1
|
Bi S, Chen W, Fang Y, Shen J, Zhang Q, Guo H, Ju H, Liu Y. Cancer Cell-Selective PD-L1 Inhibition via a DNA Safety Catch to Enhance Immunotherapy Specificity. Angew Chem Int Ed Engl 2024; 63:e202402522. [PMID: 38421189 DOI: 10.1002/anie.202402522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Immune checkpoint protein blockade (ICB) has emerged as a powerful immunotherapy approach, but suppressing immune-related adverse events (irAEs) for noncancerous cells and normal tissues remains challenging. Activatable ICB has been developed with tumor microenvironment highly-expressed molecules as stimuli, but they still lack precision and efficiency considering the diffusion of stimuli molecules in whole tumor tissue. Here we assemble PD-L1 with a duplex DNA strand, termed as "safety catch", to regulate its accessibility for ICB. The safety catch remains at "on" status for noncancerous cells to prevent ICB binding to PD-L1. Cancer cell membrane protein c-Met acts as a trigger protein to react with safety catch, which selectively exposes its hybridization region for ICB reagent. The ICB reagent is a retractable DNA nanostring with repeating hairpin-structural units, whose contraction drives PD-L1 clustering with endocytosis-guided degradation. The safety catch, even remained at "safety on" status, is removed from the cell membrane via a DNA strand displacement reaction to minimize its influence on noncancerous cells. This strategy demonstrates selective and potent immunotherapeutic capabilities only against cancer cells both in vitro and in vivo, and shows effective suppression of irAEs in normal tissues, therefore would become a promising approach for precise immunotherapy in mice.
Collapse
Affiliation(s)
- Shiyi Bi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Yanyun Fang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jieyu Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qing Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Jin JO, Kim H, Huh YH, Herrmann A, Kwak M. Soft matter DNA nanoparticles hybridized with CpG motifs and peptide nucleic acids enable immunological treatment of cancer. J Control Release 2019; 315:76-84. [PMID: 31639342 DOI: 10.1016/j.jconrel.2019.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022]
Abstract
Nucleic acids have been used as building blocks to assemble nanostructures by their sequence specific self-recognition properties, and resulting DNA architectures were applied as potential multifunctional drug carriers. Here, we report an amphiphilic lipid-DNA aggregate hybridized with pharmaceutically active DNA and peptide segments for cancer immunotherapy. The facile formulation of the CpG sequence and antigen peptide-bearing peptide nucleic acid representing immune-adjuvant and antigen, respectively, enabled the highly efficacious induction of antigen-specific immune activation. This immunotherapeutic formulation was evaluated in terms of multiple types of tumor growth and metastasis in vivo.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, 2901 Caolang Road, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Haejoo Kim
- Department of Chemistry and MADEC-BK21plus, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Chungcheongbuk-do 28119, Republic of Korea
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Minseok Kwak
- Department of Chemistry and MADEC-BK21plus, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Xu SY. Sequence-specific DNA nicking endonucleases. Biomol Concepts 2016; 6:253-67. [PMID: 26352356 DOI: 10.1515/bmc-2015-0016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/24/2015] [Indexed: 01/17/2023] Open
Abstract
A group of small HNH nicking endonucleases (NEases) was discovered recently from phage or prophage genomes that nick double-stranded DNA sites ranging from 3 to 5 bp in the presence of Mg2+ or Mn2+. The cosN site of phage HK97 contains a gp74 nicking site AC↑CGC, which is similar to AC↑CGR (R=A/G) of N.ϕGamma encoded by Bacillus phage Gamma. A minimal nicking domain of 76 amino acid residues from N.ϕGamma could be fused to other DNA binding partners to generate chimeric NEases with new specificities. The biological roles of a few small HNH endonucleases (HNHE, gp74 of HK97, gp37 of ϕSLT, ϕ12 HNHE) have been demonstrated in phage and pathogenicity island DNA packaging. Another group of NEases with 3- to 7-bp specificities are either natural components of restriction systems or engineered from type IIS restriction endonucleases. A phage group I intron-encoded HNH homing endonucleases, I-PfoP3I was found to nick DNA sites of 14-16 bp. I-TslI encoded by T7-like ΦI appeared to nick DNA sites with a 9-bp core sequence. DNA nicking and labeling have been applied to optical mapping to aid genome sequence assembly and detection of large insertion/deletion mutations in genomic DNA of cancer cells. Nicking enzyme-mediated amplification reaction has been applied to rapid diagnostic testing of influenza A and B in clinical setting and for construction of DNA-based Boolean logic gates. The clustered regularly interspaced short palindromic repeats-ribonucleoprotein complex consisting of engineered Cas9 nickases in conjunction with tracerRNA:crRNA or a single-guide RNA have been successfully used in genome modifications.
Collapse
|
4
|
Eckstein F. Phosphorothioates, Essential Components of Therapeutic Oligonucleotides. Nucleic Acid Ther 2014; 24:374-87. [DOI: 10.1089/nat.2014.0506] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Fritz Eckstein
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| |
Collapse
|
5
|
Shlyahovsky B, Li Y, Lioubashevski O, Elbaz J, Willner I. Logic gates and antisense DNA devices operating on a translator nucleic Acid scaffold. ACS NANO 2009; 3:1831-1843. [PMID: 19507821 DOI: 10.1021/nn900085x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A series of logic gates, "AND", "OR", and "XOR", are designed using a DNA scaffold that includes four "footholds" on which the logic operations are activated. Two of the footholds represent input-recognition strands, and these are blocked by complementary nucleic acids, whereas the other two footholds are blocked by nucleic acids that include the horseradish peroxidase (HRP)-mimicking DNAzyme sequence. The logic gates are activated by either nucleic acid inputs that hybridize to the respective "footholds", or by low-molecular-weight inputs (adenosine monophosphate or cocaine) that yield the respective aptamer-substrate complexes. This results in the respective translocation of the blocking nucleic acids to the footholds carrying the HRP-mimicking DNAzyme sequence, and the concomitant release of the respective DNAzyme. The released product-strands then self-assemble into the hemin/G-quadruplex-HRP-mimicking DNAzyme that biocatalyzes the formation of a colored product and provides an output signal for the different logic gates. The principle of the logic operation is, then, implemented as a possible paradigm for future nanomedicine. The nucleic acid inputs that bind to the blocked footholds result in the translocation of the blocking nucleic acids to the respective footholds carrying the antithrombin aptamer. The released aptamer inhibits, then, the hydrolytic activity of thrombin. The system demonstrates the regulation of a biocatalytic reaction by a translator system activated on a DNA scaffold.
Collapse
Affiliation(s)
- Bella Shlyahovsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
6
|
Processing of the tobacco etch virus 49K protease requires autoproteolysis. Virology 2008; 160:355-62. [PMID: 18644573 DOI: 10.1016/0042-6822(87)90006-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/1987] [Accepted: 06/02/1987] [Indexed: 11/24/2022]
Abstract
The final products encoded by the tobacco etch virus genome arise by proteolytic cleavage of a single large polyprotein precursor. Processing of the polyprotein at several sites requires the activity of a viral protease of 49,000 molecular weight (49K). We have examined the excision of the 49K protease from polyproteins translated from defined RNA transcripts. Polyproteins containing an intact 49K protein were efficiently processed after synthesis in a rabbit reticulocyte lysate to yield the 49K product. Introduction of a single amino acid substitution (cysteine to alanine) at the putative active site of the 49K protease abolished processing, indicating that the protease was excised from the polyprotein via an autocatalytic mechanism. Release of the 49K protease was determined to require autoproteolysis, since synthetic polyproteins which contained either or both 49K cleavage sites were processed poorly, if at all, in trans reactions. Protein microsequence analysis revealed that processing in vitro occurred between a glutamine-glycine dipeptide to generate the 49K amino terminus.
Collapse
|
7
|
Yang Z, Sismour AM, Benner SA. Nucleoside alpha-thiotriphosphates, polymerases and the exonuclease III analysis of oligonucleotides containing phosphorothioate linkages. Nucleic Acids Res 2007; 35:3118-27. [PMID: 17452363 PMCID: PMC1888802 DOI: 10.1093/nar/gkm168] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The use of DNA polymerases to incorporate phosphorothioate linkages into DNA, and the use of exonuclease III to determine where those linkages have been incorporated, are re-examined in this work. The results presented here show that exonuclease III degrades single-stranded DNA as a substrate and digests through phosphorothioate linkages having one absolute stereochemistry, assigned (assuming inversion in the polymerase reaction) as S, but not the other absolute stereochemistry. This contrasts with a general view in the literature that exonuclease III favors double-stranded nucleic acid as a substrate and stops completely at phosphorothioate linkages. Furthermore, not all DNA polymerases appear to accept exclusively the (R) stereoisomer of nucleoside alpha-thiotriphosphates [and not the (S) diastereomer], a conclusion inferred two decades ago by examination of five Family-A polymerases and a reverse transcriptase. This suggests that caution is appropriate when extrapolating the detailed behavior of one polymerase from the behaviors of other polymerases. Furthermore, these results provide constraints on how exonuclease III–thiotriphosphate–polymerase combinations can be used to analyze the behavior of the components of a synthetic biology.
Collapse
Affiliation(s)
| | | | - Steven A. Benner
- *To whom correspondence should be addressed at Foundation for Applied Molecular Evolution, P.O. Box 13174, Gainesville FL 32604-1174, USA +1 352 271 7005+1 352 271 7076
| |
Collapse
|
8
|
Pezza JA, Choi KH, Berardini TZ, Beernink PT, Allen KN, Tolan DR. Spatial clustering of isozyme-specific residues reveals unlikely determinants of isozyme specificity in fructose-1,6-bisphosphate aldolase. J Biol Chem 2003; 278:17307-13. [PMID: 12611890 DOI: 10.1074/jbc.m209185200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate fructose-1,6-bisphosphate aldolase exists as three isozymes (A, B, and C) that demonstrate kinetic properties that are consistent with their physiological role and tissue-specific expression. The isozymes demonstrate specific substrate cleavage efficiencies along with differences in the ability to interact with other proteins; however, it is unknown how these differences are conferred. An alignment of 21 known vertebrate aldolase sequences was used to identify all of the amino acids that are specific to each isozyme, or isozyme-specific residues (ISRs). The location of ISRs on the tertiary and quaternary structures of aldolase reveals that ISRs are found largely on the surface (24 out of 27) and are all outside of hydrogen bonding distance to any active site residue. Moreover, ISRs cluster into two patches on the surface of aldolase with one of these patches, the terminal surface patch, overlapping with the actin-binding site of aldolase A and overlapping an area of higher than average temperature factors derived from the x-ray crystal structures of the isozymes. The other patch, the distal surface patch, comprises an area with a different electrostatic surface potential when comparing isozymes. Despite their location distal to the active site, swapping ISRs between aldolase A and B by multiple site mutagenesis on recombinant expression plasmids is sufficient to convert the kinetic properties of aldolase A to those of aldolase B. This implies that ISRs influence catalysis via changes that alter the structure of the active site from a distance or via changes that alter the interaction of the mobile C-terminal portion with the active site. The methods used in the identification and analysis of ISRs discussed here can be applied to other protein families to reveal functionally relevant residue clusters not accessible by conventional primary sequence alignment methods.
Collapse
Affiliation(s)
- John A Pezza
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
9
|
Malay AD, Procious SL, Tolan DR. The temperature dependence of activity and structure for the most prevalent mutant aldolase B associated with hereditary fructose intolerance. Arch Biochem Biophys 2002; 408:295-304. [PMID: 12464284 DOI: 10.1016/s0003-9861(02)00546-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hereditary fructose intolerance (HFI) is an autosomal recessive disorder in humans which is caused by mutations in the aldolase B gene. The most common HFI allele encodes an enzyme with an A149P substitution (AP-aldolase). A lysis method suitable for aggregation-prone proteins overexpressed in bacteria was developed. The enzyme's structure and function is investigated as a function of temperature. Near-UV CD shows a qualitative difference in tertiary structure, whereas far-UV CD shows no difference in overall secondary structure, although both show increased temperature sensitivity for AP-aldolase compared to that seen with wild-type aldolase B. AP-aldolase exists as a dimer at all temperatures tested, unlike the tetrameric wild-type enzyme, thus providing a possible explanation for the loss in thermostability. AP-aldolase has sixfold lower activity than wild type at 10 degrees C, which decreases substantially at higher temperature. In addition to disruptions at the catalytic center, the kinetic constants toward different substrates suggest that there is a disruption at the C1-phosphate-binding site, which is not sensitive to temperature. The implications of these structural alterations are discussed with regard to the HFI disease.
Collapse
Affiliation(s)
- Ali D Malay
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
10
|
Portillo F. Genetic characterization of the (534)DPPR motif of the yeast plasma membrane H(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1468:99-106. [PMID: 11018655 DOI: 10.1016/s0005-2736(00)00247-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The highly conserved motif +(534)DPPR of Saccharomyces cerevisiae H(+)-ATPase, located in the putative ATP binding site, has been mutagenized and the resulting 23 mutant genes conditionally expressed in secretory vesicles. Fourteen mutant ATPases (D534A, D534V, D534L, D534N, D534G, D534T, P535A, P535V, P535L, P535G, P535T, P535E, P535K and R537T) failed to reach the secretory vesicles. Of these mutants, nine (D534N, D534T, P535A, P535V, P535L, P535G, P535T, P535E and P535K) were not detected in total cellular membranes, and five (D534A, D534V, D534G, D534L and R537T) were retained at the endoplasmic reticulum and exhibited a dominant lethal phenotype. The remaining mutants (D534E, R537A, R537V, R537L, R537N, R537G, R537E, R537K and R537H) reached the secretory vesicles at levels similar to that of the wild type. Of these, six (R537A, R537V, R537L, R537N, R537G, and R537E) showed severely decreased ATPase activity compared to the wild type enzyme, and three (D534E, R537K and R537H) rendered an enzyme with an altered K(m) for ATP.
Collapse
Affiliation(s)
- F Portillo
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
11
|
Phillips MA, Qin Q, Rice RH. Identification of an involucrin promoter transcriptional response element with activity restricted to keratinocytes. Biochem J 2000; 348 Pt 1:45-53. [PMID: 10794712 PMCID: PMC1221034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The involucrin proximal promoter was examined for response elements that confer cell-type specificity. Using a segment spanning positions -157 to +41, three possible response elements were identified by their protein-binding activity using DNase I footprinting. From distal to proximal, they were: an activator protein-1 (AP-1) site (previously identified) overlapping an Ets-like site; a second Ets-like site located 13 bp more proximally; and an extended region designated footprinted site A (FPA). Mutation of the distal Ets-like site had essentially no effect on the transcriptional activity in transfections, while mutation of the proximal site reduced the activity by half. FPA was shown by electrophoretic mobility-shift assay (EMSA) to be comprised of two separable binding sites, FPA1 (distal) and FPA2 (proximal). While mutation of FPA2 had only a modest effect on transcriptional activity in transient transfections, mutation of FPA1 reduced transcriptional activity to approx. 20% of that obtained with the intact promoter. Additional mutations of FPA1 indicated that the active region comprises positions -85 to -73 (GTGGTGAAACCTGT). The molecular masses of the major proteins binding to this site were shown by UV cross-linking to be approx. 40 and 50 kDa, while minor bands were observed at 80 and 110 kDa. Since the involucrin promoter exhibits much higher transcriptional activity in keratinocytes than in other cell types in transfection assays (indicating that cell type specificity of expression is retained), the comparative influence of FPA1 was examined. While mutation of the AP-1 site affected transcriptional activity similarly in all cell lines tested, mutation of FPA1 decreased activity substantially in keratinocytes, but not in NIH-3T3 and HeLa cells, evidence for a contribution to cell-type specificity of expression. Furthermore, a correlation between the sensitivity to FPA1 mutation and amount of involucrin expression in different keratinocyte cell lines was evident. EMSA showed that NIH-3T3 and HeLa cells lacked the same FPA1 DNA-protein complex as keratinocytes. However, the amount of complex formed with nuclear extracts from several keratinocyte lines did not correlate well with the level of involucrin expression. Other factors, such as differences in post-translational modification or co-activators, must account for varied transcriptional response mediated by this site among keratinocyte lines.
Collapse
Affiliation(s)
- M A Phillips
- Department of Environmental Toxicology, University of California, Davis 95616-8588, USA
| | | | | |
Collapse
|
12
|
Falcón-Pérez JM, Mazón MJ, Molano J, Eraso P. Functional domain analysis of the yeast ABC transporter Ycf1p by site-directed mutagenesis. J Biol Chem 1999; 274:23584-90. [PMID: 10438540 DOI: 10.1074/jbc.274.33.23584] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast cadmium factor (Ycf1p) is a vacuolar protein involved in resistance to Cd(2+) and to exogenous glutathione S-conjugate precursors in yeast. It belongs to the superfamily of ATP binding cassette transporters, which includes the human cystic fibrosis transmembrane conductance regulator and the multidrug resistance-associated protein. To examine the functional significance of conserved amino acid residues in Ycf1p, we performed an extensive mutational analysis. Twenty-two single amino acid substitutions or deletions were generated by site-directed mutagenesis in the nucleotide binding domains, the proposed regulatory domain, and the fourth cytoplasmic loop. Mutants were analyzed phenotypically by measuring their ability to grow in the presence of Cd(2+). Expression and subcellular localization of the mutant proteins were examined by immunodetection in vacuolar membranes. For functional characterization of the Ycf1p variants, the kinetic parameters of glutathione S-conjugated leukotriene C(4) transport were measured. Our analysis shows that residues Ile(711), Leu(712), Phe(713), Glu(927), and Gly(1413) are essential for Ycf1p expression. Five other amino acids, Gly(663), Gly(756), Asp(777), Gly(1306), and Gly(1311), are critical for Ycf1p function, and two residues, Glu(709) and Asp(821), are unnecessary for Ycf1p biogenesis and function. We also identify several regulatory domain mutants in which Cd(2+) tolerance of the mutant strain and transport activity of the protein are dissociated.
Collapse
Affiliation(s)
- J M Falcón-Pérez
- Instituto de Investigaciones Biomédicas "Alberto Sols, " Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, 28029-Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Grace ME, Ashton-Prolla P, Pastores GM, Soni A, Desnick RJ. Non-pseudogene-derived complex acid beta-glucosidase mutations causing mild type 1 and severe type 2 gaucher disease. J Clin Invest 1999; 103:817-23. [PMID: 10079102 PMCID: PMC408142 DOI: 10.1172/jci5168] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gaucher disease is an autosomal recessive inborn error of glycosphingolipid metabolism caused by the deficient activity of the lysosomal hydrolase, acid beta-glucosidase. Three phenotypically distinct subtypes result from different acid beta-glucosidase mutations encoding enzymes with absent or low activity. A severe neonatal type 2 variant who presented with collodion skin, ichthyosis, and a rapid neurodegenerative course had two novel acid beta-glucosidase alleles: a complex, maternally derived allele, E326K+L444P, and a paternally inherited nonsense mutation, E233X. Because the only other non-pseudogene-derived complex allele, D140H+E326K, also had the E326K lesion and was reported in a mild type 1 patient with a D140H+E326K/K157Q genotype, these complex alleles and their individual mutations were expressed and characterized. Because the E233X mutation expressed no activity and the K157Q allele had approximately 1% normal specific activity based on cross-reacting immunologic material (CRIM SA) in the baculovirus system, the residual activity in both patients was primarily from their complex alleles. In the type 1 patient, the D140H+E326K allele was neuroprotective, encoding an enzyme with a catalytic efficiency similar to that of the N370S enzyme. In contrast, the E326K+L444P allele did not have sufficient activity to protect against the neurologic manifestations and, in combination with the inactive E233X lesion, resulted in the severe neonatal type 2 variant. Thus, characterization of these novel genotypes with non-pseudogene-derived complex mutations provided the pathogenic basis for their diverse phenotypes.
Collapse
Affiliation(s)
- M E Grace
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
14
|
Oyston PCF, Payne DW, Havard HL, Williamson ED, Titball RW. Production of a non-toxic site-directed mutant of Clostridium perfringens epsilon-toxin which induces protective immunity in mice. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 2):333-341. [PMID: 9493371 DOI: 10.1099/00221287-144-2-333] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A panel of ten site-directed mutants of Clostridium perfringens epsilon-toxin was generated. All of the mutated proteins expressed in Escherichia coli were recognized in immunoblots by a neutralizing mAb raised against wild-type native epsilon-toxin. The cytotoxicity of the site-directed mutated toxins was assayed in vitro against MDCK cells. One mutation resulting in loss of activity in the assay was identified. This non-toxic protein was derived by substituting a proline for the histidine at residue 106 of the toxin. Immunization of mice with the non-toxic mutated epsilon-toxin resulted in the induction of a specific antibody response and immunized mice were protected against 1000 LD50 doses of wild-type recombinant epsilon-toxin.
Collapse
Affiliation(s)
- Petra C F Oyston
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Dean W Payne
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Helen L Havard
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - E Diane Williamson
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Richard W Titball
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
15
|
Weissborn AC, Botfield MC, Kuroda M, Tsuchiya T, Wilson TH. The construction of a cysteine-less melibiose carrier from E. coli. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1329:237-44. [PMID: 9371415 DOI: 10.1016/s0005-2736(97)00116-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The melibiose carrier of E. coli is a cation-sugar cotransport system. This membrane protein contains four cysteine residues and the transport function is inhibited by sulfhydryl reagents. In order to investigate the importance of the cysteines, we have constructed a set of four melibiose transporters each of which has one cysteine replaced with serine or valine. The sensitivity of this set of carriers to N-ethylmaleimide was tested and Cys364 was identified as the target of the reagent. In addition, we constructed a melibiose transporter in which all 4 cysteines were replaced with either serine (Cys110, Cys310, and Cys364) or valine (Cys235) and we found that, as expected, the resulting cysteine-less transporter was resistant to the action of N-ethylmaleimide. The cysteine-less melibiose carrier had no significant decrease in ability to accumulate melibiose with cotransported sodium ions or protons. Thus, none of the 4 cysteines are necessary for the function of the melibiose carrier.
Collapse
Affiliation(s)
- A C Weissborn
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
16
|
Liu LF, Liaw YC, Tam MF. Characterization of chicken-liver glutathione S-transferase (GST) A1-1 and A2-2 isoenzymes and their site-directed mutants heterologously expressed in Escherichia coli: identification of Lys-15 and Ser-208 on cGSTA1-1 as residues interacting with ethacrynic acid. Biochem J 1997; 327 ( Pt 2):593-600. [PMID: 9359434 PMCID: PMC1218834 DOI: 10.1042/bj3270593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Escherichia coli-expressed chicken-liver glutathione S-transferase, cGSTA1-1, displays high ethacrynic acid (EA)-conjugating activity. Molecular modelling of cGSTA1-1 with EA in the substrate binding site reveals that the side chain of Phe-111 protrudes into the substrate binding site and possibly interacts with EA. Replacement of Phe-111 with alanine resulted in an enzyme (F111A mutant) with a 4.5-fold increase in EA-conjugating activity (9.2 mmol/min per mg), and an incremental Gibbs free energy (DeltaDeltaG) of 4.0 kJ/mol lower than that of the wild-type cGSTA1-1. Two other amino acid residues that possibly interact with EA are Ser-208 and Lys-15. Substitution of Ser-208 with methionine generated a cGSTA1-1(F111AS208M) double mutant that has low EA-conjugating activity (2.0 mmol/min per mg) and an incremental Gibbs free energy of +3.9 kJ/mol greater than the cGSTA1-1(F111A) single mutant. The cGSTA1-1(F111A) mutant, with an additional Lys-15-to-leucine substitution, lost 90% of the EA-conjugating activity (0.55 mmol/min per mg). The Km values of the cGSTA1-1(F111A) and cGSTA1-1(F111AK15L) mutants for EA are nearly identical. The wild-type cGSTA2-2 isoenzyme has a low EA-conjugating activity (0.56 mmol/min per mg). The kcat of this reaction can be increased 2. 5-fold by substituting Arg-15 and Glu-104 with lysine and glycine respectively. The KmEA of the cGSTA2-2(R15KE104G) double mutant is nearly identical with that of the wild-type enzyme. Another double mutant, cGSTA2-2(E104GL208S), has a KmEA that is 3.3-fold lower and a kcat that is 1.8-fold higher than that of the wild-type enzyme. These results, taken together, illustrate the interactions of Lys-15 and Ser-208 on cGSTA1-1 with EA.
Collapse
Affiliation(s)
- L F Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | | | | |
Collapse
|
17
|
Grace ME, Desnick RJ, Pastores GM. Identification and expression of acid beta-glucosidase mutations causing severe type 1 and neurologic type 2 Gaucher disease in non-Jewish patients. J Clin Invest 1997; 99:2530-7. [PMID: 9153297 PMCID: PMC508094 DOI: 10.1172/jci119437] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gaucher disease, the most prevalent lysosomal storage disease, occurs in three subtypes, all resulting from mutations in the acid beta-glucosidase gene. Molecular studies in five severely affected type 1 and two type 2 Gaucher disease patients of non-Jewish descent identified six new mutations: K74X, W179X, G195E, S271N, V352L, and a two-base deletion in exon 10 (1450del2). Two additional mutations identified in these patients (R48W and G202R) have been reported previously, but were not expressed or characterized. Heterologous expression in Sf 9 cells using the baculovirus system revealed that the missense mutations, R48W and V352L, had 14 and 7%, respectively, of the specific activity based on cross-reacting immunologic material expressed by the normal allele. In contrast, the G195E, G202R, and S271N mutant alleles were more severely compromised with only 1-2% of the normal expressed specific activity based on cross-reacting immunologic material. Structural distortion at the active site was probed by comparing the interaction of the mutant enzymes with active site-directed inhibitors (castanospermine, conduritol B epoxide and deoxynojirimycin). R48W, G202R, and S271N were normally inhibited, whereas the V352L and G195E mutant enzymes had significantly decreased binding affinity. These mutations further expand the genetic heterogeneity in the lesions causing Gaucher disease types 1 and 2, and further delineate genotype/phenotype correlations and functional domains within the acid beta-glucosidase gene.
Collapse
Affiliation(s)
- M E Grace
- Department of Human Genetics, Mount Sinai School of Medicine, New York 10029-6574, USA.
| | | | | |
Collapse
|
18
|
Cavallius J, Popkie AP, Merrick WC. Site-directed mutants of post-translationally modified sites of yeast eEF1A using a shuttle vector containing a chromogenic switch. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1350:345-58. [PMID: 9061031 DOI: 10.1016/s0167-4781(96)00181-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Eukaryotic elongation factor 1A (eEF1A, formerly eEF-1 alpha) carries aminoacyl-tRNAs into the A-site of the ribosome in a GTP-dependent manner. In order to probe the structure/function relationships of eEF1A, we have generated site-directed mutants using a modification of a highly versatile yeast shuttle vector, which consists of the insertion of a 66 base long synthetic DNA fragment in the vector's polylinker. Via oligonucleotide-directed mutagenesis, the modification permits the identification of mutant clones based on a chromogenic screen of beta-galactosidase activity. Mutagenesis reactions are performed with two or more oligonucleotides, one introducing the chromogenic shift, and the other(s) introducing the mutation(s) of interest in eEF1A. Several rounds of chromogenic shifts and additional mutations can be performed in succession on the same vector. To address the possible function of the methylated lysines in yeast eEF1A, we have changed the post-translationally modified lysines (residue 30, 79, 316 and 390) to arginines using the above methodology. Yeast with eEF1A mutants that substitute arginine in all four sites do not show any phenotypic change. There is also an apparent equivalency of wild-type and mutant yeast eEF1A in in vitro assays. It is concluded that the post-translational modifications of eEF1A are not of major importance for eEF1A's role in translation.
Collapse
Affiliation(s)
- J Cavallius
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4935, USA.
| | | | | |
Collapse
|
19
|
Lu W, Apostol I, Qasim MA, Warne N, Wynn R, Zhang WL, Anderson S, Chiang YW, Ogin E, Rothberg I, Ryan K, Laskowski M. Binding of amino acid side-chains to S1 cavities of serine proteinases. J Mol Biol 1997; 266:441-61. [PMID: 9047374 DOI: 10.1006/jmbi.1996.0781] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The P1 or primary specificity residue of standard mechanism canonical protein inhibitors of serine proteinases, inserts into the S1 primary specificity cavity of the cognate enzyme upon enzyme-inhibitor complex formation. Both natural evolution and protein engineering often change the P1 residue to greatly alter the specificity and the binding strength. To systematize such results we have obtained all 20 coded P1 variants of one such inhibitor, turkey ovomucoid third domain, by recombinant DNA technology. The variants were extensively characterized. The association equilibrium constants were measured at pH 8.30, 21 (+/-2) degrees C, for interaction of these variants with six well characterized serine proteinases with hydrophobic S1, cavities. The enzyme names are followed by the best, worst and most specific coded residue for each. Bovine chymotrypsin A alpha (Tyr, Pro, Trp), porcine pancreatic elastase (Leu/Ala, Arg, Ala), subtilisin Carlsberg (Cys, Pro, Glu), Streptomyces griseus proteinase A (Cys, Pro, Leu) and B (Cys, Pro, Lys) and human leukocyte elastase (Ile, Asp, Ile). The data set was merged with Ka values for five non-coded variants at P1 of turkey ovomucoid third domain obtained in our laboratory by enzymatic semisynthesis. The ratios of the highest to the lowest Ka for each of the six enzymes range from 10(6) to 10(8). The dominant force for binding to these pockets is the hydrophobic interaction. Excess steric bulk (too large for the pocket), awkward shape (Pro, Val and Ile), polarity (Ser) oppose interaction. Ionic charges, especially negative charges on Glu- and Asp- are strongly unfavorable. The Pearson pro duct moment correlations for all the 15 enzyme pairs were calculated. We suggest that these may serve as a quantitative description of the specificity of the enzymes at P1. The sets of Streptomyces griseus proteinases A and B and of the two elastases are strongly positively correlated. Strikingly, chymotrypsin and pancreatic elastase are negatively correlated (-0.10). Such correlations can be usefully extended to many other enzymes and to many other binding pockets to provide a general measure of pocket binding specificity.
Collapse
Affiliation(s)
- W Lu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Li GY, Bécam AM, Slonimski PP, Herbert CJ. In vitro mutagenesis of the mitochondrial leucyl tRNA synthetase of Saccharomyces cerevisiae shows that the suppressor activity of the mutant proteins is related to the splicing function of the wild-type protein. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:667-75. [PMID: 8917309 DOI: 10.1007/bf02173972] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The NAM2 gene of Saccharomyces cerevisiae encodes the mitochondrial leucyl tRNA synthetase (mLRS), which is necessary for the excision of the fourth intron of the mitochondrial cytb gene (bI4) and the fourth intron of the mitochondrial coxI gene (aI4), as well as for mitochondrial protein synthesis. Some dominant mutant alleles of the gene are able to suppress mutations that inactivate the bI4 maturase, which is essential for the excision of the introns aI4 and bI4. Here we report mutagenesis studies which focus on the splicing and suppressor functions of the protein. Small deletions in the C-terminal region of the protein preferentially reduce the splicing, but not the synthetase activity; and all the C-terminal deletions tested abolish the suppressor activity. Mutations which increase the volume of the residue at position 240 in the wild-type mLRS without introducing a charge, lead to a suppressor activity. The mutant 238C, which is located in the suppressor region, has a reduced synthetase activity and no detectable splicing activity. These data show that the splicing and suppressor functions are linked and that the suppressor activity of the mutant alleles results from a modification of the wild-type splicing activity.
Collapse
Affiliation(s)
- G Y Li
- Centre de Génétique Moléculaire, Laboratoire propre du CNRS associé á I'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
22
|
O'Donohue MJ, Kneale GG. A method for introducing site-specific mutations using oligonucleotide primers and its application to site-saturation mutagenesis. Mol Biotechnol 1996; 6:179-89. [PMID: 8970171 DOI: 10.1007/bf02740772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oligonucleotide primer-directed mutagenesis is a useful molecular biological tool, which is invaluable for the study of the structure/function relationships in proteins and for the creation of mutant proteins possessing modified or novel biological activities. Mutagenesis studies in which a site-saturation approach is employed require a high-efficiency mutagenesis procedure, which will generate a population of mutated molecules containing an even distribution of all possible amino acid changes, or a subset thereof. This article describes such a mutagenesis technique and discusses the adaptations that are necessary to perform site-saturation mutagenesis.
Collapse
Affiliation(s)
- M J O'Donohue
- Laboratoire de Médiateurs Protéiques, INRA Centre de Jouy-en-Josas, France
| | | |
Collapse
|
23
|
Aparicio G, Buche A, Méndez C, Salas JA. Characterization of the ATPase activity of the N-terminal nucleotide binding domain of an ABC transporter involved in oleandomycin secretion by Streptomyces antibioticus. FEMS Microbiol Lett 1996; 141:157-62. [PMID: 8768517 DOI: 10.1111/j.1574-6968.1996.tb08378.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The oleB gene of Streptomyces antibioticus, oleandomycin producer, encodes an ABC transporter containing two putative ATP-binding domains and is involved in oleandomycin resistance and secretion in this organism. We have overexpressed in Escherichia coli the N-terminal nucleotide-binding domain of OleB (OleB') as a fusion protein and purified the fusion protein by affinity chromatography. The fusion protein showed ATPase activity dependent on the presence of Mg2+ ions. ATPase activity was resistant to specific inhibitors of P-, F-, and V-type ATPase whereas sodium azide and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-C1) were strong inhibitors. The change of Lys71, located within the Walker A motif of the OleB' protein, to Gln or Glu caused a loss of ATPase activity, whereas changing to Gly did not impair the activity. The results suggest that the intrinsic ATPase activity of purified fusion protein can be clearly distinguished from other ATP-hydrolysing enzymes, including ion-translocating ATPases or ABC-traffic ATPases, both on the basis of inhibition by different agents and since it hydrolyzes ATP without interacting with a hydrophobic membrane component.
Collapse
Affiliation(s)
- G Aparicio
- Departamento de Biologia Funcional, Universidad de Oviedo, Spain
| | | | | | | |
Collapse
|
24
|
Hall MR, Gibson W. Cytomegalovirus assemblin: the amino and carboxyl domains of the proteinase form active enzyme when separately cloned and coexpressed in eukaryotic cells. J Virol 1996; 70:5395-404. [PMID: 8764050 PMCID: PMC190497 DOI: 10.1128/jvi.70.8.5395-5404.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The cytomegalovirus (CMV) serine proteinase assemblin is synthesized as a precursor that undergoes three principal autoproteolytic cleavages. Two of these are common to the assemblin homologs of all herpes group viruses: one at the maturational site near the carboxyl end of the precursor and another at the release site near the midpoint of the precursor. Release-site cleavage frees the proteolytic amino domain, assemblin, from the nonproteolytic carboxyl domain of the precursor. In CMV, a third autoproteolytic cleavage at an internal site divides assemblin into an amino subunit (An) and a carboxyl subunit (Ac) of approximately the same size that remain associated as an active "two-chain" enzyme. We have cloned the sequences encoding An and Ac as separate genes and expressed them by transfecting human cells with recombinant plasmids and by infecting insect cells with recombinant baculoviruses. When An and Ac from either simian CMV or human CMV were coexpressed in human or insect cells, active two-chain assemblin was formed. This finding demonstrates that An and Ac do not require synthesis as single-chain assemblin to fold and associate correctly in these eukaryotic systems, and it suggests that they may be structurally, if not functionally, distinct domains. An interaction between the independently expressed An and Ac subunits was demonstrated by coimmunoprecipitation experiments, and efforts to disrupt the complex indicate that the subunit interaction is hydrophobic. Cell-based cleavage assays of the two-chain assemblin formed from independently expressed An and Ac also indicate that (i) its specificity for both CMV and herpes simplex virus native substrates is similar to that of single-chain assemblin, (ii) R-site cleavage is not essential for the activity of two-chain recombinant assemblin, and (iii) the human CMV and simian CMV An and Ac recombinant subunits are functionally interchangeable.
Collapse
Affiliation(s)
- M R Hall
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
25
|
Lankenau DH, Corces VG, Engels WR. Comparison of targeted-gene replacement frequencies in Drosophila melanogaster at the forked and white loci. Mol Cell Biol 1996; 16:3535-44. [PMID: 8668169 PMCID: PMC231348 DOI: 10.1128/mcb.16.7.3535] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
P element-induced gene conversion has been previously used to modify the white gene of Drosophila melanogaster in a directed fashion. The applicability of this approach of gene targeting in Drosophila melanogaster, however, has not been analyzed quantitatively for other genes. We took advantage of the P element-induced forked allele, f(hd), which was used as a target, and we constructed a vector containing a modified forked fragment for converting f(hd). Conversion frequencies were analyzed for this locus as well as for an alternative white allele, w(eh812). Combination of both P element-induced mutant genes allowed the simultaneous analysis of conversion frequencies under identical genetic, developmental, and environmental conditions. This paper demonstrates that gene conversion through P element-induced gap repair can be applied with similar success rates at the forked locus and in the white gene. The average conversion frequency at forked was 0.29%, and that at white was 0.17%. These frequencies indicate that in vivo gene targeting in Drosophila melanogaster should be applicable for other genes in this species at manageable rates. We also confirmed the homolog dependence of reversions at the forked locus, indicating that P elements transpose via a cut-and-paste mechanism. In a different experiment, we attempted conversion with a modified forked allele containing the su(Hw) binding site. Despite an increased sample size, there were no conversion events with this template. One interpretation (under investigation) is that the binding of the su(Hw) product prevents double-strand break repair.
Collapse
Affiliation(s)
- D H Lankenau
- Department of Developmental Genetics, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
26
|
Pelletier I, Altenbuchner J, Mattes R. A catalytic triad is required by the non-heme haloperoxidases to perform halogenation. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1250:149-57. [PMID: 7632719 DOI: 10.1016/0167-4838(95)00055-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The bacterial non-heme haloperoxidases are highly related to an esterase from Pseudomonas fluorescens, at structural and functional levels. Both types of enzymes displayed brominating activity and esterase activity. The presence of the serine-hydrolase motif Gly-X-Ser-X-Gly, in the esterase as well as in all aligned haloperoxidase sequences, strongly suggested that they belong to the serine-hydrolase family. Sequence alignment with several serine-hydrolases and secondary structure superimposition revealed the striking conservation of structural features characterising the alpha/beta-hydrolase fold structure in all haloperoxidases. These structural predictions allowed us to identify a potential catalytic triad in haloperoxidases, perfectly matching the triad of all aligned serine-hydrolases. The structurally equivalent triad in the chloroperoxidase CPO-P comprised the amino acids Serine 97, Aspartic acid 229 and Histidine 258. The involvement of this catalytic triad in halogenation was further assessed by inhibition studies and site-directed mutagenesis. Inactivation of CPO-P by PMSF and DEPC strongly suggested that the serine residue from the serine-hydrolase motif and an histidine residue are essential for halogenation, similar to that demonstrated for typical serine-hydrolases. By site-directed mutagenesis of CPO-P, Ser-97 was exchanged against alanine or cysteine, Asp-229 against alanine and His-258 against glutamine. Western blot analysis indicated that each mutant gene was efficiently expressed. Whereas the mutant S97C conserved a very low residual activity, each other mutant S97A, D229A or H258Q was totally inactive. This study gives the direct demonstration of the requirement of a catalytic triad in the halogenation mechanism.
Collapse
Affiliation(s)
- I Pelletier
- Institut für Industrielle Genetik, Universität Stuttgart, Germany
| | | | | |
Collapse
|
27
|
Rose PE, Schaffhausen BS. Zinc-binding and protein-protein interactions mediated by the polyomavirus large T antigen zinc finger. J Virol 1995; 69:2842-9. [PMID: 7707506 PMCID: PMC188979 DOI: 10.1128/jvi.69.5.2842-2849.1995] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Polyomavirus large tumor antigen (LT) contains a potential C2H2 zinc binding element between residues 452 and 472. LT also contains a third histidine in this region, conserved among the polyomavirus LTs. Synthetic peptides of this region bound a single atom of zinc, as determined by spectroscopic analysis. Blotting experiments also showed that fusion proteins containing the element, as well as full-length LT, bound 65Zn. Polyomavirus middle T and small T antigens also bound zinc in the blotting assay. Site-directed mutagenesis showed the importance of this element in LT. Point mutations in four of the conserved residues (C-452, C-455, H-465, and H-469) blocked the ability of LT to function in viral DNA replication, while mutation of H-472-->L decreased replication to 1/30th that of the wild type. Point mutations in intervening residues tested had little effect on replication. Mutants resulting from mutations in the conserved cysteine or histidine residues retained the ability to bind origin DNA. However, they did show a defect in self-association. Because double-hexamer formation is involved in DNA replication, this deficiency is sufficient to explain the defect in replication. Mutants created by point mutations of the coordinating residues were also deficient in replication-associated phosphorylations.
Collapse
Affiliation(s)
- P E Rose
- Department of Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
28
|
Maldonado AM, Portillo F. Genetic analysis of the fluorescein isothiocyanate binding site of the yeast plasma membrane H(+)-ATPase. J Biol Chem 1995; 270:8655-9. [PMID: 7721767 DOI: 10.1074/jbc.270.15.8655] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The highly conserved motif of Saccharomyces cerevisiae H(+)-ATPase 474KGAP has been proposed to participate in the formation of the phosphorylated intermediate during the catalytic cycle (Portillo, F., and Serrano, R. (1988) EMBO J. 7, 1793-1798). In addition, Lys-474 is the FITC binding site of the yeast enzyme (Portillo, F. and Serrano, R. (1989) Eur. J. Biochem. 186, 501-507). We have performed an intragenic suppressor analysis of the K474R mutation to identify the interacting regions involved in these functions. Random in vitro mutagenesis of the K474R allele resulted in seven suppressor (second-site) mutations. One mutation (V396I), located 18 residues away from the Asp-378 residue, which is phosphorylated during catalysis, is allele-specific. This provides genetic evidence of a direct interaction between the KGAP motif and the phosphorylation domain during the catalytic cycle. Three mutations (V484I, V484I/E485K, and E485K/E486K) are located near Lys-474 and may compense the structural alteration introduced by the K474R mutation. Two substitutions at the end of the predicted transmembrane stretch 2 (A165V and V169I/D170N) and another in the predicted ATP binding domain (P536L) may act as allele-nonspecific suppressors, as they are also able to suppress a mutation at the enzyme's carboxyl terminus.
Collapse
Affiliation(s)
- A M Maldonado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
29
|
Peters D, Frank R, Hengstenberg W. Lactose-specific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus. Purification of the histidine-tagged transmembrane component IICBLac and its hydrophilic IIB domain by metal-affinity chromatography, and functional characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:798-804. [PMID: 7737179 DOI: 10.1111/j.1432-1033.1995.0798m.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The lactose-specific integral-membrane-protein enzyme II (IICBLac) of the bacterial phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus catalyses the uptake and phosphorylation of lactose. It consists of an N-terminal membrane-spanning IIC domain and a C-terminal hydrophilic IIB domain. IICBLac was fused with a C-terminal tag of six histidine residues using recombinant DNA technology. The resulting protein, IICBLac-His, was produced in Escherichia coli and purified under nondenaturing conditions to homogenity. The purification procedure consists of a NaOH extraction step followed by solubilisation with Triton X-100, and metal-affinity chromatography using Ni(2+)-nitrilotriacetic acid resin. The purified recombinant His-tagged protein possessed substrate specificity identical to that of the wild-type protein. To investigate the hydrophilic IIB domain, the DNA sequence coding for IIB and the His tag were fused in-frame to a DNA sequence specific for an initiation signal. The overproduced recombinant IIBLac-His was obtained by metal-affinity chromatography in pure form. Bacterial phosphotransferase-system-dependent phosphorylation of IIB-His was demonstrated in a photometric assay and by urea/polyacrylamide gel electrophoresis. The phosphorylation activity of the mutant protein [C476S]-IICBLac, containing the mutagenized phosphorylation site, was restored in the presence of IIBLac-His in a phosphorylation assay.
Collapse
Affiliation(s)
- D Peters
- Abteilung für Biologie, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
30
|
Hashiguchi T, Ichinose A. Molecular and cellular basis of deficiency of the b subunit for factor XIII secondary to a Cys430-Phe mutation in the seventh Sushi domain. J Clin Invest 1995; 95:1002-8. [PMID: 7883947 PMCID: PMC441433 DOI: 10.1172/jci117744] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We studied the defect responsible for deficiency of the b subunit for factor XIII in the first known case of this condition. The patient is a compound heterozygote of two genetic defects: deletion of A-4161 at the acceptor splice junction of intron A, resulting in a loss of the obligatory AG splicing sequence; and, replacement of G-11499 by T in exon VIII, resulting in an amino acid substitution of Cys430 by Phe. To determine how the latter mutation impaired b subunit synthesis, recombinant b subunit bearing the mutation was expressed in BHK cells. The mutant as well as wild-type b subunit was synthesized by the cells. However, the apparent molecular weight of the mutant was slightly higher than those of the wild-type and plasma b subunits under nonreducing conditions, probably because of destruction of a disulfide bond. The mutant b subunit was secreted from the cells much less effectively than the wild type and remained susceptible to endoglycosidase H, indicating that it was not transported from the endoplasmic reticulum to the Golgi apparatus where the processing of oligosaccharides occurs. Immunofluorescence study suggested that the mutant protein was retained in the endoplasmic reticulum. These studies demonstrate that a Cys430-Phe mutation does not prevent the de novo synthesis of the b subunit, but alters the conformation of the mutant protein sufficiently to impair its intracellular transport, resulting in its deficiency in this patient.
Collapse
Affiliation(s)
- T Hashiguchi
- Department of Molecular Patho-Biochemistry, Yamagata University School of Medicine, Japan
| | | |
Collapse
|
31
|
Hjalt TA, Wagner EG. Bulged-out nucleotides protect an antisense RNA from RNase III cleavage. Nucleic Acids Res 1995; 23:571-9. [PMID: 7534906 PMCID: PMC306722 DOI: 10.1093/nar/23.4.571] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bulged-out nucleotides or internal loops are present in the stem-loop structures of several antisense RNAs. We have used the antisense/target RNA system (CopA/CopT) that controls the copy number of plasmid R1 to examine the possible biological function of bulged-out nucleotides. Two regions within the major stem-loop of the antisense RNA, CopA, carry bulged-out nucleotides. Base pairing in either one or both of these regions of the stem was restored by site-specific mutagenesis and in one case a new internal loop was introduced. The set of mutant and wild-type CopA variants was characterized structurally in vitro. The results reported here indicate a possible function of the bulges: their presence protects CopA RNA from being a substrate for the double-strand-specific enzyme RNase III. In vitro cleavage rates were drastically increased when either the lower or both bulges were absent. This is paralleled by a similar, but not identical, effect of the bulges on metabolic stability of the CopA RNAs in vivo. The degradation pathways of wild-type and mutant CopA in various strain backgrounds are discussed. In the accompanying paper, we address the significance of bulges in CopA for binding to the target RNA in vitro and for its inhibitory efficiency in vivo.
Collapse
Affiliation(s)
- T A Hjalt
- Department of Microbiology, Uppsala University, Sweden
| | | |
Collapse
|
32
|
Tsai MD, Jiang RT, Dahnke T, Shi Z. Manipulating phosphorus stereospecificity of adenylate kinase by site-directed mutagenesis. Methods Enzymol 1995; 249:425-43. [PMID: 7791622 DOI: 10.1016/0076-6879(95)49044-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M D Tsai
- Department of Chemistry, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
33
|
Meurer G, Hutchinson CR. Functional analysis of putative beta-ketoacyl:acyl carrier protein synthase and acyltransferase active site motifs in a type II polyketide synthase of Streptomyces glaucescens. J Bacteriol 1995; 177:477-81. [PMID: 7814341 PMCID: PMC176615 DOI: 10.1128/jb.177.2.477-481.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The significance of potential active site motifs for acyltransferase and beta-ketoacyl:acyl carrier protein synthase regions within the TcmK protein was investigated by determining the effects of mutations in the proposed active sites on the production of tetracenomycins F2 and C. In a Streptomyces glaucescens tcmGHI JKLMNO null mutant, plasmids carrying the S351A mutation produced high amounts of tetracenomycin F2 but plasmids carrying the C173A or C173S mutation or the H350L-S351A double mutation produced no detectable amount of any known intermediate. In a tcmK mutant, plasmids with the S351A mutation restored high production of tetracenomycin C and plasmids carrying the other mutations were able to complement the chromosomal defect to some extent. None of the mutations affected the amount of TcmK produced.
Collapse
Affiliation(s)
- G Meurer
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | |
Collapse
|
34
|
Robertson AG, Nimmo HG. Site-directed mutagenesis of cysteine-195 in isocitrate lyase from Escherichia coli ML308. Biochem J 1995; 305 ( Pt 1):239-44. [PMID: 7826335 PMCID: PMC1136455 DOI: 10.1042/bj3050239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cysteine-195 was previously identified as a probable active site residue in isocitrate lyase (ICL) from Escherichia coli ML308 [Nimmo, Douglas, Kleanthous, Campbell and MacKintosh (1989) Biochem. J. 261, 431-435]. This residue was replaced with serine and alanine residues by site-directed mutagenesis. The mutated genes expressed proteins with low but finite ICL activity, which co-migrated with wild-type ICL on both SDS/ and native PAGE. The mutant proteins were purified and characterized. Fluorimetry and c.d. in both the near- and the far-u.v. regions showed no differences between the mutants and wild-type ICL, indicating that the conformations of the three enzymes were very similar. ICL C195A (Cys-195-->Ala) and C195S (Cys-195-->Ser) showed 8.4-fold and 3.6-fold increases in the Km for isocitrate, while their kcat. values showed 30- and 100-fold decreases respectively. The effect of pH on the kinetic properties of the wild-type and mutant ICLs was investigated. The results showed that the response of the mutant enzymes to pH was simpler than that of the wild-type. For the mutants, ionisation of a group with a pKa of approx. 7.8 affected the Km for isocitrate and kcat.. For the wild-type enzyme, these parameters were affected by the ionization of two or more groups, one of which is presumed to by cysteine-195. The results are consistent with the view that the previously identified group with a pKa of 7.1 whose ionization affects the reaction of ICL by iodoacetate is cysteine-195 itself.
Collapse
Affiliation(s)
- A G Robertson
- Division of Biochemistry and Molecular Biology, University of Glasgow, Scotland, U.K
| | | |
Collapse
|
35
|
Fullner KJ, Stephens KM, Nester EW. An essential virulence protein of Agrobacterium tumefaciens, VirB4, requires an intact mononucleotide binding domain to function in transfer of T-DNA. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:704-15. [PMID: 7830718 DOI: 10.1007/bf00297277] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 11 gene products of the Agrobacterium tumefaciens virB operon, together with the VirD4 protein, are proposed to form a membrane complex which mediates the transfer of T-DNA to plant cells. This study examined one putative component of that complex, VirB4. A deletion of the virB4 gene on the Ti plasmid pTiA6NC was constructed by replacing the virB4 gene with the kanamycin resistance-conferring nptII gene. The virB4 gene was found to be necessary for virulence on plants and for the transfer of IncQ plasmids to recipient cells of A. tumefaciens. Genetic complementation of the deletion strain by the virB4 gene under control of the virB promoter confirmed that the deletion was nonpolar on downstream virB genes. Genetic complementation was also achieved with the virB4 gene placed under control of the lac promoter, even though synthesis of the VirB4 protein from this promoter is far below wild-type levels. Having shown a role for the VirB4 protein in DNA transfer, lysine-439, found within the conserved mononucleotide binding domain of VirB4, was changed to a glutamic acid, methionine, or arginine by oligonucleotide-directed mutagenesis. virB4 genes bearing these mutations were unable to complement the virB4 deletion for either virulence or for IncQ transfer, showing that an intact mononucleotide binding site is necessary for the function of VirB4 in DNA transfer. The necessity of the VirB4 protein with an intact mononucleotide binding site for extracellular complementation of virE2 mutants was also shown. In merodiploid studies, lysine-439 mutations present in trans decreased IncQ plasmid transfer frequencies, suggesting that VirB4 functions within a complex to facilitate DNA transfer.
Collapse
Affiliation(s)
- K J Fullner
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
36
|
Genetic analysis of a phosphatidylinositol 3-kinase SH2 domain reveals determinants of specificity. Mol Cell Biol 1994. [PMID: 8065326 DOI: 10.1128/mcb.14.9.5929] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylinositol 3-kinase is an important element in both normal and oncogenic signal transduction. Polyomavirus middle T antigen transforms cells in a manner depending on association of its tyrosine 315 phosphorylation site with Src homology 2 (SH2) domains on the p85 subunit of the phosphatidylinositol 3-kinase. Both nonselective and site-directed mutagenesis have been used to probe the interaction of middle T with the N-terminal SH2 domain of p85. Most of the 24 mutants obtained showed reduced middle T binding. However, mutations that showed increased binding were also found. Comparison of middle T binding to that of the platelet-derived growth factor receptor showed that some mutations altered the specificity of recognition by the SH2 domain. Mutations altering S-393, D-394, and P-395 were shown to affect the ability of the SH2 domain to select peptides from a degenerate phosphopeptide library. These results focus attention on the role of the EF loop in the SH2 domain in determining binding selectivity at the third position after the phosphotyrosine.
Collapse
|
37
|
Yoakim M, Hou W, Songyang Z, Liu Y, Cantley L, Schaffhausen B. Genetic analysis of a phosphatidylinositol 3-kinase SH2 domain reveals determinants of specificity. Mol Cell Biol 1994; 14:5929-38. [PMID: 8065326 PMCID: PMC359119 DOI: 10.1128/mcb.14.9.5929-5938.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phosphatidylinositol 3-kinase is an important element in both normal and oncogenic signal transduction. Polyomavirus middle T antigen transforms cells in a manner depending on association of its tyrosine 315 phosphorylation site with Src homology 2 (SH2) domains on the p85 subunit of the phosphatidylinositol 3-kinase. Both nonselective and site-directed mutagenesis have been used to probe the interaction of middle T with the N-terminal SH2 domain of p85. Most of the 24 mutants obtained showed reduced middle T binding. However, mutations that showed increased binding were also found. Comparison of middle T binding to that of the platelet-derived growth factor receptor showed that some mutations altered the specificity of recognition by the SH2 domain. Mutations altering S-393, D-394, and P-395 were shown to affect the ability of the SH2 domain to select peptides from a degenerate phosphopeptide library. These results focus attention on the role of the EF loop in the SH2 domain in determining binding selectivity at the third position after the phosphotyrosine.
Collapse
Affiliation(s)
- M Yoakim
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | | | | | |
Collapse
|
38
|
Ben-Zeev O, Stahnke G, Liu G, Davis RC, Doolittle MH. Lipoprotein lipase and hepatic lipase: the role of asparagine-linked glycosylation in the expression of a functional enzyme. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)41149-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Gamo FJ, Navas MA, Blazquez MA, Gancedo C, Gancedo JM. Catabolite inactivation of heterologous fructose-1,6-bisphosphatases and fructose-1,6-bisphosphatase-beta-galactosidase fusion proteins in Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:879-84. [PMID: 8026498 DOI: 10.1111/j.1432-1033.1994.tb18935.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fructose-1,6-bisphosphatase (FruP2ase) from Saccharomyces cerevisiae is rapidly inactivated upon addition of glucose to a culture growing on non-sugar carbon sources. Under the same conditions the FruP2ases from Schizosaccharomyces pombe or Escherichia coli expressed in S. cerevisiae were not affected. A chimaeric protein containing the first 178 amino acids from the N-terminal half of S. cerevisiae FruP2ase fused to E. coli beta-galactosidase was susceptible to catabolite inactivation. Elimination of a putative destruction box, RAELVNLVG ... KK .... K., beginning at amino acid 60 did not prevent catabolite inactivation. Similarly a change of the vacuole-targeting sequence QKKLD, amino acids 80-84, to QKNSD did not affect significantly the course of inactivation of beta-galactosidase. A fusion protein carrying only the first 138 amino acids from FruP2ase was inactivated at a higher rate than the one carrying the first 178, suggesting the existence of a protective region between amino acids 138 and 178. A fusion protein carrying the first 81 amino acids from FruP2ase was inactivated by glucose at a similar rate to the one carrying the 178 amino acids, but one with only the first 18 amino acids was resistant to catabolite inactivation. Inactivation of FruP2ase in mutants ubr1 that lack a protein required for ubiquitin-dependent proteolysis, or pra1 that lack vacuolar protease A, proceeded as in a wild type. Our results suggest that at least two domains of FruP2ase may mark beta-galactosidase for catabolite inactivation and that FruP2ase can be inactivated by a mechanism independent of transfer to the vacuole.
Collapse
Affiliation(s)
- F J Gamo
- Instituto de Investigaciones Biomédicas C. S. I. C., Madrid, Spain
| | | | | | | | | |
Collapse
|
40
|
Tanaka K, Rogi T, Hiasa H, Miao DM, Honda Y, Nomura N, Sakai H, Komano T. Comparative analysis of functional and structural features in the primase-dependent priming signals, G sites, from phages and plasmids. J Bacteriol 1994; 176:3606-13. [PMID: 8206839 PMCID: PMC205550 DOI: 10.1128/jb.176.12.3606-3613.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The primase-dependent priming signals, G sites, are directly recognized by the Escherichia coli primase (dnaG gene product) and conduct the synthesis of primer RNAs. In nucleotide sequence and secondary structure, there is no striking resemblance between the phage- and plasmid-derived G sites, except for the limited sequence homology near the start position of primer RNA synthesis. In this study, we analyzed the structure and function of a G site of plasmid R100, G site (R100), and discovered the necessity of the coexistence of two domains (domains I and III), which contains blocks A, B, and C, which are nucleotide sequences highly conserved among the plasmid-derived G sites. However, neither the internal region, domain II, between domains I and III nor the potential secondary structure proposed by Bahk et al. (J. D. Bahk, N. Kioka, H. Sakai, and T. Komano, Plasmid 20:266-270, 1988) is essential for single-stranded DNA initiation activity. Furthermore, chimeric G sites constructed between a G site of phage G4, G site(G4), and G site(R100) maintained significant single-stranded DNA initiation activities. These results strongly suggest that phage- and plasmid-derived G sites have functionally equivalent domains. The primase-dependent priming mechanisms of phage- and plasmid-derived G sites are discussed.
Collapse
Affiliation(s)
- K Tanaka
- Department of Agricultural Chemistry, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Norioka S, Ohta S, Ohara T, Lim S, Sakiyama F. Identification of three catalytic triad constituents and Asp-225 essential for function of lysine-specific serine protease, Achromobacter protease I. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32514-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
42
|
Rescigno M, Perham RN. Structure of the NADPH-binding motif of glutathione reductase: efficiency determined by evolution. Biochemistry 1994; 33:5721-7. [PMID: 8180198 DOI: 10.1021/bi00185a008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The role of the second glycine residue (Gly-176) of the conserved GXGXXA "fingerprint" motif in the NADPH-binding domain of Escherichia coli glutathione reductase has been studied by means of site-directed mutagenesis. This glycine residue occurs at the N-terminus of the alpha-helix in the beta alpha beta fold that characterizes the dinucleotide-binding domain, in close proximity to the pyrophosphate bridge of the bound coenzyme. Introducing an alanine residue (G176A), the minimum possible change, at this position virtually inactivated the enzyme, as did the introduction of valine, leucine, isoleucine, glutamic acid, histidine, or arginine residues. Only the replacement by serine--a natural substitute for this glycine residue in some forms of mercuric reductase, a related flavoprotein disulfide oxidoreductase--produced a mutant enzyme (G176S) that retained significant catalytic activity. It is conceivable that this is due to a favorable hydrogen bond being formed between the serine hydroxyl and a pyrophosphate oxygen atom. In most of the mutant enzymes, the Km for NADPH was substantially greater than that found for wild-type glutathione reductase, as expected, but this was accompanied by an unexpected decrease in the Km for GSSG. The latter can be explained by the observation that the reduction of the enzyme by NADPH, the first half-reaction of the ping-pong mechanism, had become a rate-limiting step of the overall reaction catalyzed, albeit poorly, by the mutant enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Rescigno
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, United Kingdom
| | | |
Collapse
|
43
|
Molecular mechanism of regulation of yeast plasma membrane H(+)-ATPase by glucose. Interaction between domains and identification of new regulatory sites. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34073-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Blomberg P, Engdahl HM, Malmgren C, Romby P, Wagner EG. Replication control of plasmid R1: disruption of an inhibitory RNA structure that sequesters the repA ribosome-binding site permits tap-independent RepA synthesis. Mol Microbiol 1994; 12:49-60. [PMID: 7520116 DOI: 10.1111/j.1365-2958.1994.tb00994.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The replication frequency of plasmid R1 is controlled by an antisense RNA, CopA, that inhibits the synthesis of the replication initiator protein, RepA, at the post-transcriptional level. This inhibition is indirect and affects translation of a leader peptide reading frame (tap). Translation of tap is required for repA translation (Blomberg et al., 1992). Here we asked whether an RNA stem-loop sequestering the repA ribosome-binding site blocks tap translation-independent repA expression. Destabilization of this structure resulted in tap-independent RepA synthesis, concomitant with a loss of CopA-mediated inhibition; thus, CopA acts at the level of tap translation. Structure probing of RepA mRNAs confirmed that the introduced mutations induced a local destabilization in the repA ribosome-binding site stem-loop. An increased spacing between the repA Shine-Dalgarno region and the start codon permitted even higher repA expression. In Incl alpha/IncB plasmids, an RNA pseudoknot acts as an activator for rep translation. We suggest that the regulatory pathway in plasmid R1 does not involve an activator RNA pseudoknot.
Collapse
Affiliation(s)
- P Blomberg
- Department of Microbiology, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Silva-Rosales L, Lindbo JA, Dougherty WG. Analysis of transgenic tobacco plants expressing a truncated form of a potyvirus coat protein nucleotide sequence. PLANT MOLECULAR BIOLOGY 1994; 24:929-39. [PMID: 8204829 DOI: 10.1007/bf00014446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Transgenic Nicotiana tabacum cv. Burley 49 plants were generated which expressed a tobacco etch virus (TEV) coat protein (CP) gene construct containing a stop codon positioned at codon 147. This gene construct was expected to produce a TEV CP lacking the carboxy-terminal 118 amino acids of the full-length 264 amino acid CP. TEV CP gene transcripts of the expected size could be detected in transgenic plants but the expected truncated CP could not be detected. Ten independent transgenic lines expressing this form of the TEV CP gene were examined in detail. Two transgenic plant lines were resistant to aphid- or mechanically transmitted TEV and one line was highly resistant. Protoplasts derived from the highly resistant plant line did not support virus replication. The data suggested that the expression of this mutated form of the TEV CP gene could interfere with TEV replication and displayed features associated with RNA-mediated virus resistance.
Collapse
Affiliation(s)
- L Silva-Rosales
- Departamento de Ing. Genética, CINVESTAV-IPN, U. Irapuato, México
| | | | | |
Collapse
|
47
|
Saribaş A, Schindler J, Viola R. Mutagenic investigation of conserved functional amino acids in Escherichia coli L-aspartase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37373-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Gettins PG, Boel E, Crews BC. Thiol ester role in correct folding and conformation of human alpha 2-macroglobulin. Properties of recombinant C949S variant. FEBS Lett 1994; 339:276-80. [PMID: 7509297 DOI: 10.1016/0014-5793(94)80430-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To determine the role of the thiol ester in the folding of human alpha 2-macroglobulin (alpha 2M) in the active conformation, we have characterized a recombinant variant of alpha 2M, C949S, expressed in baby hamster kidney cells, that lacks the thiol ester-forming cysteine. C949S alpha 2M behaves like methylamine-treated plasma alpha 2M, with correctly formed inter-subunit disulfide bridges, non-covalent association of covalent dimers to form tetramers, and exposure of the receptor binding domain, but an inability to inhibit proteinases, and inaccessibility of the bait regions to proteolysis. We concluded that correct folding of monomers or their association to give tetrameric alpha 2M does not require a pre-formed thiol ester. Active alpha 2M may form in vivo by a two-step process involving initial folding to give a structure resembling that of C949S alpha 2M followed by thiol ester formation and a conformational change that gives the native active state.
Collapse
Affiliation(s)
- P G Gettins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | | |
Collapse
|
49
|
Matsuura T, Hoshide R, Setoyama C, Komaki S, Kiwaki K, Endo F, Nishikawa S, Matsuda I. Expression of four mutant human ornithine transcarbamylase genes in cultured Cos 1 cells relates to clinical phenotypes. Hum Genet 1994; 93:129-34. [PMID: 8112735 DOI: 10.1007/bf00210596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ornithine transcarbamylase (OTC) deficiency is an X-linked disease with a heterogeneous phenotype, even in affected males. To detect mutations in the OTC gene using genomic DNA, we have developed a method in which all exons and adjacent introns are amplified and sequenced. Although this approach detected mutations in many cases, the relationship between a mutation and the OTC phenotype was not firmly established. Therefore, we investigated the issue by expression analysis of mutant OTC cDNA in cultured cells. Four mutant OTC cDNAs were constructed, based on the reported cases, using our newly developed method. The normal (wild-type) human OTC cDNA was reproducibly expressed at high levels in these Cos 1 cells. Predicted OTC activities of mutant OTC cDNAs ranged from 0% to 8.9% of the normal level together with variable amounts of the enzyme protein. The predicted enzyme activities account for the clinical phenotype of the disease. Our observations confirm that these mutations are responsible for OTC deficiency in these patients.
Collapse
Affiliation(s)
- T Matsuura
- Department of Pediatrics, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu LF, Hong JL, Tsai SP, Hsieh JC, Tam MF. Reversible modification of rat liver glutathione S-transferase 3-3 with 1-chloro-2,4-dinitrobenzene: specific labelling of Tyr-115. Biochem J 1993; 296 ( Pt 1):189-97. [PMID: 8250842 PMCID: PMC1137673 DOI: 10.1042/bj2960189] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rat liver glutathione S-transferase 3-3 (GST, EC 2.5.1.18), a triple mutant with all three cysteine residues replaced with serine (CallS) and a quadruple mutant with a Tyr-115 to phenylalanine substitution on CallS (CallSY115F) were overexpressed in Escherichia coli under the control of a phoA promoter. Using this system, we obtained over 35 mg of fully active pure protein/litre of cell medium. GST 3-3 and CallS mutant were modified with 1-chloro-2,4-dinitrobenzene (CDNB), a model substrate for the enzyme, in the absence of GSH. Dinitrophenol, but not S-methylglutathione, inhibits this process. The dinitrophenyl groups are readily removed from the enzyme with GSH, but much more slowly with dithiothreitol. Results from peptide mapping and amino acid sequence analyses indicate that CDNB modifies the cysteine residues and Tyr-115 on wild-type GST 3-3, but only Tyr-115 on CallS. In addition, CDNB cannot modify the CallSY115F mutant. We propose that Tyr-115 is located at or near the H-site of GST 3-3.
Collapse
Affiliation(s)
- L F Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|