1
|
Lynn T, Kelleher ME, Georges HM, McCauley EM, Logan RW, Yonkers KA, Abrahams VM. Buprenorphine Induces Human Fetal Membrane Sterile Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624850. [PMID: 39605446 PMCID: PMC11601656 DOI: 10.1101/2024.11.22.624850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Opioid-use disorder (OUD) during pregnancy has increased in the United States to critical levels and is a leading cause of maternal morbidity and mortality. Untreated OUD is associated with pregnancy complications in particular, preterm birth. Medications for OUD, such as buprenorphine, are recommended with the added benefit that treatment during pregnancy increases treatment post-partum. However, the rate of preterm birth in individuals using illicit opioids or being treated with opioid agonist therapeutics is double that of the general population. Since inflammation in the placenta and the associated fetal membranes (FM) is a common underlying cause of preterm birth, we sought to determine if the opioid, buprenorphine, induces sterile inflammation in human FMs and to examine the mechanisms involved. Using an established in vitro human FM explant system, we report that buprenorphine significantly increased FM secretion of the inflammatory cytokine IL-6; the neutrophilic chemokine IL-8; and the inflammasome-mediated cytokine IL-1β, mirroring the inflammatory profile commonly seen at the maternal-fetal interface in preterm birth. Other factors that were elevated in FMs exposed to buprenorphine included the mediators of membrane weakening, prostaglandin E2 (PGE2), and matrix metalloproteinases, MMP1 and MMP9. Furthermore, this sterile inflammatory and weakening FM response induced by buprenorphine was mediated in part by innate immune Toll-like receptor 4 (TLR4), the NLRP3 inflammasome, the μ-opioid receptor, and downstream NFκB and ERK/JNK/MAPK signaling. This may provide the mechanistic link between opioid use in pregnancy and the elevated risk for preterm birth. Since there are adverse consequences of not treating OUD, our findings may help identify ways to mitigate the impact opioids have on pregnancy outcomes while allowing the continuation of maintenance therapy.
Collapse
|
2
|
Georges HM, Cassin C, Tong M, Abrahams VM. TLR8-activating miR-146a-3p is an intermediate signal contributing to fetal membrane inflammation in response to bacterial LPS. Immunology 2024; 172:577-587. [PMID: 38631842 PMCID: PMC11223956 DOI: 10.1111/imm.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Preterm birth is the largest contributor to neonatal morbidity and is often associated with chorioamnionitis, defined as inflammation/infection of the fetal membranes (FMs). Chorioamnionitis is characterised by neutrophil infiltration of the FMs and is associated with elevated levels of the neutrophil chemoattractant, interleukin (IL)-8 and the proinflammatory cytokine, IL-1β. While FMs can respond to infections through innate immune sensors, such as toll-like receptors (TLRs), the downstream mechanisms by which chorioamnionitis arises are not fully understood. A novel group of non-classical microRNAs (miR-21a, miR-29a, miR-146a-3p, Let-7b) function as endogenous danger signals by activating the ssRNA viral sensors TLR7 and TLR8. In this study, the pro-inflammatory roles of TLR7/TLR8-activating miRs were examined as mediators of FM inflammation in response to bacterial lipopolysaccharide (LPS) using an in vitro human FM explant system, an in vivo mouse model of pregnancy, and human clinical samples. Following LPS exposure, miR-146a-3p was significantly increased in both human FM explants and wild-type mouse FMs. Expression of miR-146a-3p was also significantly elevated in FMs from women with preterm birth and chorioamnionitis. FM IL-8 and inflammasome-mediated IL-1β production in response to LPS was dependent on miR-146a-3p and TLR8 downstream of TLR4 activation. In wild-type mice, LPS exposure increased FM IL-8 and IL-1β production and induced preterm birth. In TLR7-/-/TLR8-/- mice, LPS exposure was able to initiate but not sustain preterm birth, and FM inflammation was reduced. Together, we demonstrate a novel signalling mechanism at the maternal-fetal interface in which TLR8-activating miR-146a-3p acts as an intermediate danger signal to drive FM inflammasome-dependent and -independent mechanisms of inflammation and, thus, may play a role in chorioamnionitis and subsequent preterm birth.
Collapse
Affiliation(s)
- Hanah M. Georges
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Caterina Cassin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Mancy Tong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Vikki M. Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Padron JG, Saito Reis CA, Ng PK, Norman Ing ND, Baker H, Davis K, Kurashima C, Kendal-Wright CE. Stretch Causes cffDNA and HMGB1-Mediated Inflammation and Cellular Stress in Human Fetal Membranes. Int J Mol Sci 2024; 25:5161. [PMID: 38791199 PMCID: PMC11121497 DOI: 10.3390/ijms25105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Danger-associated molecular patterns (DAMPs) are elevated within the amniotic cavity, and their increases correlate with advancing gestational age, chorioamnionitis, and labor. Although the specific triggers for their release in utero remain unclear, it is thought that they may contribute to the initiation of parturition by influencing cellular stress mechanisms that make the fetal membranes (FMs) more susceptible to rupture. DAMPs induce inflammation in many different tissue types. Indeed, they precipitate the subsequent release of several proinflammatory cytokines that are known to be key for the weakening of FMs. Previously, we have shown that in vitro stretch of human amnion epithelial cells (hAECs) induces a cellular stress response that increases high-mobility group box-1 (HMGB1) secretion. We have also shown that cell-free fetal DNA (cffDNA) induces a cytokine response in FM explants that is fetal sex-specific. Therefore, the aim of this work was to further investigate the link between stretch and the DAMPs HMGB1 and cffDNA in the FM. These data show that stretch increases the level of cffDNA released from hAECs. It also confirms the importance of the sex of the fetus by demonstrating that female cffDNA induced more cellular stress than male fetuses. Our data treating hAECs and human amnion mesenchymal cells with HMGB1 show that it has a differential effect on the ability of the cells of the amnion to upregulate the proinflammatory cytokines and propagate a proinflammatory signal through the FM that may weaken it. Finally, our data show that sulforaphane (SFN), a potent activator of Nrf2, is able to mitigate the proinflammatory effects of stretch by decreasing the levels of HMGB1 release and ROS generation after stretch and modulating the increase of key cytokines after cell stress. HMGB1 and cffDNA are two of the few DAMPs that are known to induce cytokine release and matrix metalloproteinase (MMP) activation in the FMs; thus, these data support the general thesis that they can function as potential central players in the normal mechanisms of FM weakening during the normal distension of this tissue at the end of a normal pregnancy.
Collapse
Affiliation(s)
- Justin Gary Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
- Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Chelsea A. Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Po’okela K. Ng
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Nainoa D. Norman Ing
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Hannah Baker
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Kamalei Davis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Courtney Kurashima
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Claire E. Kendal-Wright
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
- Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96826, USA
| |
Collapse
|
4
|
Current Evidence in SARS-CoV-2 mRNA Vaccines and Post-Vaccination Adverse Reports: Knowns and Unknowns. Diagnostics (Basel) 2022; 12:diagnostics12071555. [PMID: 35885461 PMCID: PMC9316835 DOI: 10.3390/diagnostics12071555] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
The novel mRNA vaccinations against COVID-19 are gaining worldwide attention for their potential efficacy, as well as for the diagnosis of some post-vaccination-reported adverse reactions. In this state-of-the-art review article, we present the current evidence regarding mainly the diagnosis of spontaneous allergic reactions, the skin occurrences, the vascular, blood, endocrine and heart events, the respiratory reports, the gastrointestinal, hepatic and kidney events, the reproductive and pregnancy issues and the muscle events, as well as the ear, eye, neurologic and psychiatric events following mRNA vaccination against COVID-19. We further present some evidence regarding the mRNA strategies, we provide important information for side effects associated with the spike protein based LNP-mRNA vaccine and its adjuvants, as well as evidence for all the possible dangerous roles of the spike protein, and we discuss our expert opinion on the knowns and the unknowns towards the topic.
Collapse
|
5
|
Ding J, Maxwell A, Adzibolosu N, Hu A, You Y, Liao A, Mor G. Mechanisms of immune regulation by the placenta: Role of type I interferon and interferon‐stimulated genes signaling during pregnancy*. Immunol Rev 2022; 308:9-24. [DOI: 10.1111/imr.13077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Jiahui Ding
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
| | - Anthony Maxwell
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
- Department of Physiology Wayne State University Detroit Michigan USA
| | - Nicholas Adzibolosu
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
- Department of Physiology Wayne State University Detroit Michigan USA
| | - Anna Hu
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
| | - Yuan You
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
| | - Aihua Liao
- Institute of Reproductive Health Center for Reproductive Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Gil Mor
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
| |
Collapse
|
6
|
Berkebile ZW, Putri DS, Abrahante JE, Seelig DM, Schleiss MR, Bierle CJ. The Placental Response to Guinea Pig Cytomegalovirus Depends Upon the Timing of Maternal Infection. Front Immunol 2021; 12:686415. [PMID: 34211475 PMCID: PMC8239309 DOI: 10.3389/fimmu.2021.686415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects the placenta, and these placental infections can cause fetal injury and/or demise. The timing of maternal HCMV infection during pregnancy is a determinant of fetal outcomes, but how development affects the placenta's susceptibility to infection, the likelihood of placental injury post-infection, and the frequency of transplacental HCMV transmission remains unclear. In this study, guinea pig cytomegalovirus (GPCMV) was used to model primary maternal infection and compare the effects of infection at two different times on the placenta. When guinea pigs were infected with GPCMV at either 21- or 35-days gestation (dGA), maternal and placental viral loads, as determined by droplet digital PCR, were not significantly affected by the timing of maternal infection. However, when the transcriptomes of gestational age-matched GPCMV-infected and control placentas were compared, significant infection-associated changes in gene expression were only observed after maternal infection at 35 dGA. Notably, transcripts associated with immune activation (e.g. Cxcl10, Ido1, Tgtp1, and Tlr8) were upregulated in the infected placenta. A GPCMV-specific in situ hybridization assay detected rare infected cells in the main placenta after maternal infection at either time, and maternal infection at 35 dGA also caused large areas of GPCMV-infected cells in the junctional zone. As GPCMV infection after mid-gestation is known to cause high rates of stillbirth and/or fetal growth restriction, our results suggest that the placenta becomes sensitized to infection-associated injury late in gestation, conferring an increased risk of adverse pregnancy outcomes after cytomegalovirus infection.
Collapse
Affiliation(s)
- Zachary W. Berkebile
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| | - Dira S. Putri
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| | - Juan E. Abrahante
- Informatics Institute, University of Minnesota, Minneapolis, MN, United States
| | - Davis M. Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Mark R. Schleiss
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| | - Craig J. Bierle
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
7
|
Rasheed ZBM, Lee YS, Kim SH, Rai RK, Ruano CSM, Anucha E, Sullivan MHF, MacIntyre DA, Bennett PR, Sykes L. Differential Response of Gestational Tissues to TLR3 Viral Priming Prior to Exposure to Bacterial TLR2 and TLR2/6 Agonists. Front Immunol 2020; 11:1899. [PMID: 32983111 PMCID: PMC7477080 DOI: 10.3389/fimmu.2020.01899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Infection/inflammation is an important causal factor in spontaneous preterm birth (sPTB). Most mechanistic studies have concentrated on the role of bacteria, with limited focus on the role of viruses in sPTB. Murine studies support a potential multi-pathogen aetiology in which a double or sequential hit of both viral and bacterial pathogens leads to a higher risk preterm labour. This study aimed to determine the effect of viral priming on bacterial induced inflammation in human in vitro models of ascending and haematogenous infection. Methods: Vaginal epithelial cells, and primary amnion epithelial cells and myocytes were used to represent cell targets of ascending infection while interactions between peripheral blood mononuclear cells (PBMCs) and placental explants were used to model systemic infection. To model the effect of viral priming upon the subsequent response to bacterial stimuli, each cell type was stimulated first with a TLR3 viral agonist, and then with either a TLR2 or TLR2/6 agonist, and responses compared to those of each agonist alone. Immunoblotting was used to detect cellular NF-κB, AP-1, and IRF-3 activation. Cellular TLR3, TLR2, and TLR6 mRNA was quantified by RT-qPCR. Immunoassays were used to measure supernatant cytokine, chemokine and PGE2 concentrations. Results: TLR3 (“viral”) priming prior to TLR2/6 agonist (“bacterial”) exposure augmented the pro-inflammatory, pro-labour response in VECs, AECs, myocytes and PBMCs when compared to the effects of agonists alone. In contrast, enhanced anti-inflammatory cytokine production (IL-10) was observed in placental explants. Culturing placental explants in conditioned media derived from PBMCs primed with a TLR3 agonist enhanced TLR2/6 agonist stimulated production of IL-6 and IL-8, suggesting a differential response by the placenta to systemic inflammation compared to direct infection as a result of haematogenous spread. TLR3 agonism generally caused increased mRNA expression of TLR3 and TLR2 but not TLR6. Conclusion: This study provides human in vitro evidence that viral infection may increase the susceptibility of women to bacterial-induced sPTB. Improved understanding of interactions between viral and bacterial components of the maternal microbiome and host immune response may offer new therapeutic options, such as antivirals for the prevention of PTB.
Collapse
Affiliation(s)
- Zahirrah B M Rasheed
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yun S Lee
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| | - Sung H Kim
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| | - Ranjit K Rai
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Camino S M Ruano
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,INSERM U1016 Institut Cochin, Paris, France
| | - Eberechi Anucha
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Mark H F Sullivan
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - David A MacIntyre
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| | - Phillip R Bennett
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| | - Lynne Sykes
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
TLR3-Dependent Activation of TLR2 Endogenous Ligands via the MyD88 Signaling Pathway Augments the Innate Immune Response. Cells 2020; 9:cells9081910. [PMID: 32824595 PMCID: PMC7464415 DOI: 10.3390/cells9081910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
The role of the adaptor molecule MyD88 is thought to be independent of Toll-like receptor 3 (TLR3) signaling. In this report, we demonstrate a previously unknown role of MyD88 in TLR3 signaling in inducing endogenous ligands of TLR2 to elicit innate immune responses. Of the various TLR ligands examined, the TLR3-specific ligand polyinosinic:polycytidylic acid (poly I:C), significantly induced TNF production and the upregulation of other TLR transcripts, in particular, TLR2. Accordingly, TLR3 stimulation also led to a significant upregulation of endogenous TLR2 ligands mainly, HMGB1 and Hsp60. By contrast, the silencing of TLR3 significantly downregulated MyD88 and TLR2 gene expression and pro-inflammatory IL1β, TNF, and IL8 secretion. The silencing of MyD88 similarly led to the downregulation of TLR2, IL1β, TNF and IL8, thus suggesting MyD88 to somehow act downstream of TLR3. Corroborating in vitro data, Myd88−/− knockout mice downregulated TNF, CXCL1; and phospho-p65 and phospho-IRF3 nuclear localization, upon poly I:C treatment in a mouse model of skin infection. Taken together, we identified a previously unknown role for MyD88 in the TLR3 signaling pathway, underlying the importance of TLRs and adapter protein interplay in modulating endogenous TLR ligands culminating in pro-inflammatory cytokine regulation.
Collapse
|
9
|
Padron JG, Saito Reis CA, Kendal-Wright CE. The Role of Danger Associated Molecular Patterns in Human Fetal Membrane Weakening. Front Physiol 2020; 11:602. [PMID: 32625109 PMCID: PMC7311766 DOI: 10.3389/fphys.2020.00602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The idea that cellular stress (including that precipitated by stretch), plays a significant role in the mechanisms initiating parturition, has gained considerable traction over the last decade. One key consequence of this cellular stress is the increased production of Danger Associated Molecular Patterns (DAMPs). This diverse family of molecules are known to initiate inflammation through their interaction with Pattern Recognition Receptors (PRRs) including, Toll-like receptors (TLRs). TLRs are the key innate immune system surveillance receptors that detect Pathogen Associated Molecular Patterns (PAMPs) during bacterial and viral infection. This is also seen during Chorioamnionitis. The activation of TLR commonly results in the activation of the pro-inflammatory transcription factor Nuclear Factor Kappa-B (NF-kB) and the downstream production of pro-inflammatory cytokines. It is thought that in the human fetal membranes both DAMPs and PAMPs are able, perhaps via their interaction with PRRs and the induction of their downstream inflammatory cascades, to lead to both tissue remodeling and weakening. Due to the high incidence of infection-driven Pre-Term Birth (PTB), including those that have preterm Premature Rupture of the Membranes (pPROM), the role of TLR in fetal membranes with Chorioamnionitis has been the subject of considerable study. Most of the work in this field has focused on the effect of PAMPs on whole pieces of fetal membrane and the resultant inflammatory cascade. This is important to understand, in order to develop novel prevention, detection, and therapeutic approaches, which aim to reduce the high number of mothers suffering from infection driven PTB, including those with pPROM. Studying the role of sterile inflammation driven by these endogenous ligands (DAMPs) activating PRRs system in the mesenchymal and epithelial cells in the amnion is important. These cells are key for the maintenance of the integrity and strength of the human fetal membranes. This review aims to (1) summarize the knowledge to date pertinent to the role of DAMPs and PRRs in fetal membrane weakening and (2) discuss the clinical potential brought by a better understanding of these pathways by pathway manipulation strategies.
Collapse
Affiliation(s)
- Justin G Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chelsea A Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Claire E Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States.,Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
10
|
Potter JA, Tong M, Aldo P, Kwon JY, Pitruzzello M, Mor G, Abrahams VM. Viral infection dampens human fetal membrane type I interferon responses triggered by bacterial LPS. J Reprod Immunol 2020; 140:103126. [PMID: 32289593 DOI: 10.1016/j.jri.2020.103126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
The maternal-fetal interface possesses innate immune strategies to protect against infections. We previously reported that prior viral infection of human fetal membranes (FMs) in vitro and mouse FMs in vivo sensitized the tissue to low dose bacterial LPS leading to augmented inflammation. The objective of this study was to examine FM production of type I interferons (IFNs) and IFN-stimulated genes (ISGs) in the context of this polymicrobial model. Human FM explants and pregnant C57BL/6 mice were treated with or without low dose LPS following exposure to media or the γ-herpes virus, MHV-68. FM RNA was analyzed by qRT-PCR for type I IFNs, ISGs, upstream signaling, and MHV-68 open reading frames (ORFs). Pre-exposure to MHV-68 followed by LPS treatment inhibited the ability of LPS to induce human FM type I IFNs (IFNA, IFNB); ISGs (OAS, MxA, APOBEC3G) and upstream signaling mediators (RIG-I, TBK-1). Signaling mediators IRF-3 and IRF-7 were also reduced. In mouse FMs, pre-exposure to MHV-68 followed by LPS treatment reduced the ability of LPS to upregulate Ifna, Ifnb, Mxa, Irf7, and also reduced Irf3. MHV-68 infection of FMs induced ORF45 which targets IRF-7, and this was further augmented in response to a combination of MHV-68 and LPS. Together, these findings indicate that a viral infection blunts FM type I IFN production and signaling in response to LPS leading to a suppressed ISG response. Our studies suggest that a viral infection inhibits this protective FM response by negatively regulating IRF-7 through ORF45, leaving the maternal-fetal interface vulnerable to further viral attack.
Collapse
Affiliation(s)
- Julie A Potter
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Mancy Tong
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ja Young Kwon
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mary Pitruzzello
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Gil Mor
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA; C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
11
|
Lim R, Barker G, Lappas M. SMAD7 regulates proinflammatory and prolabor mediators in amnion and myometrium. Biol Reprod 2018; 97:288-301. [PMID: 29044425 DOI: 10.1093/biolre/iox080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Preterm birth continues to be a significant public health problem. Infection (bacterial and or viral) and inflammation, by stimulating proinflammatory cytokines, adhesion molecules, and matrix metalloproteinase 9 (MMP9), play a central role in the rupture of membranes and myometrial contractions. SMAD7 has been implicated in regulating the inflammatory response; however, no studies have been performed with regard to human labor. In this study, we determined the effect of spontaneous human labor and prolabor mediators on SMAD7 expression in myometrium and fetal membranes. Functional studies were employed to investigate the effect of siRNA knockdown of SMAD7 (siSMAD7) in regulating infection and inflammation-induced prolabor mediators. SMAD7 mRNA and protein expression were significantly higher with spontaneous term labor, compared to no labor, in myometrium and fetal membranes. SMAD7 expression was also significantly higher in amnion from women with preterm chorioamnionitis. The proinflammatory cytokines IL1B and TNF, the bacterial product fsl-1, and the viral dsRNA analog poly(I:C) significantly increased SMAD7 in myometrial cells and amnion cells. In myometrial cells, siSMAD7 cells significantly decreased cytokine (IL6) and chemokine (CXCL1, CXCL8, CCL2 are also known as GRO-alpha, interleukin (IL)-8 and monocyte chemotactic protein-1 (MCP-1)) production induced by IL1B, TNF, and fsl-1. There was also a decrease in the expression of adhesion molecules intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) in siSMAD7 cells, and MMP9 expression. In amnion, siSMAD7 cells treated with IL1B also decreased cytokine and chemokine production, ICAM1 and MMP9 expression. In conclusion, we report a proinflammatory role for SMAD7 in human gestational tissues, with SMAD7 silencing attenuating the inflammatory response.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
12
|
Cakan P, Yildiz S, Ozgocer T, Yildiz A, Vardi N. Maternal viral mimetic administration at the beginning of fetal hypothalamic nuclei development accelerates puberty in female rat offspring. Can J Physiol Pharmacol 2018; 96:506-514. [DOI: 10.1139/cjpp-2016-0535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study aimed to investigate the effects of maternal viral infection during a critical time window of fetal hypothalamic development on timing of puberty in the female offspring. For that purpose, a viral mimetic (i.e., synthetic double-strand RNA, namely, polyinosinic–polycytidylic acid, poly (I:C)) or saline was injected (i.p.) to the pregnant rats during the beginning (day 12 of pregnancy, n = 5 for each group) or at the end of this time window (day 14 of pregnancy, n = 5 for each group). Four study groups were formed from the female pups (n = 9–10 pups/group). Following weaning of pups, vaginal opening and vaginal smearing was studied daily until 2 sequential estrous cycles were observed. During the second diestrus phase, blood samples were taken for progesterone, leptin, corticosterone, follicle-stimulating hormone, and luteinizing hormone. Maternal poly (I:C) injection on day 12 of pregnancy increased body mass and reduced the time to puberty in the female offspring. Neither poly (I:C) nor timing of injection affected other parameters studied (p > 0.05). It has been shown for the first time that maternal viral infection during the beginning of fetal hypothalamic development might hasten puberty by increasing body mass in rat offspring.
Collapse
Affiliation(s)
- Pinar Cakan
- Department of Physiology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Sedat Yildiz
- Department of Physiology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Tuba Ozgocer
- Department of Physiology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Azibe Yildiz
- Department of Histology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Nigar Vardi
- Department of Histology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| |
Collapse
|
13
|
Cross SN, Nelson RA, Potter JA, Norwitz ER, Abrahams VM. Magnesium sulfate differentially modulates fetal membrane inflammation in a time-dependent manner. Am J Reprod Immunol 2018; 80:e12861. [PMID: 29709093 DOI: 10.1111/aji.12861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Chorioamnionitis and infection-associated inflammation are major causes of preterm birth. Magnesium sulfate (MgSO4 ) is widely used in obstetrics as a tocolytic; however, its mechanism of action is unclear. This study sought to investigate how MgSO4 modulates infection-associated inflammation in fetal membranes (FMs), and whether the response was time dependent. METHOD OF STUDY Human FM explants were treated with or without bacterial lipopolysaccharide (LPS); with or without MgSO4 added either: 1 hour before LPS; at the same time as LPS; 1 hour post-LPS; or 2 hours post-LPS. Explants were also treated with or without viral dsRNA and LPS, alone or in combination; and MgSO4 added 1 hour post-LPS After 24 hours, supernatants were measured for cytokines/chemokines; and tissue lysates measured for caspase-1 activity. RESULTS Lipopolysaccharide-induced FM inflammation by upregulating the secretion of a number of inflammatory cytokines/chemokines. Magnesium sulfate administered 1-hour post-LPS inhibited FM secretion of IL-1β, IL-6, G-CSF, RANTES, and TNFα. Magnesium sulfate administered 2 hours post-LPS augmented FM secretion of these factors as well as IL-8, IFNγ, VEGF, GROα and IP-10. Magnesium sulfate delivered 1- hour post-LPS inhibited LPS-induced caspase-1 activity, and inhibited the augmented IL-1β response triggered by combination viral dsRNA and LPS. CONCLUSION Magnesium sulfate differentially modulates LPS-induced FM inflammation in a time-dependent manner, in part through its modulation of caspase-1 activity. Thus, the timing of MgSO4 administration may be critical in optimizing its anti-inflammatory effects in the clinical setting. MgSO4 might also be useful at preventing FM inflammation triggered by a polymicrobial viral-bacterial infection.
Collapse
Affiliation(s)
- Sarah N Cross
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Rachel A Nelson
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Julie A Potter
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Errol R Norwitz
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
The IL-1β signalling pathway and its role in regulating pro-inflammatory and pro-labour mediators in human primary myometrial cells. Reprod Biol 2017; 17:333-340. [PMID: 28988892 DOI: 10.1016/j.repbio.2017.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
Abstract
Interleukin (IL)-1β plays a central role in the processes of human labour and delivery. The adaptor proteins involved in the IL-1β signalling pathway in human myometrium are not known. This study sought to determine the role of the adaptor proteins myeloid differentiation primary response 88 (MyD88), tumour necrosis factor receptor-associated factor 6 (TRAF6), IL-1 receptor-associated kinase 4 (IRAK4) and transforming growth factor beta-activated kinase 1 (TAK1) in IL-1β-induced formation of pro-inflammatory and pro-labour mediators in human myometrium. Human primary myometrial cells were transfected with siRNA against MyD88 (siMYD88), TRAF6 (siTRAF6), IRAK4 (siIRAK4) or TAK1 (siTAK1), treated with IL-1β, and assayed for the mRNA expression and or secretion of pro-inflammatory and pro-labour mediators. Transfection of primary myometrial cells with siMYD88, siTRAF6, siIRAK4 and siTAK1 significantly decreased IL-1β-induced IL-1α, IL-6, growth-regulated alpha protein (GRO-α), IL-8, monocyte chemoattractant protein (MCP)-1, intercellular adhesion molecule (ICAM)-1 and cyclooxygenase (COX)-2 mRNA expression and release of IL-6, GRO-α, IL-8, MCP-1, ICAM-1 and prostaglandin PGF2α. The expression and secretion of the extracellular matrix remodelling enzyme matrix metalloproteinase (MMP)-9 was significantly lower with siMYD88 and siTRAF6. Finally, IL-1β-induced nuclear factor κB (NF-κB) transcriptional activity was significantly attenuated by transfection with siMyD88, siTRAF6 and siIRAK4; there was no effect of siTAK1 transfection on NF-κB transcriptional activity. Collectively, these findings suggest that MyD88, TRAF6, IRAK4 and TAK1 are involved in IL-1β signalling in human myometrium. Further studies are required to determine if inhibition of these proteins can prevent preterm birth.
Collapse
|
15
|
Cross SN, Potter JA, Aldo P, Kwon JY, Pitruzzello M, Tong M, Guller S, Rothlin CV, Mor G, Abrahams VM. Viral Infection Sensitizes Human Fetal Membranes to Bacterial Lipopolysaccharide by MERTK Inhibition and Inflammasome Activation. THE JOURNAL OF IMMUNOLOGY 2017; 199:2885-2895. [PMID: 28916522 DOI: 10.4049/jimmunol.1700870] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/21/2017] [Indexed: 01/12/2023]
Abstract
Chorioamnionitis, premature rupture of fetal membranes (FMs), and subsequent preterm birth are associated with local infection and inflammation, particularly IL-1β production. Although bacterial infections are commonly identified, other microorganisms may play a role in the pathogenesis. Because viral pandemics, such as influenza, Ebola, and Zika, are becoming more common, and pregnant women are at increased risk for associated complications, this study evaluated the impact that viral infection had on human FM innate immune responses. This study shows that a herpes viral infection of FMs sensitizes the tissue to low levels of bacterial LPS, giving rise to an exaggerated IL-1β response. Using an ex vivo human FM explant system and an in vivo mouse model of pregnancy, we report that the mechanism by which this aggravated inflammation arises is through the inhibition of the TAM receptor, MERTK, and activation of the inflammasome. The TAM receptor ligand, growth arrest specific 6, re-establishes the normal FM response to LPS by restoring and augmenting TAM receptor and ligand expression, as well as by preventing the exacerbated IL-1β processing and secretion. These findings indicate a novel mechanism by which viruses alter normal FM immune responses to bacteria, potentially giving rise to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Sarah N Cross
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Julie A Potter
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Ja Young Kwon
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Mary Pitruzzello
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Mancy Tong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Carla V Rothlin
- Department of Immunobiology and Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| |
Collapse
|
16
|
Lim R, Barker G, Lappas M. TLR2, TLR3 and TLR5 regulation of pro-inflammatory and pro-labour mediators in human primary myometrial cells. J Reprod Immunol 2017; 122:28-36. [PMID: 28844021 DOI: 10.1016/j.jri.2017.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/06/2017] [Accepted: 08/16/2017] [Indexed: 02/01/2023]
Abstract
Preterm birth continues to be a significant global health care issue, due to our lack of understanding of the mechanisms that drive human labour and delivery. Toll-like receptors (TLRs) are essential in triggering an inflammatory response in human gestational tissues, leading to the production of pro-inflammatory and pro-labour mediators, and thus preterm birth. The aims of this study were to determine whether the adaptor molecules associated with TLR2, TLR3 and TLR5 signalling are involved in human myometrium. Primary human myometrial cells were transfected with siRNA against TIRAP, IRAK1, IRAK4, TAK1and stimulated with bacterial product fsl-1 (TLR2); TRIF, TRADD, TRAF6, RIP1, TAK1 and stimulated with dsRNA viral analogue poly(I:C) (TLR3); IRAK1, IRAK4, TAK1 and stimulated with bacterial product flagellin (TLR5), and assayed for production of pro-inflammatory and pro-labour mediators. Cells transfected with TIRAP, IRAK1, IRAK4 or TAK1 all showed a decrease in fsl-1-induced expression of cytokines (IL-1α, IL-1β, IL-6), chemokines (GRO-α, IL-8, MCP-1), adhesion molecule ICAM-1, cyclooxygenase (COX)-2 mRNA and release of PGF2α and MMP-9 expression. Cells transfected with TRIF, TRAF6, RIP1 or TAK1 all decreased production of poly(I:C)-induced IL-1α, IL-1β, IL-6, GRO-α, IL-8, MCP-1, ICAM-1 and MMP-9 expression. Cells transfected with IRAK1, IRAK4 or TAK1 all showed decreased expression of flagellin-induced cytokine and chemokine expression, ICAM-1 and MMP-9 expression. Lastly, transfection with these siRNAs decreased fsl-1, poly(I:C) and flagellin-induced NF-κB transcriptional activity. Our study signifies that these adaptor molecules are necessary for the proper production of cytokines, chemokines and pro-labour mediators after TLR ligation.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
17
|
Bryant AH, Menzies GE, Scott LM, Spencer‐Harty S, Davies LB, Smith RA, Jones RH, Thornton CA. Human gestation-associated tissues express functional cytosolic nucleic acid sensing pattern recognition receptors. Clin Exp Immunol 2017; 189:36-46. [PMID: 28295207 PMCID: PMC5461091 DOI: 10.1111/cei.12960] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
The role of viral infections in adverse pregnancy outcomes has gained interest in recent years. Innate immune pattern recognition receptors (PRRs) and their signalling pathways, that yield a cytokine output in response to pathogenic stimuli, have been postulated to link infection at the maternal-fetal interface and adverse pregnancy outcomes. The objective of this study was to investigate the expression and functional response of nucleic acid ligand responsive Toll-like receptors (TLR-3, -7, -8 and -9), and retinoic acid-inducible gene 1 (RIG-I)-like receptors [RIG-I, melanoma differentiation-associated protein 5 (MDA5) and Laboratory of Genetics and Physiology 2(LGP2)] in human term gestation-associated tissues (placenta, choriodecidua and amnion) using an explant model. Immunohistochemistry revealed that these PRRs were expressed by the term placenta, choriodecidua and amnion. A statistically significant increase in interleukin (IL)-6 and/or IL-8 production in response to specific agonists for TLR-3 (Poly(I:C); low and high molecular weight), TLR-7 (imiquimod), TLR-8 (ssRNA40) and RIG-I/MDA5 (Poly(I:C)LyoVec) was observed; there was no response to a TLR-9 (ODN21798) agonist. A hierarchical clustering approach was used to compare the response of each tissue type to the ligands studied and revealed that the placenta and choriodecidua generate a more similar IL-8 response, while the choriodecidua and amnion generate a more similar IL-6 response to nucleic acid ligands. These findings demonstrate that responsiveness via TLR-3, TLR-7, TLR-8 and RIG-1/MDA5 is a broad feature of human term gestation-associated tissues with differential responses by tissue that might underpin adverse obstetric outcomes.
Collapse
Affiliation(s)
- A. H. Bryant
- Institute of Life Science, Swansea University Medical School
| | - G. E. Menzies
- Institute of Life Science, Swansea University Medical School
| | - L. M. Scott
- Institute of Life Science, Swansea University Medical School
| | - S. Spencer‐Harty
- Department of HistopathologyAbertawe Bro Morgannwg University Health BoardSwanseaWalesUK
| | - L. B. Davies
- Institute of Life Science, Swansea University Medical School
| | - R. A. Smith
- Institute of Life Science, Swansea University Medical School
| | - R. H. Jones
- Institute of Life Science, Swansea University Medical School
| | - C. A. Thornton
- Institute of Life Science, Swansea University Medical School
| |
Collapse
|
18
|
Liong S, Lim R, Barker G, Lappas M. Hepatitis A virus cellular receptor 2 (HAVCR2) is decreased with viral infection and regulates pro-labour mediators OA. Am J Reprod Immunol 2017; 78. [PMID: 28466996 DOI: 10.1111/aji.12696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Intrauterine infection caused by viral infection has been implicated to contribute to preterm birth. Hepatitis A virus cellular receptor 2 (HAVCR2) regulates inflammation in non-gestational tissues in response to viral infection. METHOD OF STUDY The aims of this study were to determine the effect of: (i) viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) on HAVCR2 expression; and (ii) HAVCR2 silencing by siRNA (siHAVCR2) in primary amnion and myometrial cells on poly(I:C)-induced inflammation. RESULTS In human foetal membranes and myometrium, HAVCR2 mRNA and protein expression was decreased when exposed to poly(I:C). Treatment of primary amnion and myometrial cells with poly(I:C) significantly increased the expression and release of pro-inflammatory cytokines TNF, IL1A, IL1B and IL6; the expression of chemokines CXCL8 and CCL2; the expression and secretion of adhesion molecules ICAM1 and VCAM1; and PTGS2 and PTGFR mRNA expression and the release of prostaglandin PGF2α . This increase was significantly augmented in cells transfected with siHAVCR2. Furthermore, mRNA expression of anti-inflammatory cytokines IL4 and IL10 was significantly decreased. CONCLUSION Collectively, our data suggest that HAVCR2 regulates cytokines, chemokines, prostaglandins and cell adhesion molecules in the presence of viral infection. This suggests a potential for HAVCR2 activators as therapeutics for the management of preterm birth associated with viral infections.
Collapse
Affiliation(s)
- Stella Liong
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Vic., Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Vic., Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Vic., Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Vic., Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia
| |
Collapse
|
19
|
Oliveira RADS, Cordeiro MT, Moura PMMFD, Baptista Filho PNB, Braga-Neto UDM, Marques ETDA, Gil LHVG. Serum cytokine/chemokine profiles in patients with dengue fever (DF) and dengue hemorrhagic fever (FHD) by using protein array. J Clin Virol 2017; 89:39-45. [PMID: 28242509 DOI: 10.1016/j.jcv.2017.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND DENV infection can induce different clinical manifestations varying from mild forms to dengue fever (DF) or the severe hemorrhagic fever (DHF). Several factors are involved in the progression from DF to DHF. No marker is available to predict this progression. Such biomarker could allow a suitable medical care at the beginning of the infection, improving patient prognosis. OBJECTIVES The aim of this study was to compare the serum expression levels of acute phase proteins in a well-established cohort of dengue fever (DF) and dengue hemorrhagic fever (DHF) patients, in order to individuate a prognostic marker of diseases severity. STUDY DESIGN The serum levels of 36 cytokines, chemokines and acute phase proteins were determined in DF and DHF patients and compared to healthy volunteers using a multiplex protein array and near-infrared (NIR) fluorescence detection. Serum levels of IL-1ra, IL-23, MIF, sCD40 ligand, IP-10 and GRO-α were also determined by ELISA. RESULTS At the early stages of infection, GRO-α and IP-10 expression levels were different in DF compared to DHF patients. Besides, GRO-α was positively correlated with platelet counts and IP-10 was negatively correlated with total protein levels. CONCLUSIONS These findings suggest that high levels of GRO-α during acute DENV infection may be associated with a good prognosis, while high levels of IP-10 may be a warning sign of infection severity.
Collapse
Affiliation(s)
| | - Marli Tenório Cordeiro
- Departamento de Virologia, Centro de Pesquisas Aggeu Magalhães-Fundação Oswaldo Cruz-Fiocruz, Recife, PE, Brazil
| | | | | | | | - Ernesto Torres de Azevedo Marques
- Departamento de Virologia, Centro de Pesquisas Aggeu Magalhães-Fundação Oswaldo Cruz-Fiocruz, Recife, PE, Brazil; Department of Infectious Diseases and Microbiology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
20
|
Kauffman KJ, Mir FF, Jhunjhunwala S, Kaczmarek JC, Hurtado JE, Yang JH, Webber MJ, Kowalski PS, Heartlein MW, DeRosa F, Anderson DG. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 2016; 109:78-87. [PMID: 27680591 PMCID: PMC5267554 DOI: 10.1016/j.biomaterials.2016.09.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
mRNA has broad potential for treating diseases requiring protein expression. However, mRNA can also induce an immune response with associated toxicity. Replacement of uridine bases with pseudouridine has been postulated to modulate both mRNA immunogenicity and potency. Here, we explore the immune response and activity of lipid nanoparticle-formulated unmodified and pseudouridine-modified mRNAs administered systemically in vivo. Pseudouridine modification to mRNA had no significant effect on lipid nanoparticle physical properties, protein expression in vivo, or mRNA immunogenicity compared to unmodified mRNA when delivered systemically with liver-targeting lipid nanoparticles, but reduced in vitro transfection levels. Indicators of a transient, extracellular innate immune response to mRNA were observed, including neutrophilia, myeloid cell activation, and up-regulation of four serum cytokines. This study provides insight into the immune responses to mRNA lipid nanoparticles, and suggests that pseudouridine modifications may be unnecessary for therapeutic application of mRNA in the liver.
Collapse
Affiliation(s)
- Kevin J Kauffman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Faryal F Mir
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Siddharth Jhunjhunwala
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James C Kaczmarek
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juan E Hurtado
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jung H Yang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew J Webber
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Lappas M. KLF5 regulates infection- and inflammation-induced pro-labour mediators in human myometrium. Reproduction 2015; 149:413-24. [DOI: 10.1530/rep-14-0597] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transcription factor Kruppel-like factor 5 (KLF5) has been shown to associate with nuclear factor kappa B (NFκB) to regulate genes involved in inflammation. However, there are no studies on the expression and regulation of KLF5 in the processes of human labour and delivery. Thus, the aims of this study were to determine the effect of i) human labour on KLF5 expression in both foetal membranes and myometrium; ii) the pro-inflammatory cytokine interleukin 1 beta (IL1β), bacterial product flagellin and the viral dsRNA analogue poly(I:C) on KLF5 expression and iii) KLF5 knockdown by siRNA in human myometrial primary cells on pro-inflammatory and pro-labour mediators. In foetal membranes, there was no effect of term or preterm labour on KLF5 expression. In myometrium, the term labour was associated with an increase in nuclear KLF5 protein expression. Moreover, KLF5 expression was also increased in myometrial cells treated with IL1β, flagellin or poly(IC), likely factors contributing to preterm birth. KLF5 silencing in myometrial cells significantly decreased IL1β-induced cytokine expression (IL6 and IL8 mRNA expression and release), COX2 mRNA expression, and subsequent release of prostaglandins PGE2 and PGF2α. KLF5 silencing also significantly reduced flagellin- and poly(I:C)-induced IL6 and IL8 mRNA expression. Lastly, IL1β-, flagellin- and poly(I:C)-stimulated NFκB transcriptional activity was significantly suppressed in KLF5-knockout myometrial cells. In conclusion, this study describes novel data in which KLF5 is increased in labouring myometrium, and KLF5 silencing decreased inflammation- and infection-induced pro-labour mediators.
Collapse
|
22
|
Liong S, Lappas M. The Stress-responsive Heme Oxygenase (HO)-1 Isoenzyme is Increased in Labouring Myometrium where it Regulates Contraction-associated Proteins. Am J Reprod Immunol 2015; 74:62-76. [DOI: 10.1111/aji.12366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/16/2015] [Indexed: 12/21/2022] Open
Affiliation(s)
- Stella Liong
- Mercy Perinatal Research Centre; Mercy Hospital for Women; Heidelberg Vic. Australia
- Obstetrics, Nutrition and Endocrinology Group; Department of Obstetrics and Gynaecology; University of Melbourne; Melbourne Vic. Australia
| | - Martha Lappas
- Mercy Perinatal Research Centre; Mercy Hospital for Women; Heidelberg Vic. Australia
- Obstetrics, Nutrition and Endocrinology Group; Department of Obstetrics and Gynaecology; University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
23
|
Lim R, Barker G, Lappas M. Activation of AMPK in human fetal membranes alleviates infection-induced expression of pro-inflammatory and pro-labour mediators. Placenta 2015; 36:454-62. [PMID: 25659498 DOI: 10.1016/j.placenta.2015.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/30/2022]
Abstract
INTRODUCTION In non-gestational tissues, the activation of adenosine monophosphate (AMP)-activated kinase (AMPK) is associated with potent anti-inflammatory actions. Infection and/or inflammation, by stimulating pro-inflammatory cytokines and matrix metalloproteinase (MMP)-9, play a central role in the rupture of fetal membranes. However, no studies have examined the role of AMPK in human labour. METHODS Fetal membranes, from term and preterm, were obtained from non-labouring and labouring women, and after preterm pre-labour rupture of membranes (PPROM). AMPK activity was assessed by Western blotting of phosphorylated AMPK expression. To determine the effect of AMPK activators on pro-inflammatory cytokines, fetal membranes were pre-treated with AMPK activators then stimulated with bacterial products LPS and flagellin or viral dsDNA analogue poly(I:C). Primary amnion cells were used to determine the effect of AMPK activators on IL-1β-stimulated MMP-9 expression. RESULTS AMPK activity was decreased with term labour. There was no effect of preterm labour. AMPK activity was also decreased in preterm fetal membranes, in the absence of labour, with PROM compared to intact membranes. AMPK activators AICAR, phenformin and A769662 significantly decreased IL-6 and IL-8 stimulated by LPS, flagellin and poly(I:C). Primary amnion cells treated with AMPK activators significantly decreased IL-1β-induced MMP-9 expression. DISCUSSION The decrease in AMPK activity in fetal membranes after spontaneous term labour and PPROM indicates an anti-inflammatory role for AMPK in human labour and delivery. The use of AMPK activators as possible therapeutics for threatened preterm labour would be an exciting future avenue of research.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Adult
- Cells, Cultured
- Chorioamnionitis/drug therapy
- Chorioamnionitis/immunology
- Chorioamnionitis/metabolism
- Chorioamnionitis/pathology
- Enzyme Activation/drug effects
- Enzyme Activators/pharmacology
- Extraembryonic Membranes/drug effects
- Extraembryonic Membranes/immunology
- Extraembryonic Membranes/metabolism
- Extraembryonic Membranes/pathology
- Female
- Fetal Membranes, Premature Rupture/drug therapy
- Fetal Membranes, Premature Rupture/immunology
- Fetal Membranes, Premature Rupture/metabolism
- Fetal Membranes, Premature Rupture/pathology
- Flagellin/toxicity
- Humans
- Inflammation Mediators/metabolism
- Labor, Obstetric/immunology
- Labor, Obstetric/metabolism
- Ligands
- Lipopolysaccharides/toxicity
- Obstetric Labor, Premature/drug therapy
- Obstetric Labor, Premature/immunology
- Obstetric Labor, Premature/metabolism
- Obstetric Labor, Premature/pathology
- Phosphorylation/drug effects
- Placentation
- Pregnancy
- Protein Processing, Post-Translational/drug effects
- Tissue Culture Techniques
- Toll-Like Receptors/agonists
- Toll-Like Receptors/metabolism
Collapse
Affiliation(s)
- R Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - G Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - M Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
24
|
Lim R, Barker G, Lappas M. The transcription factor Nrf2 is decreased after spontaneous term labour in human fetal membranes where it exerts anti-inflammatory properties. Placenta 2015; 36:7-17. [DOI: 10.1016/j.placenta.2014.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 01/01/2023]
|
25
|
Potter JA, Garg M, Girard S, Abrahams VM. Viral single stranded RNA induces a trophoblast pro-inflammatory and antiviral response in a TLR8-dependent and -independent manner. Biol Reprod 2014; 92:17. [PMID: 25429091 DOI: 10.1095/biolreprod.114.124032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Interest is growing in the role of viral infections and their association with adverse pregnancy outcomes. The trophoblast is permissive to viruses, but little is known about their impact on the placenta. We previously established that viral single stranded RNA (ssRNA), a Toll-like receptor 8 (TLR8) agonist, induces a restricted trophoblast pro-inflammatory cytokine/chemokine response by upregulating the secretion of interleukin (IL)-6 and IL-8. In parallel, the type I interferon, IFNbeta, is produced and acts back on the cell in an autocrine/paracrine manner to trigger caspase-3-dependent apoptosis. In this study, we sought to extend these findings by determining the mechanisms involved, examining whether viral ssRNA could induce a trophoblast antiviral response, and evaluating the influence of viral ssRNA on pregnancy outcome using a mouse model. Viral ssRNA induced human first-trimester trophoblast inflammation, type I interferon production, an antiviral response, and apoptosis in both a TLR8/MyD88-dependent and -independent manner. Furthermore, administration of viral ssRNA to pregnant mice induced placental caspase-3 activation, a pro-inflammatory cytokine/chemokine, type I interferon, and antiviral response as well as immune cell infiltration. Thus, ssRNA viral infections may compromise pregnancy by altering placental trophoblast survival and function through both TLR8 and non-TLR8 signaling pathways, leading to immune changes at the maternal-fetal interface.
Collapse
Affiliation(s)
- Julie A Potter
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Divisions of Reproductive Sciences and Maternal-Fetal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Manish Garg
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom
| | - Sylvie Girard
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Divisions of Reproductive Sciences and Maternal-Fetal Medicine, Yale School of Medicine, New Haven, Connecticut Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Divisions of Reproductive Sciences and Maternal-Fetal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
26
|
Khan RN, Hay DP. A clear and present danger: inflammasomes DAMPing down disorders of pregnancy. Hum Reprod Update 2014; 21:388-405. [PMID: 25403436 DOI: 10.1093/humupd/dmu059] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND When the normal progression of pregnancy is threatened, inflammatory processes are often amplified in order to minimize detrimental effects and eliminate noxious agents. Inflammasomes are unique, intracellular, multiprotein assemblies that enable caspase-1 mediated proteolytic processing of the proinflammatory cytokine interleukin-1β, levels of which are elevated in some forms of preterm birth and maternal metabolic disorders. METHODS A comprehensive review based on a search of PubMed and Medline for terms and combinations of terms incorporating 'inflammation', 'inflammasome', 'pregnancy', 'preterm birth', 'pre-eclampsia', 'interleukin-1', 'caspase-1' and others selected to capture key articles. RESULTS In the decade since the discovery of the inflammasome, between January 2002 and June 2014 over 2200 articles have been published. Articles in the reproductive field are scarce but there is clear evidence for a role of the inflammasome axis in pregnancy, preterm birth and the maternal metabolic syndrome. CONCLUSION Further investigations on the inflammasome in pregnancy are needed in order to elucidate the biology of this unique structure in reproduction. Coordination of maternal, fetal and placental aspects of inflammasome function will potentially yield new information on the detection and transduction of host and non-host signals in the inflammatory response.
Collapse
Affiliation(s)
- Raheela N Khan
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK
| | - Daniel P Hay
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK
| |
Collapse
|