters RM, Harris RJ, Casewell NR, Fry BG, Kini RM, Mackessy SP, Vonk FJ, Wüster W, Richardson MK. Convergent evolution of toxin resistance in animals. Biol Rev Camb Philos Soc 2022; 97:1823-1843. [PMID: 35580905 PMCID: PMC9543476 DOI: 10.1111/brv.12865] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
Convergence is the phenomenon whereby similar phenotypes evolve independently in different lineages. One example is resistance to toxins in animals. Toxins have evolved many times throughout the tree of life. They disrupt molecular and physiological pathways in target species, thereby incapacitating prey or deterring a predator. In response, molecular resistance has evolved in many species exposed to toxins to counteract their harmful effects. Here, we review current knowledge on the convergence of toxin resistance using examples from a wide range of toxin families. We explore the evolutionary processes and molecular adaptations driving toxin resistance. However, resistance adaptations may carry a fitness cost if they disrupt the normal physiology of the resistant animal. Therefore, there is a trade‐off between maintaining a functional molecular target and reducing toxin susceptibility. There are relatively few solutions that satisfy this trade‐off. As a result, we see a small set of molecular adaptations appearing repeatedly in diverse animal lineages, a phenomenon that is consistent with models of deterministic evolution. Convergence may also explain what has been called ‘autoresistance’. This is often thought to have evolved for self‐protection, but we argue instead that it may be a consequence of poisonous animals feeding on toxic prey. Toxin resistance provides a unique and compelling model system for studying the interplay between trophic interactions, selection pressures and the molecular mechanisms underlying evolutionary novelties.
Collapse
Affiliation(s)
- Jory van Thiel
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Muzaffar A Khan
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Roel M Wouters
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298, U.S.A
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, U.S.A
| | - Freek J Vonk
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, U.K
| | - Michael K Richardson
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
11
|
Firneno TJ, Ramesh B, Maldonado JA, Hernandez-Briones AI, Emery AH, Roelke CE, Fujita MK. Transcriptomic analysis reveals potential candidate pathways and genes involved in toxin biosynthesis in true toads. J Hered 2022; 113:311-324. [PMID: 35325156 DOI: 10.1093/jhered/esac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Synthesized chemical defenses have broadly evolved across countless taxa and are important in shaping evolutionary and ecological interactions within ecosystems. However, the underlying genomic mechanisms by which these organisms synthesize and utilize their toxins are relatively unknown. Herein, we use comparative transcriptomics to uncover potential toxin synthesizing genes and pathways, as well as interspecific patterns of toxin synthesizing genes across ten species of North American true toads (Bufonidae). Upon assembly and annotation of the ten transcriptomes, we explored patterns of relative gene expression and possible protein-protein interactions across the species to determine what genes and/or pathways may be responsible for toxin synthesis. We also tested our transcriptome dataset for signatures of positive selection to reveal how selection may be acting upon potential toxin producing genes. We assembled high quality transcriptomes of the bufonid parotoid gland, a tissue not often investigated in other bufonid related RNAseq studies. We found several genes involved in metabolic and biosynthetic pathways (e.g. steroid biosynthesis, terpenoid backbone biosynthesis, isoquinoline biosynthesis, glucosinolate biosynthesis) that were functionally enriched and/or relatively expressed across the ten focal species that may be involved in the synthesis of alkaloid and steroid toxins, as well as other small metabolic compounds that cause distastefulness in bufonids. We hope that our study lays a foundation for future studies to explore the genomic underpinnings and specific pathways of toxin synthesis in toads, as well as at the macroevolutionary scale across numerous taxa that produce their own defensive toxins.
Collapse
Affiliation(s)
- Thomas J Firneno
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Balan Ramesh
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Jose A Maldonado
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | | | - Alyson H Emery
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Corey E Roelke
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| |
Collapse
|
12
|
Bucciarelli GM, Alsalek F, Kats LB, Green DB, Shaffer HB. Toxic Relationships and Arms-Race Coevolution Revisited. Annu Rev Anim Biosci 2022; 10:63-80. [PMID: 35167315 DOI: 10.1146/annurev-animal-013120-024716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Toxin evolution in animals is one of the most fascinating and complex subjects of scientific inquiry today. Gaining an understanding of toxins poses a multifaceted challenge given the diverse modes of acquisition, evolutionary adaptations, and abiotic components that affect toxin phenotypes. Here, we highlight some of the main genetic and ecological factors that influence toxin evolution and discuss the role of antagonistic interactions and coevolutionary dynamics in shaping the direction and extent of toxicity and resistance in animals. We focus on toxic Pacific newts (family Salamandridae, genus Taricha) as a system to investigate and better evaluate the widely distributed toxin they possess, tetrodotoxin (TTX), and the hypothesized model of arms-race coevolution with snake predators that is used to explain phenotypic patterns of newt toxicity. Finally, we propose an alternative coevolutionary model that incorporates TTX-producing bacteria and draws from an elicitor-receptor concept to explain TTX evolution and ecology.
Collapse
Affiliation(s)
- G M Bucciarelli
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,La Kretz Center for California Conservation Science, University of California, Los Angeles, California, USA
| | - Farid Alsalek
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - L B Kats
- Natural Science Division, Pepperdine University, Malibu, California, USA; ,
| | - D B Green
- Natural Science Division, Pepperdine University, Malibu, California, USA; ,
| | - H B Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,La Kretz Center for California Conservation Science, University of California, Los Angeles, California, USA
| |
Collapse
|
13
|
Nicole S, Lory P. New Challenges Resulting From the Loss of Function of Na v1.4 in Neuromuscular Diseases. Front Pharmacol 2021; 12:751095. [PMID: 34671263 PMCID: PMC8521073 DOI: 10.3389/fphar.2021.751095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
The voltage-gated sodium channel Nav1.4 is a major actor in the excitability of skeletal myofibers, driving the muscle force in response to nerve stimulation. Supporting further this key role, mutations in SCN4A, the gene encoding the pore-forming α subunit of Nav1.4, are responsible for a clinical spectrum of human diseases ranging from muscle stiffness (sodium channel myotonia, SCM) to muscle weakness. For years, only dominantly-inherited diseases resulting from Nav1.4 gain of function (GoF) were known, i.e., non-dystrophic myotonia (delayed muscle relaxation due to myofiber hyperexcitability), paramyotonia congenita and hyperkalemic or hypokalemic periodic paralyses (episodic flaccid muscle weakness due to transient myofiber hypoexcitability). These last 5 years, SCN4A mutations inducing Nav1.4 loss of function (LoF) were identified as the cause of dominantly and recessively-inherited disorders with muscle weakness: periodic paralyses with hypokalemic attacks, congenital myasthenic syndromes and congenital myopathies. We propose to name this clinical spectrum sodium channel weakness (SCW) as the mirror of SCM. Nav1.4 LoF as a cause of permanent muscle weakness was quite unexpected as the Na+ current density in the sarcolemma is large, securing the ability to generate and propagate muscle action potentials. The properties of SCN4A LoF mutations are well documented at the channel level in cellular electrophysiological studies However, much less is known about the functional consequences of Nav1.4 LoF in skeletal myofibers with no available pertinent cell or animal models. Regarding the therapeutic issues for Nav1.4 channelopathies, former efforts were aimed at developing subtype-selective Nav channel antagonists to block myofiber hyperexcitability. Non-selective, Nav channel blockers are clinically efficient in SCM and paramyotonia congenita, whereas patient education and carbonic anhydrase inhibitors are helpful to prevent attacks in periodic paralyses. Developing therapeutic tools able to counteract Nav1.4 LoF in skeletal muscles is then a new challenge in the field of Nav channelopathies. Here, we review the current knowledge regarding Nav1.4 LoF and discuss the possible therapeutic strategies to be developed in order to improve muscle force in SCW.
Collapse
Affiliation(s)
- Sophie Nicole
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics (ICST), Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics (ICST), Montpellier, France
| |
Collapse
|
14
|
Affiliation(s)
- Roberto Márquez
- Department of Ecology and Evolution, University of Chicago, Chicago, IL.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
15
|
Abderemane-Ali F, Rossen ND, Kobiela ME, Craig RA, Garrison CE, Chen Z, Colleran CM, O’Connell LA, Du Bois J, Dumbacher JP, Minor DL. Evidence that toxin resistance in poison birds and frogs is not rooted in sodium channel mutations and may rely on "toxin sponge" proteins. J Gen Physiol 2021; 153:e202112872. [PMID: 34351379 PMCID: PMC8348241 DOI: 10.1085/jgp.202112872] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/30/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Many poisonous organisms carry small-molecule toxins that alter voltage-gated sodium channel (NaV) function. Among these, batrachotoxin (BTX) from Pitohui poison birds and Phyllobates poison frogs stands out because of its lethality and unusual effects on NaV function. How these toxin-bearing organisms avoid autointoxication remains poorly understood. In poison frogs, a NaV DIVS6 pore-forming helix N-to-T mutation has been proposed as the BTX resistance mechanism. Here, we show that this variant is absent from Pitohui and poison frog NaVs, incurs a strong cost compromising channel function, and fails to produce BTX-resistant channels in poison frog NaVs. We also show that captivity-raised poison frogs are resistant to two NaV-directed toxins, BTX and saxitoxin (STX), even though they bear NaVs sensitive to both. Moreover, we demonstrate that the amphibian STX "toxin sponge" protein saxiphilin is able to protect and rescue NaVs from block by STX. Taken together, our data contradict the hypothesis that BTX autoresistance is rooted in the DIVS6 N→T mutation, challenge the idea that ion channel mutations are a primary driver of toxin resistance, and suggest the possibility that toxin sequestration mechanisms may be key for protecting poisonous species from the action of small-molecule toxins.
Collapse
Affiliation(s)
- Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Nathan D. Rossen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Megan E. Kobiela
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE
| | | | | | - Zhou Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Claire M. Colleran
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | | | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, CA
| | - John P. Dumbacher
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA
- Department of Biology, San Francisco State University, San Francisco, CA
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
16
|
Posso-Terranova A, Andrés J. Skin transcriptional profiles in Oophaga poison frogs. Genet Mol Biol 2020; 43:e20190401. [PMID: 33211057 PMCID: PMC7678260 DOI: 10.1590/1678-4685-gmb-2019-0401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/06/2020] [Indexed: 12/03/2022] Open
Abstract
Aposematic organisms advertise their defensive toxins to predators using a variety of warning
signals, including bright coloration. While most Neotropical poison frogs (Dendrobatidae) rely on
crypsis to avoid predators, Oophaga poison frogs from South America advertise their
chemical defenses, a complex mix of diet-derived alkaloids, by using conspicuous hues. The present
study aimed to characterize the skin transcriptomic profiles of South American
Oophaga poison frogs. Our analyses showed very similar transcriptomic profiles for
these closely related species in terms of functional annotation and relative abundance of gene
ontology terms expressed. Analyses of expression profiles of Oophaga and available
skin transcriptomes of cryptic anurans allowed us to propose initial hypotheses for the active
sequestration of alkaloid-based chemical defenses and to highlight some genes that may be
potentially involved in resistance mechanisms to avoid self-intoxication and skin coloration. In
doing so, we provide an important molecular resource for the study of warning signals that will
facilitate the assembly and annotation of future poison frog genomes.
Collapse
Affiliation(s)
- Andrés Posso-Terranova
- University of Saskatchewan, Department of Biology, Saskatoon, SK, Canada.,Universidad Nacional de Colombia sede Palmira, Palmira, Colombia
| | - José Andrés
- University of Saskatchewan, Department of Biology, Saskatoon, SK, Canada.,Cornell University, Department of Ecology and Evolution, Ithaca, NY, USA
| |
Collapse
|
17
|
Aligning functional network constraint to evolutionary outcomes. BMC Evol Biol 2020; 20:58. [PMID: 32448114 PMCID: PMC7245893 DOI: 10.1186/s12862-020-01613-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Functional constraint through genomic architecture is suggested to be an important dimension of genome evolution, but quantitative evidence for this idea is rare. In this contribution, existing evidence and discussions on genomic architecture as constraint for convergent evolution, rapid adaptation, and genic adaptation are summarized into alternative, testable hypotheses. Network architecture statistics from protein-protein interaction networks are then used to calculate differences in evolutionary outcomes on the example of genomic evolution in yeast, and the results are used to evaluate statistical support for these longstanding hypotheses. RESULTS A discriminant function analysis lent statistical support to classifying the yeast interactome into hub, intermediate and peripheral nodes based on network neighborhood connectivity, betweenness centrality, and average shortest path length. Quantitative support for the existence of genomic architecture as a mechanistic basis for evolutionary constraint is then revealed through utilizing these statistical parameters of the protein-protein interaction network in combination with estimators of protein evolution. CONCLUSIONS As functional genetic networks are becoming increasingly available, it will now be possible to evaluate functional genetic network constraint against variables describing complex phenotypes and environments, for better understanding of commonly observed deterministic patterns of evolution in non-model organisms. The hypothesis framework and methodological approach outlined herein may help to quantify the extrinsic versus intrinsic dimensions of evolutionary constraint, and result in a better understanding of how fast, effectively, or deterministically organisms adapt.
Collapse
|
18
|
Abstract
Neuroscience has a long, rich history in embracing unusual animals for research. Over the past several decades, there has been a technology-driven bottleneck in the species used for neuroscience research. However, an oncoming wave of technologies applicable to many animals hold promise for enabling researchers to address challenging scientific questions that cannot be solved using traditional laboratory animals. Here, we discuss how leveraging the convergent evolution of physiological or behavioral phenotypes can empower research mapping genotype to phenotype interactions. We present two case studies using electric fish and poison frogs and discuss how comparative work can teach us about evolutionary constraint and flexibility at various levels of biological organization. We also offer advice on the potential and pitfalls of establishing novel model systems in neuroscience research. Finally, we end with a discussion on the use of charismatic animals in neuroscience research and their utility in public outreach. Overall, we argue that convergent evolution frameworks can help identify generalizable principles of neuroscience.
Collapse
Affiliation(s)
- Jason R Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
19
|
Guillory WX, French CM, Twomey EM, Chávez G, Prates I, von May R, De la Riva I, Lötters S, Reichle S, Serrano-Rojas SJ, Whitworth A, Brown JL. Phylogenetic relationships and systematics of the Amazonian poison frog genus Ameerega using ultraconserved genomic elements. Mol Phylogenet Evol 2019; 142:106638. [PMID: 31586688 DOI: 10.1016/j.ympev.2019.106638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022]
Abstract
The Amazonian poison frog genus Ameerega is one of the largest yet most understudied of the brightly colored genera in the anuran family Dendrobatidae, with 30 described species ranging throughout tropical South America. Phylogenetic analyses of Ameerega are highly discordant, lacking consistency due to variation in data types and methods, and often with limited coverage of species diversity in the genus. Here, we present a comprehensive phylogenomic reconstruction of Ameerega, utilizing state-of-the-art sequence capture techniques and phylogenetic methods. We sequenced thousands of ultraconserved elements from over 100 tissue samples, representing almost every described Ameerega species, as well as undescribed cryptic diversity. We generated topologies using maximum likelihood and coalescent methods and compared the use of maximum likelihood and Bayesian methods for estimating divergence times. Our phylogenetic inference diverged strongly from those of previous studies, and we recommend steps to bring Ameerega taxonomy in line with the new phylogeny. We place several species in a phylogeny for the first time, as well as provide evidence for six potential candidate species. We estimate that Ameerega experienced a rapid radiation approximately 7-11 million years ago and that the ancestor of all Ameerega was likely an aposematic, montane species. This study underscores the utility of phylogenomic data in improving our understanding of the phylogeny of understudied clades and making novel inferences about their evolution.
Collapse
Affiliation(s)
- Wilson X Guillory
- Department of Zoology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL 62901, USA.
| | - Connor M French
- Department of Zoology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL 62901, USA; Department of Biology, Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Evan M Twomey
- Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Germán Chávez
- División de Herpetología, Centro de Ornitología y Biodiversidad (CORBIDI), Santa Rita N°105 36 Of. 202, Urb. Huertos de San Antonio, Santiago de Surco, Lima, Peru
| | - Ivan Prates
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave, NW, Washington, DC 20560-0162, USA
| | - Rudolf von May
- Biology Program, California State University Channel Islands, 1 University Drive, Camarillo, CA 93012, USA
| | - Ignacio De la Riva
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Stefan Lötters
- Department of Biogeography, Universität Trier, Universitätsring 15, 54296, Trier, Germany
| | | | - Shirley J Serrano-Rojas
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew Whitworth
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jason L Brown
- Department of Zoology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| |
Collapse
|
20
|
Sanchez E, Rodríguez A, Grau JH, Lötters S, Künzel S, Saporito RA, Ringler E, Schulz S, Wollenberg Valero KC, Vences M. Transcriptomic Signatures of Experimental Alkaloid Consumption in a Poison Frog. Genes (Basel) 2019; 10:E733. [PMID: 31546679 PMCID: PMC6827147 DOI: 10.3390/genes10100733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 01/19/2023] Open
Abstract
In the anuran family Dendrobatidae, aposematic species obtain their toxic or unpalatable alkaloids from dietary sources, a process known as sequestering. To understand how toxicity evolved in this family, it is paramount to elucidate the pathways of alkaloid processing (absorption, metabolism, and sequestering). Here, we used an exploratory skin gene expression experiment in which captive-bred dendrobatids were fed alkaloids. Most of these experiments were performed with Dendrobates tinctorius, but some trials were performed with D. auratus, D. leucomelas and Allobates femoralis to explore whether other dendrobatids would show similar patterns of gene expression. We found a consistent pattern of up-regulation of genes related to muscle and mitochondrial processes, probably due to the lack of mutations related to alkaloid resistance in these species. Considering conserved pathways of drug metabolism in vertebrates, we hypothesize alkaloid degradation is a physiological mechanism of resistance, which was evidenced by a strong upregulation of the immune system in D. tinctorius, and of complement C2 across the four species sampled. Probably related to this strong immune response, we found several skin keratins downregulated, which might be linked to a reduction of the cornified layer of the epidermis. Although not conclusive, our results offer candidate genes and testable hypotheses to elucidate alkaloid processing in poison frogs.
Collapse
Affiliation(s)
- Eugenia Sanchez
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Ariel Rodríguez
- Institut fur Zoologie, Tierärztliche Hochschule Hannover, 30559 Hannover, Germany.
| | - Jose H Grau
- Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany.
| | - Stefan Lötters
- Biogeography Department, Trier University, 54296 Trier, Germany.
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.
| | - Ralph A Saporito
- Department of Biology, John Carroll University, University Heights, OH 44118, USA.
| | - Eva Ringler
- Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, and University of Vienna, A-1210 Vienna, Austria.
- Department of Integrative Zoology, University of Vienna, A-1090 Vienna, Austria.
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | | | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
21
|
Phylogenomic Reconstruction of the Neotropical Poison Frogs (Dendrobatidae) and Their Conservation. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11080126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The evolutionary history of the Dendrobatidae, the charismatic Neotropical poison frog family, remains in flux, even after a half-century of intensive research. Understanding the evolutionary relationships between dendrobatid genera and the larger-order groups within Dendrobatidae is critical for making accurate assessments of all aspects of their biology and evolution. In this study, we provide the first phylogenomic reconstruction of Dendrobatidae with genome-wide nuclear markers known as ultraconserved elements. We performed sequence capture on 61 samples representing 33 species across 13 of the 16 dendrobatid genera, aiming for a broadly representative taxon sample. We compare topologies generated using maximum likelihood and coalescent methods and estimate divergence times using Bayesian methods. We find most of our dendrobatid tree to be consistent with previously published results based on mitochondrial and low-count nuclear data, with notable exceptions regarding the placement of Hyloxalinae and certain genera within Dendrobatinae. We also characterize how the evolutionary history and geographic distributions of the 285 poison frog species impact their conservation status. We hope that our phylogeny will serve as a backbone for future evolutionary studies and that our characterizations of conservation status inform conservation practices while highlighting taxa in need of further study.
Collapse
|
22
|
Rogers RL, Zhou L, Chu C, Márquez R, Corl A, Linderoth T, Freeborn L, MacManes MD, Xiong Z, Zheng J, Guo C, Xun X, Kronforst MR, Summers K, Wu Y, Yang H, Richards-Zawacki CL, Zhang G, Nielsen R. Genomic Takeover by Transposable Elements in the Strawberry Poison Frog. Mol Biol Evol 2019; 35:2913-2927. [PMID: 30517748 PMCID: PMC6278860 DOI: 10.1093/molbev/msy185] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We sequenced the genome of the strawberry poison frog, Oophaga pumilio, at a depth of 127.5× using variable insert size libraries. The total genome size is estimated to be 6.76 Gb, of which 4.76 Gb are from high copy number repetitive elements with low differentiation across copies. These repeats encompass DNA transposons, RNA transposons, and LTR retrotransposons, including at least 0.4 and 1.0 Gb of Mariner/Tc1 and Gypsy elements, respectively. Expression data indicate high levels of gypsy and Mariner/Tc1 expression in ova of O. pumilio compared with Xenopus laevis. We further observe phylogenetic evidence for horizontal transfer (HT) of Mariner elements, possibly between fish and frogs. The elements affected by HT are present in high copy number and are highly expressed, suggesting ongoing proliferation after HT. Our results suggest that the large amphibian genome sizes, at least partially, can be explained by a process of repeated invasion of new transposable elements that are not yet suppressed in the germline. We also find changes in the spliceosome that we hypothesize are related to permissiveness of O. pumilio to increases in intron length due to transposon proliferation. Finally, we identify the complement of ion channels in the first genomic sequenced poison frog and discuss its relation to the evolution of autoresistance to toxins sequestered in the skin.
Collapse
Affiliation(s)
- Rebekah L Rogers
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC
| | - Long Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Chong Chu
- Harvard Medical School, Harvard University, Cambridge, MA
| | - Roberto Márquez
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | - Ammon Corl
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| | - Tyler Linderoth
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| | - Layla Freeborn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Matthew D MacManes
- Department of Molecular Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH.,Hubbard Center for Genomic Studies, University of New Hampshire, Durham, NH
| | - Zijun Xiong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jiao Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chunxue Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xu Xun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | - Kyle Summers
- Department of Biology, Eastern Carolina University, Greenville, NC
| | - Yufeng Wu
- Department of Computer Science, University of Connecticut, Storrs, CT
| | - Huanming Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | | | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China.,Department of Biology, Centre for Social Evolution, Universitetsparken 15, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
23
|
Ayvazyan NM, O'Leary VB, Dolly JO, Ovsepian SV. Neurobiology and therapeutic utility of neurotoxins targeting postsynaptic mechanisms of neuromuscular transmission. Drug Discov Today 2019; 24:1968-1984. [PMID: 31247153 DOI: 10.1016/j.drudis.2019.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/15/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022]
Abstract
The neuromuscular junction (NMJ) is the principal site for the translation of motor neurochemical signals to muscle activity. Therefore, the release and sensing machinery of acetylcholine (ACh) along with muscle contraction are two of the main targets of natural toxins and pathogens, causing paralysis. Given pharmacology and medical advances, the active ingredients of toxins that target postsynaptic mechanisms have become of major interest, showing promise as drug leads. Herein, we review key facets of prevalent toxins modulating the mechanisms of ACh sensing and generation of the postsynaptic response, with muscle contraction. We consider the correlation between their outstanding selectivity and potency plus effects on motor function, and discuss emerging data advocating their usage for the development of therapies alleviating neuromuscular dysfunction.
Collapse
Affiliation(s)
- Naira M Ayvazyan
- Orbeli Institute of Physiology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Praha 10, Czech Republic
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Saak V Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland; The National Institute of Mental Health, Topolová 748, Klecany, Czech Republic; Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Praha 10, Czech Republic.
| |
Collapse
|
24
|
Crottini A, Orozco-terWengel P, Rabemananjara FCE, Hauswaldt JS, Vences M. Mitochondrial Introgression, Color Pattern Variation, and Severe Demographic Bottlenecks in Three Species of Malagasy Poison Frogs, Genus Mantella. Genes (Basel) 2019; 10:E317. [PMID: 31018611 PMCID: PMC6523892 DOI: 10.3390/genes10040317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 01/17/2023] Open
Abstract
Madagascar is a biodiversity hotspot particularly rich in amphibian diversity and only a few charismatic Malagasy amphibians have been investigated for their population-level differentiation. The Mantellamadagascariensis group is composed of two rainforest and three swamp forest species of poison frogs. We first confirm the monophyly of this clade using DNA sequences of three nuclear and four mitochondrial genes, and subsequently investigate the population genetic differentiation and demography of the swamp forest species using one mitochondrial, two nuclear and a set of nine microsatellite markers. Our results confirm the occurrence of two main mitochondrial lineages, one dominated by Mantellaaurantiaca (a grouping supported also by our microsatellite-based tree) and the other by Mantellacrocea + Mantellamilotympanum. These two main lineages probably reflect an older divergence in swamp Mantella. Widespread mitochondrial introgression suggests a fairly common occurrence of inter-lineage gene flow. However, nuclear admixture seems to play only a limited role in this group, and the analyses of the RAG-1 marker points to a predominant incomplete lineage sorting scenario between all five species of the group, which probably diverged relatively recently. Our demographic analyses show a common, severe and recent demographic contraction, inferred to be in temporal coincidence with the massive deforestation events that took place in the past 1000 years. Current data do not allow to conclusively delimit independent evolutionary units in these frogs, and we therefore refrain to suggest any taxonomic changes.
Collapse
Affiliation(s)
- Angelica Crottini
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Portugal.
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Falitiana C E Rabemananjara
- Mention Zoologie et Biodiversité Animale, Faculté des Sciences, Université d'Antananarivo, BP 906, Antananarivo 101, Madagascar.
| | - J Susanne Hauswaldt
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany.
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany.
| |
Collapse
|
25
|
Márquez R, Ramírez‐Castañeda V, Amézquita A. Does batrachotoxin autoresistance coevolve with toxicity in
Phyllobates
poison‐dart frogs? Evolution 2019; 73:390-400. [DOI: 10.1111/evo.13672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/29/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Roberto Márquez
- Department of Ecology and Evolution University of Chicago 1101 East 57th St. Chicago Illinois 60637
- Department of Biological Sciences Universidad de los Andes A.A. 4976 Bogotá Colombia
| | | | - Adolfo Amézquita
- Department of Biological Sciences Universidad de los Andes A.A. 4976 Bogotá Colombia
| |
Collapse
|
26
|
Caty SN, Alvarez-Buylla A, Byrd GD, Vidoudez C, Roland AB, Tapia EE, Budnik B, Trauger SA, Coloma LA, O'Connell LA. Molecular physiology of chemical defenses in a poison frog. J Exp Biol 2019; 222:jeb.204149. [DOI: 10.1242/jeb.204149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022]
Abstract
Poison frogs sequester small molecule lipophilic alkaloids from their diet of leaf litter arthropods for use as chemical defenses against predation. Although the dietary acquisition of chemical defenses in poison frogs is well-documented, the physiological mechanisms of alkaloid sequestration has not been investigated. Here, we used RNA sequencing and proteomics to determine how alkaloids impact mRNA or protein abundance in the Little Devil Frog (Oophaga sylvatica) and compared wild caught chemically defended frogs to laboratory frogs raised on an alkaloid-free diet. To understand how poison frogs move alkaloids from their diet to their skin granular glands, we focused on measuring gene expression in the intestines, skin, and liver. Across these tissues, we found many differentially expressed transcripts involved in small molecule transport and metabolism, as well as sodium channels and other ion pumps. We then used proteomic approaches to quantify plasma proteins, where we found several protein abundance differences between wild and laboratory frogs, including the amphibian neurotoxin binding protein saxiphilin. Finally, because many blood proteins are synthesized in the liver, we used thermal proteome profiling as an untargeted screen for soluble proteins that bind the alkaloid decahydroquinoline. Using this approach, we identified several candidate proteins that interact with this alkaloid, including saxiphilin. These transcript and protein abundance patterns suggest the presence of alkaloids influences frog physiology and that small molecule transport proteins may be involved in toxin bioaccumulation in dendrobatid poison frogs.
Collapse
Affiliation(s)
| | | | - Gary D. Byrd
- Small Molecule Mass Spectrometry Facility, Harvard University, Cambridge, MA 02138, USA
| | - Charles Vidoudez
- Small Molecule Mass Spectrometry Facility, Harvard University, Cambridge, MA 02138, USA
| | - Alexandre B. Roland
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Elicio E. Tapia
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Otonga, San Rafael, Quito, Ecuador
| | - Bogdan Budnik
- Proteomics Mass Spectrometry Facility, Harvard University, Cambridge, MA 02138, USA
| | - Sunia A. Trauger
- Small Molecule Mass Spectrometry Facility, Harvard University, Cambridge, MA 02138, USA
| | - Luis A. Coloma
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Otonga, San Rafael, Quito, Ecuador
| | | |
Collapse
|
27
|
Moskowitz NA, Roland AB, Fischer EK, Ranaivorazo N, Vidoudez C, Aguilar MT, Caldera SM, Chea J, Cristus MG, Crowdis JP, DeMessie B, desJardins-Park CR, Effenberger AH, Flores F, Giles M, He EY, Izmaylov NS, Lee CC, Pagel NA, Phu KK, Rosen LU, Seda DA, Shen Y, Vargas S, Murray AW, Abebe E, Trauger SA, Donoso DA, Vences M, O’Connell LA. Seasonal changes in diet and chemical defense in the Climbing Mantella frog (Mantella laevigata). PLoS One 2018; 13:e0207940. [PMID: 30586404 PMCID: PMC6306172 DOI: 10.1371/journal.pone.0207940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022] Open
Abstract
Poison frogs acquire chemical defenses from the environment for protection against potential predators. These defensive chemicals are lipophilic alkaloids that are sequestered by poison frogs from dietary arthropods and stored in skin glands. Despite decades of research focusing on identifying poison frog alkaloids, we know relatively little about how environmental variation and subsequent arthropod availability impacts alkaloid loads in poison frogs. We investigated how seasonal environmental variation influences poison frog chemical profiles through changes in the diet of the Climbing Mantella (Mantella laevigata). We collected M. laevigata females on the Nosy Mangabe island reserve in Madagascar during the wet and dry seasons and tested the hypothesis that seasonal differences in rainfall is associated with changes in diet composition and skin alkaloid profiles of M. laevigata. The arthropod diet of each frog was characterized into five groups (i.e. ants, termites, mites, insect larvae, or 'other') using visual identification and cytochrome oxidase 1 DNA barcoding. We found that frog diet differed between the wet and dry seasons, where frogs had a more diverse diet in the wet season and consumed a higher percentage of ants in the dry season. To determine if seasonality was associated with variation in frog defensive chemical composition, we used gas chromatography / mass spectrometry to quantify alkaloids from individual skin samples. Although the assortment of identified alkaloids was similar across seasons, we detected significant differences in the abundance of certain alkaloids, which we hypothesize reflects seasonal variation in the diet of M. laevigata. We suggest that these variations could originate from seasonal changes in either arthropod leaf litter composition or changes in frog behavioral patterns. Although additional studies are needed to understand the consequences of long-term environmental shifts, this work suggests that alkaloid profiles are relatively robust against short-term environmental perturbations.
Collapse
Affiliation(s)
- Nora A. Moskowitz
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Alexandre B. Roland
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Eva K. Fischer
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Ndimbintsoa Ranaivorazo
- Department of Biology, Faculty of Science, University of Antananarivo, Antananarivo, Madagascar
| | - Charles Vidoudez
- FAS Small Molecule Mass Spectrometry Facility, Harvard University, Cambridge, Massachusetts, United States of America
| | - Marianne T. Aguilar
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sophia M. Caldera
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jacqueline Chea
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Miruna G. Cristus
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jett P. Crowdis
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Bluyé DeMessie
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Caroline R. desJardins-Park
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Audrey H. Effenberger
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Felipe Flores
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael Giles
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Emma Y. He
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Nike S. Izmaylov
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - ChangWon C. Lee
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Nicholas A. Pagel
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Krystal K. Phu
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Leah U. Rosen
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Danielle A. Seda
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Yong Shen
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Santiago Vargas
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrew W. Murray
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
| | - Eden Abebe
- Cambridge Rindge and Latin High School, Cambridge, Massachusetts, United States of America
| | - Sunia A. Trauger
- FAS Small Molecule Mass Spectrometry Facility, Harvard University, Cambridge, Massachusetts, United States of America
| | - David A. Donoso
- Departamento de Biología, Escuela Politécnica Nacional, Quito, Ecuador
| | - Miguel Vences
- Braunschweig University of Technology, Zoological Institute, Braunschweig, Germany
| | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, California, United States of America
- LS50: Integrated Science Freshman Class, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Mebs D, Yotsu-Yamashita M, Pogoda W, Vargas Alvarez J, Ernst R, Köhler G, Toennes SW. Lack of alkaloids and tetrodotoxin in the neotropical frogs Allobates spp. (Aromobatidae) and Silverstoneia flotator (Dendrobatidae). Toxicon 2018; 152:103-105. [DOI: 10.1016/j.toxicon.2018.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 01/08/2023]
|
29
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
30
|
Barts N, Greenway R, Passow CN, Arias-Rodriguez L, Kelley JL, Tobler M. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs. Genome 2018; 61:273-286. [DOI: 10.1139/gen-2017-0051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen sulfide (H2S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H2S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H2S—along with related lineages from non-sulfidic environments—to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H2S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H2S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H2S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H2S-rich environments are not necessarily repeatable across replicated lineages.
Collapse
Affiliation(s)
- Nicholas Barts
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Ryan Greenway
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Courtney N. Passow
- Ecology, Evolution and Behavior, University of Minnesota St. Paul, 205 Cargill Building, St. Paul, MN 55108, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), C.P. 86150, Villahermosa, Tabasco, México
| | - Joanna L. Kelley
- Department of Biological Sciences, Washington State University, 431 Heald Hall, Pullman, WA 99164, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
31
|
Diversity within diversity: Parasite species richness in poison frogs assessed by transcriptomics. Mol Phylogenet Evol 2018; 125:40-50. [PMID: 29551526 DOI: 10.1016/j.ympev.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/10/2018] [Indexed: 01/05/2023]
Abstract
Symbionts (e.g., endoparasites and commensals) play an integral role in their host's ecology, yet in many cases their diversity is likely underestimated. Although endoparasites are traditionally characterized using morphology, sequences of conserved genes, and shotgun metagenomics, host transcriptomes constitute an underused resource to identify these organisms' diversity. By isolating non-host transcripts from host transcriptomes, individual host tissues can now simultaneously reveal their endoparasite species richness (i.e., number of different taxa) and provide insights into parasite gene expression. These approaches can be used in host taxa whose endoparasites are mostly unknown, such as those of tropical amphibians. Here, we focus on the poison frogs (Dendrobatidae) as hosts, which are a Neotropical clade known for their bright coloration and defensive alkaloids. These toxins are an effective protection against vertebrate predators (e.g., snakes and birds), bacteria, and skin-biting ectoparasites (e.g., mosquitoes); however, little is known about their deterrence against eukaryotic endoparasites. With de novo transcriptomes of dendrobatids, we developed a bioinformatics pipeline for endoparasite identification that uses host annotated RNA-seq data and set of a priori parasite taxonomic terms, which are used to mine for specific endoparasites. We found a large community of helminths and protozoans that were mostly restricted to the digestive tract and a few systemic parasites (e.g., Trypanosoma). Contrary to our expectations, all dendrobatid frogs regardless of the presence of alkaloid defenses have endoparasites, with their highest species richness located in the frog digestive tract. Some of these organisms (e.g., roundworms) might prove to be generalists, as they were not found to be co-diversifying with their frog hosts. We propose that endoparasites may escape poison frogs' chemical defenses by colonizing tissues with fewer alkaloids than the frog's skin, where most toxins are stored.
Collapse
|
32
|
Yuan ML, Wang IJ. Sodium ion channel alkaloid resistance does not vary with toxicity in aposematic Dendrobates poison frogs: An examination of correlated trait evolution. PLoS One 2018. [PMID: 29534110 PMCID: PMC5849323 DOI: 10.1371/journal.pone.0194265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatial heterogeneity in the strength or agents of selection can lead to geographic variation in ecologically important phenotypes. Many dendrobatid frogs sequester alkaloid toxins from their diets and often exhibit fixed mutations at NaV1.4, a voltage-gated sodium ion channel associated with alkaloid toxin resistance. Yet previous studies have noted an absence of resistance mutations in individuals from several species known to sequester alkaloid toxins, suggesting possible intraspecific variation for alkaloid resistance in these species. Toxicity and alkaloid profiles vary substantially between populations in several poison frog species (genus Dendrobates) and are correlated with variation in a suite of related traits such as aposematic coloration. If resistance mutations are costly, due to alterations of channel gating properties, we expect that low toxicity populations will have reduced frequencies and potentially even the loss of resistance alleles. Here, we examine whether intraspecific variation in toxicity in three dendrobatid frogs is associated with intraspecific variation in alleles conferring toxin resistance. Specifically, we examine two species that display marked variation in toxicity throughout their native ranges (Dendrobates pumilio and D. granuliferus) and one species with reduced toxicity in its introduced range (D. auratus). However, we find no evidence for population-level variation in alkaloid resistance at NaV1.4. In fact, contrary to previous studies, we found that alkaloid resistance alleles were not absent in any populations of these species. All three species exhibit fixed alkaloid resistance mutations throughout their ranges, suggesting that these mutations are maintained even when alkaloid sequestration is substantially reduced.
Collapse
Affiliation(s)
- Michael L. Yuan
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, California, United States of America
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- * E-mail:
| | - Ian J. Wang
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, California, United States of America
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| |
Collapse
|
33
|
Tarvin RD, Borghese CM, Sachs W, Santos JC, Lu Y, O'Connell LA, Cannatella DC, Harris RA, Zakon HH. Interacting amino acid replacements allow poison frogs to evolve epibatidine resistance. Science 2018; 357:1261-1266. [PMID: 28935799 DOI: 10.1126/science.aan5061] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022]
Abstract
Animals that wield toxins face self-intoxication. Poison frogs have a diverse arsenal of defensive alkaloids that target the nervous system. Among them is epibatidine, a nicotinic acetylcholine receptor (nAChR) agonist that is lethal at microgram doses. Epibatidine shares a highly conserved binding site with acetylcholine, making it difficult to evolve resistance yet maintain nAChR function. Electrophysiological assays of human and frog nAChR revealed that one amino acid replacement, which evolved three times in poison frogs, decreased epibatidine sensitivity but at a cost of acetylcholine sensitivity. However, receptor functionality was rescued by additional amino acid replacements that differed among poison frog lineages. Our results demonstrate how resistance to agonist toxins can evolve and that such genetic changes propel organisms toward an adaptive peak of chemical defense.
Collapse
Affiliation(s)
- Rebecca D Tarvin
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Cecilia M Borghese
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Wiebke Sachs
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA.,Department of Biology, University of Konstanz, Konstanz, Germany 78457
| | - Juan C Santos
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Ying Lu
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren A O'Connell
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - David C Cannatella
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.,Biodiversity Center, University of Texas at Austin, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Harold H Zakon
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
34
|
Coevolution takes the sting out of it: Evolutionary biology and mechanisms of toxin resistance in animals. Toxicon 2017; 140:118-131. [DOI: 10.1016/j.toxicon.2017.10.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 01/09/2023]
|
35
|
Single rat muscle Na + channel mutation confers batrachotoxin autoresistance found in poison-dart frog Phyllobates terribilis. Proc Natl Acad Sci U S A 2017; 114:10491-10496. [PMID: 28874544 DOI: 10.1073/pnas.1707873114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poison-dart Phyllobates terribilis frogs sequester lethal amounts of steroidal alkaloid batrachotoxin (BTX) in their skin as a defense mechanism against predators. BTX targets voltage-gated Na+ channels and enables them to open persistently. How BTX autoresistance arises in such frogs remains a mystery. The BTX receptor has been delineated along the Na+ channel inner cavity, which is formed jointly by four S6 transmembrane segments from domains D1 to D4. Within the P. terribilis muscle Na+ channel, five amino acid (AA) substitutions have been identified at D1/S6 and D4/S6. We therefore investigated the role of these naturally occurring substitutions in BTX autoresistance by introducing them into rat Nav1.4 muscle Na+ channel, both individually and in combination. Our results showed that combination mutants containing an N1584T substitution all conferred a complete BTX-resistant phenotype when expressed in mammalian HEK293t cells. The single N1584T mutant also retained its functional integrity and became exceptionally resistant to 5 µM BTX, aside from a small residual BTX effect. Single and combination mutants with the other four S6 residues (S429A, I433V, A445D, and V1583I) all remained highly BTX sensitive. These findings, along with diverse BTX phenotypes of N1584K/A/D/T mutant channels, led us to conclude that the conserved N1584 residue is indispensable for BTX actions, probably functioning as an integral part of the BTX receptor. Thus, complete BTX autoresistance found in P. terribilis muscle Na+ channels could emerge primarily from a single AA substitution (asparagine→threonine) via a single nucleotide mutation (AAC→ACC).
Collapse
|
36
|
Grant T, Rada M, Anganoy-Criollo M, Batista A, Dias PH, Jeckel AM, Machado DJ, Rueda-Almonacid JV. Phylogenetic Systematics of Dart-Poison Frogs and Their Relatives Revisited (Anura: Dendrobatoidea). SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2017. [DOI: 10.2994/sajh-d-17-00017.1] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Taran Grant
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
- Amphibian Collection, Museum of Zoology of the University of São Paulo, 04263-000, São Paulo, SP, Brazil
| | - Marco Rada
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Marvin Anganoy-Criollo
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Abel Batista
- Universidad Autónoma de Chiriquí, David, Republic of Panama
- Los Naturalistas, David 0426-01459, Chiriquí, Panama
| | - Pedro Henrique Dias
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Adriana Moriguchi Jeckel
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Denis Jacob Machado
- Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | | |
Collapse
|
37
|
Petschenka G, Wagschal V, von Tschirnhaus M, Donath A, Dobler S. Convergently Evolved Toxic Secondary Metabolites in Plants Drive the Parallel Molecular Evolution of Insect Resistance. Am Nat 2017; 190:S29-S43. [DOI: 10.1086/691711] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Passow CN, Brown AP, Arias-Rodriguez L, Yee MC, Sockell A, Schartl M, Warren WC, Bustamante C, Kelley JL, Tobler M. Complexities of gene expression patterns in natural populations of an extremophile fish (Poecilia mexicana, Poeciliidae). Mol Ecol 2017; 26:4211-4225. [PMID: 28598519 PMCID: PMC5731456 DOI: 10.1111/mec.14198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022]
Abstract
Variation in gene expression can provide insights into organismal responses to environmental stress and physiological mechanisms mediating adaptation to habitats with contrasting environmental conditions. We performed an RNA-sequencing experiment to quantify gene expression patterns in fish adapted to habitats with different combinations of environmental stressors, including the presence of toxic hydrogen sulphide (H2 S) and the absence of light in caves. We specifically asked how gene expression varies among populations living in different habitats, whether population differences were consistent among organs, and whether there is evidence for shared expression responses in populations exposed to the same stressors. We analysed organ-specific transcriptome-wide data from four ecotypes of Poecilia mexicana (nonsulphidic surface, sulphidic surface, nonsulphidic cave and sulphidic cave). The majority of variation in gene expression was correlated with organ type, and the presence of specific environmental stressors elicited unique expression differences among organs. Shared patterns of gene expression between populations exposed to the same environmental stressors increased with levels of organismal organization (from transcript to gene to physiological pathway). In addition, shared patterns of gene expression were more common between populations from sulphidic than populations from cave habitats, potentially indicating that physiochemical stressors with clear biochemical consequences can constrain the diversity of adaptive solutions that mitigate their adverse effects. Overall, our analyses provided insights into transcriptional variation in a unique system, in which adaptation to H2 S and darkness coincide. Functional annotations of differentially expressed genes provide a springboard for investigating physiological mechanisms putatively underlying adaptation to extreme environments.
Collapse
Affiliation(s)
| | - Anthony P. Brown
- Department of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Muh-Ching Yee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Manfred Schartl
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany
- Texas A&M Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX, USA
| | - Wesley C. Warren
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Joanna L. Kelley
- Department of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
39
|
Deuis JR, Mueller A, Israel MR, Vetter I. The pharmacology of voltage-gated sodium channel activators. Neuropharmacology 2017; 127:87-108. [PMID: 28416444 DOI: 10.1016/j.neuropharm.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Toxins and venom components that target voltage-gated sodium (NaV) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. NaV channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of NaV channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of NaV channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Alexander Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
40
|
Tarvin RD, Powell EA, Santos JC, Ron SR, Cannatella DC. The birth of aposematism: High phenotypic divergence and low genetic diversity in a young clade of poison frogs. Mol Phylogenet Evol 2017; 109:283-295. [PMID: 28089841 DOI: 10.1016/j.ympev.2016.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 01/01/2023]
Abstract
Rapid radiation coupled with low genetic divergence often hinders species delimitation and phylogeny estimation even if putative species are phenotypically distinct. Some aposematic species, such as poison frogs (Dendrobatidae), have high levels of intraspecific color polymorphism, which can lead to overestimation of species when phenotypic divergence primarily guides species delimitation. We explored this possibility in the youngest origin of aposematism (3-7 MYA) in poison frogs, Epipedobates, by comparing genetic divergence with color and acoustic divergence. We found low genetic divergence (2.6% in the 16S gene) despite substantial differences in color and acoustic signals. While chemical defense is inferred to have evolved in the ancestor of Epipedobates, aposematic coloration evolved at least twice or was lost once in Epipedobates, suggesting that it is evolutionarily labile. We inferred at least one event of introgression between two cryptically colored species with adjacent ranges (E. boulengeri and E. machalilla). We also find evidence for peripheral isolation resulting in phenotypic divergence and potential speciation of the aposematic E. tricolor from the non-aposematic E. machalilla. However, we were unable to estimate a well-supported species tree or delimit species using multispecies coalescent models. We attribute this failure to factors associated with recent speciation including mitochondrial introgression, incomplete lineage sorting, and too few informative molecular characters. We suggest that species delimitation within young aposematic lineages such as Epipedobates will require genome-level molecular studies. We caution against relying solely on DNA barcoding for species delimitation or identification and highlight the value of phenotypic divergence and natural history in delimiting species.
Collapse
Affiliation(s)
- Rebecca D Tarvin
- Department of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX, United States.
| | - Emily A Powell
- Department of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX, United States; Department of Biology, University of Miami, Miami, FL, United States
| | - Juan C Santos
- Department of Biology, Brigham Young University, Provo, UT, United States; Department of Biological Sciences, St. John's University, Queens, NY, United States
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - David C Cannatella
- Department of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX, United States
| |
Collapse
|
41
|
Affiliation(s)
- Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Zachary W. Culumber
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
42
|
Dugas MB, Stynoski J, Strickler SA. Larval aggression is independent of food limitation in nurseries of a poison frog. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2148-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|