1
|
Hou J, Wang X, Zhang J, Shen Z, Li X, Yang Y. Chuanxiong Renshen Decoction Inhibits Alzheimer's Disease Neuroinflammation by Regulating PPARγ/NF-κB Pathway. Drug Des Devel Ther 2024; 18:3209-3232. [PMID: 39071817 PMCID: PMC11283787 DOI: 10.2147/dddt.s462266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Background and Aim Previous studies of our research group have shown that Chuanxiong Renshen Decoction (CRD) has the effect of treating AD, but the exact mechanism of its effect is still not clarified. The aim of this study was to investigate the effect and mechanism of CRD on AD neuroinflammation. Materials and Methods Morris Water Maze (MWM) tests were employed to assess the memory and learning capacity of AD mice. HE and Nissl staining were used to observe the neural cells of mice. The expression of Iba-1 and CD86 were detected by immunohistochemical staining. Utilize UHPLC-MS/MS metabolomics techniques and the KEGG to analyze the metabolic pathways of CRD against AD. Lipopolysaccharide (LPS) induced BV2 microglia cells to construct a neuroinflammatory model. The expression of Iba-1 and CD86 were detected by immunofluorescence and flow cytometry. The contents of TNF-α and IL-1β were detected by ELISA. Western blot assay was used to detect the expression of PPARγ, p-NF-κB p65, NF-κB p65 proteins and inflammatory cytokines iNOS and COX-2 in PPARγ/NF-κB pathway with and without PPARγ inhibitor GW9662. Results CRD ameliorated the learning and memory ability of 3×Tg-AD mice, repaired the damaged nerve cells in the hippocampus, reduced the area of Iba-1 and CD86 positive areas in both the hippocampus and cortex regions, as well as attenuated serum levels of IL-1β and TNF-α in mice. CRD-containing serum significantly decreased the expression level of Iba-1, significantly reduced the levels of TNF-α and IL-1β, significantly increased the protein expression of PPARγ, and significantly decreased the proteins expression of iNOS, COX-2 and p-NF-κB p65 in BV2 microglia cells. After addition of PPARγ inhibitor GW9662, the inhibitory effect of CRD-containing serum on NF-κB activation was significantly weakened. Conclusion CRD can activate PPARγ, regulating PPARγ/NF-κB signaling pathway, inhibiting microglia over-activation and reducing AD neuroinflammation.
Collapse
Affiliation(s)
- Jinling Hou
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Xiaoyan Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Jian Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Zhuojun Shen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Yuanxiao Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Monsalvo-Maraver LA, Ovalle-Noguez EA, Nava-Osorio J, Maya-López M, Rangel-López E, Túnez I, Tinkov AA, Tizabi Y, Aschner M, Santamaría A. Interactions Between the Ubiquitin-Proteasome System, Nrf2, and the Cannabinoidome as Protective Strategies to Combat Neurodegeneration: Review on Experimental Evidence. Neurotox Res 2024; 42:18. [PMID: 38393521 PMCID: PMC10891226 DOI: 10.1007/s12640-024-00694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Neurodegenerative disorders are chronic brain diseases that affect humans worldwide. Although many different factors are thought to be involved in the pathogenesis of these disorders, alterations in several key elements such as the ubiquitin-proteasome system (UPS), the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the endocannabinoid system (ECS or endocannabinoidome) have been implicated in their etiology. Impairment of these elements has been linked to the origin and progression of neurodegenerative disorders, while their potentiation is thought to promote neuronal survival and overall neuroprotection, as proved with several experimental models. These key neuroprotective pathways can interact and indirectly activate each other. In this review, we summarize the neuroprotective potential of the UPS, ECS, and Nrf2 signaling, both separately and combined, pinpointing their role as a potential therapeutic approach against several hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Luis Angel Monsalvo-Maraver
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| | - Enid A Ovalle-Noguez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Jade Nava-Osorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Marisol Maya-López
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Edgar Rangel-López
- Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba (IMIBIC), Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Córdoba, Spain
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
3
|
He Z, Zhang H, Li X, Shen L, Li N, Cheng S, Liu Q. Comparative proteomic analysis of cerebral cortex revealed neuroprotective mechanism of esculentoside A on Alzheimer's disease. Eur J Pharmacol 2024; 964:176226. [PMID: 38128868 DOI: 10.1016/j.ejphar.2023.176226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Esculentoside A (EsA), isolated from phytolacca esculenta, is a saponin showing neuroprotective effect in the mouse models of Alzheimer's disease (AD). To investigate its action target and underlying mechanism, this study used the proteomics technique of isobaric tags for relative and absolute quantification (iTRAQ) to analyze the differentially expressed proteins (DEPs) in the cerebral cortex of EsA-treated and untreated triple-transgenic 3 × Tg-AD model mice. Proteomic comparison revealed 250, 436, and 903 DEPs in three group pairs, i.e. AD/Wild-type (WT), AD+5 mg/kg EsA/AD, AD+10 mg/kg EsA/AD, respectively. Among them 28 DEPs were commonly shared by three group pairs, and 25 of them showed reversed expression levels in the diseased group under the treatment of both doses of EsA. Bioinformatics analysis revealed that these DEPs were mainly linked to metabolism, synapses, apoptosis, learning and memory. EsA treatment restored the expression of these proteins, including amyloid precursor protein (APP), cathepsin B (Cstb), 4-aminobutyrate aminotransferase (Abat), 3-phosphoinositide-dependent protein kinase-1 (PDK1), carnitine palmitoyltransferase1 (Cpt1) and synaptotagmin 17 (Syt17), thereby ameliorated the spatial learning and memory of AD mice. Collectively, this study reveals for the first time the profound effect of EsA on the cerebral cortex of AD mice, which might be a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
4
|
Zhao T, Jia J. Polygalacic acid attenuates cognitive impairment by regulating inflammation through PPARγ/NF-κB signaling pathway. CNS Neurosci Ther 2024; 30:e14581. [PMID: 38421141 PMCID: PMC10851321 DOI: 10.1111/cns.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS We aimed to explore the role and molecular mechanism of polygalacic acid (PA) extracted from traditional Chinese medicine Polygala tenuifolia in the treatment of Alzheimer's disease (AD). METHODS The network pharmacology analysis was used to predict the potential targets and pathways of PA. Molecular docking was applied to analyze the combination between PA and core targets. Aβ42 oligomer-induced AD mice model and microglia were used to detect the effect of PA on the release of pro-inflammatory mediators and its further mechanism. In addition, a co-culture system of microglia and neuronal cells was constructed to assess the effect of PA on activating microglia-mediated neuronal apoptosis. RESULTS We predict that PA might regulate inflammation by targeting PPARγ-mediated pathways by using network pharmacology. In vivo study, PA could attenuate cognitive deficits and inhibit the expression levels of inflammation-related factors. In vitro study, PA can also decrease the production of activated microglia-mediated inflammatory cytokines and reduce the apoptosis of N2a neuronal cells. PPARγ inhibitor GW9662 inversed the neuroprotective effect of PA. Both in vivo and in vitro studies showed PA might attenuate the inflammation through the PPARγ/NF-κB pathway. CONCLUSIONS PA is expected to provide a valuable candidate for new drug development for AD in the future.
Collapse
Affiliation(s)
- Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's DiseaseBeijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative Diseases, Ministry of EducationBeijingChina
| |
Collapse
|
5
|
Shen Z, Yang X, Lan Y, Chen G. The Neuro-Inflammatory Microenvironment: An Important Regulator of Stem Cell Survival in Alzheimer's Disease. J Alzheimers Dis 2024; 98:741-754. [PMID: 38489182 DOI: 10.3233/jad-231159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by progressive memory loss and cognitive impairment due to excessive accumulation of extracellular amyloid-β plaques and intracellular neurofibrillary tangles. Although decades of research efforts have been put into developing disease-modifying therapies for AD, no "curative" drug has been identified. As a central player in neuro-inflammation, microglia play a key role inbrain homeostasis by phagocytosing debris and regulating the balance between neurotoxic and neuroprotective events. Typically, the neurotoxic phenotype of activated microglia is predominant in the impaired microenvironment of AD. Accordingly, transitioning the activity state of microglia from pro-inflammatory to anti-inflammatory can restore the disrupted homeostatic microenvironment. Recently, stem cell therapy holds great promise as a treatment for AD; however, the diminished survival of transplanted stem cells has resulted in a disappointing long-term outcome for this treatment. This article reviews the functional changes of microglia through the course of AD-associated homeostatic deterioration. We summarize the possible microglia-associated therapeutic targets including TREM2, IL-3Rα, CD22, C5aR1, CX3CR1, P2X7R, CD33, Nrf2, PPAR-γ, CSF1R, and NLRP3, each of which has been discussed in detail. The goal of this review is to put forth the notion that microglia could be targeted by either small molecules or biologics to make the brain microenvironment more amenable to stem cell implantation and propose a novel treatment strategy for future stem cell interventions in AD.
Collapse
Affiliation(s)
- Zhiwei Shen
- Department of Neurosurgery, Key laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Yang
- College of Clinical Medical, Guizhou Medical University, Guiyang, China
| | - Yulong Lan
- Department of Neurosurgery, Key laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Key laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Li D, He L, Yuan C, Ai Y, Yang JJ. Peroxisome proliferator-activated receptor gamma agonist pioglitazone alleviates hemorrhage-induced thalamic pain and neuroinflammation. Int Immunopharmacol 2023; 124:110991. [PMID: 37774485 DOI: 10.1016/j.intimp.2023.110991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Thalamic pain frequently occurs after stroke and is a challenging clinical issue. However, the mechanisms underlying thalamic pain remain unclear. Neuroinflammation is a key determining factor in the occurrence and maintenance of hemorrhage-induced thalamic pain. Pioglitazone is an agonist of peroxisome proliferator-activated receptor gamma (PPARγ) and shows anti-inflammatory effects in multiple diseases. The present work focused on exploring whether PPARγ is related to hemorrhage-induced thalamic pain. METHODS Immunostaining was conducted to analyze the cellular localization of PPARγ and co-localization was evaluated with NeuN, ionized calcium-binding adapter molecular 1 (IBA1), and glia fibrillary acidic protein (GFAP). Western blot analyses were used to evaluate MyD88, pNF-κB/NF-κB, pSTAT6/STAT6, IL-1β, TNF-α, iNOS, Arg-1, IL-4, IL-6, and IL-10 expression. Behavioral tests in mice were conducted to evaluate continuous pain hypersensitivity. RESULTS We found that pioglitazone appeared to mitigate the contralateral hemorrhage-induced thalamic pain while inhibiting inflammatory responses. Additionally, Pioglitazone induced phosphorylation of STAT6 and suppressed the phosphorylation NF-κB in our model of thalamic pain. These effects could be partially reversed with the PPARγ antagonist GW9662. CONCLUSION The PPARγ agonist pioglitazone can mitigate mechanical allodynia by suppressing the NF-κB inflammasome while activating the STAT6 signal pathway, which are well-known to be associated with inflammation.
Collapse
Affiliation(s)
- Da Li
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Long He
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Chang Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Yanqiu Ai
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China.
| |
Collapse
|
7
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
8
|
Li Y, Zhang ZH, Huang SL, Yue ZB, Yin XS, Feng ZQ, Zhang XG, Song GL. Whey protein powder with milk fat globule membrane attenuates Alzheimer's disease pathology in 3×Tg-AD mice by modulating neuroinflammation through the peroxisome proliferator-activated receptor γ signaling pathway. J Dairy Sci 2023; 106:5253-5265. [PMID: 37414601 DOI: 10.3168/jds.2023-23254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 07/08/2023]
Abstract
Whey protein powder (PP), which is mainly derived from bovine milk, is rich in milk fat globule membrane (MFGM). The MGFM has been shown to play a role in promoting neuronal development and cognition in the infant brain. However, its role in Alzheimer's disease (AD) has not been elucidated. Here, we showed that the cognitive ability of 3×Tg-AD mice (a triple-transgenic mouse model of AD) could be improved by feeding PP to mice for 3 mo. In addition, PP ameliorated amyloid peptide deposition and tau hyperphosphorylation in the brains of AD mice. We found that PP could alleviate AD pathology by inhibiting neuroinflammation through the peroxisome proliferator-activated receptor γ (PPARγ)-nuclear factor-κB signaling pathway in the brains of AD mice. Our study revealed an unexpected role of PP in regulating the neuroinflammatory pathology of AD in a mouse model.
Collapse
Affiliation(s)
- Yu Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060; Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060; Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Shao-Ling Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060
| | - Zhong-Bao Yue
- ByHealth Institute of Nutrition and Health, Guangzhou, China, 510000
| | - Xue-Song Yin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060
| | - Zi-Qi Feng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060
| | - Xu-Guang Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060; ByHealth Institute of Nutrition and Health, Guangzhou, China, 510000.
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060; Shenzhen Bay Laboratory, Shenzhen, China, 518000; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China, 518000.
| |
Collapse
|
9
|
Yao J, He Z, You G, Liu Q, Li N. The Deficits of Insulin Signal in Alzheimer's Disease and the Mechanisms of Vanadium Compounds in Curing AD. Curr Issues Mol Biol 2023; 45:6365-6382. [PMID: 37623221 PMCID: PMC10453015 DOI: 10.3390/cimb45080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Vanadium is a well-known essential trace element, which usually exists in oxidation states in the form of a vanadate cation intracellularly. The pharmacological study of vanadium began with the discovery of its unexpected inhibitory effect on ATPase. Thereafter, its protective effects on β cells and its ability in glucose metabolism regulation were observed from the vanadium compound, leading to the application of vanadium compounds in clinical trials for curing diabetes. Alzheimer's disease (AD) is the most common dementia disease in elderly people. However, there are still no efficient agents for treating AD safely to date. This is mainly because of the complexity of the pathology, which is characterized by senile plaques composed of the amyloid-beta (Aβ) protein in the parenchyma of the brain and the neurofibrillary tangles (NFTs), which are derived from the hyperphosphorylated tau protein in the neurocyte, along with mitochondrial damage, and eventually the central nervous system (CNS) atrophy. AD was also illustrated as type-3 diabetes because of the observations of insulin deficiency and the high level of glucose in cerebrospinal fluid (CSF), as well as the impaired insulin signaling in the brain. In this review, we summarize the advances in applicating the vanadium compound to AD treatment in experimental research and point out the limitations of the current study using vanadium compounds in AD treatment. We hope this will help future studies in this field.
Collapse
Affiliation(s)
- Jinyi Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Guanying You
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
10
|
He Z, Li X, Zhang H, Liu X, Han S, Abdurahman A, Shen L, Du X, Li N, Yang X, Liu Q. A novel vanadium complex VO(p-dmada) inhibits neuroinflammation induced by lipopolysaccharide. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
11
|
Huang L, Lu Z, Zhang H, Wen H, Li Z, Liu Q, Wang R. A Novel Strategy for Alzheimer's Disease Based on the Regulatory Effect of Amyloid-β on Gut Flora. J Alzheimers Dis 2023; 94:S227-S239. [PMID: 36336932 PMCID: PMC10473151 DOI: 10.3233/jad-220651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The accumulation of amyloid-β (Aβ) protein and plaque formation in the brain are two major causes of AD. Interestingly, growing evidence demonstrates that the gut flora can alleviate AD by affecting amyloid production and metabolism. However, the underlying mechanism remains largely unknown. This review will discuss the possible association between the gut flora and Aβ in an attempt to provide novel therapeutic directions for AD treatment based on the regulatory effect of Aβ on the gut flora.
Collapse
Affiliation(s)
- Li Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhaogang Lu
- Department of Pharmacy, People’s Hospital of Ningxia /First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, China
| | - Hexin Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hongyong Wen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zongji Li
- Laboratory Department, Clinical College of Ningxia Medical University, Yinchuan, China
| | - Qibing Liu
- Department of Pharmacology, Hainan Medical University, Haikou, China
| | - Rui Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
12
|
Woodfield A, Gonzales T, Helmerhorst E, Laws S, Newsholme P, Porter T, Verdile G. Current Insights on the Use of Insulin and the Potential Use of Insulin Mimetics in Targeting Insulin Signalling in Alzheimer's Disease. Int J Mol Sci 2022; 23:15811. [PMID: 36555450 PMCID: PMC9779379 DOI: 10.3390/ijms232415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies.
Collapse
Affiliation(s)
- Amy Woodfield
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tatiana Gonzales
- Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Erik Helmerhorst
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Simon Laws
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Philip Newsholme
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Giuseppe Verdile
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
13
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
14
|
He Z, You G, Liu Q, Li N. Alzheimer's Disease and Diabetes Mellitus in Comparison: The Therapeutic Efficacy of the Vanadium Compound. Int J Mol Sci 2021; 22:ijms222111931. [PMID: 34769364 PMCID: PMC8584792 DOI: 10.3390/ijms222111931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is an intractable neurodegenerative disease that leads to dementia, primarily in elderly people. The neurotoxicity of amyloid-beta (Aβ) and tau protein has been demonstrated over the last two decades. In line with these findings, several etiological hypotheses of AD have been proposed, including the amyloid cascade hypothesis, the oxidative stress hypothesis, the inflammatory hypothesis, the cholinergic hypothesis, et al. In the meantime, great efforts had been made in developing effective drugs for AD. However, the clinical efficacy of the drugs that were approved by the US Food and Drug Association (FDA) to date were determined only mild/moderate. We recently adopted a vanadium compound bis(ethylmaltolato)-oxidovanadium (IV) (BEOV), which was originally used for curing diabetes mellitus (DM), to treat AD in a mouse model. It was shown that BEOV effectively reduced the Aβ level, ameliorated the inflammation in brains of the AD mice, and improved the spatial learning and memory activities of the AD mice. These finding encouraged us to further examine the mechanisms underlying the therapeutic effects of BEOV in AD. In this review, we summarized the achievement of vanadium compounds in medical studies and investigated the prospect of BEOV in AD and DM treatment.
Collapse
Affiliation(s)
- Zhijun He
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
| | - Guanying You
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Nan Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-(0)755-2653-5432; Fax: +86-(0)755-8671-3951
| |
Collapse
|