1
|
Travers SL, Hutter CR, Austin CC, Donnellan SC, Buehler MD, Ellison CE, Ruane S. VenomCap: An exon-capture probe set for the targeted sequencing of snake venom genes. Mol Ecol Resour 2024; 24:e14020. [PMID: 39297212 PMCID: PMC11495845 DOI: 10.1111/1755-0998.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024]
Abstract
Snake venoms are complex mixtures of toxic proteins that hold significant medical, pharmacological and evolutionary interest. To better understand the genetic diversity underlying snake venoms, we developed VenomCap, a novel exon-capture probe set targeting toxin-coding genes from a wide range of elapid snakes, with a particular focus on the ecologically diverse and medically important subfamily Hydrophiinae. We tested the capture success of VenomCap across 24 species, representing all major elapid lineages. We included snake phylogenomic probes in the VenomCap capture set, allowing us to compare capture performance between venom and phylogenomic loci and to infer elapid phylogenetic relationships. We demonstrated VenomCap's ability to recover exons from ~1500 target markers, representing a total of 24 known venom gene families, which includes the dominant gene families found in elapid venoms. We find that VenomCap's capture results are robust across all elapids sampled, and especially among hydrophiines, with respect to measures of target capture success (target loci matched, sensitivity, specificity and missing data). As a cost-effective and efficient alternative to full genome sequencing, VenomCap can dramatically accelerate the sequencing and analysis of venom gene families. Overall, our tool offers a model for genomic studies on snake venom gene diversity and evolution that can be expanded for comprehensive comparisons across the other families of venomous snakes.
Collapse
Affiliation(s)
- Scott L. Travers
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Carl R. Hutter
- Museum of Natural Sciences and Department of Biological Sciences. Louisiana State University. Baton Rouge, LA 70803, USA
| | - Christopher C. Austin
- Museum of Natural Sciences and Department of Biological Sciences. Louisiana State University. Baton Rouge, LA 70803, USA
| | - Stephen C. Donnellan
- South Australian Museum, North Terrace, Adelaide 5000, Australia
- Australian Museum Research Institute, Australian Museum, 1 William St, Sydney 2010, Australia
| | - Matthew D. Buehler
- Department of Biological Sciences and Museum of Natural History, Auburn University, Auburn, AL 36849, USA
| | | | - Sara Ruane
- Life Sciences Section, Negaunee Integrative Research Center, Field Museum, Chicago, IL 60605, USA
| |
Collapse
|
2
|
Smith HL, Broszczak DA, Bryan SE, Norton RS, Prentis PJ. Molecular Insights into the Low Complexity Secreted Venom of Calliactis polypus. Genome Biol Evol 2024; 16:evae154. [PMID: 39018436 PMCID: PMC11299110 DOI: 10.1093/gbe/evae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Sea anemones are venomous animals that rely on their venom for prey capture, defense against predators, and intraspecific competition. Currently, comprehensive molecular and evolutionary analyses of the toxin repertoire for sea anemones are limited by a lack of proteomic data for most species. In this study, proteo-transcriptomic analysis was used to expand our knowledge of the proteinaceous components of sea anemone venom by determining the secreted venom proteome of Calliactis polypus. Electromechanical stimulation was used to obtain the secreted venom of C. polypus. We identified a low complexity proteome that was dominated by toxins with similarity to known neurotoxins, as well as six novel toxin candidates. The novel putative toxin candidates were found to be taxonomically restricted to species from the superfamily Metridioidea. Furthermore, the secreted venom of C. polypus had only three putative toxins in common with the venom of acontia from the same species and little similarity with the secreted venom of closely related species. Overall, this demonstrates that regionalized and lineage-specific variability in toxin abundance is common among sea anemone species. Moreover, the limited complexity of the toxin repertoire found in C. polypus supports the idea that peptide neurotoxins make up the dominant toxin arsenal found in the venom of sea anemones.
Collapse
Affiliation(s)
- Hayden L Smith
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Daniel A Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4000, Australia
| | - Scott E Bryan
- School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| | - Peter J Prentis
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
3
|
Koch TL, Robinson SD, Salcedo PF, Chase K, Biggs J, Fedosov AE, Yandell M, Olivera BM, Safavi-Hemami H. Prey Shifts Drive Venom Evolution in Cone Snails. Mol Biol Evol 2024; 41:msae120. [PMID: 38935574 PMCID: PMC11296725 DOI: 10.1093/molbev/msae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Venom systems are complex traits that have independently emerged multiple times in diverse plant and animal phyla. Within each venomous lineage there typically exists interspecific variation in venom composition where several factors have been proposed as drivers of variation, including phylogeny and diet. Understanding these factors is of broad biological interest and has implications for the development of antivenom therapies and venom-based drug discovery. Because of their high species richness and the presence of several major evolutionary prey shifts, venomous marine cone snails (genus Conus) provide an ideal system to investigate drivers of interspecific venom variation. Here, by analyzing the venom gland expression profiles of ∼3,000 toxin genes from 42 species of cone snail, we elucidate the role of prey-specific selection pressures in shaping venom variation. By analyzing overall venom composition and individual toxin structures, we demonstrate that the shifts from vermivory to piscivory in Conus are complemented by distinct changes in venom composition independent of phylogeny. In vivo injections of venom from piscivorous cone snails in fish further showed a higher potency compared with venom of nonpiscivores demonstrating a selective advantage. Together, our findings provide compelling evidence for the role of prey shifts in directing the venom composition of cone snails and expand our understanding of the mechanisms of venom variation and diversification.
Collapse
Affiliation(s)
- Thomas Lund Koch
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Samuel D Robinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Biggs
- Division of Aquatic and Wildlife Resources, Department of Agriculture, Mangilao, GU 96913, USA
| | - Alexander E Fedosov
- Swedish Museum of Natural History, Department of Zoology, Stockholm 114 18, Sweden
| | - Mark Yandell
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Helena Safavi-Hemami
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark
| |
Collapse
|
4
|
Arunrungvichian K, Vajragupta O, Hayakawa Y, Pongrakhananon V. Targeting Alpha7 Nicotinic Acetylcholine Receptors in Lung Cancer: Insights, Challenges, and Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:28-41. [PMID: 38230275 PMCID: PMC10789132 DOI: 10.1021/acsptsci.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an ion-gated calcium channel that plays a significant role in various aspects of cancer pathogenesis, particularly in lung cancer. Preclinical studies have elucidated the molecular mechanism underlying α7 nAChR-associated lung cancer proliferation, chemotherapy resistance, and metastasis. Understanding and targeting this mechanism are crucial for developing therapeutic interventions aimed at disrupting α7 nAChR-mediated cancer progression and improving treatment outcomes. Drug research and discovery have determined natural compounds and synthesized chemical antagonists that specifically target α7 nAChR. However, approved α7 nAChR antagonists for clinical use are lacking, primarily due to challenges related to achieving the desired selectivity, efficacy, and safety profiles required for effective therapeutic intervention. This comprehensive review provided insights into the molecular mechanisms associated with α7 nAChR and its role in cancer progression, particularly in lung cancer. Furthermore, it presents an update on recent evidence about α7 nAChR antagonists and addresses the challenges encountered in drug research and discovery in this field.
Collapse
Affiliation(s)
- Kuntarat Arunrungvichian
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Unit
of Compounds Library for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| | - Opa Vajragupta
- Research
Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yoshihiro Hayakawa
- Institute
of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Varisa Pongrakhananon
- Department
of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical
Toxicity and Efficacy Assessment of Medicines and Chemicals Research
Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Zheng JW, Lu Y, Yang YF, Huang D, Li DW, Wang X, Gao Y, Yang WD, Guan Y, Li HY. Systematic dissection of genomic features determining the vast diversity of conotoxins. BMC Genomics 2023; 24:598. [PMID: 37814244 PMCID: PMC10561478 DOI: 10.1186/s12864-023-09689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Conus, a highly diverse species of venomous predators, has attracted significant attention in neuroscience and new drug development due to their rich collection of neuroactive peptides called conotoxins. Recent advancements in transcriptome, proteome, and genome analyses have facilitated the identification of conotoxins within Conus' venom glands, providing insights into the genetic features and evolutionary patterns of conotoxin genes. However, the underlying mechanism behind the extraordinary hypervariability of conotoxins remains largely unknown. RESULTS We analyzed the transcriptomes of 34 Conus species, examining various tissues such as the venom duct, venom bulb, and salivary gland, leading to the identification of conotoxin genes. Genetic variation analysis revealed that a subset of these genes (15.78% of the total) in Conus species underwent positive selection (Ka/Ks > 1, p < 0.01). Additionally, we reassembled and annotated the genome of C. betulinus, uncovering 221 conotoxin-encoding genes. These genes primarily consisted of three exons, with a significant portion showing high transcriptional activity in the venom ducts. Importantly, the flanking regions and adjacent introns of conotoxin genes exhibited a higher prevalence of transposon elements, suggesting their potential contribution to the extensive variability observed in conotoxins. Furthermore, we detected genome duplication in C. betulinus, which likely contributed to the expansion of conotoxin gene numbers. Interestingly, our study also provided evidence of introgression among Conus species, indicating that interspecies hybridization may have played a role in shaping the evolution of diverse conotoxin genes. CONCLUSIONS This study highlights the impact of adaptive evolution and introgressive hybridization on the genetic diversity of conotoxin genes and the evolution of Conus. We also propose a hypothesis suggesting that transposable elements might significantly contribute to the remarkable diversity observed in conotoxins. These findings not only enhance our understanding of peptide genetic diversity but also present a novel approach for peptide bioengineering.
Collapse
Affiliation(s)
- Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- College of Food Science and Engineering, Foshan University of Science and Technology, Foshan, 528231, China
| | - Yang Lu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu-Feng Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Dan Huang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yang Gao
- Gulou Hospital, Nanjing University, Nanjing, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Koch TL, Torres JP, Baskin RP, Salcedo PF, Chase K, Olivera BM, Safavi-Hemami H. A toxin-based approach to neuropeptide and peptide hormone discovery. Front Mol Neurosci 2023; 16:1176662. [PMID: 37720554 PMCID: PMC10501145 DOI: 10.3389/fnmol.2023.1176662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Peptide hormones and neuropeptides form a diverse class of bioactive secreted molecules that control essential processes in animals. Despite breakthroughs in peptide discovery, many signaling peptides remain undiscovered. Recently, we demonstrated the use of somatostatin-mimicking toxins from cone snails to identify the invertebrate ortholog of somatostatin. Here, we show that this toxin-based approach can be systematically applied to discover other unknown secretory peptides that are likely to have signaling function. Using large sequencing datasets, we searched for homologies between cone snail toxins and secreted proteins from the snails' prey. We identified and confirmed expression of five toxin families that share strong similarities with unknown secretory peptides from mollusks and annelids and in one case also from ecdysozoans. Based on several lines of evidence we propose that these peptides likely act as signaling peptides that serve important physiological functions. Indeed, we confirmed that one of the identified peptides belongs to the family of crustacean hyperglycemic hormone, a peptide not previously observed in Spiralia. We propose that this discovery pipeline can be broadly applied to other systems in which one organism has evolved molecules to manipulate the physiology of another.
Collapse
Affiliation(s)
- Thomas Lund Koch
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Joshua P. Torres
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert P. Baskin
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Paula Flórez Salcedo
- Department of Neurobiology, University of Utah, Salt Lake City, UT, United States
| | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Helena Safavi-Hemami
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Hackney CM, Flórez Salcedo P, Mueller E, Koch TL, Kjelgaard LD, Watkins M, Zachariassen LG, Tuelung PS, McArthur JR, Adams DJ, Kristensen AS, Olivera B, Finol-Urdaneta RK, Safavi-Hemami H, Morth JP, Ellgaard L. A previously unrecognized superfamily of macro-conotoxins includes an inhibitor of the sensory neuron calcium channel Cav2.3. PLoS Biol 2023; 21:e3002217. [PMID: 37535677 PMCID: PMC10437998 DOI: 10.1371/journal.pbio.3002217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/18/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, which defines a new class of conotoxins evolutionarily related to the well-known con-ikot-ikots and 2 additional conotoxin classes not previously described. The crystal structure of recombinant Mu8.1 displays a saposin-like fold and shows structural similarity with con-ikot-ikot. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of recombinantly expressed voltage-gated ion channels, Mu8.1 displayed the highest potency against the R-type (Cav2.3) calcium channel. Ca2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of Cav2.3 and voltage-gated K+ (Kv4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing Cav2.3. Importantly, this multidisciplinary study showcases the potential of uncovering novel structures and bioactivities within the largely unexplored group of macro-conotoxins.
Collapse
Affiliation(s)
- Celeste M. Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Paula Flórez Salcedo
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Emilie Mueller
- Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas Lund Koch
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lau D. Kjelgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Maren Watkins
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Linda G. Zachariassen
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jeffrey R. McArthur
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Anders S. Kristensen
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Baldomero Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Rocio K. Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Electrophysiology Facility for Cell Phenotyping and Drug Discovery, Wollongong, Australia
| | - Helena Safavi-Hemami
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Jens Preben Morth
- Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Groome JR. Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels. Mar Drugs 2023; 21:md21040209. [PMID: 37103349 PMCID: PMC10142487 DOI: 10.3390/md21040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
9
|
Gao B, Huang Y, Peng C, Lin B, Liao Y, Bian C, Yang J, Shi Q. High-Throughput Prediction and Design of Novel Conopeptides for Biomedical Research and Development. BIODESIGN RESEARCH 2022; 2022:9895270. [PMID: 37850131 PMCID: PMC10521759 DOI: 10.34133/2022/9895270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/23/2022] [Indexed: 10/19/2023] Open
Abstract
Cone snail venoms have been considered a valuable treasure for international scientists and businessmen, mainly due to their pharmacological applications in development of marine drugs for treatment of various human diseases. To date, around 800 Conus species are recorded, and each of them produces over 1,000 venom peptides (termed as conopeptides or conotoxins). This reflects the high diversity and complexity of cone snails, although most of their venoms are still uncharacterized. Advanced multiomics (such as genomics, transcriptomics, and proteomics) approaches have been recently developed to mine diverse Conus venom samples, with the main aim to predict and identify potentially interesting conopeptides in an efficient way. Some bioinformatics techniques have been applied to predict and design novel conopeptide sequences, related targets, and their binding modes. This review provides an overview of current knowledge on the high diversity of conopeptides and multiomics advances in high-throughput prediction of novel conopeptide sequences, as well as molecular modeling and design of potential drugs based on the predicted or validated interactions between these toxins and their molecular targets.
Collapse
Affiliation(s)
- Bingmiao Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, Hainan 570102, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China
| | - Chao Peng
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China
- BGI-Marine Research Institute for Biomedical Technology, Shenzhen Huahong Marine Biomedicine Co. Ltd., Shenzhen, Guangdong 518119, China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan 570102, China
| | - Yanling Liao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, Hainan 570102, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China
| | - Jiaan Yang
- Research and Development Department, Micro Pharmtech Ltd., Wuhan, Hubei 430075, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China
- BGI-Marine Research Institute for Biomedical Technology, Shenzhen Huahong Marine Biomedicine Co. Ltd., Shenzhen, Guangdong 518119, China
| |
Collapse
|
10
|
Pardos-Blas JR, Irisarri I, Abalde S, Afonso CML, Tenorio MJ, Zardoya R. The genome of the venomous snail Lautoconus ventricosus sheds light on the origin of conotoxin diversity. Gigascience 2021; 10:giab037. [PMID: 34037232 PMCID: PMC8152183 DOI: 10.1093/gigascience/giab037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Venoms are deadly weapons to subdue prey or deter predators that have evolved independently in many animal lineages. The genomes of venomous animals are essential to understand the evolutionary mechanisms involved in the origin and diversification of venoms. RESULTS Here, we report the chromosome-level genome of the venomous Mediterranean cone snail, Lautoconus ventricosus (Caenogastropoda: Conidae). The total size of the assembly is 3.59 Gb; it has high contiguity (N50 = 93.53 Mb) and 86.6 Mb of the genome assembled into the 35 largest scaffolds or pseudochromosomes. On the basis of venom gland transcriptomes, we annotated 262 complete genes encoding conotoxin precursors, hormones, and other venom-related proteins. These genes were scattered in the different pseudochromosomes and located within repetitive regions. The genes encoding conotoxin precursors were normally structured into 3 exons, which did not necessarily coincide with the 3 structural domains of the corresponding proteins. Additionally, we found evidence in the L. ventricosus genome for a past whole-genome duplication event by means of conserved gene synteny with the Pomacea canaliculata genome, the only one available at the chromosome level within Caenogastropoda. The whole-genome duplication event was further confirmed by the presence of a duplicated hox gene cluster. Key genes for gastropod biology including those encoding proteins related to development, shell formation, and sex were located in the genome. CONCLUSIONS The new high-quality L. ventricosus genome should become a reference for assembling and analyzing new gastropod genomes and will contribute to future evolutionary genomic studies among venomous animals.
Collapse
Affiliation(s)
- José Ramón Pardos-Blas
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Iker Irisarri
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, D-37077 Goettingen, Germany
- Campus Institute Data Science (CIDAS), Goettingen, Wilhelmsplatz 1, D-37073, Germany
| | - Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Department of Zoology, Swedish Museum of Natural History, Frescativägen 40, 11418 Stockholm, Sweden
| | - Carlos M L Afonso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005–139 Faro, Portugal
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
11
|
The first Conus genome assembly reveals a primary genetic central dogma of conopeptides in C. betulinus. Cell Discov 2021; 7:11. [PMID: 33619264 PMCID: PMC7900195 DOI: 10.1038/s41421-021-00244-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/29/2020] [Indexed: 01/28/2023] Open
Abstract
Although there are various Conus species with publicly available transcriptome and proteome data, no genome assembly has been reported yet. Here, using Chinese tubular cone snail (C. betulinus) as a representative, we sequenced and assembled the first Conus genome with original identification of 133 genome-widely distributed conopeptide genes. After integration of our genomics, transcriptomics, and peptidomics data in the same species, we established a primary genetic central dogma of diverse conopeptides, assuming a rough number ratio of ~1:1:1:10s for the total genes: transcripts: proteins: post-translationally modified peptides. This ratio may be special for this worm-hunting Conus species, due to the high diversity of various Conus genomes and the big number ranges of conopeptide genes, transcripts, and peptides in previous reports of diverse Conus species. Only a fraction (45.9%) of the identified conotopeptide genes from our achieved genome assembly are transcribed with transcriptomic evidence, and few genes individually correspond to multiple transcripts possibly due to intraspecies or mutation-based variances. Variable peptide processing at the proteomic level, generating a big diversity of venom conopeptides with alternative cleavage sites, post-translational modifications, and N-/C-terminal truncations, may explain how the 133 genes and ~123 transcripts can generate thousands of conopeptides in the venom of individual C. betulinus. We also predicted many conopeptides with high stereostructural similarities to the putative analgesic ω-MVIIA, addiction therapy AuIB and insecticide ImI, suggesting that our current genome assembly for C. betulinus is a valuable genetic resource for high-throughput prediction and development of potential pharmaceuticals.
Collapse
|
12
|
Gorson J, Fassio G, Lau ES, Holford M. Diet Diversity in Carnivorous Terebrid Snails Is Tied to the Presence and Absence of a Venom Gland. Toxins (Basel) 2021; 13:toxins13020108. [PMID: 33540609 PMCID: PMC7912948 DOI: 10.3390/toxins13020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/30/2022] Open
Abstract
Predator-prey interactions are thought to play a driving role in animal evolution, especially for groups that have developed venom as their predatory strategy. However, how the diet of venomous animals influences the composition of venom arsenals remains uncertain. Two prevailing hypotheses to explain the relationship between diet and venom composition focus on prey preference and the types of compounds in venom, and a positive correlation between dietary breadth and the number of compounds in venom. Here, we examined venom complexity, phylogenetic relationship, collection depth, and biogeography of the Terebridae (auger snails) to determine if repeated innovations in terebrid foregut anatomy and venom composition correspond to diet variation. We performed the first molecular study of the diet of terebrid marine snails by metabarcoding the gut content of 71 terebrid specimens from 17 species. Our results suggest that the presence or absence of a venom gland is strongly correlated with dietary breadth. Specifically, terebrid species without a venom gland displayed greater diversity in their diet. Additionally, we propose a revision of the definition of venom complexity in conoidean snails to more accurately capture the breadth of ecological influences. These findings suggest that prey diet is an important factor in terebrid venom evolution and diversification and further investigations of other understudied organisms, like terebrids, are needed to develop robust hypotheses in this area.
Collapse
Affiliation(s)
- Juliette Gorson
- Department of Chemistry, Hunter College Belfer Research Center, City University of New York, New York, NY 10021, USA; (J.G.); (G.F.); (E.S.L.)
- Graduate Programs in Biology, Biochemistry, Chemistry, Graduate Center, City University of New York, New York, NY 10016, USA
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY 10024, USA
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA
| | - Giulia Fassio
- Department of Chemistry, Hunter College Belfer Research Center, City University of New York, New York, NY 10021, USA; (J.G.); (G.F.); (E.S.L.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, I-00185 Rome, Italy
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, I-00198 Rome, Italy
| | - Emily S. Lau
- Department of Chemistry, Hunter College Belfer Research Center, City University of New York, New York, NY 10021, USA; (J.G.); (G.F.); (E.S.L.)
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mandë Holford
- Department of Chemistry, Hunter College Belfer Research Center, City University of New York, New York, NY 10021, USA; (J.G.); (G.F.); (E.S.L.)
- Graduate Programs in Biology, Biochemistry, Chemistry, Graduate Center, City University of New York, New York, NY 10016, USA
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY 10024, USA
- Correspondence:
| |
Collapse
|
13
|
Bjørn-Yoshimoto WE, Ramiro IBL, Yandell M, McIntosh JM, Olivera BM, Ellgaard L, Safavi-Hemami H. Curses or Cures: A Review of the Numerous Benefits Versus the Biosecurity Concerns of Conotoxin Research. Biomedicines 2020; 8:E235. [PMID: 32708023 PMCID: PMC7460000 DOI: 10.3390/biomedicines8080235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/18/2023] Open
Abstract
Conotoxins form a diverse group of peptide toxins found in the venom of predatory marine cone snails. Decades of conotoxin research have provided numerous measurable scientific and societal benefits. These include their use as a drug, diagnostic agent, drug leads, and research tools in neuroscience, pharmacology, biochemistry, structural biology, and molecular evolution. Human envenomations by cone snails are rare but can be fatal. Death by envenomation is likely caused by a small set of toxins that induce muscle paralysis of the diaphragm, resulting in respiratory arrest. The potency of these toxins led to concerns regarding the potential development and use of conotoxins as biological weapons. To address this, various regulatory measures have been introduced that limit the use and access of conotoxins within the research community. Some of these regulations apply to all of the ≈200,000 conotoxins predicted to exist in nature of which less than 0.05% are estimated to have any significant toxicity in humans. In this review we provide an overview of the many benefits of conotoxin research, and contrast these to the perceived biosecurity concerns of conotoxins and research thereof.
Collapse
Affiliation(s)
- Walden E. Bjørn-Yoshimoto
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; (W.E.B.-Y.); (I.B.L.R.)
| | - Iris Bea L. Ramiro
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; (W.E.B.-Y.); (I.B.L.R.)
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA;
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - J. Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.M.M.); (B.M.O.)
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.M.M.); (B.M.O.)
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Helena Safavi-Hemami
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; (W.E.B.-Y.); (I.B.L.R.)
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.M.M.); (B.M.O.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Klein AH, Ballard KR, Storey KB, Motti CA, Zhao M, Cummins SF. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: from ecological application to breakthrough phylogenomic studies. Brief Funct Genomics 2020; 18:377-394. [PMID: 31609407 DOI: 10.1093/bfgp/elz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Gastropods are the largest and most diverse class of mollusc and include species that are well studied within the areas of taxonomy, aquaculture, biomineralization, ecology, microbiome and health. Gastropod research has been expanding since the mid-2000s, largely due to large-scale data integration from next-generation sequencing and mass spectrometry in which transcripts, proteins and metabolites can be readily explored systematically. Correspondingly, the huge data added a great deal of complexity for data organization, visualization and interpretation. Here, we reviewed the recent advances involving gastropod omics ('gastropodomics') research from hundreds of publications and online genomics databases. By summarizing the current publicly available data, we present an insight for the design of useful data integrating tools and strategies for comparative omics studies in the future. Additionally, we discuss the future of omics applications in aquaculture, natural pharmaceutical biodiscovery and pest management, as well as to monitor the impact of environmental stressors.
Collapse
Affiliation(s)
- Anne H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kaylene R Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville Queensland 4810, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
15
|
Lu A, Watkins M, Li Q, Robinson SD, Concepcion GP, Yandell M, Weng Z, Olivera BM, Safavi-Hemami H, Fedosov AE. Transcriptomic Profiling Reveals Extraordinary Diversity of Venom Peptides in Unexplored Predatory Gastropods of the Genus Clavus. Genome Biol Evol 2020; 12:684-700. [PMID: 32333764 PMCID: PMC7259678 DOI: 10.1093/gbe/evaa083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Predatory gastropods of the superfamily Conoidea number over 12,000 living species. The evolutionary success of this lineage can be explained by the ability of conoideans to produce complex venoms for hunting, defense, and competitive interactions. Whereas venoms of cone snails (family Conidae) have become increasingly well studied, the venoms of most other conoidean lineages remain largely uncharacterized. In the present study, we present the venom gland transcriptomes of two species of the genus Clavus that belong to the family Drilliidae. Venom gland transcriptomes of two specimens of Clavus canalicularis and two specimens of Clavus davidgilmouri were analyzed, leading to the identification of a total of 1,176 putative venom peptide toxins (drillipeptides). Based on the combined evidence of secretion signal sequence identity, entire precursor similarity search (BLAST), and the orthology inference, putative Clavus toxins were assigned to 158 different gene families. The majority of identified transcripts comprise signal, pro-, mature peptide, and post-regions, with a typically short (<50 amino acids) and cysteine-rich mature peptide region. Thus, drillipeptides are structurally similar to conotoxins. However, convincing homology with known groups of Conus toxins was only detected for very few toxin families. Among these are Clavus counterparts of Conus venom insulins (drillinsulins), porins (drilliporins), and highly diversified lectins (drillilectins). The short size of most drillipeptides and structural similarity to conotoxins were unexpected, given that most related conoidean gastropod families (Terebridae and Turridae) possess longer mature peptide regions. Our findings indicate that, similar to conotoxins, drillipeptides may represent a valuable resource for future pharmacological exploration.
Collapse
Affiliation(s)
- Aiping Lu
- Department of Central Laboratory, Shanghai Tenth People’s Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - Qing Li
- Eccles Institute of Human Genetics, University of Utah
- High-Throughput Genomics and Bioinformatic Analysis Shared Resource, Huntsman Cancer Institute, University of Utah
| | | | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, Philippines
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah
- Utah Center for Genetic Discovery, University of Utah
| | - Zhiping Weng
- Department of Central Laboratory, Shanghai Tenth People’s Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School
| | | | - Helena Safavi-Hemami
- Department of Biochemistry, University of Utah
- Department of Biology, University of Copenhagen, Denmark
| | - Alexander E Fedosov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
16
|
Lyons K, Dugon MM, Healy K. Diet Breadth Mediates the Prey Specificity of Venom Potency in Snakes. Toxins (Basel) 2020; 12:toxins12020074. [PMID: 31979380 PMCID: PMC7076792 DOI: 10.3390/toxins12020074] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/30/2022] Open
Abstract
Venoms are best known for their ability to incapacitate prey. In predatory groups, venom potency is predicted to reflect ecological and evolutionary drivers relating to diet. While venoms have been found to have preyspecific potencies, the role of diet breadth on venom potencies has yet to be tested at large macroecological scales. Here, using a comparative analysis of 100 snake species, we show that the evolution of prey-specific venom potencies is contingent on the breadth of a species' diet. We find that while snake venom is more potent when tested on species closely related to natural prey items, we only find this prey-specific pattern in species with taxonomically narrow diets. While we find that the taxonomic diversity of a snakes' diet mediates the prey specificity of its venom, the species richness of its diet was not found to affect these prey-specific potency patterns. This indicates that the physiological diversity of a species' diet is an important driver of the evolution of generalist venom potencies. These findings suggest that the venoms of species with taxonomically diverse diets may be better suited to incapacitating novel prey species and hence play an important role for species within changing environments.
Collapse
Affiliation(s)
- Keith Lyons
- Correspondence: (K.L.); (K.H.); Tel.: +353-91-493744 (K.H.)
| | | | - Kevin Healy
- Correspondence: (K.L.); (K.H.); Tel.: +353-91-493744 (K.H.)
| |
Collapse
|
17
|
Data, time and money: evaluating the best compromise for inferring molecular phylogenies of non-model animal taxa. Mol Phylogenet Evol 2020; 142:106660. [DOI: 10.1016/j.ympev.2019.106660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
|
18
|
Jenner RA, von Reumont BM, Campbell LI, Undheim EAB. Parallel Evolution of Complex Centipede Venoms Revealed by Comparative Proteotranscriptomic Analyses. Mol Biol Evol 2019; 36:2748-2763. [PMID: 31396628 PMCID: PMC6878950 DOI: 10.1093/molbev/msz181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Centipedes are among the most ancient groups of venomous predatory arthropods. Extant species belong to five orders, but our understanding of the composition and evolution of centipede venoms is based almost exclusively on one order, Scolopendromorpha. To gain a broader and less biased understanding we performed a comparative proteotranscriptomic analysis of centipede venoms from all five orders, including the first venom profiles for the orders Lithobiomorpha, Craterostigmomorpha, and Geophilomorpha. Our results reveal an astonishing structural diversity of venom components, with 93 phylogenetically distinct protein and peptide families. Proteomically-annotated gene trees of these putative toxin families show that centipede venom composition is highly dynamic across macroevolutionary timescales, with numerous gene duplications as well as functional recruitments and losses of toxin gene families. Strikingly, not a single family is found in the venoms of representatives of all five orders, with 67 families being unique for single orders. Ancestral state reconstructions reveal that centipede venom originated as a simple cocktail comprising just four toxin families, with very little compositional evolution happening during the approximately 50 My before the living orders had diverged. Venom complexity then increased in parallel within the orders, with scolopendromorphs evolving particularly complex venoms. Our results show that even venoms composed of toxins evolving under the strong constraint of negative selection can have striking evolutionary plasticity on the compositional level. We show that the functional recruitments and losses of toxin families that shape centipede venom arsenals are not concentrated early in their evolutionary history, but happen frequently throughout.
Collapse
Affiliation(s)
- Ronald A Jenner
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Bjoern M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Animal Venomics, Giessen, Germany
| | - Lahcen I Campbell
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, Hinxton, United Kingdom
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
- Centre for Ecology and Evolutionary Synthesis, Department of Bioscience, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Sudewi AA, Susilawathi NM, Mahardika BK, Mahendra AN, Pharmawati M, Phuong MA, Mahardika GN. Selecting Potential Neuronal Drug Leads from Conotoxins of Various Venomous Marine Cone Snails in Bali, Indonesia. ACS OMEGA 2019; 4:19483-19490. [PMID: 31763573 PMCID: PMC6868881 DOI: 10.1021/acsomega.9b03122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Many conotoxins, natural peptides of marine cone snails, have been identified to target neurons. Here, we provide data on pharmacological families of the conotoxins of 11 species of cone snails collected in Bali. The identified definitive pharmacological families possibly targeting neuronal tissues were α (alpha), ι (iota), κ (kappa), and ρ (rho). These classes shall target nicotinic acetylcholine receptors, voltage-gated Na channels, voltage-gated K channels, and α1-adrenoceptors, respectively. The VI/VII-O3 conotoxins might be prospected as an inhibitor of N-methyl-d-aspartate. Con-ikot-ikot could be applied as an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor blocker medicine. The definitive pharmacology classes of conotoxins as well as those yet to be elucidated need to be further established and verified.
Collapse
Affiliation(s)
- Anak A.
R. Sudewi
- Neurology
Department of the Faculty of Medicine and Pharmacology Department of the Faculty
of Medicine, Udayana University, Jl. Sudirman, Denpasar 80226, Bali, Indonesia
| | - Ni M. Susilawathi
- Neurology
Department of the Faculty of Medicine and Pharmacology Department of the Faculty
of Medicine, Udayana University, Jl. Sudirman, Denpasar 80226, Bali, Indonesia
| | - Bayu K. Mahardika
- The
Animal Biomedical and Molecular Biology Laboratory, Udayana University of Bali, Jl. Sesetan-Markisa 6, Denpasar 80223, Bali, Indonesia
| | - Agung N. Mahendra
- Neurology
Department of the Faculty of Medicine and Pharmacology Department of the Faculty
of Medicine, Udayana University, Jl. Sudirman, Denpasar 80226, Bali, Indonesia
| | - Made Pharmawati
- Faculty
of Mathematic and Natural Sciences, Udayana
University of Bali, Kampus
Bukit Jimbaran, Badung 80361, Bali, Indonesia
| | - Mark A. Phuong
- Department
of Ecology and Evolutionary Biology, University
of California, Los Angeles, Los
Angeles 90095, California, United States
| | - Gusti N. Mahardika
- The
Animal Biomedical and Molecular Biology Laboratory, Udayana University of Bali, Jl. Sesetan-Markisa 6, Denpasar 80223, Bali, Indonesia
- The Indonesian
Biodiversity Research Center, Jl. Sudirman, Denpasar 80225, Bali, Indonesia
| |
Collapse
|
20
|
Conotoxin Diversity in the Venom Gland Transcriptome of the Magician's Cone, Pionoconus magus. Mar Drugs 2019; 17:md17100553. [PMID: 31569823 PMCID: PMC6835573 DOI: 10.3390/md17100553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
The transcriptomes of the venom glands of two individuals of the magician’s cone, Pionoconus magus, from Okinawa (Japan) were sequenced, assembled, and annotated. In addition, RNA-seq raw reads available at the SRA database from one additional specimen of P. magus from the Philippines were also assembled and annotated. The total numbers of identified conotoxin precursors and hormones per specimen were 118, 112, and 93. The three individuals shared only five identical sequences whereas the two specimens from Okinawa had 30 sequences in common. The total number of distinct conotoxin precursors and hormones for P. magus was 275, and were assigned to 53 conotoxin precursor and hormone superfamilies, two of which were new based on their divergent signal region. The superfamilies that had the highest number of precursors were M (42), O1 (34), T (27), A (18), O2 (17), and F (13), accounting for 55% of the total diversity. The D superfamily, previously thought to be exclusive of vermivorous cones was found in P. magus and contained a highly divergent mature region. Similarly, the A superfamily alpha 4/3 was found in P. magus despite the fact that it was previously postulated to be almost exclusive of the genus Rhombiconus. Differential expression analyses of P. magus compared to Chelyconus ermineus, the only fish-hunting cone from the Atlantic Ocean revealed that M and A2 superfamilies appeared to be more expressed in the former whereas the O2 superfamily was more expressed in the latter.
Collapse
|
21
|
Gauthier M, Konecny‐Dupré L, Nguyen A, Elbrecht V, Datry T, Douady C, Lefébure T. Enhancing DNA metabarcoding performance and applicability with bait capture enrichment and DNA from conservative ethanol. Mol Ecol Resour 2019; 20:79-96. [DOI: 10.1111/1755-0998.13088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Mailys Gauthier
- CNRS UMR 5023 ENTPE Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés Univ Lyon Université Claude Bernard Lyon 1 Villeurbanne France
- IRSTEA UR‐RiverLy Centre de Lyon‐Villeurbanne Villeurbanne Cedex France
| | - Lara Konecny‐Dupré
- CNRS UMR 5023 ENTPE Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés Univ Lyon Université Claude Bernard Lyon 1 Villeurbanne France
| | | | - Vasco Elbrecht
- Centre for Biodiversity Genomics University of Guelph Guelph Ontario Canada
| | - Thibault Datry
- IRSTEA UR‐RiverLy Centre de Lyon‐Villeurbanne Villeurbanne Cedex France
| | - Christophe Douady
- CNRS UMR 5023 ENTPE Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés Univ Lyon Université Claude Bernard Lyon 1 Villeurbanne France
| | - Tristan Lefébure
- CNRS UMR 5023 ENTPE Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés Univ Lyon Université Claude Bernard Lyon 1 Villeurbanne France
| |
Collapse
|
22
|
Phuong MA, Alfaro ME, Mahardika GN, Marwoto RM, Prabowo RE, von Rintelen T, Vogt PWH, Hendricks JR, Puillandre N. Lack of Signal for the Impact of Conotoxin Gene Diversity on Speciation Rates in Cone Snails. Syst Biol 2019; 68:781-796. [PMID: 30816949 PMCID: PMC6934442 DOI: 10.1093/sysbio/syz016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Understanding why some groups of organisms are more diverse than others is a central goal in macroevolution. Evolvability, or the intrinsic capacity of lineages for evolutionary change, is thought to influence disparities in species diversity across taxa. Over macroevolutionary time scales, clades that exhibit high evolvability are expected to have higher speciation rates. Cone snails (family: Conidae, $>$900 spp.) provide a unique opportunity to test this prediction because their toxin genes can be used to characterize differences in evolvability between clades. Cone snails are carnivorous, use prey-specific venom (conotoxins) to capture prey, and the genes that encode venom are known and diversify through gene duplication. Theory predicts that higher gene diversity confers a greater potential to generate novel phenotypes for specialization and adaptation. Therefore, if conotoxin gene diversity gives rise to varying levels of evolvability, conotoxin gene diversity should be coupled with macroevolutionary speciation rates. We applied exon capture techniques to recover phylogenetic markers and conotoxin loci across 314 species, the largest venom discovery effort in a single study. We paired a reconstructed timetree using 12 fossil calibrations with species-specific estimates of conotoxin gene diversity and used trait-dependent diversification methods to test the impact of evolvability on diversification patterns. Surprisingly, we did not detect any signal for the relationship between conotoxin gene diversity and speciation rates, suggesting that venom evolution may not be the rate-limiting factor controlling diversification dynamics in Conidae. Comparative analyses showed some signal for the impact of diet and larval dispersal strategy on diversification patterns, though detection of a signal depended on the dataset and the method. If our results remain true with increased taxonomic sampling in future studies, they suggest that the rapid evolution of conid venom may cause other factors to become more critical to diversification, such as ecological opportunity or traits that promote isolation among lineages.
Collapse
Affiliation(s)
- Mark A Phuong
- Department of Ecology and Evolutionary Biology, University of California, 612 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, 612 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Gusti N Mahardika
- Animal Biomedical and Molecular Biology Laboratory, Faculty of Veterinary Medicine, Udayana University Bali, Jl Sesetan-Markisa 6, Denpasar, Bali 80225, Indonesia
| | - Ristiyanti M Marwoto
- Zoology Division (Museum Zoologicum Bogoriense), Research Center for Biology, LIPI, Km.46, Jl. Raya Bogor, Cibinong, Bogor, West Java 16911, Indonesia
| | - Romanus Edy Prabowo
- Aquatic Biology Laboratory, Faculty of Biology, Universitas Jenderal Soedirman, Jalan dr. Suparno 63 Grendeng, Purwokerto, Indonesia, 53122
| | - Thomas von Rintelen
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| | - Philipp W H Vogt
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| | | | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, 1259 Trumansburg Road, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France
| |
Collapse
|
23
|
Pfeiffer JM, Breinholt JW, Page LM. Unioverse: A phylogenomic resource for reconstructing the evolution of freshwater mussels (Bivalvia, Unionoida). Mol Phylogenet Evol 2019; 137:114-126. [DOI: 10.1016/j.ympev.2019.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
|
24
|
Abstract
The human dopamine transporter gene SLC6A3 is involved in substance use disorders (SUDs) among many other common neuropsychiatric illnesses but allelic association results including those with its classic genetic markers 3'VNTR or Int8VNTR remain mixed and unexplainable. To better understand the genetics for reproducible association signals, we report the presence of recombination hotspots based on sequencing of the entire 5' promoter regions in two small SUDs cohorts, 30 African Americans (AAs) and 30 European Americans (EAs). Recombination rate was the highest near the transcription start site (TSS) in both cohorts. In addition, each cohort carried 57 different promoter haplotypes out of 60 and no haplotypes were shared between the two ethnicities. A quarter of the haplotypes evolved in an ethnicity-specific manner. Finally, analysis of five hundred subjects of European ancestry, from the 1000 Genome Project, confirmed the promoter recombination hotspots and also revealed several additional ones in non-coding regions only. These findings provide an explanation for the mixed results as well as guidance for selection of effective markers to be used in next generation association validation (NGAV), facilitating the delineation of pathogenic variation in this critical neuropsychiatric gene.
Collapse
|
25
|
Effects of Predator-Prey Interactions on Predator Traits: Differentiation of Diets and Venoms of a Marine Snail. Toxins (Basel) 2019; 11:toxins11050299. [PMID: 31130611 PMCID: PMC6563511 DOI: 10.3390/toxins11050299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
Species interactions are fundamental ecological forces that can have significant impacts on the evolutionary trajectories of species. Nonetheless, the contribution of predator-prey interactions to genetic and phenotypic divergence remains largely unknown. Predatory marine snails of the family Conidae exhibit specializations for different prey items and intraspecific variation in prey utilization patterns at geographic scales. Because cone snails utilize venom to capture prey and venom peptides are direct gene products, it is feasible to examine the evolution of genes associated with changes in resource utilization. Here, we compared feeding ecologies and venom duct transcriptomes of individuals from three populations of Conus miliaris, a species that exhibits geographic variation in prey utilization and dietary breadth, in order to determine the extent to which dietary differences are correlated with differences in venom composition, and if expanded niche breadth is associated with increased variation in venom composition. While populations showed little to no overlap in resource utilization, taxonomic richness of prey was greatest at Easter Island. Changes in dietary breadth were associated with differences in expression patterns and increased genetic differentiation of toxin-related genes. The Easter Island population also exhibited greater diversity of toxin-related transcripts, but did not show increased variance in expression of these transcripts. These results imply that differences in dietary breadth contribute more to the structural and regulatory differentiation of venoms than differences in diet.
Collapse
|
26
|
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
| | - Manuel J. Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias; Universidad de Cádiz; Puerto Real Spain
| | - Juan E. Uribe
- Departamento de Biodiversidad y Biología Evolutiva; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
- Department of Invertebrate Zoology, Smithsonian Institution; National Museum of Natural History; Washington District of Columbia USA
- Grupo de Evolución, Sistemática y Ecología Molecular; Universidad del Magdalena; Santa Marta Colombia
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
| |
Collapse
|
27
|
Gao B, Peng C, Zhu Y, Sun Y, Zhao T, Huang Y, Shi Q. High Throughput Identification of Novel Conotoxins from the Vermivorous Oak Cone Snail ( Conus quercinus) by Transcriptome Sequencing. Int J Mol Sci 2018; 19:ijms19123901. [PMID: 30563163 PMCID: PMC6321112 DOI: 10.3390/ijms19123901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The primary objective of this study was to realize the large-scale discovery of conotoxin sequences from different organs (including the venom duct, venom bulb and salivary gland) of the vermivorous Oak cone snail, Conus quercinus. Using high-throughput transcriptome sequencing, we identified 133 putative conotoxins that belong to 34 known superfamilies, of which nine were previously reported while the remaining 124 were novel conotoxins, with 17 in new and unassigned conotoxin groups. A-, O1-, M-, and I2- superfamilies were the most abundant, and the cysteine frameworks XIII and VIII were observed for the first time in the A- and I2-superfamilies. The transcriptome data from the venom duct, venom bulb and salivary gland showed considerable inter-organizational variations. Each organ had many exclusive conotoxins, and only seven of all the inferred mature peptides were common in the three organs. As expected, most of the identified conotoxins were synthesized in the venom duct at relatively high levels; however, a number of conotoxins were also identified in the venom bulb and the salivary gland with very low transcription levels. Therefore, various organs have different conotoxins with high diversity, suggesting greater contributions from several organs to the high-throughput discovery of new conotoxins for future drug development.
Collapse
Affiliation(s)
- Bingmiao Gao
- Hainan Provincial Key Laboratory of Research and Development of Herbs, College of Pharmacy, Hainan Medical University, Haikou 571199, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| | - Chao Peng
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Yabing Zhu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Yuhui Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China.
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Tian Zhao
- Chemistry Department, College of Art and Science, Boston University, Boston, MA 02215, USA.
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| |
Collapse
|
28
|
Santibáñez-López CE, Kriebel R, Ballesteros JA, Rush N, Witter Z, Williams J, Janies DA, Sharma PP. Integration of phylogenomics and molecular modeling reveals lineage-specific diversification of toxins in scorpions. PeerJ 2018; 6:e5902. [PMID: 30479892 PMCID: PMC6240337 DOI: 10.7717/peerj.5902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Scorpions have evolved a variety of toxins with a plethora of biological targets, but characterizing their evolution has been limited by the lack of a comprehensive phylogenetic hypothesis of scorpion relationships grounded in modern, genome-scale datasets. Disagreements over scorpion higher-level systematics have also incurred challenges to previous interpretations of venom families as ancestral or derived. To redress these gaps, we assessed the phylogenomic relationships of scorpions using the most comprehensive taxonomic sampling to date. We surveyed genomic resources for the incidence of calcins (a type of calcium channel toxin), which were previously known only from 16 scorpion species. Here, we show that calcins are diverse, but phylogenetically restricted only to parvorder Iurida, one of the two basal branches of scorpions. The other branch of scorpions, Buthida, bear the related LKTx toxins (absent in Iurida), but lack calcins entirely. Analysis of sequences and molecular models demonstrates remarkable phylogenetic inertia within both calcins and LKTx genes. These results provide the first synapomorphies (shared derived traits) for the recently redefined clades Buthida and Iurida, constituting the only known case of such traits defined from the morphology of molecules.
Collapse
Affiliation(s)
| | - Ricardo Kriebel
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Jesús A. Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel Rush
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Zachary Witter
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - John Williams
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
29
|
Abdelkrim J, Aznar-Cormano L, Fedosov AE, Kantor YI, Lozouet P, Phuong MA, Zaharias P, Puillandre N. Exon-Capture-Based Phylogeny and Diversification of the Venomous Gastropods (Neogastropoda, Conoidea). Mol Biol Evol 2018; 35:2355-2374. [DOI: 10.1093/molbev/msy144] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jawad Abdelkrim
- Outils et Méthodes de la Systématique Intégrative (OMSI) UMS 2700, Muséum National d’Histoire Naturelle, Paris, France
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France
| | - Laetitia Aznar-Cormano
- Outils et Méthodes de la Systématique Intégrative (OMSI) UMS 2700, Muséum National d’Histoire Naturelle, Paris, France
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France
| | - Alexander E Fedosov
- A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninski prospect 33, 119071 Moscow, Russian Federation
| | - Yuri I Kantor
- A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninski prospect 33, 119071 Moscow, Russian Federation
| | - Pierre Lozouet
- Muséum National d’Histoire Naturelle, Direction des Collections, 55, rue Buffon, 75005 Paris, France
| | - Mark A Phuong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Paul Zaharias
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France
| | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France
| |
Collapse
|
30
|
Li Q, Barghi N, Lu A, Fedosov AE, Bandyopadhyay PK, Lluisma AO, Concepcion GP, Yandell M, Olivera BM, Safavi-Hemami H. Divergence of the Venom Exogene Repertoire in Two Sister Species of Turriconus. Genome Biol Evol 2017; 9:2211-2225. [PMID: 28922871 PMCID: PMC5604253 DOI: 10.1093/gbe/evx157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
The genus Conus comprises approximately 700 species of venomous marine cone snails that are highly efficient predators of worms, snails, and fish. In evolutionary terms, cone snails are relatively young with the earliest fossil records occurring in the Lower Eocene, 55 Ma. The rapid radiation of cone snail species has been accompanied by remarkably high rates of toxin diversification. To shed light on the molecular mechanisms that accompany speciation, we investigated the toxin repertoire of two sister species, Conus andremenezi and Conus praecellens, that were until recently considered a single variable species. A total of 196 and 250 toxin sequences were identified in the venom gland transcriptomes of C. andremenezi and C. praecellens belonging to 25 and 29 putative toxin gene superfamilies, respectively. Comparative analysis with closely (Conus tribblei and Conus lenavati) and more distantly related species (Conus geographus) suggests that speciation is associated with significant diversification of individual toxin genes (exogenes) whereas the expression pattern of toxin gene superfamilies within lineages remains largely conserved. Thus, changes within individual toxin sequences can serve as a sensitive indicator for recent speciation whereas changes in the expression pattern of gene superfamilies are likely to reflect more dramatic differences in a species' interaction with its prey, predators, and competitors.
Collapse
Affiliation(s)
- Qing Li
- Eccles Institute of Human Genetics, University of Utah
| | - Neda Barghi
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, Philippines
- Institute für Populationsgenetik, Vetmeduni, Vienna, 1210, Austria
| | - Aiping Lu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Alexander E. Fedosov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Moscow, Russia
| | | | - Arturo O. Lluisma
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, Philippines
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines
| | - Gisela P. Concepcion
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, Philippines
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah
- USTAR Center for Genetic Discovery, University of Utah
| | | | | |
Collapse
|