1
|
Pinto TG, Dias TA, Renno ACM, Dos Santos JN, Cury PR, Ribeiro DA. The Impact of Genetic Polymorphisms for Detecting Genotoxicity in Workers Occupationally Exposed to Metals: A Systematic Review. J Appl Toxicol 2024. [PMID: 39428972 DOI: 10.1002/jat.4711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024]
Abstract
The present study aims to provide a systematic review of studies on the essential and nonessential metal exposure at occupational level, genotoxicity, and polymorphisms and to answer the following questions: Are genetic polymorphisms involved in metal-induced genotoxicity? In this study, 14 publications were carefully analyzed in this setting. Our results pointed out an association between polymorphism and genotoxicity in individuals exposed to metals, because 13 studies (out of 14) revealed positive relations between genotoxicity and polymorphisms in xenobiotics metabolizing and DNA repair genes. Regarding the quality of these findings, they can be considered reliable, as the vast majority of the studies (12 out of 14) were categorized as strong or moderate in the quality assessment. Taken as a whole, occupational exposure to metals (essentials or not) induces genotoxicity in peripheral blood or oral mucosa cells. Additionally, professional individuals with certain genotypes may present higher or lower DNA damage as well as DNA repair potential, which will certainly impact the level of DNA damage in the occupational environment.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| | - Thayza Aires Dias
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| | | | - Patrícia Ramos Cury
- School of Dentistry, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| |
Collapse
|
2
|
Fenech M, Holland N, Zeiger E, Chang PW, Kirsch-Volders M, Bolognesi C, Stopper H, Knudsen LE, Knasmueller S, Nersesyan A, Thomas P, Dhillon V, Deo P, Franzke B, Andreassi MG, Laffon B, Wagner KH, Norppa H, da Silva J, Volpi EV, Wilkins R, Bonassi S. Objectives and achievements of the HUMN project on its 26th anniversary. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108511. [PMID: 39233049 DOI: 10.1016/j.mrrev.2024.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Micronuclei (MN) are a nuclear abnormality that occurs when chromosome fragments or whole chromosomes are not properly segregated during mitosis and consequently are excluded from the main nuclei and wrapped within nuclear membrane to form small nuclei. This maldistribution of genetic material leads to abnormal cellular genomes which may increase risk of developmental defects, cancers, and accelerated aging. Despite the potential importance of MN as biomarkers of genotoxicity, very little was known about the optimal way to measure MN in humans, the normal ranges of values of MN in healthy humans and the prospective association of MN with developmental and degenerative diseases prior to the 1980's. In the early 1980's two important methods to measure MN in humans were developed namely, the cytokinesis-block MN (CBMN) assay using peripheral blood lymphocytes and the Buccal MN assay that measures MN in epithelial cells from the oral mucosa. These discoveries greatly increased interest to use MN assays in human studies. In 1997 the Human Micronucleus (HUMN) project was founded to initiate an international collaboration to (i) harmonise and standardise the techniques used to perform the lymphocyte CBMN assay and the Buccal MN assay; (ii) establish and collate databases of MN frequency in human populations world-wide which also captured demographic, lifestyle and environmental genotoxin exposure data and (iii) use these data to identify the most important variables affecting MN frequency and to also determine whether MN predict disease risk. In this paper we briefly describe the achievements of the HUMN project during the period from the date of its foundation on 9th September 1997 until its 26th Anniversary in 2023, which included more than 200 publications and 23 workshops world-wide.
Collapse
Affiliation(s)
- Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Genome Health Foundation, North Brighton, SA 5048, Australia.
| | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, Berkeley, CA, USA.
| | | | - Peter Wushou Chang
- Show Chwan Memorial Hospital, Changhwa, Taiwan; TUFTS University Medical School, Boston, USA.
| | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy.
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg 97080, Germany.
| | - Lisbeth E Knudsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark.
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide 5000, Australia.
| | - Varinderpal Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Bernhard Franzke
- Department of Nutritional Sciences, University of Vienna, Austria.
| | | | - Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Psicología, Facultad de Ciencias de la Educación, and Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, A Coruña, Spain.
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| | - Hannu Norppa
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS 92010-000, Brazil; PPGBM, Federal University of Brazil (UFRGS), Porto Alegre 91501-970, Brazil.
| | - Emanuela V Volpi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W6UW, UK.
| | - Ruth Wilkins
- Environmental and Radiation Health Sciences Directorate, Health Canada 775 Brookfield Rd, Ottawa K1A 1C1, Canada.
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome 00166, Italy.
| |
Collapse
|
3
|
Cavallo D, Ursini CL, Fresegna AM, Ciervo A, Boccuni F, Ferrante R, Tombolini F, Maiello R, Chiarella P, Buresti G, Del Frate V, Poli D, Andreoli R, Di Cristo L, Sabella S, Iavicoli S. A follow-up study on workers involved in the graphene production process after the introduction of exposure mitigation measures: evaluation of genotoxic and oxidative effects. Nanotoxicology 2022; 16:776-790. [PMID: 36427224 DOI: 10.1080/17435390.2022.2149359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During nanomaterial (NM) production, workers could be exposed, particularly by inhalation, to NMs and other chemicals used in the synthesis process, so it is important to have suitable biomarkers to monitor potential toxic effects. Aim of this study was to evaluate the effectiveness of the introduction of exposure mitigation measures on workers unintentionally exposed to graphene co-pollutants during production process monitoring the presumable reduction of workplace NM contamination and of early genotoxic and oxidative effects previously found on these workers. We used Buccal Micronucleus Cytome (BMCyt) assay and Fpg-comet test, resulted the most sensitive biomarkers on our first biomonitoring work, to measure the genotoxic effects. We also detected urinary oxidized nucleic acid bases 8-oxoGua, 8-oxoGuo and 8-oxodGuo to evaluate oxidative damage. The genotoxic and oxidative effects were assessed on the same graphene workers (N = 6) previously studied, comparing the results with those found in the first biomonitoring and with the control group (N = 11). This was achieved 6 months after the installation of a special filter hood (where to perform the phases at higher risk of NM emission) and the improvement of environmental and personal protective equipment. Particle number concentration decreased after the mitigation measures. We observed reduction of Micronucleus (MN) frequency and oxidative DNA damage and increase of 8-oxodGuo excretion compared to the first biomonitoring. These results, although limited by the small subject number, showed the efficacy of adopted exposure mitigation measures and the suitability of used sensitive and noninvasive biomarkers to bio-monitor over time workers involved in graphene production process.
Collapse
Affiliation(s)
- Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Cinzia Lucia Ursini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Anna Maria Fresegna
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Aureliano Ciervo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Fabio Boccuni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Riccardo Ferrante
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Francesca Tombolini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Raffaele Maiello
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Pieranna Chiarella
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Giuliana Buresti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Valentina Del Frate
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Diana Poli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Roberta Andreoli
- Department of Medicine and Surgery, Laboratory of Industrial Toxicology, University of Parma, Parma, Italy
| | | | | | - Sergio Iavicoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| |
Collapse
|
4
|
Adolf IC, Rweyemamu LP, Akan G, Mselle TF, Dharsee N, Namkinga LA, Lyantagaye SL, Atalar F. The interplay between XPG-Asp1104His polymorphism and reproductive risk factors elevates risk of breast cancer in Tanzanian women: A multiple interaction analysis. Cancer Med 2022; 12:472-487. [PMID: 35691022 PMCID: PMC9844639 DOI: 10.1002/cam4.4914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Reproductive history and genetics are well-known risk factors of breast cancer (BC). Little is known about how these factors interact to effect BC. This study investigated the association of ten polymorphisms in DNA repair genes with BC susceptibility in the Tanzanian samples and further analyzed the association between reproductive risk factors and disease risk METHODS: A hospital-based case-control study in 263 histopathological confirmed BC patients and 250 age-matched cancer-free controls was carried out. Allelic, genotypic, and haplotype association analyses were executed. Also, multifactor dimensionality reduction (MDR), and interaction dendrogram approaches were performed. RESULTS The frequency of genotypic and allelic variants of XRCC1-Arg399Gln (rs25487), XRCC2-Arg188His (rs3218536), XRCC3-Thr241Met (rs861539), XPG-Asp1104His (rs17655), and MSH2-Gly322Asp (rs4987188) were significantly different between the groups (p < 0.05). Moreover, XRCC1-Arg399Gln (rs25487), XRCC3-Thr241Met (rs861539), and XPG-Asp1104His (rs17655) were associated with the increased risk of BC in co-dominant, dominant, recessive, and additive genetic-inheritance models (p < 0.05). XRCC1-Arg/Gln genotype indicated a 3.1-fold increased risk of BC in pre-menopausal patients (p = 0.001) while XPG-His/His genotype showed a 1.2-fold increased risk in younger BC patients (<40 years) (p = 0.028). Asp/His+His/His genotypes indicated a 1.3-fold increased risk of BC in PR+ patients and a 1.1-fold decreased risk of BC in luminal-A patients (p = 0.014, p = 0.020, respectively). MDR analysis revealed a positive interaction between BC and the XPG-Asp1104His (rs17655) together with family history of cancer in the first-degree relatives. Dendrogram analysis indicated that the XPG-Asp1104His (rs17655) and family history of cancer in first-degree relatives were significantly synergistic and might be associated with an elevated risk of BC in Tanzania. CONCLUSIONS The XPG-Asp1104His (rs17655) might exert both independent and interactive effects on BC development in the Tanzanian women.
Collapse
Affiliation(s)
- Ismael C. Adolf
- University of Dar es SalaamMbeya College of Health and Allied SciencesMbeyaTanzania
| | - Linus P. Rweyemamu
- University of Dar es SalaamMbeya College of Health and Allied SciencesMbeyaTanzania,University of Dar es SalaamDepartment of Molecular Biology and BiotechnologyDar es SalaamTanzania
| | - Gokce Akan
- Muhimbili University of Health and Allied SciencesMUHAS Genetic Laboratory, Department of BiochemistryDar es SalaamTanzania,Near East UniversityDESAM Research InstituteNicosiaCyprus
| | - Ted F. Mselle
- Muhimbili University of Health and Allied SciencesMUHAS Genetic Laboratory, Department of BiochemistryDar es SalaamTanzania
| | - Nazima Dharsee
- Ocean Road Cancer InstituteAcademic, Research and Consultancy UnitDar es SalaamTanzania
| | - Lucy A. Namkinga
- University of Dar es SalaamDepartment of Molecular Biology and BiotechnologyDar es SalaamTanzania
| | | | - Fatmahan Atalar
- Muhimbili University of Health and Allied SciencesMUHAS Genetic Laboratory, Department of BiochemistryDar es SalaamTanzania,Istanbul UniversityChild Health Institute, Department of Rare DiseasesIstanbulTurkey
| |
Collapse
|
5
|
Zehtab S, Sattarzadeh Bardsiri M, Mirzaee Khalilabadi R, Ehsan M, Fatemi A. Association of DNA repair genes polymorphisms with childhood acute lymphoblastic leukemia: a high-resolution melting analysis. BMC Res Notes 2022; 15:46. [PMID: 35164849 PMCID: PMC8842869 DOI: 10.1186/s13104-022-05918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Acute lymphoblastic leukemia (ALL) is one of the most common cancers in children for which the exact pathogenesis is not yet known. Single-nucleotide variants (SNVs) in different DNA repair genes are reported to be associated with ALL risk. This study aimed to determine the association between XRCC1 (rs1799782) and NBN (rs1805794, rs709816) SNVs and childhood ALL risk in a sample of the Iranian population. Fifty children with ALL and 50 age- and sex-matched healthy children were included in this case–control study. Genotyping of the mentioned SNVs was done by high-resolution melting (HRM) analysis. Results The prevalence of all three SNVs in XRCC1 and NBN genes did not differ between the patient and control groups, and these polymorphisms were not associated with childhood ALL risk (P > 0.05). HRM was a practical method for the detection of SNVs in XRCC1 and NBN genes. We found no significant association between XRCC1 (rs1799782) and NBN (rs1805794, rs709816) SNVs and childhood ALL risk. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05918-3.
Collapse
|
6
|
León-Mejía G, Quintana-Sosa M, Luna-Carrascal J, De Moya YS, Luna Rodríguez I, Anaya-Romero M, Trindade C, Navarro-Ojeda N, Ruiz Benitez M, Franco Valencia K, Oliveros Ortíz L, Acosta-Hoyos A, Pêgas Henriques JA, da Silva J. Cytokinesis-block micronucleus cytome (CBMN-CYT) assay and its relationship with genetic polymorphisms in welders. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503417. [PMID: 34798937 DOI: 10.1016/j.mrgentox.2021.503417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/04/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Fumes generated in the welding process are composed of micrometric and nanometric particles that form when metal fumes condense. The International Agency for Research on Cancer established that many compounds derived from the welding process are carcinogenic to humans. Still, there are few studies related to the role of genetic polymorphisms. This work aimed to analyze the influence of OGG1 Ser326Cys, XRCC1 Arg280His, XRCC1 Arg194Thr, XRCC1 Arg399Gln, XRCC3 Thr241Met, GSTM1, and GSTT1 gene polymorphisms on DNA damage of 98 subjects occupationally exposed to welding fumes and 100 non exposed individuals. The results showed that individuals exposed to welding fumes with XRCC3 Thr241Thr, XRCC3 Thr241Met, and GSTM1 null genotypes demonstrated a significantly higher micronucleus frequency in lymphocytes. In contrast, individuals with XRCC1 Arg399Gln and XRCC1 Gln399Gln genotypes had significant levels of NPBs. OGG1 326 Ser/Cys, OGG1 326 Cys/Cys, XRCC1 194Arg/Thr, XRCC1 194Thr/Thr, and GSTT1 null genotypes exhibited significantly higher apoptotic values. Also, XRCC1 194Arg/Trp, XRCC1 194Thr/Thr, and GSTM1 null genotype carriers had higher necrotic levels compared to XRCC1 194Arg/Arg and GSTM1 nonnull carriers. Compositional analysis revealed the presence of iron, manganese, silicon as well as particles smaller than 2 μm that adhere to each other and form agglomerates. These results may be associated with a mixture of components, such as nitrogen dioxide, carbon monoxide, and metallic fumes, leading to significant DNA damage and cell death processes. These findings demonstrated the importance of the association between individual susceptibility and DNA damage levels due to occupational exposure to welding fumes; and constitute one of the first studies carried out in exposed workers from Colombia.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Milton Quintana-Sosa
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Jaime Luna-Carrascal
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Yurina Sh De Moya
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Ibeth Luna Rodríguez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Marco Anaya-Romero
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Cristiano Trindade
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Nebis Navarro-Ojeda
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Martha Ruiz Benitez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Karen Franco Valencia
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Ludis Oliveros Ortíz
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Antonio Acosta-Hoyos
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - João Antonio Pêgas Henriques
- Programa de Pós Graduação em Biotecnologia, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil; Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA) & Universidade La Salle (UniLaSalle), Canoas, RS, Brazil.
| |
Collapse
|
7
|
Soliman AHM, Zaki NN, Fathy HM, Mohamed AA, Ezzat MA, Rayan A. Genetic polymorphisms in XRCC1, OGG1, and XRCC3 DNA repair genes and DNA damage in radiotherapy workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43786-43799. [PMID: 32740834 DOI: 10.1007/s11356-020-10270-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
DNA damage may develop at any dose of ionizing radiation. DNA damage activates pathways that regulate cell growth and division or coordinate its replication and repair. The repair pathways, base excision repair (BER) and single-strand break repair (SSBR), can repair such damages efficiently and maintain genome integrity. Loss of this repair process or alteration of its control will be associated with serious outcomes for cells and individuals. This study aimed to determine the relationship between XRCC1 (Arg194Trp, Arg280His, and Arg399Gln), OGG1 (Ser326Cys), and XRCC3 (Thr241Met) SNPs and DNA damage and to identify high-risk individuals with reduced DNA repair capacity. This case-control study was conducted on 80 subjects; 50 subjects working in Clinical Oncology and Nuclear Medicine Department in Assiut University Hospital along with 30 controls. A total of 1 mL blood samples were collected for Single-Cell Gel Electrophoresis Technique (Comet Assay) for detection of DNA damage in those subjects. A total of 3 mL fresh blood samples were collected and analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based technique. DNA damage detected by comet test was significantly high in IR-exposed workers than control. Statistically high significant difference was found in exposed subjects versus control subjects regarding the frequencies of the variant alleles of hOGG1326, XRCC1280 & 399, and XRCC3241. The level of DNA damage was not affected by OGG1326 SNPs when comparing subjects of wild genotype with those of (pooled) variants either in the exposed staff or in the control group while XRCC1280, 399 and XRCC3241 variant alleles had an influence on the studied DNA damage biomarker. Moreover, genotyping distribution pattern was highly variable in relation to gender. The present study indicated a relationship between DNA damage detected by comet test and single nucleotide polymorphisms in genes coding for DNA certain repair enzymes. Individuals occupationally exposed to low doses of ionizing radiation could be at great risk and more susceptible to the increased DNA damage if they have inherited genetic polymorphism.
Collapse
Affiliation(s)
- Asmaa H M Soliman
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nasef N Zaki
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hala M Fathy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Aml A Mohamed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Amal Rayan
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
8
|
León-Mejía G, Quintana-Sosa M, de Moya Hernandez Y, Rodríguez IL, Trindade C, Romero MA, Luna-Carrascal J, Ortíz LO, Acosta-Hoyos A, Ruiz-Benitez M, Valencia KF, Rohr P, da Silva J, Henriques JAP. DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20516-20526. [PMID: 32246425 DOI: 10.1007/s11356-020-08533-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Diesel engine exhaust (DEE) is a complex mixture of toxic gases, halogenated aromatic hydrocarbons, alkyl polycyclic aromatic hydrocarbons, polycyclic aromatic hydrocarbons, benzene derivatives, metals and diesel exhaust particles (DEPs) generated from the incomplete combustion of diesel fuel. Many of the compounds in this mixture can cause oxidative damage to DNA and are considered carcinogenic for humans. Further, chronic DEE exposure increases risks of cardiovascular and pulmonary diseases. Despite these pervasive health risks, there is limited and inconsistent information regarding genetic factors conferring susceptibility or resistance to DEE genotoxicity. The present study evaluated the effects of polymorphisms in two base excision repair (BER) genes (OGG1 Ser326Cys and XRCC1 Arg280His), one homologous recombination (HRR) gene (XRCC3 Thr241Met) and two xenobiotic metabolism genes (GSTM1 and GSTT1) on the genotoxicity profiles among 123 mechanics exposed to workplace DEE. Polymorphisms were determined by PCR-RFLP. In comet assay, individuals with the GSTT1 null genotype demonstrated significantly greater % tail DNA in lymphocytes than those with non-null genotype. In contrast, these null individuals exhibited significantly lower frequencies of binucleated (BN) cells and nuclear buds (NBUDs) in buccal cells than non-null individuals. Heterozygous hOGG1 326 individuals (hOGG1 326 Ser/Cys) exhibited higher buccal cell NBUD frequency than hOGG1 326 Ser/Ser individuals. Individuals carrying the XRCC3 241 Met/Met polymorphism also showed significantly higher buccal cell NBUD frequencies than those carrying the XRCC3 241 Thr/Thr polymorphism. We found a high flow of particulate matter with a diameter of < 2.5 μm (PM2.5) in the workplace. The most abundant metals in DEPs were iron, copper, silicon and manganese as detected by transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDX). Scanning electron microscopy (SEM-EDS) revealed particles with diameters smaller than PM2.5, including nanoparticles forming aggregates and agglomerates. Our results demonstrate the genotoxic effects of DEE and the critical influence of genetic susceptibility conferred by DNA repair and metabolic gene polymorphisms that shed light into the understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia.
| | - Milton Quintana-Sosa
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | | | - Ibeth Luna Rodríguez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Cristiano Trindade
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Marco Anaya Romero
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Jaime Luna-Carrascal
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Ludis Oliveros Ortíz
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Antonio Acosta-Hoyos
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Martha Ruiz-Benitez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Karen Franco Valencia
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Paula Rohr
- Laboratório de Genética, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Campus Carreiros, Av. Itália km 8, Rio Grande, RS, 96201-900, Brazil
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - João Antônio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Polo LM, Xu Y, Hornyak P, Garces F, Zeng Z, Hailstone R, Matthews SJ, Caldecott KW, Oliver AW, Pearl LH. Efficient Single-Strand Break Repair Requires Binding to Both Poly(ADP-Ribose) and DNA by the Central BRCT Domain of XRCC1. Cell Rep 2019; 26:573-581.e5. [PMID: 30650352 PMCID: PMC6334254 DOI: 10.1016/j.celrep.2018.12.082] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
XRCC1 accelerates repair of DNA single-strand breaks by acting as a scaffold protein for the recruitment of Polβ, LigIIIα, and end-processing factors, such as PNKP and APTX. XRCC1 itself is recruited to DNA damage through interaction of its central BRCT domain with poly(ADP-ribose) chains generated by PARP1 or PARP2. XRCC1 is believed to interact directly with DNA at sites of damage, but the molecular basis for this interaction within XRCC1 remains unclear. We now show that the central BRCT domain simultaneously mediates interaction of XRCC1 with poly(ADP-ribose) and DNA, through separate and non-overlapping binding sites on opposite faces of the domain. Mutation of residues within the DNA binding site, which includes the site of a common disease-associated human polymorphism, affects DNA binding of this XRCC1 domain in vitro and impairs XRCC1 recruitment and retention at DNA damage and repair of single-strand breaks in vivo.
Collapse
Affiliation(s)
- Luis M Polo
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Yingqi Xu
- Cross-Faculty NMR Centre, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Peter Hornyak
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Fernando Garces
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Zhihong Zeng
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Richard Hailstone
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Steve J Matthews
- Cross-Faculty NMR Centre, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW1E 6BT, UK.
| |
Collapse
|
10
|
Doukali H, Ben Salah G, Ben Rhouma B, Hajjaji M, Jaouadi A, Belguith-Mahfouth N, Masmoudi ML, Ammar-Keskes L, Kamoun H. Cytogenetic monitoring of hospital staff exposed to ionizing radiation: optimize protocol considering DNA repair genes variability. Int J Radiat Biol 2017; 93:1283-1288. [PMID: 28880740 DOI: 10.1080/09553002.2017.1377361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Chronic occupational exposure to ionizing radiation (IR) induces a wide spectrum of DNA damages. The aim of this study was to assess the frequencies of micronucleus (MN), sister chromatid exchanges (SCE) and to evaluate their association with XRCC1 399 Arg/Gln and XRCC3 241 Thr/Met polymorphisms in Hospital staff occupationally exposed to IR. MATERIALS AND METHODS A questionnaire followed by a cytogenetic analysis was concluded for each subject in our study. The exposed subjects were classified into two groups based on duration of employment (Group I < 15 years; Group II ≥15years). The genotypes of all individuals (subjects and controls) were determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS DNA damage frequencies were significantly greater in IR workers compared with controls (p < .05). However, no association arised between XRCC1 399 Arg/Gln and XRCC3 241 Thr/Met polymorphisms, on one hand, and the severity of DNA damages in the studied cohort of Tunisian population, on the other hand. CONCLUSION Our data provide evidence for an obvious genotoxic effect associated with IR exposure and reinforce the high sensitivity of cytogenetic assays for biomonitoring of occupationally exposed populations. These results indicate that workers exposed to IR should have periodic monitoring, along their exposure. The variants, rs25487 and rs861539, of XRCC1 and XRCC3 genes have obvious functional effects. Paradoxically, these variants are not associated with the severity of damages, according to used assays, in the studied cohort of Tunisian population, unlike other studies.
Collapse
Affiliation(s)
- Hajer Doukali
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , Sfax University , Sfax , Tunisia
| | - Ghada Ben Salah
- b Unaizah College of Pharmacy , Qassim University , Alqassim , Saudi Arabia
| | - Bochra Ben Rhouma
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , Sfax University , Sfax , Tunisia
| | - Mounira Hajjaji
- d Department of Occupational Medicine , Hedi Chaker University Hospital , Sfax , Tunisia
| | - Amel Jaouadi
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , Sfax University , Sfax , Tunisia
| | | | - Mohamed-Larbi Masmoudi
- d Department of Occupational Medicine , Hedi Chaker University Hospital , Sfax , Tunisia
| | - Leila Ammar-Keskes
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , Sfax University , Sfax , Tunisia
| | - Hassen Kamoun
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , Sfax University , Sfax , Tunisia.,c Department of Medical Genetics , Hedi Chaker University Hospital , Sfax , Tunisia
| |
Collapse
|
11
|
Tong Z, Shen H, Yang D, Zhang F, Bai Y, Li Q, Shi J, Zhang H, Zhu B. Genetic Variations in the Promoter of the APE1 Gene Are Associated with DMF-Induced Abnormal Liver Function: A Case-Control Study in a Chinese Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13080752. [PMID: 27463724 PMCID: PMC4997438 DOI: 10.3390/ijerph13080752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
Acute or long-term exposure to N,N-dimethylformamide (DMF) can induce abnormal liver function. It is well known that DMF is mainly metabolized in the liver and thereby produces reactive oxygen species (ROS). The base excision repair (BER) pathway is regarded as a very important pathway involved in repairing ROS-induced DNA damage. Several studies have explored the associations between GSTM1, GSTT1, CYP2E1 polymorphisms and DMF-induced abnormal liver function; however, little is known about how common hOGG1, XRCC1 and APE1 polymorphisms and DMF induce abnormal liver function. The purpose of this study was to investigate whether the polymorphisms in the hOGG1 (rs159153 and rs2072668), XRCC1 (rs25487, rs25489, and rs1799782), APE1 (rs1130409 and 1760944) genes in the human BER pathway were associated with the susceptibility to DMF-induced abnormal liver function in a Chinese population. These polymorphisms were genotyped in 123 workers with DMF-induced abnormal liver function and 123 workers with normal liver function. We found that workers with the APE1 rs1760944 TG/GG genotypes had a reduced risk of abnormal liver function, which was more pronounced in the subgroups that were exposed to DMF for <10 years, exposed to ≥10 mg/m3 DMF, never smoked and never drank. In summary, our study supported the hypothesis that the APE1 rs1760944 T > G polymorphism may be associated with DMF-induced abnormal liver function in the Chinese Han population.
Collapse
Affiliation(s)
- Zhimin Tong
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan 215301, China.
| | - Huanxi Shen
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan 215301, China.
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing 211166, China.
| | - Dandan Yang
- Department of Integrated Management & Emergency Preparedness and Response, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China.
| | - Feng Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, No.172 Jiangsu Road, Nanjing 210009, China.
| | - Ying Bai
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, No.172 Jiangsu Road, Nanjing 210009, China.
| | - Qian Li
- The First People's Hospital of Kunshan, Kunshan 215300, China.
| | - Jian Shi
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan 215301, China.
| | - Hengdong Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, No.172 Jiangsu Road, Nanjing 210009, China.
| | - Baoli Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing 211166, China.
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, No.172 Jiangsu Road, Nanjing 210009, China.
| |
Collapse
|
12
|
Vecoli C, Borghini A, Foffa I, Ait-Ali L, Picano E, Andreassi MG. Leukocyte telomere shortening in grown-up patients with congenital heart disease. Int J Cardiol 2016; 204:17-22. [DOI: 10.1016/j.ijcard.2015.11.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 01/31/2023]
|
13
|
Langie SAS, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown DG, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan EP, Ostrosky-Wegman P, Salem HK, Scovassi AI, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 2015; 36 Suppl 1:S61-88. [PMID: 26106144 DOI: 10.1093/carcin/bgv031] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Collapse
Affiliation(s)
- Sabine A S Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium, Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain, Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway, Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia, University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark, Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy, Medical Phys
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium, Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain, Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway, Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia, University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark, Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy, Medical Phys
| | - Daniel Desaulniers
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Amelia K Charles
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Firouz Darroudi
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
| | - Lisbeth E Knudsen
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | | | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Carmel Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Emilio Rojas
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Hosni K Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Frederik J Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
| | - Mahara Valverde
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Nik van Larebeke
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium, Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
| | | | | |
Collapse
|
14
|
Milne E, Greenop KR, Ramankutty P, Miller M, de Klerk NH, Armstrong BK, Almond T, O'Callaghan NJ, Fenech M. Blood micronutrients and DNA damage in children. Mol Nutr Food Res 2015. [DOI: 10.1002/mnfr.201500110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Elizabeth Milne
- Telethon Kids Institute; University of Western Australia; Perth Western Australia Australia
| | - Kathryn R. Greenop
- Telethon Kids Institute; University of Western Australia; Perth Western Australia Australia
| | - Padmaja Ramankutty
- Telethon Kids Institute; University of Western Australia; Perth Western Australia Australia
| | - Margaret Miller
- Child Health Promotion Research Centre; Edith Cowan University; Perth Western Australia Australia
| | - Nicholas H. de Klerk
- Telethon Kids Institute; University of Western Australia; Perth Western Australia Australia
| | - Bruce K. Armstrong
- Sydney School of Public Health; University of Sydney; Sydney New South Wales Australia
- Research Assets Division, Sax Institute; Sydney New South Wales Australia
| | - Theodora Almond
- Food and Nutrition Flagship; Commonwealth Scientific and Industrial Research Organization (CSIRO); Adelaide South Australia Australia
| | - Nathan J. O'Callaghan
- Food and Nutrition Flagship; Commonwealth Scientific and Industrial Research Organization (CSIRO); Adelaide South Australia Australia
| | - Michael Fenech
- Food and Nutrition Flagship; Commonwealth Scientific and Industrial Research Organization (CSIRO); Adelaide South Australia Australia
| |
Collapse
|
15
|
Tung CL, Jian YJ, Syu JJ, Wang TJ, Chang PY, Chen CY, Jian YT, Lin YW. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells. Exp Cell Res 2015; 334:126-35. [DOI: 10.1016/j.yexcr.2015.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/15/2015] [Accepted: 01/25/2015] [Indexed: 01/21/2023]
|
16
|
Peluso MEM, Munnia A. DNA adducts and the total sum of at-risk DNA repair alleles in the nasal epithelium, a target tissue of tobacco smoking-associated carcinogenesis. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50050k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
17
|
Coelho P, García-Lestón J, Costa S, Costa C, Silva S, Dall'Armi V, Zoffoli R, Bonassi S, de Lima JP, Gaspar JF, Pásaro E, Laffon B, Teixeira JP. Genotoxic effect of exposure to metal(loid)s. A molecular epidemiology survey of populations living and working in Panasqueira mine area, Portugal. ENVIRONMENT INTERNATIONAL 2013; 60:163-170. [PMID: 24036326 DOI: 10.1016/j.envint.2013.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 06/02/2023]
Abstract
Previous studies investigating the exposure to metal(loid)s of populations living in the Panasqueira mine area of central Portugal found a higher internal dose of elements such as arsenic, chromium, lead, manganese, molybdenum and zinc in exposed individuals. The aims of the present study were to evaluate the extent of genotoxic damage caused by environmental and occupational exposure in individuals previously tested for metal(loid) levels in different biological matrices, and the possible modulating role of genetic polymorphisms involved in metabolism and DNA repair. T-cell receptor mutation assay, comet assay, micronucleus (MN) test and chromosomal aberrations (CA) were performed in a group of 122 subjects working in the Panasqueira mine or living in the same region. The modifying effect of polymorphisms in GSTA2, GSTM1, GSTP1, GSTT1, XRCC1, APEX1, MPG, MUTYH, OGG1, PARP1, PARP4, ERCC1, ERCC4, and ERCC5 genes was investigated. Significant increases in the frequency of all biomarkers investigated were found in exposed groups, however those environmentally exposed were generally higher. Significant influences of polymorphisms were observed for GSTM1 deletion and OGG1 rs1052133 on CA frequencies, APEX1 rs1130409 on DNA damage, ERCC1 rs3212986 on DNA damage and CA frequency, and ERCC4 rs1800067 on MN and CA frequencies. Our results show that the metal(loid) contamination in the Panasqueira mine area induced genotoxic damage both in individuals working in the mine or living in the area. The observed effects are closely associated to the internal exposure dose, and are more evident in susceptible genotypes. The urgent intervention of authorities is required to protect exposed populations.
Collapse
Affiliation(s)
- Patrícia Coelho
- National Institute of Health, Environmental Health Department, Rua Alexandre Herculano n321, 4000-055 Porto, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Niu Y, Zhang X, Zheng Y, Zhang R. XRCC1 deficiency increased the DNA damage induced by γ-ray in HepG2 cell: Involvement of DSB repair and cell cycle arrest. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:311-319. [PMID: 23708312 DOI: 10.1016/j.etap.2013.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
γ-ray irradiation can induce DNA damages which include base damages, single-strand breaks and double-strand breaks in various type cells. The DNA repair protein XRCC1, as a part of the BER pathway, forms complexes with DNA polymerase beta, DNA ligase III and poly-ADP-ribose polymerase (PARP) in the repair of DNA single strand breaks and also affects the repair of double strand breaks. However, it is still not known well whether XRCC1 contributes to affect the irradiation sensitivity and DNA damage in HepG2 cell and the potential mechanism. Hence, the purpose of this study was to explore whether abrogation of XRCC1 gene expression by shRNA could reduce DNA repair and thus sensitize HepG2 cells to γ-ray. Cell viability was measured by Trypan blue staining and cloning efficiency assay. The DNA damage was detected by Comet assay. Apoptosis and cell cycle were detected by flow cytometry. The DNA-PKcs and gadd153 mRNA expression were determined by Real-time PCR. Our results showed that abrogation of XRCC 1 could sensitize HepG2 cells to γ-ray. This enhanced sensitivity could be attributed to the increased DNA damage and increased cell cycle arrest, which might be related with the increasing of DNA-PKcs and gadd153 mRNA expression. Therefore, our results suggested that the γ-ray irradiation sensitivity could be increased by targeting inhibition of XRCC1 in HepG2 cell.
Collapse
Affiliation(s)
- Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei, People's Republic of China; Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Xing Zhang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Xuanwu District, Beijing 100050, People's Republic of China
| | - Yuxin Zheng
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Xuanwu District, Beijing 100050, People's Republic of China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei, People's Republic of China.
| |
Collapse
|
19
|
da Silva BS, Rovaris DL, Bonotto RM, Meyer JBF, Grohe RE, Perassolo MS, Palazzo RDP, Maluf SW, Linden R, de Andrade FM. The influence on DNA damage of glycaemic parameters, oral antidiabetic drugs and polymorphisms of genes involved in the DNA repair system. Mutagenesis 2013; 28:525-30. [DOI: 10.1093/mutage/get029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
20
|
Wang Q, Tan HS, Zhang F, Sun Y, Feng NN, Zhou LF, Ye YJ, Zhu YL, Li YL, Brandt-Rauf PW, Shao H, Xia ZL. Polymorphisms in BER and NER pathway genes: Effects on micronucleus frequencies among vinyl chloride-exposed workers in northern China. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 754:7-14. [DOI: 10.1016/j.mrgentox.2013.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/15/2013] [Accepted: 03/22/2013] [Indexed: 02/03/2023]
|
21
|
Kumar AK, Balachandar V, Arun M, Ahamed SAKM, Kumar SS, Balamuralikrishnan B, Sankar K, Sasikala K. A comprehensive analysis of plausible genotoxic covariates among workers of a polyvinyl chloride plant exposed to vinyl chloride monomer. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:652-658. [PMID: 23271343 DOI: 10.1007/s00244-012-9857-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
The aim of this study was to assess the frequency of chromosomal aberrations-including chromatid type aberrations (CTAs), chromosomal type aberrations, micronucleus (MN) comet assay, and XRCC1 399 Arg/Gln polymorphism-in peripheral blood lymphocytes of workers occupationally exposed to vinyl chloride monomer (VCM). A total of 52 workers and an equal number of controls were recruited into the study to explore the potential cytogenetic risk of occupational exposure to VCM. Questionnaires were administered to obtain details of habitual cigarette-smoking, alcohol-consumption pattern, and occupation, etc. The exposed subjects and controls were classified into two groups based on age (group I <40 years; group II ≥40 years), and exposed subjects were further classified based on exposure duration (>8 and ≥8 years). CTA, MN, and comet assay frequency were significantly greater in polyvinyl chloride (PVC) factory workers (p < 0.05) with long-duration work. CTA, MN, and comet assay values were found to be increased with age in exposed subjects as well as in controls, with exposed subjects showing a statistically greater degree. An extensively greater MN frequency was observed in smokers exposed to VCM than in the control group (P < 0.05). The mean tail length of exposed subjects was greater compared with controls. The study on XRCC1 399 Arg/gln polymorphism in PVC factory workers showed less significant difference in allele frequency compared with controls. In conclusion, this results of work provides evidence for an apparent genotoxic effect associated with VCM exposure. Our results reinforce the greater sensitivity of cytogenetic assays for biomonitoring of occupationally exposed populations. Statistics indicate that workers exposed to VCM are at carcinogenic risk and should be monitored for long-term adverse effects from their exposure.
Collapse
Affiliation(s)
- Alagamuthu Karthick Kumar
- Human Genetics Laboratory, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ladeira C, Viegas S, Carolino E, Gomes MC, Brito M. The influence of genetic polymorphisms in XRCC3 and ADH5 genes on the frequency of genotoxicity biomarkers in workers exposed to formaldehyde. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:213-221. [PMID: 23355119 DOI: 10.1002/em.21755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/08/2012] [Accepted: 11/14/2012] [Indexed: 06/01/2023]
Abstract
The International Agency for Research on Cancer classified formaldehyde as carcinogenic to humans because there is "sufficient epidemiological evidence that it causes nasopharyngeal cancer in humans". Genes involved in DNA repair and maintenance of genome integrity are critically involved in protecting against mutations that lead to cancer and/or inherited genetic disease. Association studies have recently provided evidence for a link between DNA repair polymorphisms and micronucleus (MN) induction. We used the cytokinesis-block micronucleus (CBMN assay) in peripheral lymphocytes and MN test in buccal cells to investigate the effects of XRCC3 Thr241Met, ADH5 Val309Ile, and Asp353Glu polymorphisms on the frequency of genotoxicity biomarkers in individuals occupationally exposed to formaldehyde (n = 54) and unexposed workers (n = 82). XRCC3 participates in DNA double-strand break/recombination repair, while ADH5 is an important component of cellular metabolism for the elimination of formaldehyde. Exposed workers had significantly higher frequencies (P < 0.01) than controls for all genotoxicity biomarkers evaluated in this study. Moreover, there were significant associations between XRCC3 genotypes and nuclear buds, namely XRCC3 Met/Met (OR = 3.975, CI 1.053-14.998, P = 0.042) and XRCC3 Thr/Met (OR = 5.632, CI 1.673-18.961, P = 0.005) in comparison with XRCC3 Thr/Thr. ADH5 polymorphisms did not show significant effects. This study highlights the importance of integrating genotoxicity biomarkers and genetic polymorphisms in human biomonitoring studies.
Collapse
Affiliation(s)
- Carina Ladeira
- Escola Superior de Tecnologia da Saúde de Lisboa - Instituto Politécnico de Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
23
|
Fenech M, Kirsch-Volders M. RE: Insensitivity of the in vitro cytokinesis-block micronucleus assay with human lymphocytes for the detection of DNA damage present at the start of the cell culture (Mutagenesis, 27, 743–747, 2012). Mutagenesis 2013; 28:367-9. [DOI: 10.1093/mutage/ges081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Silva FSG, Oliveira H, Moreiras A, Fernandes JC, Bronze-da-Rocha E, Figueiredo A, Custódio JBA, Rocha-Pereira P, Santos-Silva A. The in vitro and in vivo genotoxicity of isotretinoin assessed by cytokinesis blocked micronucleus assay and comet assay. Toxicol In Vitro 2013; 27:900-7. [PMID: 23318729 DOI: 10.1016/j.tiv.2013.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 12/29/2012] [Accepted: 01/03/2013] [Indexed: 11/29/2022]
Abstract
Isotretinoin is a retinoic acid frequently used in monotherapy or combined with narrow-band ultraviolet B (NBUVB) irradiation to treat patients with acne and psoriasis vulgaris. As both diseases need frequent and/or prolonged therapeutic interventions, the study of the genotoxicity of retinoids becomes important. Our aim was to study the genotoxic effects of isotretinoin alone or combined with NBUVB. In vitro studies were performed in the absence of S9 metabolic activation using blood from five healthy volunteers, incubated 72 h with isotretinoin (1.2-20 μM) (i.e., at concentrations usually achieved in blood with therapeutic doses as well as at higher concentrations). In vivo studies were also performed using blood from two patients with acne and three patients with psoriasis vulgaris treated with isotretinoin in monotherapy (8 or 20mg/day) or combined with NBUVB (20mg isotretinoin/day+NBUVB). The genotoxic effect was evaluated by the cytokinesis-blocked micronucleus and the comet assays. Our studies showed that isotretinoin alone was not genotoxic when tested in human lymphocytes in vitro and in vivo. There was no clear genotoxic effect in psoriatic patients treated with isotretinoin and NBUVB. The in vitro studies showed that isotretinoin induced apoptosis and necrosis in human lymphocytes at higher doses.
Collapse
Affiliation(s)
- F S G Silva
- Laboratório de Bioquímica, Faculdade Farmácia, Universidade Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Trabulus S, Guven GS, Altiparmak MR, Batar B, Tun O, Yalin AS, Tunckale A, Guven M. DNA repair XRCC1 Arg399Gln polymorphism is associated with the risk of development of end-stage renal disease. Mol Biol Rep 2012; 39:6995-7001. [DOI: 10.1007/s11033-012-1529-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
|
26
|
Mateuca RA, Decordier I, Kirsch-Volders M. Cytogenetic methods in human biomonitoring: principles and uses. Methods Mol Biol 2012; 817:305-334. [PMID: 22147579 DOI: 10.1007/978-1-61779-421-6_15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cellular phenotypes can be applied as biomarkers to differentiate normal from abnormal biological -conditions. Several cytogenetic methods have been developed and allow the accurate detection of such phenotypic changes.Based on their mechanisms of formation, cellular phenotypes may be used either as biomarkers of exposure or as biomarkers of effect. Therefore, it is important that cytogenetic methods implemented in human biomonitoring should be based on a good knowledge of these mechanisms.In this chapter, we aim to review the mechanistic basis, the methodology, and the use in human biomonitoring studies of four major cytogenetic endpoints: sister chromatid exchanges (SCEs), high frequency cells (HFCs), chromosomal aberrations (CAs), and micronuclei (MN). In addition, an overview of potential confounding factors on the induction of these cytogenetic makers is presented. Furthermore, the combination of cytogenetics with molecular methods, which allows chromosome and gene identification on metaphase as well as in interphase cells with high resolution, is discussed. Finally, practical recommendations for an efficient application of these cytogenetic assays and a correct interpretation of the results on the basis of cellular phenotype(s) assessment in human biomonitoring are highlighted.
Collapse
|
27
|
Abdel-Rahman SZ, El-Zein RA. Evaluating the effects of genetic variants of DNA repair genes using cytogenetic mutagen sensitivity approaches. Biomarkers 2011; 16:393-404. [PMID: 21595606 DOI: 10.3109/1354750x.2011.577237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutagen sensitivity, measured in short-term cultures of peripheral blood lymphocytes by cytogenetic endpoints, is an indirect measure for DNA repair capacity and has been used for many years as a biomarker for intrinsic susceptibility for cancer. In this article, we briefly give an overview of the different cytogenetic mutagen sensitivity approaches that have been used successfully to evaluate the biological effects of polymorphisms in DNA repair genes based on a current review of the literature and based on the need for biomarkers that would allow the characterization of the biological and functional significance of such polymorphisms. We also address some of the future challenges facing this emerging area of research.
Collapse
Affiliation(s)
- Sherif Z Abdel-Rahman
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, 77555-1062, USA.
| | | |
Collapse
|
28
|
Sal’nikova LE, Chumachenko AG, Vesnina IN, Lapteva NS, Kuznetsova GI, Abilev SK, Rubanovich AV. Polymorphism of repair genes and cytogenetic radiation effects. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911020266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Surowy H, Rinckleb A, Luedeke M, Stuber M, Wecker A, Varga D, Maier C, Hoegel J, Vogel W. Heritability of baseline and induced micronucleus frequencies. Mutagenesis 2011; 26:111-7. [PMID: 21164191 DOI: 10.1093/mutage/geq059] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The scoring of micronuclei (MN) is widely used in biomonitoring and mutagenicity testing as a surrogate marker of chromosomal damage inflicted by clastogenic agents or by aneugens. Individual differences in the response to a mutagenic challenge are known from studies on cancer patients and carriers of mutations in DNA repair genes. However, it has not been studied to which extent genetic factors contribute to the observed variability of individual MN frequencies. Our aim was to quantify this heritable genetic component of both baseline and radiation-induced MN frequencies. We performed a twin study comprising 39 monozygotic (MZ) and 10 dizygotic (DZ) twin pairs. Due to the small number of DZ pairs, we had to recruit controls from which 38 age- and gender-matched random control pairs (CPs) were generated. For heritability estimates, we used biometrical modelling of additive genetic, common environmental, and unique environmental components (ACE model) of variance and direct comparison of variance between the sample groups. While heritability estimates from MZ to DZ comparisons produced inconclusive results, both estimation methods revealed a high degree of heritability (h(2)) for baseline MN frequency (h(2) = 0.68 and h(2) = 0.72) as well as for the induced frequency (h(2) = 0.68 and h(2) = 0.57) when MZ were compared to CP. The result was supported by the different intraclass correlation coefficients of MZ, DZ and CP for baseline (r = 0.63, r = 0.31 and r = 0.0, respectively) as well as for induced MN frequencies (r = 0.79, r = 0.74 and r = 0.0, respectively). This study clearly demonstrates that MN frequencies are determined by genetic factors to a major part. The strong reflection of the genetic background supports the idea that MN frequencies represent an intermediate phenotype between molecular DNA repair mechanisms and the cancer phenotype and affirms the approaches that are made to utilise them as predictors of, for example, cancer risk.
Collapse
Affiliation(s)
- Harald Surowy
- Institute of Human Genetics, University Hospital Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Golka K, Selinski S, Lehmann ML, Blaszkewicz M, Marchan R, Ickstadt K, Schwender H, Bolt HM, Hengstler JG. Genetic variants in urinary bladder cancer: collective power of the “wimp SNPs”. Arch Toxicol 2011; 85:539-54. [DOI: 10.1007/s00204-011-0676-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 02/07/2023]
|
31
|
Decordier I, Mateuca R, Kirsch-Volders M. Micronucleus assay and labeling of centromeres with FISH technique. Methods Mol Biol 2011; 691:115-36. [PMID: 20972750 DOI: 10.1007/978-1-60761-849-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cytokinesis-block micronucleus (CBMN) assay has since many years been applied for in vitro genotoxicity testing and biomonitoring of human populations. The standard in vitro/ex vivo micronucleus test is usually performed on human lymphocytes and has become a comprehensive method to assess genetic damage, cytostasis, and cytotoxicity. The predictive association between the frequency of micronuclei (MN) in cytokinesis-blocked lymphocytes and cancer risk has recently been demonstrated. MN frequencies can be influenced by inherited (or acquired) genetic polymorphisms (or mutations) in genes responsible for the metabolic activation, detoxification of clastogens, and for the fidelity of DNA replication. An important advantage of the CBMN assay is its ability to detect both clastogenic and aneugenic events by centromere and kinetochore identification and contributes to the high sensitivity of the method. The objective of the present chapter is to review the mechanisms of induction of micronuclei, the method of the micronucleus assay and its combination with centromeric labeling in the FISH technique. Furthermore, an overview is given of recent results obtained by our laboratory by the application of the micronucleus assay.
Collapse
Affiliation(s)
- Ilse Decordier
- Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
32
|
Dhillon VS, Thomas P, Iarmarcovai G, Kirsch-Volders M, Bonassi S, Fenech M. Genetic polymorphisms of genes involved in DNA repair and metabolism influence micronucleus frequencies in human peripheral blood lymphocytes. Mutagenesis 2010; 26:33-42. [DOI: 10.1093/mutage/geq076] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
33
|
Fenech M, Holland N, Zeiger E, Chang WP, Burgaz S, Thomas P, Bolognesi C, Knasmueller S, Kirsch-Volders M, Bonassi S. The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells--past, present and future. Mutagenesis 2010; 26:239-45. [DOI: 10.1093/mutage/geq051] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Santos RA, Teixeira AC, Mayorano MB, Carrara HHA, Andrade JM, Takahashi CS. DNA repair genes XRCC1 and XRCC3 polymorphisms and their relationship with the level of micronuclei in breast cancer patients. Genet Mol Biol 2010; 33:637-40. [PMID: 21637570 PMCID: PMC3036161 DOI: 10.1590/s1415-47572010005000082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/09/2010] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is the most prevalent type worldwide, besides being one of the most common causes of death among women. It has been suggested that sporadic BC is most likely caused by low-penetrance genes, including those involved in DNA repair mechanisms. Furthermore, the accumulation of DNA damage may contribute to breast carcinogenesis. In the present study, the relationship between two DNA repair genes, viz., XRCC1 (Arg399Gln) and XRCC3 (Thr241Met) polymorphisms, and the levels of chromosome damage detected in 65 untreated BC women and 85 healthy controls, was investigated. Chromosome damage was evaluated through micronucleus assaying, and genotypes determined by PCR-RFLP methodology. The results showed no alteration in the risk of BC and DNA damage brought about by either XRCC1 (Arg399Gln) or XRCC3 (Thr241Met) action in either of the two groups. Nevertheless, on evaluating BC risk in women presenting levels of chromosome damage above the mean, the XRCC3Thr241Met polymorphism was found to be more frequent in the BC group than in the control, thereby leading to the conclusion that there is a slight association between XRCC3 (241 C/T) genotypes and BC risk in the subgroups with higher levels of chromosome damage.
Collapse
Affiliation(s)
- Raquel A Santos
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Influence of genetic polymorphisms on frequency of micronucleated buccal epithelial cells in leukoplakia patients. Oral Oncol 2010; 46:761-6. [DOI: 10.1016/j.oraloncology.2010.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/24/2010] [Accepted: 08/24/2010] [Indexed: 11/17/2022]
|
36
|
Wang Q, Ji F, Sun Y, Qiu YL, Wang W, Wu F, Miao WB, Li Y, Brandt-Rauf PW, Xia ZL. Genetic polymorphisms of XRCC1, HOGG1 and MGMT and micronucleus occurrence in Chinese vinyl chloride-exposed workers. Carcinogenesis 2010; 31:1068-73. [PMID: 20378691 DOI: 10.1093/carcin/bgq075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this study, a group of 313 workers occupationally exposed to vinyl chloride monomer (VCM) and 141 normal unexposed referents were examined for chromosomal damage using the cytokinesis-blocked micronucleus (CBMN) assay in peripheral lymphocytes. We explored the relationship between genetic polymorphisms of XRCC1 (Arg194Trp, Arg280His and Arg399Gln), MGMT(Leu84Phe) and hOGG1 (Ser326Cys) and susceptibility of chromosomal damage induced by VCM. Polymerase chain reaction-restriction fragment length polymorphism techniques were used to detect polymorphisms in XRCC1, hOGG1 and MGMT. It was found that the micronuclei (MN) frequency of exposed workers (4.86 +/- 2.80) per thousand was higher than that of the control group (1.22 +/- 1.24) per thousand (P < 0.01). Increased susceptibility to chromosomal damage as evidenced by higher MN frequency was found in workers with hOGG1 326 Ser/Cys genotype [frequency ratio (FR) = 1.21, 95% confidence interval (CI): 1.02-1.46; P < 0.05], XRCC1 194 Arg/Trp (FR = 1.12, 95% CI: 1.00-1.25; P < 0.05) and XRCC1 280 Arg/His and His/His genotypes (FR = 1.12, 95% CI 1.00-1.26, P < 0.05). Moreover, among susceptibility diplotypes, CGA/CAG carriers had more risk of MN frequency compared with individuals with wild-type CGG/CGG (FR = 1.67, 95% CI: 1.19-2.23; P < 0.05). MN frequency also increased significantly with age in the exposed group (FR = 1.13, 95% CI: 1.00-1.28; P < 0.05). Thus, CB-MN was a sensitive index of early damage among VCM-exposed workers. Genotype XRCC1 Arg194Trp, Arg280His, hOGG1 Ser326Cys, diplotype CGA/CAG and higher age may have an impact on the chromosome damage induced by VCM.
Collapse
Affiliation(s)
- Qi Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of public health and safety of Ministry of Education of China, 138 Yixue yuan Road, Shanghai, 200032,China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Genotoxicity surveillance programme in workers dismantling World War I chemical ammunition. Int Arch Occup Environ Health 2010; 83:483-95. [DOI: 10.1007/s00420-010-0526-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
|
38
|
Wang Q, Wang AH, Tan HS, Feng NN, Ye YJ, Feng XQ, Liu G, Zheng YX, Xia ZL. Genetic polymorphisms of DNA repair genes and chromosomal damage in workers exposed to 1,3-butadiene. Carcinogenesis 2010; 31:858-63. [PMID: 20223788 DOI: 10.1093/carcin/bgq049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The base excision repair (BER) pathway is important in repairing DNA damage incurred from occupational exposure to 1,3-butadiene (BD). This study examines the relationship between inherited polymorphisms of the BER pathway (x-ray repair cross-complementing group 1 (XRCC1) Arg194Trp, Arg280His, Arg399Gln, T-77C, ADPRT Val762Ala, MGMT Leu84Phe and APE1 Asp148Glu) and chromosomal damage in BD-exposed workers, using the cytokinesis-blocked (CB) micronucleus (MN) assay in peripheral lymphocytes of 166 workers occupationally exposed to BD and 41 non-exposed healthy individuals. The MN frequency of exposed workers (3.39 +/- 2.42) per thousand was higher than that of the non-exposed groups (1.48 +/- 1.26) per thousand (P < 0.01). Workers receiving greater than median annual BD exposures had higher MN values than lower exposed workers: frequency ratio (FR) of 1.30, 95% confidence interval (CI) 1.14-1.53; P < 0.05. Workers who carried the following genotypes were associated with greater frequency of MN (P < 0.05 for each comparison, unless specified): XRCC1 -77 C/T genotype (FR = 1.28, 95% CI: 1.04-1.57; reference C/C), ADPRT 762 Ala/Ala (FR = 1.54, 95% CI: 1.17-2.03; P < 0.01), XRCC1 194 Arg/Trp (FR = 1.13, 95% CI: 0.87-1.27; reference, Arg/Arg), XRCC1 280 Arg/His (FR = 1.67, 95% CI: 1.10-2.42; reference, Arg/Arg), XRCC1 399 Arg/Gln and Gln/Gln genotypes (FR = 1.26, 95% CI: 1.03-1.53 and FR = 1.24, 95% CI 1.03-1.49; reference Arg/Arg, respectively). As XRCC1 polymorphisms were linked, workers carrying the XRCC1 (-77)-(194)-(280)-(399) diplotype, TCGA/TCGA, had a higher MN frequency compared with individuals carrying the wild-type CCGG/CCGG (FR = 1.57, 95% CI: 1.02-2.41; P < 0.05). In conclusion, CB-MN is a sensitive index of early damage among BD-exposed workers. In workers exposed to BD, multiple BER polymorphisms and a XRCC1 haplotype were associated with differential levels of chromosome damage.
Collapse
Affiliation(s)
- Qi Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hille A, Hofman-Hüther H, Kühnle E, Wilken B, Rave-Fränk M, Schmidberger H, Virsik P. Spontaneous and radiation-induced chromosomal instability and persistence of chromosome aberrations after radiotherapy in lymphocytes from prostate cancer patients. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:27-37. [PMID: 19760427 PMCID: PMC2822223 DOI: 10.1007/s00411-009-0244-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 09/01/2009] [Indexed: 05/28/2023]
Abstract
The aim of the study was to compare the spontaneous and ex vivo radiation-induced chromosomal damage in lymphocytes of untreated prostate cancer patients and age-matched healthy donors, and to evaluate the chromosomal damage, induced by radiotherapy, and its persistence. Blood samples from 102 prostate cancer patients were obtained before radiotherapy to investigate the excess acentric fragments and dicentric chromosomes. In addition, in a subgroup of ten patients, simple exchanges in chromosomes 2 and 4 were evaluated by fluorescent in situ hybridization (FISH), before the onset of therapy, in the middle and at the end of therapy, and 1 year later. Data were compared to blood samples from ten age-matched healthy donors. We found that spontaneous yields of acentric chromosome fragments and simple exchanges were significantly increased in lymphocytes of patients before onset of therapy, indicating chromosomal instability in these patients. Ex vivo radiation-induced aberrations were not significantly increased, indicating proficient repair of radiation-induced DNA double-strand breaks in lymphocytes of these patients. As expected, the yields of dicentric and acentric chromosomes, and the partial yields of simple exchanges, were increased after the onset of therapy. Surprisingly, yields after 1 year were comparable to those directly after radiotherapy, indicating persistence of chromosomal instability over this time. Our results indicate that prostate cancer patients are characterized by increased spontaneous chromosomal instability. This instability seems to result from defects other than a deficient repair of radiation-induced DNA double-strand breaks. Radiotherapy-induced chromosomal damage persists 1 year after treatment.
Collapse
Affiliation(s)
- Andrea Hille
- Abteilung für Strahlentherapie und Radioonkologie, Universitätsmedizin Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Hana Hofman-Hüther
- Abteilung für Strahlentherapie und Radioonkologie, Universitätsmedizin Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Elna Kühnle
- Abteilung für Strahlentherapie und Radioonkologie, Universitätsmedizin Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Barbara Wilken
- Abteilung für Strahlentherapie und Radioonkologie, Universitätsmedizin Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Margret Rave-Fränk
- Abteilung für Strahlentherapie und Radioonkologie, Universitätsmedizin Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Heinz Schmidberger
- Klinik und Poliklinik für Radioonkologie sowie Strahlentherapie, Universitätsklinikum Mainz, Langenbeck str. 1, 55131 Mainz, Germany
| | - Patricia Virsik
- Abteilung für Umweltmedizin und Hygiene, Universitätsmedizin Göttingen, Robert-Koch-str. 40, 37075 Göttingen, Germany
| |
Collapse
|
40
|
Ji F, Wang W, Xia ZL, Zheng YJ, Qiu YL, Wu F, Miao WB, Jin RF, Qian J, Jin L, Zhu YL, Christiani DC. Prevalence and persistence of chromosomal damage and susceptible genotypes of metabolic and DNA repair genes in Chinese vinyl chloride-exposed workers. Carcinogenesis 2010; 31:648-53. [PMID: 20100738 DOI: 10.1093/carcin/bgq015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vinyl chloride (VC) was classified as a group 1 carcinogen by IARC in 1987. Although the relationship between VC exposure and liver cancer has been established, the mechanism of VC-related carcinogenesis remains largely unknown. Previous epidemiological studies have shown that VC exposure is associated with increased genotoxicity in humans. To explore chromosomal damage and its progression, and their association to genetic susceptibility, we investigated 402 workers exposed to VC, a 77 VC-exposed cohort and 141 unexposed subjects. We measured the frequencies of cytokinesis-block micronucleus (CBMN) to reflect chromosomal damage and conducted genotyping for six xenobiotic metabolisms and five DNA repair genes' polymorphism. Data indicate that 95% of the control workers had CBMN frequencies </=3 per thousand, whereas VC-exposed workers had the 3.73-fold increase compared with the controls. Among the cohort workers who were followed from 2004 to 2007, the mean CBMN frequency was higher in 2007 than in 2004 with ratio of 2.08. Multiple Poisson regression analysis showed that mean CBMN frequencies were significantly elevated for the intermediate and high exposure groups than the low. Exposed workers with CYP2E1 or XRCC1 variance showed a higher CBMN frequency than their wild-type homozygous counterparts, so did workers with GSTP1 or ALDH2 genotype. This study provides evidence that cumulative exposure dose of VC and common genetic variants in genes relevant to detoxification of carcinogens are the major factors that modulate CBMN induction in VC-exposed workers.
Collapse
Affiliation(s)
- Fang Ji
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Modulation of nucleotide excision repair in human lymphocytes by genetic and dietary factors. Br J Nutr 2009; 103:490-501. [PMID: 19878615 DOI: 10.1017/s0007114509992066] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gene-environment interactions determine inter-individual variations in nucleotide excision repair (NER) capacity. Oxidative stress was previously found to inhibit NER, thus supplementation with dietary antioxidants could prevent this inhibition, especially in genetically susceptible subjects. To study the effects of genetic polymorphisms in NER-related genes and dietary intake of antioxidants on an individual's NER capacity, lymphocytes of 168 subjects were isolated before and after a 4-week blueberry and apple juice intervention. Twelve genetic polymorphisms in NER genes XPA, XPC, ERCC1, ERCC2, ERCC5, ERCC6 and RAD23B were assessed by multiplex PCR with single base extension. Based on specific genotype combinations, a subset of individuals (n 36) was selected for phenotypical assessment of NER capacity, which was significantly affected by the total sum of low-activity alleles (P = 0.027). The single polymorphism XPA G23A was the strongest predictor of NER capacity (P = 0.002); carriers of low-activity alleles AA had about three times lower NER capacity than XPA GG carriers. NER capacity assessed before and after intervention correlated significantly (R(2) 0.69; P < 0.001), indicating that inter-individual differences in NER capacity are maintained over 4 weeks. Although the intervention increased plasma trolox equivalent antioxidant capacity from 791 (SE 6.61) to 805 (SE 7.90) microm (P = 0.032), on average it did not affect NER capacity. Nonetheless, carriers of twelve or more low-activity alleles seemed to benefit from the intervention (P = 0.013). Among these, carriers of the variant allele for RAD23B Ala249Val showed improved NER capacity upon intervention (P = 0.020). In conclusion, improved NER capacity upon dietary intervention was detected in individuals carrying multiple low-activity alleles. The XPA G23A polymorphism might be a predictor for NER capacity.
Collapse
|
42
|
Vande Loock K, Decordier I, Ciardelli R, Haumont D, Kirsch-Volders M. An aphidicolin-block nucleotide excision repair assay measuring DNA incision and repair capacity. Mutagenesis 2009; 25:25-32. [PMID: 19843590 DOI: 10.1093/mutage/gep039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The objective of the present study was to develop a cellular phenotype assay for nucleotide excision repair (NER), using benzo[a]pyrene diol epoxide (BPDE) as model mutagen. Since in vitro exposure to BPDE may lead to DNA strand breaks resulting from both direct interaction with DNA and incisions introduced by the repair enzymes, we aimed to discriminate between both types of breaks using the comet assay and quantified the DNA strand breaks after in vitro challenge of peripheral blood mononucleated cells (PBMCs) with BPDE in the presence or absence of the DNA polymerase inhibitor aphidicolin (APC). The assay was performed with a low (0.5 microM) and a high (2.5 microM) BPDE concentration. The individual NER capacity was defined as the amount of DNA damage induced by BPDE in presence of APC, diminished with the damage induced by BPDE and APC alone. First, the assay was applied to a NER-deficient human fibroblast cell line (XPA-/-) to validate the methodology. Lower repair capacity and a higher amount of BPDE-induced DNA adducts were observed for the XPA-/- fibroblasts as compared to the wild-type fibroblasts. Repeated experiments on PBMCs from four donors showed low intra-individual, intra-experimental and inter-assay variation for both concentrations, indicating the reliability of the method. To assess the inter-individual variation, the assay was applied to PBMCs from 22 donors, comparing the repair capacity after exposure to 0.5 microM (N = 10) and 2.5 microM (N = 12) BPDE. The repair capacity showed a higher inter-individual variation as compared to the intra-individual variation. Moreover, this difference was more pronounced using the low concentration. All these results indicate the adequacy of the method using this low concentration. Further improvement, however, should be recommended by applying the study with low BPDE concentration in a larger population and taking into account the relevant genotypes for NER.
Collapse
Affiliation(s)
- Kim Vande Loock
- Laboratory of Cell Genetics, Vrije Universiteit Brussel, Brussel, Belgium.
| | | | | | | | | |
Collapse
|
43
|
Ying S, Myers K, Bottomley S, Helleday T, Bryant HE. BRCA2-dependent homologous recombination is required for repair of Arsenite-induced replication lesions in mammalian cells. Nucleic Acids Res 2009; 37:5105-13. [PMID: 19553191 PMCID: PMC2731915 DOI: 10.1093/nar/gkp538] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Arsenic exposure constitutes one of the most widespread environmental carcinogens, and is associated with increased risk of many different types of cancers. Here we report that arsenite (As[III]) can induce both replication-dependent DNA double-strand breaks (DSB) and homologous recombination (HR) at doses as low as 5 µM (0.65 mg/l), which are within the typical doses often found in drinking water in contaminated areas. We show that the production of DSBs is dependent on active replication and is likely to be the result of conversion of a DNA single-strand break (SSB) into a toxic DSB when encountered by a replication fork. We demonstrate that HR is required for the repair of these breaks and show that a functional HR pathway protects against As[III]-induced cytotoxicity. In addition, BRCA2-deficient cells are sensitive to As[III] and we suggest that As[III] could be exploited as a therapy for HR-deficient tumours such as BRCA1 and BRCA2 mutated breast and ovarian cancers.
Collapse
Affiliation(s)
- Songmin Ying
- The Institute for Cancer Studies, University of Sheffield, Sheffield S10 2RX, UK
| | | | | | | | | |
Collapse
|
44
|
Andreassi MG, Foffa I, Manfredi S, Botto N, Cioppa A, Picano E. Genetic polymorphisms in XRCC1, OGG1, APE1 and XRCC3 DNA repair genes, ionizing radiation exposure and chromosomal DNA damage in interventional cardiologists. Mutat Res 2009; 666:57-63. [PMID: 19393248 DOI: 10.1016/j.mrfmmm.2009.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/01/2009] [Accepted: 04/14/2009] [Indexed: 05/27/2023]
Abstract
Interventional cardiologists working in high-volume cardiac catheterization laboratory are exposed to significant occupational radiation risks. Common single-nucleotide polymorphisms (SNPs) in DNA repair genes are thought to modify the effects of low-dose radiation exposure on DNA damage, the main initiating event in the development of cancer and hereditary disease. The aim of this study was to determine the relationship between XRCC1 (Arg194Trp and Arg399Gln), OGG1 (Ser326Cys), APE1 (Asp148Glu) and XRCC3 (Thr241Met) SNPs and chromosomal DNA damage. We enrolled 77 subjects: 40 interventional cardiologists (27 male, 41.3+/-9.4 years and 13 female, 37.8+/-8.4 years) and 37 clinical cardiologists (26 male, 39.4+/-9.5 years and 11 female, 35.0+/-9.8 years) without radiation exposure as the control group. Micronucleus (MN) assay was performed as biomarker of chromosomal DNA damage and an early predictor of cancer. MN frequency was significantly higher in interventional cardiologists than in clinical physicians (19.7+/-7.8 per thousand vs. 13.5+/-6.3 per thousand, p=0.0003). Within the exposed group, individuals carrying a XRCC3 Met241 allele had higher frequency than homozygous XRCC3 Thr241 (21.2+/-7.8 per thousand vs. 16.6+/-7.1 per thousand, p=0.03). Individuals with two or more risk alleles showed a higher MN frequency when compared to subjects with one or no risk allele (18.4+/-6.6 per thousand vs. 14.4+/-6.1 per thousand, p=0.02). An interactive effect was found between smoking, exposure >10 years and the presence of the two or more risk alleles on the MN frequency (F=6.3, p=0.02). XRCC3 241Met alleles, particularly in combination with multiple risk alleles of DNA repair genes, contribute to chromosomal DNA damage levels in interventional cardiologists.
Collapse
|
45
|
Andrew AS, Mason RA, Kelsey KT, Schned AR, Marsit CJ, Nelson HH, Karagas MR. DNA repair genotype interacts with arsenic exposure to increase bladder cancer risk. Toxicol Lett 2009; 187:10-4. [PMID: 19429237 PMCID: PMC2680739 DOI: 10.1016/j.toxlet.2009.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/08/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
Drinking water arsenic exposure has been associated with increased bladder cancer susceptibility. Epidemiologic and experimental data suggest a co-carcinogenic effect of arsenic with exposure to DNA damaging agents, such as cigarette smoke. Recent evidence further supports the hypothesis that genetic variation in DNA repair genes can modify the arsenic-cancer relationship, possibly because arsenic impairs DNA repair capacity. We tested this hypothesis in a population-based study of bladder cancer with XRCC3, ERCC2 genotype/haplotype and arsenic exposure data on 549 controls and 342 cases. Individual exposure to arsenic was determined in toenail samples by neutron activation. Gene-environment interaction with arsenic exposure was observed in relation to bladder cancer risk for a variant allele of the double-strand break repair gene XRCC3 T241M (adjusted OR 2.8 (1.1-7.3)) comparing to homozygous wild type among those in the top arsenic exposure decile (interaction p-value 0.01). Haplotype analysis confirmed the association of the XRCC3 241. Thus, double-strand break repair genotype may enhance arsenic associated bladder cancer susceptibility in the U.S. population.
Collapse
Affiliation(s)
- Angeline S Andrew
- Department of Community & Family Medicine, Section of Biostatistics & Epidemiology, Dartmouth Medical School, Lebanon, NH 03756, United States.
| | | | | | | | | | | | | |
Collapse
|
46
|
Catalán J, Heilimo I, Falck GCM, Järventaus H, Rosenström P, Nykyri E, Kallas-Tarpila T, Pitkämäki L, Hirvonen A, Norppa H. Chromosomal aberrations in railroad transit workers: effect of genetic polymorphisms. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:304-316. [PMID: 19177501 DOI: 10.1002/em.20458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Complex chemical mixtures are transported by train from Russia to Finland for further shipment. Here, we studied if exposure to genotoxic components among these substances could affect chromosomal aberrations (CAs) in peripheral lymphocytes of workers handling the tank cars. An initial survey among 48 railroad workers and 39 referents (male smokers and nonsmokers) showed an elevation of CAs. A campaign was started to reduce exposures through preventive measures. Five years later, 51 tank car workers and 40 age-matched referents (all nonsmoking men) were studied for CAs and genetic polymorphisms of xenobiotic metabolism (EPHX1, GSTM1, GSTP1, GSTT1, NAT1, NAT2), DNA repair (ERCC2, ERCC5, XPA, XPC, XRCC1, XRCC3), and folate metabolism (MTHFR, MTR). No increase in CAs was seen in the exposed group, suggesting that the preventive measures had been successful. However, a positive association existed between exposure duration and CA level among the exposed subjects. The level of chromosome-type breaks was actually lower in the exposed workers than the referents, particularly among MTHFR wild-type homozygotes or XRCC3 codon 241 variant allele carriers, suggesting modulation of CA frequency by folate metabolism and DNA repair. An interaction was observed between the occupational exposure and MTHFR, EPHX1, and MTR genotypes in determining CA level. The NAT2, ERCC2 exon 10, and XRCC1 codon 194 polymorphisms also affected CA frequency. Our findings suggest that handling of tank cars containing complex chemical mixtures poses a genotoxic risk, which may be reduced by preventive measures. Several genetic polymorphisms seem to modify the genotoxic effect or baseline CA level.
Collapse
Affiliation(s)
- Julia Catalán
- Finnish Institute of Occupational Health, Helsinki and Lappeenranta, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hoyos-Giraldo LS, Carvajal S, Cajas-Salazar N, Ruíz M, Sánchez-Gómez A. Chromosome aberrations in workers exposed to organic solvents: Influence of polymorphisms in xenobiotic-metabolism and DNA repair genes. Mutat Res 2009; 666:8-15. [PMID: 19481674 DOI: 10.1016/j.mrfmmm.2009.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 01/15/2023]
Abstract
Organic solvents are widely used as diluents or thinners for oil-paints, gasoline and other organic mixtures. We evaluated chromosome aberrations (CAs) in lymphocytes of 200 workers exposed to organic solvents and 200 referents and the influence of polymorphisms in xenobiotic-metabolism (CYP2E1, GSTM1 and GSTT1) and in DNA repair genes (XRCC1(194) Arg/Trp, XRCC1(280) Arg/His, XRCC1(399) Arg/Gln and XRCC3(241) Thr/Met). Polymorphisms were determined by PCR-RFLP. Poisson regression analysis indicates a significant CA frequency increase in exposed workers, representing a higher risk in relation to the matched referent (RR 2.15, 95% CI 1.21-1.53, p<0.001). The CA frequency in exposed workers was influenced by the polymorphic genotypes: GSTM1 null (RR 1.33, 95% CI 1.31-1.69, p<0.001), XRCC1(194) Arg/Trp, Trp/Trp (RR 1.23, 95% CI 1.08-1.40, p<0.001) and by the wild genotypes CYP2E1 C1/C1 (RR 1.20, 95% CI 1.05-1.37, p<0.001), GSTT1 positive (RR 1.49, 95% CI 1.31-1.69, p<0.001), XRCC1(280) Arg/Arg (RR 1.44, 95% CI 1.26-1.64, p<0.001) and XRCC1(241) Thr/Thr (RR 1.54, 95% CI 1.34-1.76, p=0.001). We contribute to the follow-up predictive value of individual susceptibility biomarkers and their CA frequency influence during occupational organic solvent exposure. We provide tools for surveillance and prevention strategies to reduce potential health risks in countries with a large population of car painters not using protection devices and limited organic solvents use control.
Collapse
Affiliation(s)
- Luz Stella Hoyos-Giraldo
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia.
| | | | | | | | | |
Collapse
|
48
|
Genetic effects and biotoxicity monitoring of occupational styrene exposure. Clin Chim Acta 2009; 399:8-23. [PMID: 18845133 DOI: 10.1016/j.cca.2008.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 11/22/2022]
|
49
|
Ehrlich VA, Nersesyan AK, Hoelzl C, Ferk F, Bichler J, Valic E, Schaffer A, Schulte-Hermann R, Fenech M, Wagner KH, Knasmüller S. Inhalative exposure to vanadium pentoxide causes DNA damage in workers: results of a multiple end point study. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1689-93. [PMID: 19079721 PMCID: PMC2599764 DOI: 10.1289/ehp.11438] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 07/31/2008] [Indexed: 05/21/2023]
Abstract
BACKGROUND Inhalative exposure to vanadium pentoxide (V(2)O(5)) causes lung cancer in rodents. OBJECTIVE The aim of the study was to investigate the impact of V(2)O(5) on DNA stability in workers from a V(2)O(5) factory. METHODS We determined DNA strand breaks in leukocytes of 52 workers and controls using the alkaline comet assay. We also investigated different parameters of chromosomal instability in lymphocytes of 23 workers and 24 controls using the cytokinesis-block micronucleus (MN) cytome method. RESULTS Seven of eight biomarkers were increased in blood cells of the workers, and vanadium plasma concentrations in plasma were 7-fold higher than in the controls (0.31 microg/L). We observed no difference in DNA migration under standard conditions, but we found increased tail lengths due to formation of oxidized purines (7%) and pyrimidines (30%) with lesion-specific enzymes (formamidopyrimidine glycosylase and endonuclease III) in the workers. Bleomycin-induced DNA migration was higher in the exposed group (25%), whereas the repair of bleomycin-induced lesions was reduced. Workers had a 2.5-fold higher MN frequency, and nucleoplasmic bridges (NPBs) and nuclear buds (Nbuds) were increased 7-fold and 3-fold, respectively. Also, apoptosis and necrosis rates were higher, but only the latter parameter reached statistical significance. CONCLUSIONS V(2)O(5) causes oxidation of DNA bases, affects DNA repair, and induces formation of MNs, NPBs, and Nbuds in blood cells, suggesting that the workers are at increased risk for cancer and other diseases that are related to DNA instability.
Collapse
Affiliation(s)
- Veronika A. Ehrlich
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Armen K. Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christine Hoelzl
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Julia Bichler
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Eva Valic
- Austrian Workers Compensation Board, Vienna, Austria
| | - Andreas Schaffer
- Department of Medicine II, Medical University of Vienna, Austria
| | - Rolf Schulte-Hermann
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Fenech
- Commonwealth Scientific and Industrial Research Organisation, Human Nutrition, Adelaide, Australia
| | | | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Address correspondence to S. Knasmüller, Institute for Cancer Research, Borschkegasse 8a, 1090 Vienna, Austria. Telephone: 43-1-4277-65142. Fax: 43-1-4277-6519. E-mail:
| |
Collapse
|
50
|
Burri RJ, Stock RG, Cesaretti JA, Atencio DP, Peters S, Peters CA, Fan G, Stone NN, Ostrer H, Rosenstein BS. Association of single nucleotide polymorphisms in SOD2, XRCC1 and XRCC3 with susceptibility for the development of adverse effects resulting from radiotherapy for prostate cancer. Radiat Res 2008; 170:49-59. [PMID: 18582155 DOI: 10.1667/rr1219.1] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 03/14/2008] [Indexed: 11/03/2022]
Abstract
The objective of this study was to determine whether an association exists between certain single nucleotide polymorphisms (SNPs), which have previously been linked with adverse normal tissue effects resulting from radiotherapy, and the development of radiation injury resulting from radiotherapy for prostate cancer. A total of 135 consecutive patients with clinically localized prostate cancer and a minimum of 1 year of follow-up who had been treated with radiation therapy, either brachytherapy alone or in combination with external-beam radiotherapy, with or without hormone therapy, were genotyped for SNPs in SOD2, XRCC1 and XRCC3. Three common late tissue toxicities were investigated: late rectal bleeding, urinary morbidity, and erectile dysfunction. Patients with the XRCC1 rs25489 G/A (Arg280His) genotype were more likely to develop erectile dysfunction after irradiation than patients who had the G/G genotype (67% compared to 24%; P=0.048). In addition, patients who had the SOD2 rs4880 T/C (Val16Ala) genotype exhibited a significant increase in grade 2 late rectal bleeding compared to patients who had either the C/C or T/T genotype for this SNP (8% compared to 0%; P=0.02). Finally, patients with the combination of the SOD2 rs4880 C/T genotype and XRCC3 rs861539 T/C (Thr241Met) genotype experienced a significant increase in grade 2 late rectal bleeding compared to patients without this particular genotypic arrangement (14% compared to 1%; P=0.002). These results suggest that SNPs in the SOD2, XRCC1 and XRCC3 genes are associated with the development of late radiation injury in patients treated with radiation therapy for prostate adenocarcinoma.
Collapse
Affiliation(s)
- Ryan J Burri
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|