1
|
Jorge AS, Recchia K, Glória MH, de Souza AF, Pessôa LVDF, Fantinato Neto P, Martins DDS, de Andrade AFC, Martins SMMK, Bressan FF, Pieri NCG. Porcine Germ Cells Phenotype during Embryonic and Adult Development. Animals (Basel) 2023; 13:2520. [PMID: 37570330 PMCID: PMC10417053 DOI: 10.3390/ani13152520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Primordial germ cells (PGCs) are the precursors of gametes. Due to their importance for the formation and reproduction of an organism, understanding the mechanisms and pathways of PGCs and the differences between males and females is essential. However, there is little research in domestic animals, e.g., swine, regarding the epigenetic and pluripotency profiles of PGCs during development. This study analyzed the expression of epigenetic and various pluripotent and germline markers associated with the development and differentiation of PGCs in porcine (pPGCs), aiming to understand the different gene expression profiles between the genders. The analysis of gonads at different gestational periods (from 24 to 35 days post fertilization (dpf) and in adults) was evaluated by immunofluorescence and RT-qPCR and showed phenotypic differences between the gonads of male and female embryos. In addition, the pPGCs were positive for OCT4 and VASA; some cells were H3k27me3 positive in male embryos and adult testes. In adults, the cells of the testes were positive for germline markers, as confirmed by gene expression analysis. The results may contribute to understanding the pPGC pathways during reproductive development, while also contributing to the knowledge needed to generate mature gametes in vitro.
Collapse
Affiliation(s)
- Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil
| | - Mayra Hirakawa Glória
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontario Veterinary College (OVC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Laís Vicari de Figueirêdo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Daniele Dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | | | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
2
|
Golkar-Narenji A, Dziegiel P, Kempisty B, Petitte J, Mozdziak PE, Bryja A. In vitro culture of reptile PGCS to preserve endangered species. Cell Biol Int 2023; 47:1314-1326. [PMID: 37178380 DOI: 10.1002/cbin.12033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Primordial germ cells (PGCs), are the source of gametes in vertebrates. There are similarities in the development of PGCs of reptiles with avian and mammalian species PGCs development. PGCs culture has been performed for avian and mammalian species but there is no report for reptilian PGCs culture. In vitro culture of PGCs is needed to produce transgenic animals, preservation of endangered animals and for studies on cell behaviour and research on fertility. Reptiles are traded as exotic pets and a source of food and they are valuable for their skin and they are useful as model for medical research. Transgenic reptile has been suggested to be useful for pet industry and medical research. In this research different aspects of PGCs development was compared in three main classes of vertebrates including mammalian, avian and reptilian species. It is proposed that a discussion on similarities between reptilian PGCs development with avian and mammalian species helps to find clues for studies of reptilian PGCs development details and finding an efficient protocol for in vitro culture of reptilian PG.
Collapse
Affiliation(s)
- Afsaneh Golkar-Narenji
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Piotr Dziegiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wrocław Medical University, Wroclaw, Dolnoslaskie, Poland
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Toruń, Poland
- Graduate Physiology Program NC State University North Carolina State University, Raleigh, North Carolina, USA
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Dolnoslaskie, Poland
| | - James Petitte
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Edward Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Graduate Physiology Program NC State University North Carolina State University, Raleigh, North Carolina, USA
| | - Artur Bryja
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Dolnoslaskie, Poland
| |
Collapse
|
3
|
Erenpreisa J, Vainshelbaum NM, Lazovska M, Karklins R, Salmina K, Zayakin P, Rumnieks F, Inashkina I, Pjanova D, Erenpreiss J. The Price of Human Evolution: Cancer-Testis Antigens, the Decline in Male Fertility and the Increase in Cancer. Int J Mol Sci 2023; 24:11660. [PMID: 37511419 PMCID: PMC10380301 DOI: 10.3390/ijms241411660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.
Collapse
Affiliation(s)
| | | | - Marija Lazovska
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Roberts Karklins
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Kristine Salmina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Felikss Rumnieks
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Juris Erenpreiss
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
- Clinic iVF-Riga, Zala 1, LV-1010 Riga, Latvia
| |
Collapse
|
4
|
Vaishnav S, Chauhan A, Ajay A, Saini BL, Kumar S, Kumar A, Bhushan B, Gaur GK. Allelic to genome wide perspectives of swine genetic variation to litter size and its component traits. Mol Biol Rep 2023; 50:3705-3721. [PMID: 36642776 DOI: 10.1007/s11033-022-08168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/01/2022] [Indexed: 01/17/2023]
Abstract
Litter size is a complex and sex limited trait that depends on various biological, managemental and environmental factors. Owing to its low heritability it is inefficaciously selected by traditional methods. However, due to higher heritability of ovulation rate and embryo survival, selection based on component traits of litter size is advocated. QTL analysis and candidate gene approach are among the various supplementary/alternate strategies for selection of litter size. QTL analysis is aimed at identifying genomic regions affecting trait of interest significantly. Candidate gene approach necessitates identification of genes potentially affecting the trait. There are various genes that significantly affect litter size and its component traits viz. ESR, LEP, BF, IGFBP, RBP4, PRLR, CTNNAL1, WNT10B, TCF12, DAZ, and RNF4. These genes affect litter size in a complex interacting manner. Lately, genome wide association study (GWAS) have been utilized to unveil the genetic and biological background of litter traits, and elucidate the genes governing litter size. Favorable SNPs in these genes have been identified and offers a scope for inclusion in selection programs thereby increasing breeding efficiency and profit in pigs. The review provides a comprehensive coverage of investigations carried out globally to unravel the genetic variation in litter size and its component traits in pigs, both at allelic and genome wide level. It offers a current perspective on different strategies including the profiling of candidate genes, QTLs, and genome wide association studies as an aid to efficient selection for litter size and its component traits.
Collapse
Affiliation(s)
| | - Anuj Chauhan
- Indian Veterinary Research Institute, Bareilly, India.
| | - Argana Ajay
- Indian Veterinary Research Institute, Bareilly, India
| | | | - Subodh Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | | | | |
Collapse
|
5
|
Sequeira RC, Sittadjody S, Criswell T, Atala A, Jackson JD, Yoo JJ. Enhanced method to select human oogonial stem cells for fertility research. Cell Tissue Res 2021; 386:145-156. [PMID: 34415395 DOI: 10.1007/s00441-021-03464-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/13/2021] [Indexed: 11/25/2022]
Abstract
Alternative methods to obtain mature oocytes are still needed for women with premature ovarian failure (POF). Oogonial stem cells (OSCs), found in adult ovaries, have provided insight into potential paths to treating infertility. Previously, the DDX4 antibody marker alone was utilized to isolate OSCs; however, extensive debate over its location in OSCs versus resulting oocytes (transmembrane or intracytoplasmic) has raised doubt about the identity of these cells. Separate groups, however, have efficiently isolated OSCs using another antibody marker Ifitm3 which is consistently recognized to be transmembrane in location. We hypothesized that by using anti-DDX4 and anti-IFITM3 antibodies, in combination, with MACS, we would improve the yield of isolated OSCs versus using anti-DDX4 antibodies alone. Our study supports earlier findings of OSCs in ovaries during the entire female lifespan: from reproductive age through post-menopausal age. MACS sorting ovarian cells using a the two-marker combination yielded a ~ twofold higher percentage of OSCs from a given mass of ovarian tissue compared to existing single marker methods while minimizing the debate surrounding germline marker selection. During in vitro culture, isolated cells retained the germline phenotype expression of DDX4 and IFITM3 as confirmed by gene expression analysis, demonstrated characteristic germline stem cell self-assembly into embryoid bodies, and formed > 40 µm "oocyte-like" structures that expressed the early oocyte markers GDF9, DAZL, and ZP1. This enhanced and novel method is clinically significant as it could be utilized in the future to more efficiently produce mature, secondary oocytes, for use with IVF/ICSI to treat POF patients.
Collapse
Affiliation(s)
- Russel C Sequeira
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA.
| | - Sivanandane Sittadjody
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - John D Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| |
Collapse
|
6
|
Omidi M, Khalili MA, Halvaei I, Montazeri F, Kalantar SM. Quality of Blastocysts Created by Embryo Splitting: A Time-Lapse Monitoring and Chromosomal Aneuploidy Study. CELL JOURNAL 2019; 22:367-374. [PMID: 31863663 PMCID: PMC6946999 DOI: 10.22074/cellj.2020.6717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/20/2019] [Indexed: 11/16/2022]
Abstract
Objective The aim of this study was to screen the potential of human embryos to develop into expanding blastocysts
following in vitro embryo splitting and then assess the quality of the generated blastocysts based on chromosomal
characteristics and using morphokinetics.
Materials and Methods In this experimental study, a total of 82 good quality cleavage-stage donated embryos (8-
14 cells) were used (24 embryos were cultured to the blastocyst stage as controls and 58 embryos underwent in
vitro splitting). After in vitro splitting, the blastomere donor and blastomere recipient embryos were named twin A and
twin B, respectively. Morphokinetics and morphological parameters were evaluated using a time-lapse system in the
blastocysts developed from twin embryos. Aneuploidy of chromosomes 13, 15, 16, 18, 21, 22, X and Y were analyzed
in the twin blastocysts.
Results Following in vitro splitting, of the 116 resulting twin embryos, 80 (69%) developed to the expanded blastocyst
(EBL) stage compared to 21 (87.5%) embryos in the control group (P>0.05). The morphokinetics analysis suggested
that the developmental time-points were influenced by the in vitro splitting. Moreover, the blastocysts developed from
A and B twins had impaired morphology compared to controls. Regarding chromosome abnormalities, there was no
significant difference in the rate of aneuploidy or mosaicism between the different groups.
Conclusion This study showed that while no chromosomal abnormalities were seen, in vitro embryo splitting may
affect the embryo morphokinetics.
Collapse
Affiliation(s)
- Marjan Omidi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Electronic Address:.,Department of Reproductive Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Iman Halvaei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Montazeri
- Abortion Research Center, Yazd Institute of Reproductive Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Abortion Research Center, Yazd Institute of Reproductive Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Pei Y, Yue L, Zhang W, Xiang J, Ma Z, Han J. Murine pluripotent stem cells that escape differentiation inside teratomas maintain pluripotency. PeerJ 2018; 6:e4177. [PMID: 29312817 PMCID: PMC5756617 DOI: 10.7717/peerj.4177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/29/2017] [Indexed: 12/02/2022] Open
Abstract
Background Pluripotent stem cells (PSCs) offer immense potential as a source for regenerative therapies. The teratoma assay is widely used in the field of stem cells and regenerative medicine, but the cell composition of teratoma is still elusive. Methods We utilized PSCs expressing enhanced green fluorescent protein (EGFP) under the control of the Pou5f1 promoter to study the persistence of potential pluripotent cells during teratoma formation in vivo. OCT4-MES (mouse embryonic stem cells) were isolated from the blastocysts of 3.5-day OCT4-EGFP mice (transgenic mice express EGFP cDNA under the control of the Pou5f1 promoter) embryos, and TG iPS 1-7 (induced pluripotent stem cells) were generated from mouse embryonic fibroblasts (MEFs) from 13.5-day OCT4-EGFP mice embryos by infecting them with a virus carrying OCT4, SOX2, KLF4 and c-MYC. These pluripotent cells were characterized according to their morphology and expression of pluripotency markers. Their differentiation ability was studied with in vivo teratoma formation assays. Further differences between pluripotent cells were examined by real-time quantitative PCR (qPCR). Results The results showed that several OCT4-expressing PSCs escaped differentiation inside of teratomas, and these escaped cells (MES-FT, GFP-positive cells separated from OCT4-MES-derived teratomas; and iPS-FT, GFP-positive cells obtained from teratomas formed by TG iPS 1-7) retained their pluripotency. Interestingly, a small number of GFP-positive cells in teratomas formed by MES-FT and iPS-FT (MES-ST, GFP-positive cells isolated from MES-FT-derived teratomas; iPS-ST, GFP-positive cells obtained from teratomas formed by iPS-FT) were still pluripotent, as shown by alkaline phosphatase (AP) staining, immunofluorescent staining and PCR. MES-FT, iPS-FT, MES-ST and iPS-ST cells also expressed several markers associated with germ cell formation, such as Dazl, Stella and Stra8. Conclusions In summary, a small number of PSCs escaped differentiation inside of teratomas, and these cells maintained pluripotency and partially developed towards germ cells. Both escaped PSCs and germ cells present a risk of tumor formation. Therefore, medical workers must be careful in preventing tumor formation when stem cells are used to treat specific diseases.
Collapse
Affiliation(s)
- Yangli Pei
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Yue
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Zhang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinzhu Xiang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing, China
| | - Jianyong Han
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Nailwal M, Chauhan JB. In silico analysis of non-synonymous single nucleotide polymorphisms in human DAZL gene associated with male infertility. Syst Biol Reprod Med 2017; 63:248-258. [PMID: 28388287 DOI: 10.1080/19396368.2017.1305466] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In living systems the most frequent type of genetic mutation is the single nucleotide polymorphism (SNP). Non-synonymous SNPs (nsSNPs) or missense mutations arise in coding regions of a particular gene. nsSNPs result in a single amino acid substitution which may have effects on the structure and/or function of proteins. Spermatogenesis is a complex process where haploid spermatozoa are formed. The deleted in azoospermia like (DAZL) gene has a relationship with male infertility and dysfunction of DAZL may decrease the sperm count which leads to oligozoospermia or azoospermia. Various computational methods were used to analyze the genetic variations of DAZL affecting the structure and/or function. In the present study, N109T was assigned as the most deleterious or disease related nsSNP by SIFT, MutPred, PolyPhen 2.0, I-Mutant, and MuStab tools. The ConSurf tool showed that functional amino acid residues which are conserved in Human DAZL include the N109T nsSNP. The secondary and tertiary structure was predicted using PSIPRED and MUSTER. Our study shows that the N109T variant may directly or indirectly weaken amino acid interactions and hydrogen bond networks of the DAZL protein, which we predicted may result in altered DAZL protein function. Further, computational analysis of free energy change due to this point mutation using GROMOS96 indicated decreased stability of the DAZL protein. The N109T variant in an infertile male population may provide a genetic marker for mutational analysis of DAZL. ABBREVIATIONS DAZL: deleted in azoospermia like; dbSNP: database of single nucleotide polymorphism; nsSNPs: non-synonymous SNPs; AA: amino acid; SIFT: sorting intolerant from tolerant; PolyPhen-2: polymorphism phenotyping v2; MUSTER: multi-sources threader; PDB: protein data bank; MuStab: predicting mutant protein stability change; PSIPRED: PSI-blast based secondary structure prediction.
Collapse
Affiliation(s)
- Mili Nailwal
- a P.G. Department of Genetics , Ashok & Rita Patel Institute of Integrated Study & Research in Biotechnology and Allied Sciences (ARIBAS), Affiliated to Sardar Patel University , New Vallabh Vidyanagar , Gujarat , India
| | - Jenabhai B Chauhan
- a P.G. Department of Genetics , Ashok & Rita Patel Institute of Integrated Study & Research in Biotechnology and Allied Sciences (ARIBAS), Affiliated to Sardar Patel University , New Vallabh Vidyanagar , Gujarat , India
| |
Collapse
|
9
|
Panula S, Reda A, Stukenborg JB, Ramathal C, Sukhwani M, Albalushi H, Edsgärd D, Nakamura M, Söder O, Orwig KE, Yamanaka S, Reijo Pera RA, Hovatta O. Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells. PLoS One 2016; 11:e0165268. [PMID: 27768780 PMCID: PMC5074499 DOI: 10.1371/journal.pone.0165268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/07/2016] [Indexed: 12/05/2022] Open
Abstract
The mechanisms underlying human germ cell development are largely unknown, partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here, we studied NANOS3 and DAZL, which have critical roles in germ cell development in several species, via their over expression in human embryonic stem cells using global transcriptional analysis, in vitro germ cell differentiation, and in vivo germ cell formation assay by xenotransplantation. We found that NANOS3 over expression prolonged pluripotency and delayed differentiation. In addition, we observed a possible connection of NANOS3 with inhibition of apoptosis. For DAZL, our results suggest a post-transcriptional regulation mechanism in hES cells. In addition, we found that DAZL suppressed the translation of OCT4, and affected the transcription of several genes associated with germ cells, cell cycle arrest, and cell migration. Furthermore, DAZL over expressed cells formed spermatogonia-like colonies in a rare instance upon xenotransplantation. These data can be used to further elucidate the role of NANOS3 and DAZL in germ cell development both in vitro and in vivo.
Collapse
Affiliation(s)
- Sarita Panula
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden
| | - Ahmed Reda
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Cyril Ramathal
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA, 94305, United States of America
| | - Meena Sukhwani
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, 15213, United States of America
| | - Halima Albalushi
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Sultan Qaboos University, College of Medicine and Health Sciences, Muscat, Oman
| | - Daniel Edsgärd
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Michiko Nakamura
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Olle Söder
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Kyle E. Orwig
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, 15213, United States of America
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, United States of America
| | - Renee A. Reijo Pera
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA, 94305, United States of America
- Department of Cell Biology and Neurosciences and Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, United States of America
| | - Outi Hovatta
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
10
|
In vitro follicle growth supports human oocyte meiotic maturation. Sci Rep 2015; 5:17323. [PMID: 26612176 PMCID: PMC4661442 DOI: 10.1038/srep17323] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/23/2015] [Indexed: 01/12/2023] Open
Abstract
In vitro follicle growth is a potential approach to preserve fertility for young women who are facing a risk of premature ovarian failure (POF) caused by radiation or chemotherapy. Our two-step follicle culture strategy recapitulated the dynamic human follicle growth environment in vitro. Follicles developed from the preantral to antral stage, and, for the first time, produced meiotically competent metaphase II (MII) oocytes after in vitro maturation (IVM).
Collapse
|
11
|
Lee HC, Choi HJ, Lee HG, Lim JM, Ono T, Han JY. DAZL Expression Explains Origin and Central Formation of Primordial Germ Cells in Chickens. Stem Cells Dev 2015; 25:68-79. [PMID: 26414995 DOI: 10.1089/scd.2015.0208] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The timing and biological events associated with germ cell specification in chickens have not been determined yet. In this study, we report the origin of primordial germ cells (PGCs) and germ plasm dynamics through investigation of the expression of the chicken homolog of deleted in azoospermia-like (cDAZL) gene during germ cell specification. Asymmetric localization of germ plasm in the center of oocytes from preovulatory follicle stages leads to PGCs being formed in the center. During cleavage stages, DAZL expression pattern changes from a subcellular localization to a diffuse form before and after zygotic genome activation. Meanwhile, PGCs exhibit transcriptional active status during their specification. In addition, knockdown studies of cDAZL, which result in reduced proliferation, aberrant gene expression profiles, and PGC apoptosis in vitro, suggest its possible roles for PGC formation in chicken. In conclusion, DAZL expression reveals formation and initial positioning of PGCs in chickens.
Collapse
Affiliation(s)
- Hyung Chul Lee
- 1 Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University , Seoul, Korea.,2 Department of Cell and Developmental Biology, University College London , London, United Kingdom
| | - Hee Jung Choi
- 1 Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| | - Hyo Gun Lee
- 1 Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| | - Jeong Mook Lim
- 1 Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| | - Tamao Ono
- 3 Division of Animal Science, Faculty of Agriculture, Shinshu University , Nagano, Japan
| | - Jae Yong Han
- 1 Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University , Seoul, Korea.,4 Institute for Biomedical Sciences, Shinshu University , Nagano, Japan
| |
Collapse
|
12
|
Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes. ZYGOTE 2015; 24:465-76. [PMID: 26350562 DOI: 10.1017/s0967199415000416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The developmental potential of in vitro matured porcine oocytes is still lower than that of oocytes matured and fertilized in vivo. Major problems that account for the lower efficiency of in vitro production include the improper nuclear and cytoplasmic maturation of oocytes. With the aim of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus-oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10 or 50 ng/ml) and/or GDNF (0, 10 or 50 ng/ml) for 44 h, and subsequently subjected to fertilization and cultured for 7 days in vitro. The in vitro-formed blastocysts derived from selected growth factor groups (i.e. EGF = 50 ng/ml; GDNF = 50 ng/ml; EGF = 50 ng/ml + GDNF = 50 ng/ml) were also used for mRNA expression analysis, or were subjected to Hoechst staining. The results showed that the addition of EGF and/or GDNF during oocyte maturation dose dependently enhanced oocyte developmental competence. Compared with the embryos obtained from control or single growth factor-treated oocytes, treatment with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P < 0.05), and also simultaneously induced the expression of BCL-xL and TERT and suppressed the expression of caspase-3 in resulting blastocysts (P < 0.05). These results suggest that both GDNF and EGF may play an important role in the regulation of porcine in vitro oocyte maturation and the combination of these growth factors could promote oocyte competency and blastocyst quality.
Collapse
|
13
|
Fu XF, Cheng SF, Wang LQ, Yin S, De Felici M, Shen W. DAZ Family Proteins, Key Players for Germ Cell Development. Int J Biol Sci 2015; 11:1226-35. [PMID: 26327816 PMCID: PMC4551758 DOI: 10.7150/ijbs.11536] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/23/2015] [Indexed: 02/03/2023] Open
Abstract
DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution.
Collapse
Affiliation(s)
- Xia-Fei Fu
- 1. Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China ; 2. College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- 1. Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China ; 3. Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lin-Qing Wang
- 1. Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China ; 3. Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Shen Yin
- 1. Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China ; 3. Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- 4. Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Wei Shen
- 1. Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China ; 3. Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
14
|
Krivega M, Essahib W, Van de Velde H. WNT3 and membrane-associated β-catenin regulate trophectoderm lineage differentiation in human blastocysts. Mol Hum Reprod 2015; 21:711-22. [DOI: 10.1093/molehr/gav036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022] Open
|
15
|
Ramos-Ibeas P, Pericuesta E, Fernández-González R, Gutiérrez-Adán A, Ramírez MÁ. Characterisation of the deleted in azoospermia like (Dazl)-green fluorescent protein mouse model generated by a two-step embryonic stem cell-based strategy to identify pluripotent and germ cells. Reprod Fertil Dev 2015; 28:RD14253. [PMID: 25942058 DOI: 10.1071/rd14253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/04/2015] [Indexed: 02/28/2024] Open
Abstract
The deleted in azoospermia like (Dazl) gene is preferentially expressed in germ cells; however, recent studies indicate that it may have pluripotency-related functions. We generated Dazl-green fluorescent protein (GFP) transgenic mice and assayed the ability of Dazl-driven GFP to mark preimplantation embryo development, fetal, neonatal and adult tissues, and in vitro differentiation from embryonic stem cells (ESCs) to embryoid bodies (EBs) and to primordial germ cell (PGC)-like cells. The Dazl-GFP mice were generated by a two-step ESC-based strategy, which enabled primary and secondary screening of stably transfected clones before embryo injection. During preimplantation embryo stages, GFP was detected from the zygote to blastocyst stage. At Embryonic Day (E) 12.5, GFP was expressed in gonadal ridges and in neonatal gonads of both sexes. In adult mice, GFP expression was found during spermatogenesis from spermatogonia to elongating spermatids and in the cytoplasm of oocytes. However, GFP mRNA was also detected in other tissues harbouring multipotent cells, such as the intestine and bone marrow. Fluorescence was maintained along in vitro Dazl-GFP ESC differentiation to EBs, and in PGC-like cells. In addition to its largely known function in germ cell development, Dazl could have an additional role in pluripotency, supporting these transgenic mice as a valuable tool for the prospective identification of stem cells from several tissues.
Collapse
|
16
|
Krivega M, Geens M, Van de Velde H. CAR expression in human embryos and hESC illustrates its role in pluripotency and tight junctions. Reproduction 2014; 148:531-44. [PMID: 25118298 DOI: 10.1530/rep-14-0253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coxsackie virus and adenovirus receptor, CXADR (CAR), is present during embryogenesis and is involved in tissue regeneration, cancer and intercellular adhesion. We investigated the expression of CAR in human preimplantation embryos and embryonic stem cells (hESC) to identify its role in early embryogenesis and differentiation. CAR protein was ubiquitously present during preimplantation development. It was localised in the nucleus of uncommitted cells, from the cleavage stage up to the precursor epiblast, and corresponded with the presence of soluble CXADR3/7 splice variant. CAR was displayed on the membrane, involving in the formation of tight junction at compaction and blastocyst stages in both outer and inner cells, and CAR corresponded with the full-length CAR-containing transmembrane domain. In trophectodermal cells of hatched blastocysts, CAR was reduced in the membrane and concentrated in the nucleus, which correlated with the switch in RNA expression to the CXADR4/7 and CXADR2/7 splice variants. The cells in the outer layer of hESC colonies contained CAR on the membrane and all the cells of the colony had CAR in the nucleus, corresponding with the transmembrane CXADR and CXADR4/7. Upon differentiation of hESC into cells representing the three germ layers and trophoblast lineage, the expression of CXADR was downregulated. We concluded that CXADR is differentially expressed during human preimplantation development. We described various CAR expressions: i) soluble CXADR marking undifferentiated blastomeres; ii) transmembrane CAR related with epithelial-like cell types, such as the trophectoderm (TE) and the outer layer of hESC colonies; and iii) soluble CAR present in TE nuclei after hatching. The functions of these distinct forms remain to be elucidated.
Collapse
Affiliation(s)
- M Krivega
- Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - M Geens
- Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - H Van de Velde
- Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
17
|
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods 2014; 11:740-2. [PMID: 24836921 PMCID: PMC4112276 DOI: 10.1038/nmeth.2967] [Citation(s) in RCA: 795] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/28/2014] [Indexed: 12/25/2022]
Abstract
Single-cell data provide a means to dissect the composition of complex tissues and specialized cellular environments. However, the analysis of such measurements is complicated by high levels of technical noise and intrinsic biological variability. We describe a probabilistic model of expression-magnitude distortions typical of single-cell RNA-sequencing measurements, which enables detection of differential expression signatures and identification of subpopulations of cells in a way that is more tolerant of noise.
Collapse
Affiliation(s)
- Peter V. Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Hematology/Oncology Program, Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Lev Silberstein
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - David T. Scadden
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
18
|
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods 2014. [PMID: 24836921 DOI: 10.1038/nmeth.2967.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-cell data provide a means to dissect the composition of complex tissues and specialized cellular environments. However, the analysis of such measurements is complicated by high levels of technical noise and intrinsic biological variability. We describe a probabilistic model of expression-magnitude distortions typical of single-cell RNA-sequencing measurements, which enables detection of differential expression signatures and identification of subpopulations of cells in a way that is more tolerant of noise.
Collapse
Affiliation(s)
- Peter V Kharchenko
- 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA. [2] Hematology/Oncology Program, Children's Hospital, Boston, Massachusetts, USA. [3] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Lev Silberstein
- 1] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [2] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - David T Scadden
- 1] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [2] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Smorag L, Xu X, Engel W, Pantakani DVK. The roles of DAZL in RNA biology and development. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:527-35. [PMID: 24715697 DOI: 10.1002/wrna.1228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 01/20/2023]
Abstract
RNA-binding proteins play an important role in the regulation of gene expression by modulating translation and localization of specific messenger RNAs (mRNAs) during early development and gametogenesis. The DAZ (Deleted in Azoospermia) family of proteins, which includes DAZ, DAZL, and BOULE, are germ cell-specific RNA-binding proteins that are implicated in translational regulation of several transcripts. Of particular importance is DAZL, which is present in vertebrates and arose from the duplication of the ancestral BOULE during evolution. Identification of DAZL target mRNAs and characterization of the RNA-binding sequence through in vitro binding assays and crystallographic studies revealed that DAZL binds to GUU triplets in the 3' untranslated region of target mRNAs. Although there is compelling evidence for the role of DAZL in translation stimulation of target mRNAs, recent studies indicate that DAZL can also function in translational repression and transport of specific mRNAs. Furthermore, apart from the well-characterized function of DAZL in gametogenesis, recent data suggest its role in early embryonic development and differentiation of pluripotent stem cells toward functional gametes. In light of the mounting evidence for the role of DAZL in various cellular and developmental processes, we summarize the currently characterized biological functions of DAZL in RNA biology and development.
Collapse
Affiliation(s)
- Lukasz Smorag
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | | | | | | |
Collapse
|
20
|
De Paepe C, Krivega M, Cauffman G, Geens M, Van de Velde H. Totipotency and lineage segregation in the human embryo. ACTA ACUST UNITED AC 2014; 20:599-618. [DOI: 10.1093/molehr/gau027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Kaviani M, Ezzatabadipour M, Nematollahi-Mahani SN, Salehinejad P, Mohammadi M, Kalantar SM, Motamedi B. Evaluation of gametogenic potential of vitrified human umbilical cord Wharton's jelly–derived mesenchymal cells. Cytotherapy 2014; 16:203-12. [DOI: 10.1016/j.jcyt.2013.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/05/2013] [Accepted: 10/27/2013] [Indexed: 10/25/2022]
|
22
|
Xu J, Li Y, Xu Y, Ding C, Li T, Zhou C. A simple and effective method for the isolation of inner cell mass samples from human blastocysts for gene expression analysis. In Vitro Cell Dev Biol Anim 2013; 50:232-6. [PMID: 24263978 DOI: 10.1007/s11626-013-9713-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/05/2013] [Indexed: 11/26/2022]
Abstract
The isolation of pure inner cell mass (ICM) and trophectoderm (TE) cells from a single human blastocyst is necessary to obtain accurate gene expression patterns of these cells, which will aid in the understanding of the primary steps of embryo differentiation. However, previously developed pure ICM isolation methods are either time-consuming or alter the normal gene expression patterns of these cells. Here, we demonstrate a simple and effective method of ICM samples isolation from human blastocysts. In total, 35 human blastocysts of all stages with expanded and good morphology were incubated in calcium/magnesium-free HEPES medium for 5 min before micromanipulation. With the aid of a laser, a biopsy pipette was inserted directly into the blastocoel for the suction-based removal of ICM samples. The ICM samples were obtained through simple mechanical pulling force or laser assistance, and each isolation process required 3-4 min. The isolated ICM and TE fractions were subjected to single-cell real-time quantitative RT-PCR to evaluate keratin 18 (KRT18) expression. Finally, 33 paired ICM and TE samples were verified using gene expression analysis. KRT18 was readily detectable in all TE cells but absent in 30 ICM counterparts, indicating a pure ICM isolation rate of 90.9% (30/33). The relative KRT18 expression of three TE samples compared with their three contaminated ICM counterparts was 19-fold (P < 0.001), indicating that the contamination was very weak. These results demonstrate that our ICM isolation method is simple and effective.
Collapse
Affiliation(s)
- Jian Xu
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road II, 510080, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
23
|
Linher-Melville K, Li J. The roles of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and nerve growth factor during the final stage of folliculogenesis: a focus on oocyte maturation. Reproduction 2013; 145:R43-54. [PMID: 23166367 DOI: 10.1530/rep-12-0219] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurotrophic factors were first identified to promote the growth, survival or differentiation of neurons and have also been associated with the early stages of ovarian folliculogenesis. More recently, their effects on the final stage of follicular development, including oocyte maturation and early embryonic development, have been reported. Glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are expressed in numerous peripheral tissues outside of the CNS, most notably the ovary, are now known to stimulate oocyte maturation in various species, also enhancing developmental competence. The mechanisms that underlie their actions in antral follicles, as well as the targets ultimately controlled by these factors, are beginning to emerge. GDNF, BDNF and NGF, alone or in combination, could be added to the media currently utilized for in vitro oocyte maturation, thereby potentially increasing the production and/or quality of early embryos.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S4L8 Canada
| | | |
Collapse
|
24
|
Xu X, Tan X, Lin Q, Schmidt B, Engel W, Pantakani DVK. Mouse Dazl and its novel splice variant functions in translational repression of target mRNAs in embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:425-35. [PMID: 23298641 DOI: 10.1016/j.bbagrm.2012.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 12/01/2022]
Abstract
Dazl (deleted in azoospermia-like) is an RNA binding protein that is important for germ cell differentiation in vertebrates. In the present study, we report the identification of a novel Dazl isoform (Dazl_Δ8) that results from alternative splicing of exon8 of mouse Dazl. We observed the expression of Dazl_Δ8 in various pluripotent cell types, but not in somatic cells. Furthermore, the Dazl_Δ8 splice variant was expressed along with the full-length isoform of Dazl (Dazl_FL) throughout male germ-cell development and in the ovary. Sub-cellular localization studies of Dazl_Δ8 revealed a diffused cytoplasmic and large granular pattern, which is similar to the localization patterns of Dazl_FL protein. In contrast to the well documented translation stimulation function in germ cells, overexpression and downregulation studies of Dazl isoforms (Dazl_FL and Dazl_Δ8) revealed a role for Dazl in the negative translational regulation of Mvh, a known target of Dazl, as well as Oct3/4 and Sox2 in embryonic stem cells (ESCs). In line with these observations, a luciferase reporter assay with the 3'UTRs of Oct3/4 and Mvh confirmed the translational repressive role of Dazl isoforms in ESCs but not in germ cells derived cell line GC-1. Further, we identified several putative target mRNAs of Dazl_FL and Dazl_Δ8 in ESCs through RNA-binding immunoprecipitation followed by whole genome transcriptome analysis. Collectively, our results show a translation repression function of Dazl in pluripotent stem cells.
Collapse
Affiliation(s)
- Xingbo Xu
- University of Goettingen, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Bukovsky A, Caudle MR. Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial. Reprod Biol Endocrinol 2012; 10:97. [PMID: 23176151 PMCID: PMC3551781 DOI: 10.1186/1477-7827-10-97] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 11/11/2012] [Indexed: 12/13/2022] Open
Abstract
The immune system plays an important role in the regulation of tissue homeostasis ("tissue immune physiology"). Function of distinct tissues during adulthood, including the ovary, requires (1) Renewal from stem cells, (2) Preservation of tissue-specific cells in a proper differentiated state, which differs among distinct tissues, and (3) Regulation of tissue quantity. Such morphostasis can be executed by the tissue control system, consisting of immune system-related components, vascular pericytes, and autonomic innervation. Morphostasis is established epigenetically, during morphogenetic (developmental) immune adaptation, i.e., during the critical developmental period. Subsequently, the tissues are maintained in a state of differentiation reached during the adaptation by a "stop effect" of resident and self renewing monocyte-derived cells. The later normal tissue is programmed to emerge (e.g., late emergence of ovarian granulosa cells), the earlier its function ceases. Alteration of certain tissue differentiation during the critical developmental period causes persistent alteration of that tissue function, including premature ovarian failure (POF) and primary amenorrhea. In fetal and adult human ovaries the ovarian surface epithelium cells called ovarian stem cells (OSC) are bipotent stem cells for the formation of ovarian germ and granulosa cells. Recently termed oogonial stem cells are, in reality, not stem but already germ cells which have the ability to divide. Immune system-related cells and molecules accompany asymmetric division of OSC resulting in the emergence of secondary germ cells, symmetric division, and migration of secondary germ cells, formation of new granulosa cells and fetal and adult primordial follicles (follicular renewal), and selection and growth of primary/preantral, and dominant follicles. The number of selected follicles during each ovarian cycle is determined by autonomic innervation. Morphostasis is altered with advancing age, due to degenerative changes of the immune system. This causes cessation of oocyte and follicular renewal at 38 +/-2 years of age due to the lack of formation of new granulosa cells. Oocytes in primordial follicles persisting after the end of the prime reproductive period accumulate genetic alterations resulting in an exponentially growing incidence of fetal trisomies and other genetic abnormalities with advanced maternal age. The secondary germ cells also develop in the OSC cultures derived from POF and aging ovaries. In vitro conditions are free of immune mechanisms, which prevent neo-oogenesis in vivo. Such germ cells are capable of differentiating in vitro into functional oocytes. This may provide fresh oocytes and genetically related children to women lacking the ability to produce their own follicular oocytes. Further study of "immune physiology" may help us to better understand ovarian physiology and pathology, including ovarian infertility caused by POF or by a lack of ovarian follicles with functional oocytes in aging ovaries. The observations indicating involvement of immunoregulation in physiological neo-oogenesis and follicular renewal from OSC during the fetal and prime reproductive periods are reviewed as well as immune system and age-independent neo-oogenesis and oocyte maturation in OSC cultures, perimenopausal alteration of homeostasis causing disorders of many tissues, and the first OSC culture clinical trial.
Collapse
Affiliation(s)
- Antonin Bukovsky
- The Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
26
|
Shaw L, Sneddon SF, Brison DR, Kimber SJ. Comparison of gene expression in fresh and frozen–thawed human preimplantation embryos. Reproduction 2012; 144:569-82. [DOI: 10.1530/rep-12-0047] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Identification and characterisation of differentially regulated genes in preimplantation human embryonic development are required to improve embryo quality and pregnancy rates in IVF. In this study, we examined expression of a number of genes known to be critical for early development and compared expression profiles in individual preimplantation human embryos to establish any differences in gene expression in fresh compared to frozen–thawed embryos used routinely in IVF. We analysed expression of 19 genes by cDNA amplification followed by quantitative real-time PCR in a panel of 44 fresh and frozen–thawed human preimplantation embryos. Fresh embryos were obtained from surplus early cleavage stage embryos and frozen–thawed embryos from cryopreserved 2PN embryos. Our aim was to determine differences in gene expression between fresh and frozen–thawed human embryos, but we also identified differences in developmental expression patterns for particular genes. We show that overall gene expression among embryos of the same stage is highly variable and our results indicate that expression levels between groups did differ and differences in expression of individual genes was detected. Our results show that gene expression from frozen–thawed embryos is more consistent when compared with fresh, suggesting that cryopreserved embryos may represent a reliable source for studying the molecular events underpinning early human embryo development.
Collapse
|
27
|
Sabour D, Schöler HR. Reprogramming and the mammalian germline: the Weismann barrier revisited. Curr Opin Cell Biol 2012; 24:716-23. [PMID: 22947493 DOI: 10.1016/j.ceb.2012.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/08/2012] [Accepted: 08/20/2012] [Indexed: 01/17/2023]
Abstract
The germline represents a unique cell type that can transmit genetic material to the next generation. During early embryonic development, somatic cells give rise to a small population of cells known as germ cells, which eventually differentiate into mature gametes. Germ cells undergo a process of removing and resetting relevant epigenetic information, mainly by DNA demethylation. This extensive epigenetic reprogramming leads to the conversion of germ cells into immortal cells that can pass on the genome to the next generation. In the absence of germline-specific reprogramming, germ cells would preserve the old, parental epigenetic memory, which would prevent the transfer of heritable information to the offspring. On the contrary, somatic cells cannot reset epigenetic information by preserving the full methylation pattern on imprinting genes. In this review, we focus on the capacity of germ cells and somatic cells (soma) to transfer genetic information to the next generation, and thus revisit the Weismann theory of heredity.
Collapse
Affiliation(s)
- Davood Sabour
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, D-48149 Münster, Germany
| | | |
Collapse
|
28
|
Molecular control of oogenesis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1896-912. [PMID: 22634430 DOI: 10.1016/j.bbadis.2012.05.013] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/08/2012] [Accepted: 05/13/2012] [Indexed: 11/20/2022]
Abstract
Oogenesis is a complex process regulated by a vast number of intra- and extra-ovarian factors. Oogonia, which originate from primordial germ cells, proliferate by mitosis and form primary oocytes that arrest at the prophase stage of the first meiotic division until they are fully-grown. Within primary oocytes, synthesis and accumulation of RNAs and proteins throughout oogenesis are essential for oocyte growth and maturation; and moreover, crucial for developing into a viable embryo after fertilization. Oocyte meiotic and developmental competence is gained in a gradual and sequential manner during folliculogenesis and is related to the fact that the oocyte grows in interaction with its companion somatic cells. Communication between oocyte and its surrounding granulosa cells is vital, both for oocyte development and for granulosa cells differentiation. Oocytes depend on differentiated cumulus cells, which provide them with nutrients and regulatory signals needed to promote oocyte nuclear and cytoplasmic maturation and consequently the acquisition of developmental competence.The purpose of this article is to summarize recent knowledge on the molecular aspects of oogenesis and oocyte maturation, and the crucial role of cumulus-cell interactions, highlighting the valuable contribution of experimental evidences obtained in animal models. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.
Collapse
|
29
|
Differential microRNA expression analysis in blastocysts by whole mount in situ hybridization and reverse transcription quantitative polymerase chain reaction on laser capture microdissection samples. Anal Biochem 2012; 423:93-101. [DOI: 10.1016/j.ab.2012.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/03/2012] [Accepted: 01/09/2012] [Indexed: 12/22/2022]
|
30
|
De Spiegelaere W, Filliers M, Van Soom A. Laser capture microdissection for gene expression analysis of specific cell populations in single blastocysts. Methods Mol Biol 2012; 853:29-37. [PMID: 22323138 DOI: 10.1007/978-1-61779-567-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Laser capture microdissection (LCM) allows for the isolation of small tissue fractions from heterogeneous tissue sections, for downstream genetic or proteomic analysis without contamination by the surrounding tissue. This technique can also be successfully used for the isolation of small tissue fractions from developing embryos, such as expanding blastocysts. However, the small size of early-stage embryos hampers tissue processing prior to LCM. The present protocol describes the application of LCM to isolate specific cell fractions from blastocysts for downstream gene expression analysis with RT-PCR.
Collapse
Affiliation(s)
- Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | |
Collapse
|
31
|
Gordeeva OF, Lifantseva NV, Khaidukov SV. Expression patterns of germ line specific genes in mouse and human pluripotent stem cells are associated with regulation of ground and primed state of pluripotency. Russ J Dev Biol 2011. [DOI: 10.1134/s1062360411060038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Kuales G, De Mulder K, Glashauser J, Salvenmoser W, Takashima S, Hartenstein V, Berezikov E, Salzburger W, Ladurner P. Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano. Dev Biol 2011; 357:117-32. [PMID: 21740899 PMCID: PMC3158854 DOI: 10.1016/j.ydbio.2011.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 11/22/2022]
Abstract
Members of the DAZ (Deleted in AZoospermia) gene family are important players in the process of gametogenesis and their dysregulation accounts for 10% of human male infertility. Boule, the ancestor of the family, is mainly involved in male meiosis in most organisms. With the exception of Drosophila and C. elegans, nothing is known on the function of boule in non-vertebrate animals. In the present study, we report on three boule orthologues in the flatworm Macrostomum lignano. We demonstrate that macbol1 and macbol2 are expressed in testes whilst macbol3 is expressed in ovaries and developing eggs. Macbol1 RNAi blocked spermatocyte differentiation whereas macbol2 showed no effect upon RNAi treatment. Macbol3 RNAi resulted in aberrant egg maturation and led to female sterility. We further demonstrated the evolutionary functional conservation of macbol1 by introducing this gene into Drosophila bol(1) mutants. Macbol1 was able to rescue the progression of fly meiotic divisions. In summary, our findings provide evidence for an involvement of boule genes in male and female gamete development in one organism. Furthermore, boule gene function is shown here for the first time in a lophotrochozoan. Our results point to a more diverse functional assignment of boule genes. Therefore, a better understanding of boule function in flatworms can help to elucidate the molecular mechanisms of and concomitant infertility in higher organisms including humans.
Collapse
Affiliation(s)
- Georg Kuales
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| | - Katrien De Mulder
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
- Hubrecht Institute and University medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jade Glashauser
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| | - Willi Salvenmoser
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| | - Shigeo Takashima
- University of California Los Angeles, Department of Molecular, Cell and Developmental Biology, 621 Charles E. Young Drive, East Boyer Hall 559, CA 90095-1606 California, USA
| | - Volker Hartenstein
- University of California Los Angeles, Department of Molecular, Cell and Developmental Biology, 621 Charles E. Young Drive, East Boyer Hall 559, CA 90095-1606 California, USA
| | - Eugene Berezikov
- Hubrecht Institute and University medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Walter Salzburger
- University of Basel, Zoological Institute, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Peter Ladurner
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| |
Collapse
|
33
|
Verloes A, Van de Velde H, LeMaoult J, Mateizel I, Cauffman G, Horn PA, Carosella ED, Devroey P, De Waele M, Rebmann V, Vercammen M. HLA-G expression in human embryonic stem cells and preimplantation embryos. THE JOURNAL OF IMMUNOLOGY 2011; 186:2663-71. [PMID: 21248264 DOI: 10.4049/jimmunol.1001081] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human leukocyte Ag-G, a tolerogenic molecule that acts on cells of both innate and adaptive immunity, plays an important role in tumor progression, transplantation, placentation, as well as the protection of the allogeneic fetus from the maternal immune system. We investigated HLA-G mRNA and protein expression in human embryonic stem cells (hESC) derived from the inner cell mass (ICM) of blastocysts. hESC self-renew indefinitely in culture while maintaining pluripotency, providing an unlimited source of cells for therapy. HLA-G mRNA was present in early and late passage hESC, as assessed by real time RT-PCR. Protein expression was demonstrated by flow cytometry, immunocytochemistry, and ELISA on an hESC extract. Binding of HLA-G with its ILT2 receptor demonstrated the functional active status. To verify this finding in a physiologically relevant setting, HLA-G protein expression was investigated during preimplantation development. We demonstrated HLA-G protein expression in oocytes, cleavage stage embryos, and blastocysts, where we find it in trophectoderms but also in ICM cells. During blastocyst development, a downregulation of HLA-G in the ICM cells was present. This data might be important for cell therapy and transplantation because undifferentiated hESC can contaminate the transplant of differentiated stem cells and develop into malignant cancer cells.
Collapse
Affiliation(s)
- An Verloes
- Department of Hematology, University Hospital Brussels, 1090 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Laser capture microdissection for gene expression analysis of inner cell mass and trophectoderm from blastocysts. Anal Biochem 2011; 408:169-71. [DOI: 10.1016/j.ab.2010.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/10/2010] [Accepted: 08/25/2010] [Indexed: 01/25/2023]
|
35
|
Sabour D, Araúzo-Bravo MJ, Hübner K, Ko K, Greber B, Gentile L, Stehling M, Schöler HR. Identification of genes specific to mouse primordial germ cells through dynamic global gene expression. Hum Mol Genet 2010; 20:115-25. [PMID: 20940145 DOI: 10.1093/hmg/ddq450] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molecular mechanisms underlying the commitment of cells to the germ cell lineage during mammalian embryogenesis remain poorly understood due to the limited availability of cellular materials to conduct in vitro analyses. Although primordial germ cells (PGCs)--precursors to germ cells--have been generated from embryonic stem cells (ESCs)--pluripotent stem cells derived from the inner cell mass of the blastocyst of the early embryo in vitro-the simultaneous expression of cell surface receptors and transcription factors complicates the detection of PGCs. To date, only a few genes that mark the onset of germ cell commitment in the epiblast--the outer layer of cells of the embryo--including tissue non-specific alkaline phosphatase (TNAP), Blimp1, Stella and Fragilis--have been used with some success to detect PGC formation in in vitro model systems. Here, we identified 11 genes (three of which are novel) that are specifically expressed in male and female fetal germ cells, both in vivo and in vitro, but are not expressed in ESCs. Expression of these genes allows us to distinguish committed germ cells from undifferentiated pluripotent cell populations, a prerequisite for the successful derivation of germ cells and gametes in vitro.
Collapse
Affiliation(s)
- Davood Sabour
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kito G, Aramaki S, Tanaka K, Soh T, Yamauchi N, Hattori MA. Temporal and spatial differential expression of chicken germline-specific proteins cDAZL, CDH and CVH during gametogenesis. J Reprod Dev 2010; 56:341-6. [PMID: 20332590 DOI: 10.1262/jrd.09-218a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Deleted in Azoospermia-Like (DAZL) protein coded by Dazl gene is a germline-specific RNA-binding protein essential for gametogenesis in vertebrates, and the chicken Dazl gene has also been identified in primordial germ cells (PGCs). However, the temporal and spatial expression of chicken DAZL (cDAZL) and its molecular role in germ cell development remain enigmatic. Here, we investigated the subcellular distribution and expression of cDAZL at the various stages by using a polyclonal antibody raised against its C-terminal region and compared them with those of additional germline-specific proteins chicken vasa homologue (CVH) and chicken dead end homologue (CDH). Western blot analysis for cDAZL revealed a single band in the embryonic gonads and premature chicken testis, whereas no band was detected in the premature chicken ovary. Fluorescent immunohistochemistry revealed that cDAZL was present in the nucleus and cytoplasm of circulating PGCs. Cells positive for cDAZL and CVH coexisted in the embryonic gonads and premature chicken testis, in which they were distributed near the basement membrane of seminiferous tubules. Of interest, cDAZL was not found in the premature chicken ovary, whereas CVH and CDH were present in germ cells. Collectively, three germline-specific proteins are expressed in chicken germ cells, but their patterns of expression are temporally and spatially distinct.
Collapse
Affiliation(s)
- Gakushi Kito
- Laboratory of Reproductive Physiology and Biotechnology, Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Linher K, Dyce P, Li J. Primordial germ cell-like cells differentiated in vitro from skin-derived stem cells. PLoS One 2009; 4:e8263. [PMID: 20011593 PMCID: PMC2788220 DOI: 10.1371/journal.pone.0008263] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 11/19/2009] [Indexed: 01/19/2023] Open
Abstract
Background We have previously demonstrated that stem cells isolated from fetal porcine skin have the potential to form oocyte-like cells (OLCs) in vitro. However, primordial germ cells (PGCs), which must also be specified during the stem cell differentiation to give rise to these putative oocytes at more advanced stages of culture, were not systematically characterized. The current study tested the hypothesis that a morphologically distinct population of cells derived from skin stem cells prior to OLC formation corresponds to putative PGCs, which differentiate further into more mature gametes. Methodology/Principal Findings When induced to differentiate in an appropriate microenvironment, a subpopulation of morphologically distinct cells, some of which are alkaline phosphatase (AP)-positive, also express Oct4, Fragilis, Stella, Dazl, and Vasa, which are markers indicative of germ cell formation. A known differentially methylated region (DMR) within the H19 gene locus, which is demethylated in oocytes after establishment of the maternal imprint, is hypomethylated in PGC-like cells compared to undifferentiated skin-derived stem cells, suggesting that the putative germ cell population undergoes imprint erasure. Additional evidence supporting the germ cell identity of in vitro-generated PGC-like cells is that, when labeled with a Dazl-GFP reporter, these cells further differentiate into GFP-positive OLCs. Significance The ability to generate germ cell precursors from somatic stem cells may provide an in vitro model to study some of the unanswered questions surrounding early germ cell formation.
Collapse
Affiliation(s)
- Katja Linher
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Paul Dyce
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
|
39
|
Liu J, Linher K, Li J. Porcine DAZL messenger RNA: its expression and regulation during oocyte maturation. Mol Cell Endocrinol 2009; 311:101-8. [PMID: 19540306 DOI: 10.1016/j.mce.2009.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/29/2009] [Accepted: 06/05/2009] [Indexed: 11/21/2022]
Abstract
Deleted in Azoospermia-Like (DAZL) is known to play an important role during both spermatogenesis and oogenesis, as mutations in this gene may result in male and female sterility. In order to study the expression of DAZL in the pig, we cloned the full-length coding sequence and determined its mRNA and protein expression profile in the ovary and in oocytes undergoing in vitro maturation (IVM). Immunohistochemisty revealed that DAZL protein localizes to oocytes of both preantral and antral follicles. The expression in the oocytes was also confirmed by Western blot. Immunocytochemistry and real time RT-PCR showed that the DAZL transcript and protein accumulate during oocyte maturation. In addition, glial cell line-derived neurotrophic factor (GDNF), epidermal growth factor (EGF), and follicle-stimulating hormone (FSH) significantly stimulate DAZL expression in oocytes derived from antral follicles during IVM. Our results suggest that the porcine DAZL coding sequence is highly homologous to those reported for the human and mouse cDNAs, and that DAZL expression increases during oocyte maturation.
Collapse
Affiliation(s)
- Jinghe Liu
- Department of Animal and Poultry Science, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
40
|
Embryoid bodies from mouse stem cells express oxytocin receptor, Oct-4 and DAZL. Biosystems 2009; 98:122-6. [DOI: 10.1016/j.biosystems.2009.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 08/09/2009] [Accepted: 08/10/2009] [Indexed: 01/13/2023]
|
41
|
Seligman J, Slavin S, Fabian I. A Method for Isolating Pluripotent/Multipotent Stem Cells From Blood by Using the Pluripotent and Germ-line DAZL Gene as a Marker. Stem Cells Dev 2009; 18:1263-71. [DOI: 10.1089/scd.2008.0406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Judith Seligman
- NanoDiagnostics Israel LTD, Tel Aviv University, Tel Aviv, Israel
| | - Shimon Slavin
- International Center for Cell Therapy & Cancer (ICTC) at the Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Ina Fabian
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
42
|
Lavial F, Acloque H, Bachelard E, Nieto MA, Samarut J, Pain B. Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Dev Biol 2009; 330:73-82. [PMID: 19324033 DOI: 10.1016/j.ydbio.2009.03.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 02/19/2009] [Accepted: 03/13/2009] [Indexed: 10/21/2022]
Abstract
When they are derived from blastodermal cells of the pre-primitive streak in vitro, the pluripotency of Chicken Embryonic Stem Cells (cESC) can be controlled by the cPouV and Nanog genes. These cESC can differentiate into derivatives of the three germ layers both in vitro and in vivo, but they only weakly colonize the gonads of host embryos. By contrast, non-cultured blastodermal cells and long-term cultured chicken primordial germ cells maintain full germline competence. This restriction in the germline potential of the cESC may result from either early germline determination in the donor embryos or it may occur as a result of in vitro culture. We are interested in understanding the genetic determinants of germline programming. The RNA binding protein Cvh (Chicken Vasa Homologue) is considered as one such determinant, although its role in germ cell physiology is still unclear. Here we show that the exogenous expression of Cvh, combined with appropriate culture conditions, induces cESC reprogramming towards a germ cell fate. Indeed, these cells express the Dazl, Tudor and Sycp3 germline markers, and they display improved germline colonization and adopt a germ cell fate when injected into recipient embryos. Thus, our results demonstrate that Vasa can drive ES cell differentiation towards the germ cell lineage, both in vitro and in vivo.
Collapse
Affiliation(s)
- Fabrice Lavial
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, UMR 5242, INRA, Ecole Normale Supérieure de Lyon, France
| | | | | | | | | | | |
Collapse
|
43
|
Bukovsky A, Caudle MR, Virant-Klun I, Gupta SK, Dominguez R, Svetlikova M, Xu F. Immune physiology and oogenesis in fetal and adult humans, ovarian infertility, and totipotency of adult ovarian stem cells. ACTA ACUST UNITED AC 2009; 87:64-89. [DOI: 10.1002/bdrc.20146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Zhang YH, Mei SQ, Peng XW, Niu BY, Ren ZQ, Zuo B, Xu DQ, Lei MG, Zheng R, Jiang SW, Deng CY, Xiong YZ, Li FE. Molecular characterization and SNPs analysis of the porcine Deleted in AZoospermia Like (pDAZL) gene. Anim Reprod Sci 2008; 112:415-22. [PMID: 18620821 DOI: 10.1016/j.anireprosci.2008.05.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/05/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
Abstract
The Deleted in AZoospermia Like (DAZL) gene is expressed in prenatal and postnatal germ cells. In this study, we cloned and characterized the porcine Deleted in AZoospermia Like (pDAZL) gene. We found the full-length coding sequence of the pDAZL encoded a protein of 295 amino acids with a RNA recognition motif (amino acids 41-111) and a DAZ repeat (amino acids 167-120). The deduced protein sequence of pDAZL is 92.5% and 91.5% similar to those of human and bovine, respectively. PCR-MspI-RFLP and PCR-TaqI-RFLP were established to detect an A/G mutation in intron 7 and a C/A mutation in intron 9, respectively. Associations of two SNPs with litter size traits were assessed in Large White (n=275) and DIV (n=128) pig populations, and the statistical analysis demonstrated that CC produced 0.716 more (P<0.05) piglets born alive than CD genotypes in Large White pigs at TaqI locus (C/A mutation in intron 9), and the dominance effect was 0.304 pig per litter (P<0.05). This result suggests that the pDAZL gene might be a good candidate gene of litter size trait and provides some marker information for marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Y H Zhang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Van de Velde H, Cauffman G, Tournaye H, Devroey P, Liebaers I. The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod 2008; 23:1742-7. [DOI: 10.1093/humrep/den190] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Pan HA, Liao RW, Chung CL, Teng YN, Lin YM, Kuo PL. DAZL protein expression in mouse preimplantation embryo. Fertil Steril 2008; 89:1324-7. [PMID: 17761180 DOI: 10.1016/j.fertnstert.2007.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the expression pattern of Dazl (deleted in azoospermia-like) protein in the mouse preimplantation embryo. DESIGN Experimental study. SETTING Medical research laboratory in a university hospital. ANIMAL(S) Twenty female 28- to 35-day-old FVB mice. INTERVENTION(S) Embryo collection at 1.5, 2.5, and 3.5 days postcoitus (plug date, 0.5 d postcoitus) to examine the Dazl protein expression from the two-cell embryo to the blastocyst. MAIN OUTCOME MEASURE(S) Dazl protein expression was analyzed by immunofluorescent staining. RESULT(S) There is abundant expression of Dazl protein in the cytoplasm of the blastomere. Strong fluorescent signals of Dazl protein expression were found in preimplantation embryo cytoplasm, including two-cell, eight-cell, morula, and blastocyst. CONCLUSION(S) By using an antibody raised against mouse Daz-like protein (Dazl), we showed that Dazl protein is present in all cleaving stages of the preimplantation embryo. This is the first report on the protein expression of a Dazl gene during embryogenesis in mice. However, further study is needed to evaluate the molecular functional role of Dazl.
Collapse
Affiliation(s)
- Hsien-An Pan
- Department of Obstetrics and Gynecology, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine and College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
47
|
Brink TC, Sudheer S, Janke D, Jagodzinska J, Jung M, Adjaye J. The origins of human embryonic stem cells: a biological conundrum. Cells Tissues Organs 2007; 188:9-22. [PMID: 18160822 DOI: 10.1159/000112843] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human inner cell mass (ICM) cells isolated from in vitro fertilized blastocysts are the progenitor cells used to establish in vitro stable human embryonic stem cells (hESCs) which are pluripotent and self-renew indefinitely. This long-term perpetuation of hESCs in the undifferentiated state is thought to be an in vitro adaptation of the ICM cells. To investigate at the molecular level how hESCs acquired their unique properties, transcriptional profiles of isolated ICM cells and undifferentiated hESCs were compared. We identified 33 genes enriched in the ICM compared to the trophectoderm and hESCs. These genes are involved in signaling cascades (SEMA7A and MAP3K10), cell proliferation (CUZD1 and MS4A7) and chromatin remodeling (H1FOO and HRMT1L4). Furthermore, primordial germ cell-specific genes (SGCA and TEX11) were detected as expressed in the ICM cells and not hESCs. We propose that the transcriptional differences observed between ICM cells and hESCs might be accounted for by adaptive reprogramming events induced by the in vitro culture conditions which are distinct from that of in vitro fertilized blastocysts. hESCs are a distinct cell type lacking in the human embryo but, nonetheless, resemble the ICM in their ability to differentiate into cells representative of the endodermal, ectodermal and mesodermal cell lineages.
Collapse
Affiliation(s)
- Thore C Brink
- Department of Vertebrate Genomics (Molecular Embryology and Aging), Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Teramura T, Takehara T, Kawata N, Fujinami N, Mitani T, Takenoshita M, Matsumoto K, Saeki K, Iritani A, Sagawa N, Hosoi Y. Primate embryonic stem cells proceed to early gametogenesis in vitro. CLONING AND STEM CELLS 2007; 9:144-56. [PMID: 17579549 DOI: 10.1089/clo.2006.0070] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Embryonic stem cells (ESCs) of nonhuman primates are important for research into human gametogenesis because of similarities between the embryos and fetuses of nonhuman primates and those of humans. Recently, the formation of germ cells from mouse ESCs in vitro has been reported. In this study, we established cynomolgus monkey ES cell lines (cyESCs) and attempted to induce their differentiation into germ cells to obtain further information on the development of primate germ cells by observing the markers specific to germ cells. Three cyESCs were newly established and confirmed to be pluripotent. When the cells are induced to differentiate, the transcripts of Vasa and some meiotic markers were expressed. VASA protein accumulated in differentiated cell clumps and VASA-positive cells gathered in clumps as the number of differentiation days increased. In the later stages, VASA-positive clumps coexpressed OCT-4, suggesting that these cells might correspond to early gonocytes at the postmigration stage. Furthermore, meiosis-specific gene expression was also observed. These results demonstrate that cyESCs can differentiate to developing germ cells such as primordial germ cells (PGCs) or more developed gonocytes in our differentiation systems, and may be a suitable model for studying the mechanisms of primate germ cell development.
Collapse
Affiliation(s)
- Takeshi Teramura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, Mie, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu WS, Wang A, Uno Y, Galitz D, Beattie CW, Ponce de León FA. Genomic structure and transcript variants of the bovine DAZL gene. Cytogenet Genome Res 2007; 116:65-71. [PMID: 17268180 DOI: 10.1159/000097419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 05/22/2006] [Indexed: 11/19/2022] Open
Abstract
The Deleted in AZoospermia Like (DAZL) gene is a member of the DAZ family and encodes an RNA-binding protein that is expressed in prenatal and postnatal germ cells of males and females. In the human, there are five highly-related members in the DAZ family, four (DAZ1-4) on the Y chromosome and one (DAZL) on an autosome (HSA3). Mutations in these genes have been linked to severe spermatogenic failure and infertility in men. In the present study, we have cloned and characterized the bovine DAZL (bDAZL) gene. The full-length bDAZL cDNA is predicted to encode a protein of 295 amino acids with an RNA recognition motif. The deduced protein sequence of bDAZL is 96 and 97% similar to human and mouse DAZL, respectively. Fluorescence in situ hybridization (FISH) maps bDAZL to the distal region on BTA1q. The bDAZL gene consists of 11 exons and 10 introns. A bDAZL pseudogene was identified on BTA16. Expression analysis of bDAZL in 13 different tissues by RT-PCR shows that two transcripts, variant 1 (2,996 bp) and variant 2 (1,373 bp), of the bDAZL gene are detected only in testis mRNA. The variants probably result from alternative RNA splicing as variant 1 contains an additional 1,623-bp insertion in the 3' UTR. Our results lay the groundwork for possible single nucleotide polymorphism (SNP) and functional studies of the DAZL gene in cattle.
Collapse
Affiliation(s)
- W-S Liu
- Department of Animal Biotechnology, College of Agriculture, Biotechnology and Natural Resources, University of Nevada, Reno, NV 89557, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Geuns E, De Temmerman N, Hilven P, Van Steirteghem A, Liebaers I, De Rycke M. Methylation analysis of the intergenic differentially methylated region of DLK1-GTL2 in human. Eur J Hum Genet 2007; 15:352-61. [PMID: 17213841 DOI: 10.1038/sj.ejhg.5201759] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Imprinting is a non-Mendelian form of inheritance where epigenetic modifications control mono-allelic expression depending on the parental origin. Methylation of CpG-dinucleotides at differentially methylated regions (DMRs) is one of the best-studied mechanisms directing expression to one specific parental allele. We studied the methylation patterns of the intergenic (IG)-DMR of DLK1 and GTL2. The methylation marks of the IG-DMR were analysed in human gametes, preimplantation embryos, amniocytes and blood of babies born after intracytoplasmic sperm injection (ICSI) and blood from adults using a bisulphite sequencing technique. In oocytes, the IG-DMR was mainly unmethylated while in sperm cells a generally methylated pattern was detected. This germ-line specific methylation mark was maintained in the preimplantation embryos until the second cleavage stage. Afterwards in the preimplantation embryos, intermediate methylation patterns (26-74% methylation) occurred, which may point to relaxation of the imprints. Intermediate patterns were also present in amniocytes, blood from ICSI babies and adults. We hypothesise that in the early cleavage stage embryo a strict differential methylation pattern is needed for the correct imprint establishment of surrounding imprinted genes. Once correct imprinting of the involved gene(s) is acquired, a more relaxed state of the IG-region is allowed.
Collapse
Affiliation(s)
- Elke Geuns
- Research Centre Reproduction and Genetics, University Hospital and Medical School of the Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|