1
|
Zhou T, Wang M, Cheng A, Yang Q, Tian B, Wu Y, Jia R, Chen S, Liu M, Zhao XX, Ou X, Mao S, Sun D, Zhang S, Zhu D, Huang J, Gao Q, Yu Y, Zhang L. Regulation of alphaherpesvirus protein via post-translational phosphorylation. Vet Res 2022; 53:93. [PMID: 36397147 PMCID: PMC9670612 DOI: 10.1186/s13567-022-01115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
An alphaherpesvirus carries dozens of viral proteins in the envelope, tegument and capsid structure, and each protein plays an indispensable role in virus adsorption, invasion, uncoating and release. After infecting the host, a virus eliminates unfavourable factors via multiple mechanisms to escape or suppress the attack of the host immune system. Post-translational modification of proteins, especially phosphorylation, regulates changes in protein conformation and biological activity through a series of complex mechanisms. Many viruses have evolved mechanisms to leverage host phosphorylation systems to regulate viral protein activity and establish a suitable cellular environment for efficient viral replication and virulence. In this paper, viral protein kinases and the regulation of viral protein function mediated via the phosphorylation of alphaherpesvirus proteins are described. In addition, this paper provides new ideas for further research into the role played by the post-translational modification of viral proteins in the virus life cycle, which will be helpful for understanding the mechanisms of viral infection of a host and may lead to new directions of antiviral treatment.
Collapse
Affiliation(s)
- Tong Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| |
Collapse
|
2
|
Esteves AD, Koyuncu OO, Enquist LW. A Pseudorabies Virus Serine/Threonine Kinase, US3, Promotes Retrograde Transport in Axons via Akt/mToRC1. J Virol 2022; 96:e0175221. [PMID: 34985995 PMCID: PMC8906396 DOI: 10.1128/jvi.01752-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
Infection of peripheral axons by alpha herpesviruses (AHVs) is a critical stage in establishing a lifelong infection in the host. Upon entering the cytoplasm of axons, AHV nucleocapsids and associated inner-tegument proteins must engage the cellular retrograde transport machinery to promote the long-distance movement of virion components to the nucleus. The current model outlining this process is incomplete, and further investigation is required to discover all viral and cellular determinants involved as well as the temporality of the events. Using a modified trichamber system, we have discovered a novel role of the pseudorabies virus (PRV) serine/threonine kinase US3 in promoting efficient retrograde transport of nucleocapsids. We discovered that transporting nucleocapsids move at similar velocities in both the presence and absence of a functional US3 kinase; however, fewer nucleocapsids are moving when US3 is absent, and they move for shorter periods of time before stopping, suggesting that US3 is required for efficient nucleocapsid engagement with the retrograde transport machinery. This led to fewer nucleocapsids reaching the cell bodies to produce a productive infection 12 h later. Furthermore, US3 was responsible for the induction of local translation in axons as early as 1 h postinfection (hpi) through the stimulation of a phosphatidylinositol 3-kinase (PI3K)/Akt-mToRC1 pathway. These data describe a novel role for US3 in the induction of local translation in axons during AHV infection, a critical step in transport of nucleocapsids to the cell body. IMPORTANCE Neurons are highly polarized cells with axons that can reach centimeters in length. Communication between axons at the periphery and the distant cell body is a relatively slow process involving the active transport of chemical messengers. There is a need for axons to respond rapidly to extracellular stimuli. Translation of repressed mRNAs present within the axon occurs to enable rapid, localized responses independently of the cell body. AHVs have evolved a way to hijack local translation in the axons to promote their transport to the nucleus. We have determined the cellular mechanism and viral components involved in the induction of axonal translation. The US3 serine/threonine kinase of PRV activates Akt-mToRC1 signaling pathways early during infection to promote axonal translation. When US3 is not present, the number of moving nucleocapsids and their processivity are reduced, suggesting that US3 activity is required for efficient engagement of nucleocapsids with the retrograde transport machinery.
Collapse
Affiliation(s)
- Andrew D. Esteves
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Orkide O. Koyuncu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lynn W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
3
|
van Gent M, Chiang JJ, Muppala S, Chiang C, Azab W, Kattenhorn L, Knipe DM, Osterrieder N, Gack MU. The US3 Kinase of Herpes Simplex Virus Phosphorylates the RNA Sensor RIG-I To Suppress Innate Immunity. J Virol 2022; 96:e0151021. [PMID: 34935440 PMCID: PMC8865413 DOI: 10.1128/jvi.01510-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Recent studies have demonstrated that the signaling activity of the cytosolic pathogen sensor retinoic acid-inducible gene-I (RIG-I) is modulated by a variety of posttranslational modifications (PTMs) to fine-tune the antiviral type I interferon (IFN) response. Whereas K63-linked ubiquitination of the RIG-I caspase activation and recruitment domains (CARDs) catalyzed by TRIM25 or other E3 ligases activates RIG-I, phosphorylation of RIG-I at S8 and T170 represses RIG-I signal transduction by preventing the TRIM25-RIG-I interaction and subsequent RIG-I ubiquitination. While strategies to suppress RIG-I signaling by interfering with its K63-polyubiquitin-dependent activation have been identified for several viruses, evasion mechanisms that directly promote RIG-I phosphorylation to escape antiviral immunity are unknown. Here, we show that the serine/threonine (Ser/Thr) kinase US3 of herpes simplex virus 1 (HSV-1) binds to RIG-I and phosphorylates RIG-I specifically at S8. US3-mediated phosphorylation suppressed TRIM25-mediated RIG-I ubiquitination, RIG-I-MAVS binding, and type I IFN induction. We constructed a mutant HSV-1 encoding a catalytically-inactive US3 protein (K220A) and found that, in contrast to the parental virus, the US3 mutant HSV-1 was unable to phosphorylate RIG-I at S8 and elicited higher levels of type I IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines in a RIG-I-dependent manner. Finally, we show that this RIG-I evasion mechanism is conserved among the alphaherpesvirus US3 kinase family. Collectively, our study reveals a novel immune evasion mechanism of herpesviruses in which their US3 kinases phosphorylate the sensor RIG-I to keep it in the signaling-repressed state. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in the majority of the human population worldwide. HSV-1 occasionally reactivates to produce infectious virus and to facilitate dissemination. While often remaining subclinical, both primary infection and reactivation occasionally cause debilitating eye diseases, which can lead to blindness, as well as life-threatening encephalitis and newborn infections. To identify new therapeutic targets for HSV-1-induced diseases, it is important to understand the HSV-1-host interactions that may influence infection outcome and disease. Our work uncovered direct phosphorylation of the pathogen sensor RIG-I by alphaherpesvirus-encoded kinases as a novel viral immune escape strategy and also underscores the importance of RNA sensors in surveilling DNA virus infection.
Collapse
Affiliation(s)
- Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jessica J. Chiang
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Santoshi Muppala
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Lisa Kattenhorn
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - David M. Knipe
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Ben Khedher M, Ghedira K, Rolain JM, Ruimy R, Croce O. Application and Challenge of 3rd Generation Sequencing for Clinical Bacterial Studies. Int J Mol Sci 2022; 23:1395. [PMID: 35163319 PMCID: PMC8835973 DOI: 10.3390/ijms23031395] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past 25 years, the powerful combination of genome sequencing and bioinformatics analysis has played a crucial role in interpreting information encoded in bacterial genomes. High-throughput sequencing technologies have paved the way towards understanding an increasingly wide range of biological questions. This revolution has enabled advances in areas ranging from genome composition to how proteins interact with nucleic acids. This has created unprecedented opportunities through the integration of genomic data into clinics for the diagnosis of genetic traits associated with disease. Since then, these technologies have continued to evolve, and recently, long-read sequencing has overcome previous limitations in terms of accuracy, thus expanding its applications in genomics, transcriptomics and metagenomics. In this review, we describe a brief history of the bacterial genome sequencing revolution and its application in public health and molecular epidemiology. We present a chronology that encompasses the various technological developments: whole-genome shotgun sequencing, high-throughput sequencing, long-read sequencing. We mainly discuss the application of next-generation sequencing to decipher bacterial genomes. Secondly, we highlight how long-read sequencing technologies go beyond the limitations of traditional short-read sequencing. We intend to provide a description of the guiding principles of the 3rd generation sequencing applications and ongoing improvements in the field of microbial medical research.
Collapse
Affiliation(s)
- Mariem Ben Khedher
- Bacteriology Laboratory, Archet 2 Hospital, CHU Nice, 06000 Nice, France
- Institute for Research on Cancer and Aging Nice (IRCAN), CNRS, INSERM, Université Côte d’Azur, 06108 Nice, France
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institute Pasteur of Tunis, Tunis 1002, Tunisia;
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, 13005 Marseille, France;
| | - Raymond Ruimy
- Bacteriology Laboratory, Archet 2 Hospital, CHU Nice, 06000 Nice, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, Université Côte D’Azur, 06108 Nice, France
| | - Olivier Croce
- Institute for Research on Cancer and Aging Nice (IRCAN), CNRS, INSERM, Université Côte d’Azur, 06108 Nice, France
| |
Collapse
|
5
|
McSharry BP, Samer C, McWilliam HEG, Ashley CL, Yee MB, Steain M, Liu L, Fairlie DP, Kinchington PR, McCluskey J, Abendroth A, Villadangos JA, Rossjohn J, Slobedman B. Virus-Mediated Suppression of the Antigen Presentation Molecule MR1. Cell Rep 2021; 30:2948-2962.e4. [PMID: 32130899 PMCID: PMC7798347 DOI: 10.1016/j.celrep.2020.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/18/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
The antigen-presenting molecule MR1 presents microbial metabolites related to vitamin B2 biosynthesis to mucosal-associated invariant T cells (MAIT cells). Although bacteria and fungi drive the MR1 biosynthesis pathway, viruses have not previously been implicated in MR1 expression or its antigen presentation. We demonstrate that several herpesviruses inhibit MR1 cell surface upregulation, including a potent inhibition by herpes simplex virus type 1 (HSV-1). This virus profoundly suppresses MR1 cell surface expression and targets the molecule for proteasomal degradation, whereas ligand-induced cell surface expression of MR1 prior to infection enables MR1 to escape HSV-1-dependent targeting. HSV-1 downregulation of MR1 is dependent on de novo viral gene expression, and we identify the Us3 viral gene product as functioning to target MR1. Furthermore, HSV-1 downregulation of MR1 disrupts MAIT T cell receptor (TCR) activation. Accordingly, virus-mediated targeting of MR1 defines an immunomodulatory strategy that functionally disrupts the MR1-MAIT TCR axis.
Collapse
Affiliation(s)
- Brian P McSharry
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Carolyn Samer
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Caroline L Ashley
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Michael B Yee
- Departments of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Megan Steain
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Ligong Liu
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - David P Fairlie
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul R Kinchington
- Departments of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Wales, UK
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
SAMHD1 … and Viral Ways around It. Viruses 2021; 13:v13030395. [PMID: 33801276 PMCID: PMC7999308 DOI: 10.3390/v13030395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The SAM and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase that plays a crucial role for a variety of different cellular functions. Besides balancing intracellular dNTP concentrations, facilitating DNA damage repair, and dampening excessive immune responses, SAMHD1 has been shown to act as a major restriction factor against various virus species. In addition to its well-described activity against retroviruses such as HIV-1, SAMHD1 has been identified to reduce the infectivity of different DNA viruses such as the herpesviruses CMV and EBV, the poxvirus VACV, or the hepadnavirus HBV. While some viruses are efficiently restricted by SAMHD1, others have developed evasion mechanisms that antagonize the antiviral activity of SAMHD1. Within this review, we summarize the different cellular functions of SAMHD1 and highlight the countermeasures viruses have evolved to neutralize the restriction factor SAMHD1.
Collapse
|
7
|
Stults AM, Smith GA. The Herpes Simplex Virus 1 Deamidase Enhances Propagation but Is Dispensable for Retrograde Axonal Transport into the Nervous System. J Virol 2019; 93:e01172-19. [PMID: 31462572 PMCID: PMC6819922 DOI: 10.1128/jvi.01172-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Upon replication in mucosal epithelia and transmission to nerve endings, capsids of herpes simplex virus 1 (HSV-1) travel retrogradely within axons to peripheral ganglia, where life-long latent infections are established. A capsid-bound tegument protein, pUL37, is an essential effector of retrograde axonal transport and also houses a deamidase activity that antagonizes innate immune signaling. In this report, we examined whether the deamidase of HSV-1 pUL37 contributes to the neuroinvasive retrograde axonal transport mechanism. We conclude that neuroinvasion is enhanced by the deamidase, but the critical contribution of pUL37 to retrograde axonal transport functions independently of this activity.IMPORTANCE Herpes simplex virus 1 invades the nervous system by entering nerve endings and sustaining long-distance retrograde axonal transport to reach neuronal nuclei in ganglia of the peripheral nervous system. The incoming viral particle carries a deamidase activity on its surface that antagonizes antiviral responses. We examined the contribution of the deamidase to the hallmark neuroinvasive property of this virus.
Collapse
Affiliation(s)
- Austin M Stults
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Kato A, Kawaguchi Y. Us3 Protein Kinase Encoded by HSV: The Precise Function and Mechanism on Viral Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:45-62. [PMID: 29896662 DOI: 10.1007/978-981-10-7230-7_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All members of the Alphaherpesvirinae subfamily encode a serine/threonine kinase, designated Us3, which is not conserved in the other subfamilies. Us3 is a significant virulence factor for herpes simplex virus type 1 (HSV-1), which is one of the best-characterized members of the Alphaherpesvirinae family. Accumulating evidence indicates that HSV-1 Us3 is a multifunctional protein that plays various roles in the viral life cycle by phosphorylating a number of viral and cellular substrates. Therefore, the identification of Us3 substrates is directly connected to understanding Us3 functions and mechanisms. To date, more than 23 phosphorylation events upregulated by HSV-1 Us3 have been reported. However, few of these have been shown to be both physiological substrates of Us3 in infected cells and directly linked with Us3 functions in infected cells. In this chapter, we summarize the 12 physiological substrates of Us3 and the Us3-mediated functions. Furthermore, based on the identified phosphorylation sites of Us3 or Us3 homolog physiological substrates, we reverified consensus phosphorylation target sequences on the physiological substrates of Us3 and Us3 homologs in vitro and in infected cells. This information might aid the further identification of novel Us3 substrates and as yet unidentified Us3 functions.
Collapse
Affiliation(s)
- Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
9
|
Regulation of Herpes Simplex Virus 2 Protein Kinase UL13 by Phosphorylation and Its Role in Viral Pathogenesis. J Virol 2018; 92:JVI.00807-18. [PMID: 29899106 DOI: 10.1128/jvi.00807-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
UL13 proteins are serine/threonine protein kinases encoded by herpes simplex virus 1 (HSV-1) and HSV-2. Although the downstream effects of the HSV protein kinases, mostly those of HSV-1 UL13, have been reported, there is a lack of information on how these viral protein kinases are regulated in HSV-infected cells. In this study, we used a large-scale phosphoproteomic analysis of HSV-2-infected cells to identify a physiological phosphorylation site in HSV-2 UL13 (i.e., Ser-18) and investigated the significance of phosphorylation of this site in HSV-2-infected cell cultures and mice. Our results were as follows. (i) An alanine substitution at UL13 Ser-18 (S18A) significantly reduced HSV-2 replication and cell-to-cell spread in U2OS cells to a level similar to those of the UL13-null and kinase-dead mutations. (ii) The UL13 S18A mutation significantly impaired phosphorylation of a cellular substrate of this viral protein kinase in HSV-2-infected U2OS cells. (iii) Following vaginal infection of mice, the UL13 S18A mutation significantly reduced mortality, HSV-2 replication in the vagina, and development of vaginal disease to levels similar to those of the UL13-null and the kinase-dead mutations. (iv) A phosphomimetic substitution at UL13 Ser-18 significantly restored the phenotype observed with the UL13 S18A mutation in U2OS cells and mice. Collectively, our results suggested that phosphorylation of UL13 Ser-18 regulated UL13 function in HSV-2-infected cells and that this regulation was critical for the functional activity of HSV-2 UL13 in vitro and in vivo and also for HSV-2 replication and pathogenesis.IMPORTANCE Based on studies on cellular protein kinases, it is obvious that the regulatory mechanisms of protein kinases are as crucial as their functional consequences. Herpesviruses each encode at least one protein kinase, but the mechanism by which these kinases are regulated in infected cells remains to be elucidated, with a few exceptions, although information on their functional effects has been accumulating. In this study, we have shown that phosphorylation of the HSV-2 UL13 protein kinase at Ser-18 regulated its function in infected cells, and this regulation was critical for HSV-2 replication and pathogenesis in vivo UL13 is conserved in all members of the family Herpesviridae, and this is the first report clarifying the regulatory mechanism of a conserved herpesvirus protein kinase that is involved in viral replication and pathogenesis in vivo Our study may provide insight into the regulatory mechanisms of the other conserved herpesvirus protein kinases.
Collapse
|
10
|
Molecular mechanism by which Us3 protein kinase regulates the pathogenicity of herpes simplex virus type-1. Uirusu 2017; 66:83-90. [PMID: 28484184 DOI: 10.2222/jsv.66.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) causes a range of human diseases, from mild uncomplicated mucocutaneous infection to life-threatening ones. The Us3 gene of HSV-1 encodes a serine/threonine protein kinase that is highly conserved among alphaherpesviruses. Accumulating evidence suggests that Us3 is a critical regulator of HSV-1 infection; however, the molecular mechanism by which Us3 regulates HSV-1 pathogenicity remains to be elucidated. This article presents a brief summary of the present knowledge on the roles of HSV-1 Us3, with a special focus on its relevancy in vivo.
Collapse
|
11
|
Characterization of a Herpes Simplex Virus 1 (HSV-1) Chimera in Which the Us3 Protein Kinase Gene Is Replaced with the HSV-2 Us3 Gene. J Virol 2015; 90:457-73. [PMID: 26491159 DOI: 10.1128/jvi.02376-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/13/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Us3 protein kinases encoded by herpes simplex virus 1 (HSV-1) and 2 (HSV-2) play important roles in viral replication and pathogenicity. To investigate type-specific differences between HSV-1 Us3 and HSV-2 Us3 in cells infected by viruses with all the same viral gene products except for their Us3 kinases, we constructed and characterized a recombinant HSV-1 in which its Us3 gene was replaced with the HSV-2 Us3 gene. Replacement of HSV-1 Us3 with HSV-2 Us3 had no apparent effect on viral growth in cell cultures or on the range of proteins phosphorylated by Us3. HSV-2 Us3 efficiently compensated for HSV-1 Us3 functions, including blocking apoptosis, controlling infected cell morphology, and downregulating cell surface expression of viral envelope glycoprotein B. In contrast, replacement of HSV-1 Us3 by HSV-2 Us3 changed the phosphorylation status of UL31 and UL34, which are critical viral regulators of nuclear egress. It also caused aberrant localization of these viral proteins and aberrant accumulation of primary enveloped virions in membranous vesicle structures adjacent to the nuclear membrane, and it reduced viral cell-cell spread in cell cultures and pathogenesis in mice. These results clearly demonstrated biological differences between HSV-1 Us3 and HSV-2 Us3, especially in regulation of viral nuclear egress and phosphorylation of viral regulators critical for this process. Our study also suggested that the regulatory role(s) of HSV-1 Us3, which was not carried out by HSV-2 Us3, was important for HSV-1 cell-cell spread and pathogenesis in vivo. IMPORTANCE A previous study comparing the phenotypes of HSV-1 and HSV-2 suggested that the HSV-2 Us3 kinase lacked some of the functions of HSV-1 Us3 kinase. The difference between HSV-1 and HSV-2 Us3 kinases appeared to be due to the fact that some Us3 phosphorylation sites in HSV-1 proteins are not conserved in the corresponding HSV-2 proteins. Therefore, we generated recombinant HSV-1 strains YK781 (Us3-chimera) with HSV-2 Us3 and its repaired virus YK783 (Us3-repair) with HSV-1 Us3, to compare the activities of HSV-1 Us3 and HSV-2 Us3 in cells infected by viruses with the same HSV-1 gene products except for their Us3 kinases. We report here that some processes in viral nuclear egress and pathogenesis in vivo that have been attributed to HSV-1 Us3 could not be carried out by HSV-2 Us3. Therefore, our study clarified the biological differences between HSV-1 Us3 and HSV-2 Us3, which may be relevant to viral pathogenesis in vivo.
Collapse
|
12
|
Gershburg S, Geltz J, Peterson KE, Halford WP, Gershburg E. The UL13 and US3 Protein Kinases of Herpes Simplex Virus 1 Cooperate to Promote the Assembly and Release of Mature, Infectious Virions. PLoS One 2015; 10:e0131420. [PMID: 26115119 PMCID: PMC4482649 DOI: 10.1371/journal.pone.0131420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/02/2015] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) encodes two bona fide serine/threonine protein kinases, the US3 and UL13 gene products. HSV-1 ΔUS3 mutants replicate with wild-type efficiency in cultured cells, and HSV-1 ΔUL13 mutants exhibit <10-fold reduction in infectious viral titers. Given these modest phenotypes, it remains unclear how the US3 and UL13 protein kinases contribute to HSV-1 replication. In the current study, we designed a panel of HSV-1 mutants, in which portions of UL13 and US3 genes were replaced by expression cassettes encoding mCherry protein or green fluorescent protein (GFP), respectively, and analyzed DNA replication, protein expression, and spread of these mutants in several cell types. Loss of US3 function alone had largely negligible effect on viral DNA accumulation, gene expression, virion release, and spread. Loss of UL13 function alone also had no appreciable effects on viral DNA levels. However, loss of UL13 function did result in a measurable decrease in the steady-state levels of two viral glycoproteins (gC and gD), release of total and infectious virions, and viral spread. Disruption of both genes did not affect the accumulation of viral DNA, but resulted in further reduction in gC and gD steady-state levels, and attenuation of viral spread and infectious virion release. These data show that the UL13 kinase plays an important role in the late phase of HSV-1 infection, likely by affecting virion assembly and/or release. Moreover, the data suggest that the combined activities of the US3 and UL13 protein kinases are critical to the efficient assembly and release of infectious virions from HSV-1-infected cells.
Collapse
Affiliation(s)
- Svetlana Gershburg
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Joshua Geltz
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Karin E. Peterson
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT 59840, United States of America
| | - William P. Halford
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Edward Gershburg
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
- * E-mail:
| |
Collapse
|
13
|
Koyanagi N, Imai T, Arii J, Kato A, Kawaguchi Y. Role of herpes simplex virus 1 Us3 in viral neuroinvasiveness. Microbiol Immunol 2014; 58:31-7. [PMID: 24200420 DOI: 10.1111/1348-0421.12108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 12/25/2022]
Abstract
Us3 is a serine-threonine protein kinase that is encoded by herpes simplex virus 1 (HSV-1). In experimental animal models of HSV infection, peripheral and intracranial inoculations can be used to study viral pathogenicity in peripheral sites (e.g., eyes and vagina) and central nervous systems (CNSs), respectively. In addition, peripheral inoculation can be used to investigate this virus' ability to invade the CNS (neuroinvasiveness) from peripheral sites. HSV-1 Us3 has previously been shown to be critical for viral pathogenicity in both peripheral sites and CNSs of mice. However, the role of HSV-1 Us3 in viral neuroinvasiveness has not yet been elucidated. In the present study, the yields of a Us3 null mutant virus and its repaired virus in the eyes, trigeminal ganglia, and brains of mice following ocular inoculation were examined. It was found that, although the repaired virus appeared in the brains of mice 3 days after infection, peak replication occurring 7 days after infection, no viral replication of the Us3 null mutant virus was detectable. These findings indicate that HSV-1 Us3 plays a crucial role in the ability of the virus to invade the brain from the eyes. Thus, HSV-1 Us3 is a significant neuroinvasiveness factor in vivo.
Collapse
Affiliation(s)
- Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology; Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-Ku, Tokyo, 108-8639, Japan
| | | | | | | | | |
Collapse
|
14
|
Herpes simplex virus 1 protein kinase US3 hyperphosphorylates p65/RelA and dampens NF-κB activation. J Virol 2014; 88:7941-51. [PMID: 24807716 DOI: 10.1128/jvi.03394-13] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor κB (NF-κB) plays important roles in innate immune responses by regulating the expression of a large number of target genes involved in the immune and inflammatory response, apoptosis, cell proliferation, differentiation, and survival. To survive in the host cells, viruses have evolved multiple strategies to evade and subvert the host immune response. Herpes simplex virus 1 (HSV-1) bears a large DNA genome, with the capacity to encode many different viral proteins to counteract the host immune responses. In the present study, we demonstrated that HSV-1 protein kinase US3 significantly inhibited NF-κB activation and decreased the expression of inflammatory chemokine interleukin-8 (IL-8). US3 was also shown to hyperphosphorylate p65 at serine 75 and block its nuclear translocation. Two US3 mutants, K220M and D305A, still interacted with p65; however, they could not hyperphosphorylate p65, indicating that the kinase activity of US3 was indispensable for the function. The attenuation of NF-κB activation by HSV-1 US3 protein kinase may represent a critical adaptation to enable virus persistence within the host. Importance: This study demonstrated that HSV-1 protein kinase US3 significantly inhibited NF-κB activation and decreased the expression of inflammatory chemokine interleukin-8 (IL-8). US3 hyperphosphorylated p65 at serine 75 to inhibit NF-κB activation. The kinase activity of US3 was indispensable for its hyperphosphorylation of p65 and abrogation of the nuclear translocation of p65. The present study elaborated a novel mechanism of HSV-1 US3 to evade the host innate immunity.
Collapse
|
15
|
Phosphorylation of a herpes simplex virus 1 dUTPase by a viral protein kinase, Us3, dictates viral pathogenicity in the central nervous system but not at the periphery. J Virol 2013; 88:2775-85. [PMID: 24352467 DOI: 10.1128/jvi.03300-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) encodes Us3 protein kinase, which is critical for viral pathogenicity in both mouse peripheral sites (e.g., eyes and vaginas) and in the central nervous systems (CNS) of mice after intracranial and peripheral inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. We recently reported that Us3 phosphorylated HSV-1 dUTPase (vdUTPase) at serine 187 (Ser-187) in infected cells, and this phosphorylation promoted viral replication by regulating optimal enzymatic activity of vdUTPase. In the present study, we show that the replacement of vdUTPase Ser-187 by alanine (S187A) significantly reduced viral replication and virulence in the CNS of mice following intracranial inoculation and that the phosphomimetic substitution at vdUTPase Ser-187 in part restored the wild-type viral replication and virulence. Interestingly, the S187A mutation in vdUTPase had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. Similarly, the enzyme-dead mutation in vdUTPase significantly reduced viral replication and virulence in the CNS of mice after intracranial inoculation, whereas the mutation had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. These observations suggested that vdUTPase was one of the Us3 substrates responsible for Us3 pathogenicity in the CNS and that the CNS-specific virulence of HSV-1 involved strict regulation of vdUTPase activity by Us3 phosphorylation. IMPORTANCE Herpes simplex virus 1 (HSV-1) encodes a viral protein kinase Us3 which is critical for pathogenicity both in peripheral sites and in the central nervous systems (CNS) of mice following peripheral and intracranial inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. Here, we report that Us3 phosphorylation of viral dUTPase (vdUTPase) at serine 187 (Ser-187), which has been shown to promote the vdUTPase activity, appears to be critical for viral virulence in the CNS but not for pathogenic effects in peripheral sites. Since HSV proteins critical for viral virulence in the CNS are, in almost all cases, also involved in viral pathogenicity at peripheral sites, this phosphorylation event is a unique report of a specific mechanism involved in HSV-1 virulence in the CNS.
Collapse
|
16
|
|
17
|
Herpes simplex virus 1 protein kinase Us3 phosphorylates viral dUTPase and regulates its catalytic activity in infected cells. J Virol 2013; 88:655-66. [PMID: 24173231 DOI: 10.1128/jvi.02710-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Us3 is a serine-threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). In this study, a large-scale phosphoproteomic analysis of titanium dioxide affinity chromatography-enriched phosphopeptides from HSV-1-infected cells using high-accuracy mass spectrometry (MS) and subsequent analyses showed that Us3 phosphorylated HSV-1-encoded dUTPase (vdUTPase) at serine 187 (Ser-187) in HSV-1-infected cells. Thus, the following observations were made. (i) In in vitro kinase assays, Ser-187 in the vdUTPase domain was specifically phosphorylated by Us3. (ii) Phosphorylation of vdUTPase Ser-187 in HSV-1-infected cells was detected by phosphate-affinity polyacrylamide gel electrophoresis analyses and was dependent on the kinase activity of Us3. (iii) Replacement of Ser-187 with alanine (S187A) in vdUTPase and an amino acid substitution in Us3 that inactivated its kinase activity significantly downregulated the enzymatic activity of vdUTPase in HSV-1-infected cells, whereas a phosphomimetic substitution at vdUTPase Ser-187 restored the wild-type enzymatic activity of vdUTPase. (iv) The vdUTPase S187A mutation as well as the kinase-dead mutation in Us3 significantly reduced HSV-1 replication in human neuroblastoma SK-N-SH cells at a multiplicity of infection (MOI) of 5 but not at an MOI of 0.01, whereas the phosphomimetic substitution at vdUTPase Ser-187 restored the wild-type viral replication at an MOI of 5. In contrast, these mutations had no effect on HSV-1 replication in Vero and HEp-2 cells. Collectively, our results suggested that Us3 phosphorylation of vdUTPase Ser-187 promoted HSV-1 replication in a manner dependent on cell types and MOIs by regulating optimal enzymatic activity of vdUTPase.
Collapse
|
18
|
Herpes simplex virus US3 tegument protein inhibits Toll-like receptor 2 signaling at or before TRAF6 ubiquitination. Virology 2013; 439:65-73. [PMID: 23478027 DOI: 10.1016/j.virol.2013.01.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/18/2013] [Accepted: 01/31/2013] [Indexed: 11/23/2022]
Abstract
Herpes simplex virus (HSV) has evolved multiple strategies to modulate host immune responses. In a screen of HSV open reading frames to identify additional HSV-encoded proteins that affect NF-κB signaling, we identified the viral US3 tegument protein as an inhibitor of NF-κB signaling. We found that the US3 protein is required for inhibition of TLR2 signaling induced by viral infection and that this inhibition occurs at very early times post-infection. Expression of US3 in transfected cells inhibits TLR2 signaling induced by Zymosan, and this inhibition occurs at or downstream of MyD88 and upstream of p65. Polyubiquitination of TRAF6 is critical for its function in TLR2 signaling. Using US3-null and US3 kinase-defective mutant viruses, we demonstrate that HSV US3 reduces TRAF6 polyubiquitination and that the kinase activity of US3 is necessary for this effect. Therefore, US3 is necessary and sufficient for inhibiting TLR2 signaling at or before the stage of TRAF6 ubiquitination.
Collapse
|
19
|
Maes R. Felid herpesvirus type 1 infection in cats: a natural host model for alphaherpesvirus pathogenesis. ISRN VETERINARY SCIENCE 2012; 2012:495830. [PMID: 23762586 PMCID: PMC3671728 DOI: 10.5402/2012/495830] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/20/2012] [Indexed: 11/23/2022]
Abstract
Feline herpesvirus 1 (FeHV-1) is an alphaherpesvirus that causes feline viral rhinotracheitis, an important viral disease of cats on a worldwide basis. Acute FeHV-1 infection is associated with both upper respiratory and ocular signs. Following the acute phase of the disease lifelong latency is established, primarily in sensory neuronal cells. As is the case with human herpes simplex viruses, latency reactivation can result in recrudescence, which can manifest itself in the form of serious ocular lesions. FeHV-1 infection in cats is a natural host model that is useful for the identification of viral virulence genes that play a role in replication at the mucosal portals of entry or are mediators of the establishment, maintenance, or reactivation of latency. It is also a model system for defining innate and adaptive immunity mechanisms and for immunization strategies that can lead to better protection against this and other alphaherpesvirus infections.
Collapse
Affiliation(s)
- Roger Maes
- Departments of Pathobiology and Diagnostic Investigation and Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
20
|
Herpes simplex virus 1 protein kinase Us3 and major tegument protein UL47 reciprocally regulate their subcellular localization in infected cells. J Virol 2011; 85:9599-613. [PMID: 21734045 DOI: 10.1128/jvi.00845-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Us3 is a serine-threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). We have identified UL47, a major virion protein, as a novel physiological substrate of Us3. In vitro kinase assays and systematic analysis of mutations at putative Us3 phosphorylation sites near the nuclear localization signal of UL47 showed that serine at residue 77 (Ser-77) was required for Us3 phosphorylation of UL47. Replacement of UL47 Ser-77 by alanine produced aberrant accumulation of UL47 at the nuclear rim and impaired the nuclear localization of UL47 in a significant fraction of infected cells. The same defect in UL47 localization was produced by an amino acid substitution in Us3 that inactivated its protein kinase activity. In contrast, a phosphomimetic mutation at UL47 Ser-77 restored wild-type nuclear localization. The UL47 S77A mutation also reduced viral replication in the mouse cornea and the development of herpes stromal keratitis in mice. In addition, UL47 formed a stable complex with Us3 in infected cells, and nuclear localization of Us3 was significantly impaired in the absence of UL47. These results suggested that Us3 phosphorylation of UL47 Ser-77 promoted the nuclear localization of UL47 in cell cultures and played a critical role in viral replication and pathogenesis in vivo. Furthermore, UL47 appeared to be required for efficient nuclear localization of Us3 in infected cells. Therefore, Us3 protein kinase and its substrate UL47 demonstrated a unique regulatory feature in that they reciprocally regulated their subcellular localization in infected cells.
Collapse
|
21
|
Finnen RL, Banfield BW. Subcellular localization of the alphaherpesvirus serine/threonine kinase Us3 as a determinant of Us3 function. Virulence 2011; 1:291-4. [PMID: 21178457 DOI: 10.4161/viru.1.4.11980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Us3 serine threonine kinases perform multiple roles in alphaherpesvirus infection and can localize to distinct subcellular compartments. Transient expression of Us3 in cells results in two dramatic alterations of the actin cytoskeleton: production of actin-based filamentous processes (FPs); and breakdown of actin stress fibres giving rise to rounded cell morphology. In our recent study on FPs induced by HSV-2 Us3, we noted that FP formation was diminished when HSV-2 Us3 was trapped within the nucleus following treatment of transfected cells with leptomycin B (LMB). This observation suggested that subcellular localization of Us3 could be a determinant of Us3-induced FP formation. Here, we review what is known regarding the effect of subcellular localization of Us3 on FP production and on actin stress fibre breakdown and discuss the potential significance of studies aimed at defining the requirements for subcellular localization of Us3.
Collapse
Affiliation(s)
- Renée L Finnen
- Department of Microbiology and Immunology, Queen's University, Kingston, ON, CA
| | | |
Collapse
|
22
|
Li N, Thompson S, Jiang H, Lieberman PM, Luo C. Development of drugs for Epstein-Barr virus using high-throughput in silico virtual screening. Expert Opin Drug Discov 2010; 5:1189-203. [PMID: 22822721 PMCID: PMC3816986 DOI: 10.1517/17460441.2010.524640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that is causally associated with endemic forms of Burkitt's lymphoma, nasopharyngeal carcinoma and lymphoproliferative disease in immunosuppressed individuals. On a global scale, EBV infects > 90% of the adult population and is responsible for ∼ 1% of all human cancers. To date, there is no efficacious drug or therapy for the treatment of EBV infection and EBV-related diseases. AREAS COVERED IN THIS REVIEW In this review, we discuss the existing anti-EBV inhibitors and those under development. We discuss the value of different molecular targets, including EBV lytic DNA replication enzymes as well as proteins that are expressed exclusively during latent infection, such as EBV nuclear antigen 1 (EBNA-1) and latent membrane protein 1. As the atomic structure of the EBNA-1 DNA binding domain has been described, it is an attractive target for in silico methods of drug design and small molecule screening. We discuss the use of computational methods that can greatly facilitate the development of novel inhibitors and how in silico screening methods can be applied to target proteins with known structures, such as EBNA-1, to treat EBV infection and disease. WHAT THE READER WILL GAIN The reader is familiarized with the problems in targeting of EBV for inhibition by small molecules and how computational methods can greatly facilitate this process. TAKE HOME MESSAGE Despite the impressive efficacy of nucleoside analogs for the treatment of herpesvirus lytic infection, there remain few effective treatments for latent infections. As EBV latent infection persists within and contributes to the formation of EBV-associated cancers, targeting EBV latent proteins is an unmet medical need. High-throughput in silico screening can accelerate the process of drug discovery for novel and selective agents that inhibit EBV latent infection and associated disease.
Collapse
Affiliation(s)
- Ning Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Center for Systems Biology, Soochow University, Jiangsu 215006, China
| |
Collapse
|
23
|
Abstract
Phosphorylation represents one the most abundant and important posttranslational modifications of proteins, including viral proteins. Virus-encoded serine/threonine protein kinases appear to be a feature that is unique to large DNA viruses. Although the importance of these kinases for virus replication in cell culture is variable, they invariably play important roles in virus virulence. The current review provides an overview of the different viral serine/threonine protein kinases of several large DNA viruses and discusses their function, importance, and potential as antiviral drug targets.
Collapse
|
24
|
Deruelle MJ, Favoreel HW. Keep it in the subfamily: the conserved alphaherpesvirus US3 protein kinase. J Gen Virol 2010; 92:18-30. [PMID: 20943887 DOI: 10.1099/vir.0.025593-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The US3 protein kinase is conserved over the alphaherpesvirus subfamily. Increasing evidence shows that, although the kinase is generally not required for virus replication in cell culture, it plays a pivotal and in some cases an essential role in virus virulence in vivo. The US3 protein is a multifunctional serine/threonine kinase that is involved in viral gene expression, virion morphogenesis, remodelling the actin cytoskeleton and the evasion of several antiviral host responses. In the current review, both the well conserved and virus-specific functions of alphaherpesvirus US3 protein kinase orthologues will be discussed.
Collapse
Affiliation(s)
- M J Deruelle
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | | |
Collapse
|
25
|
Cyclin-dependent kinase-like function is shared by the beta- and gamma- subset of the conserved herpesvirus protein kinases. PLoS Pathog 2010; 6:e1001092. [PMID: 20838604 PMCID: PMC2936540 DOI: 10.1371/journal.ppat.1001092] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 08/09/2010] [Indexed: 11/19/2022] Open
Abstract
The UL97 protein of human cytomegalovirus (HCMV, or HHV-5 (human herpesvirus 5)), is a kinase that phosphorylates the cellular retinoblastoma (Rb) tumor suppressor and lamin A/C proteins that are also substrates of cellular cyclin-dependent kinases (Cdks). A functional complementation assay has further shown that UL97 has authentic Cdk-like activity. The other seven human herpesviruses each encode a kinase with sequence and positional homology to UL97. These UL97-homologous proteins have been termed the conserved herpesvirus protein kinases (CHPKs) to distinguish them from other human herpesvirus-encoded kinases. To determine if the Cdk-like activities of UL97 were shared by all of the CHPKs, we individually expressed epitope-tagged alleles of each protein in human Saos-2 cells to test for Rb phosphorylation, human U-2 OS cells to monitor nuclear lamina disruption and lamin A phosphorylation, or S. cerevisiae cdc28-13 mutant cells to directly assay for Cdk function. We found that the ability to phosphorylate Rb and lamin A, and to disrupt the nuclear lamina, was shared by all CHPKs from the beta- and gamma-herpesvirus families, but not by their alpha-herpesvirus homologs. Similarly, all but one of the beta and gamma CHPKs displayed bona fide Cdk activity in S. cerevisiae, while the alpha proteins did not. Thus, we have identified novel virally-encoded Cdk-like kinases, a nomenclature we abbreviate as v-Cdks. Interestingly, we found that other, non-Cdk-related activities reported for UL97 (dispersion of promyelocytic leukemia protein nuclear bodies (PML-NBs) and disruption of cytoplasmic or nuclear aggresomes) showed weak conservation among the CHPKs that, in general, did not segregate to specific viral families. Therefore, the genomic and evolutionary conservation of these kinases has not been fully maintained at the functional level. Our data indicate that these related kinases, some of which are targets of approved or developmental antiviral drugs, are likely to serve both overlapping and non-overlapping functions during viral infections.
Collapse
|
26
|
Abstract
A serine/threonine (S/T) kinase encoded by the US3 gene of herpes simplex virus type 1 (HSV-1) is conserved in varicella-zoster virus (VZV) and pseudorabies virus (PRV). Expression of US3 kinase in cells transformed with US3 expression plasmids or infected with each virus results in hyperphosphorylation of histone deacetylase 2 (HDAC2). Mapping studies revealed that each US3 kinase phosphorylates HDAC2 at the same unique conserved Ser residue in its C terminus. HDAC2 was also hyperphosphorylated in cells infected with PRV lacking US3 kinase, indicating that hyperphosphorylation of HDAC2 by PRV occurs in a US3-independent manner. Specific chemical inhibition of class I HDAC activity increases the plaquing efficiency of VZV and PRV lacking US3 or its enzymatic activity, whereas only minimal effects are observed with wild-type viruses, suggesting that VZV and PRV US3 kinase activities target HDACs to reduce viral genome silencing and allow efficient viral replication. However, no effect was observed for wild-type or US3 null HSV-1. Thus, we have demonstrated that while HDAC2 is a conserved target of alphaherpesvirus US3 kinases, the functional significance of these events is virus specific.
Collapse
|
27
|
Effects of phosphorylation of herpes simplex virus 1 envelope glycoprotein B by Us3 kinase in vivo and in vitro. J Virol 2010; 84:153-62. [PMID: 19846518 DOI: 10.1128/jvi.01447-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We recently reported that the herpes simplex virus 1 (HSV-1) Us3 protein kinase phosphorylates threonine at position 887 (Thr-887) in the cytoplasmic tail of envelope glycoprotein B (gB) (A. Kato, J. Arii, I. Shiratori, H. Akashi, H. Arase, and Y. Kawaguchi, J. Virol. 83:250-261, 2009; T. Wisner, C. C. Wright, A. Kato, Y. Kawaguchi, F. Mou, J. D. Baines, R. J. Roller and D. C. Johnson, J. Virol. 83:3115-3126, 2009). In the studies reported here, we examined the effect(s) of this phosphorylation on viral replication and pathogenesis in vivo and present data showing that replacement of gB Thr-887 by alanine significantly reduced viral replication in the mouse cornea and development of herpes stroma keratitis and periocular skin disease in mice. The same effects have been reported for mice infected with a recombinant HSV-1 carrying a kinase-inactive mutant of Us3. These observations suggested that Us3 phosphorylation of gB Thr-887 played a critical role in viral replication in vivo and in HSV-1 pathogenesis. In addition, we generated a monoclonal antibody that specifically reacted with phosphorylated gB Thr-887 and used this antibody to show that Us3 phosphorylation of gB Thr-887 regulated subcellular localization of gB, particularly on the cell surface of infected cells.
Collapse
|
28
|
Erazo A, Kinchington PR. Varicella-zoster virus open reading frame 66 protein kinase and its relationship to alphaherpesvirus US3 kinases. Curr Top Microbiol Immunol 2010; 342:79-98. [PMID: 20186610 DOI: 10.1007/82_2009_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The varicella-zoster virus (VZV) open reading frame (ORF) 66 encodes a basophilic kinase orthologous to the US3 protein kinases found in all alphaherpesviruses. This review summarizes current information on the ORF66 kinase, and outlines apparent differences from other US3 kinases, as well as some of the conserved functions. One critical difference is the VZV ORF66 kinase targeting of the major regulatory VZV IE62 protein to control its nuclear import and assembly into the VZV virion, which is so far unprecedented in the alphaherpesviruses. However, ORF66 targets some cellular targets which are also targeted by US3 kinases of other herpesviruses, including the histone deacetylase-1 and 2 proteins, pathways that lead to changes in actin dynamics, and the targeting of substrates of protein kinase A, including the nuclear matrix protein matrin 3.
Collapse
Affiliation(s)
- Angela Erazo
- Graduate Program in Molecular Virology and Microbiology, School of Medicine, University of Pittsbusrgh, Pittsburgh, PA, USA
| | | |
Collapse
|
29
|
Prichard MN. Function of human cytomegalovirus UL97 kinase in viral infection and its inhibition by maribavir. Rev Med Virol 2009; 19:215-29. [PMID: 19434630 DOI: 10.1002/rmv.615] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The serine/threonine kinase expressed by human cytomegalovirus from gene UL97 phosphorylates the antiviral drug ganciclovir, but its biological function is the phosphorylation of its natural viral and cellular protein substrates which affect viral replication at many levels. The UL97 kinase null phenotype is therefore complex, as is the mechanism of action of maribavir, a highly specific inhibitor of its enzymatic activity. Studies that utilise the drug corroborate results from genetic approaches and together have elucidated many functions of the UL97 kinase that are critical for viral replication. The kinase phosphorylates eukaryotic elongation factor 1delta, the carboxyl terminal domain of the large subunit of RNA polymerase II, the retinoblastoma tumour suppressor and lamins A and C. Each of these is also phosphorylated and regulated by cdc2/cyclin-dependent kinase 1, suggesting that the viral kinase may perform a similar function. These and other activities of the UL97 kinase appear to stimulate the cell cycle to support viral DNA synthesis, enhance the expression of viral genes, promote virion morphogenesis and facilitate the egress of mature capsids from the nucleus. In the absence of UL97 kinase activity, viral DNA synthesis is inefficient and structural proteins are sequestered in nuclear aggresomes, reducing the efficiency of virion morphogenesis. Mature capsids that do form fail to egress the nucleus as the nuclear lamina are not dispersed by the kinase. The critical functions performed by the UL97 kinase illustrate its importance in viral replication and confirm that the kinase is a target for the development of antiviral therapies.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama 35233, USA.
| |
Collapse
|
30
|
Differences in the regulatory and functional effects of the Us3 protein kinase activities of herpes simplex virus 1 and 2. J Virol 2009; 83:11624-34. [PMID: 19740999 DOI: 10.1128/jvi.00993-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Us3 protein kinases encoded by herpes simplex virus 1 (HSV-1) and 2 (HSV-2) are serine/threonine protein kinases and play critical roles in viral replication and pathogenicity in vivo. In the present study, we investigated differences in the biological properties of HSV-1 and HSV-2 Us3 protein kinases and demonstrated that HSV-2 Us3 did not have some of the HSV-1 Us3 kinase functions, including control of nuclear egress of nucleocapsids, localization of UL31 and UL34, and cell surface expression of viral envelope glycoprotein B. In agreement with the observations that HSV-2 Us3 was less important for these functions, the effect of HSV-2 Us3 kinase activity on virulence in mice following intracerebral inoculation was much lower than that of HSV-1 Us3. Furthermore, we showed that alanine substitution in HSV-2 Us3 at a site (aspartic acid at position 147) corresponding to one that can be autophosphorylated in HSV-1 Us3 abolished HSV-2 Us3 kinase activity. Thus, the regulatory and functional effects of Us3 kinase activity are different between HSV-1 and HSV-2.
Collapse
|
31
|
Histone deacetylases 1 and 2 are phosphorylated at novel sites during varicella-zoster virus infection. J Virol 2009; 83:11502-13. [PMID: 19740981 DOI: 10.1128/jvi.01318-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ORF66p, a virion-associated varicella-zoster virus (VZV) protein, is a member of a conserved Alphaherpesvirinae kinase family with homology to herpes simplex virus US3 kinase. Expression of ORF66p in cells infected with VZV or an adenovirus expressing only ORF66p results in hyperphosphorylation of histone deacetylase 1 (HDAC1) and HDAC2. Mapping studies reveal that phosphorylation is at a unique conserved Ser residue in the C terminus of both HDACs. This modification requires an active kinase domain in ORF66p, as neither protein is phosphorylated in cells infected with VZV lacking kinase activity. However, hyperphosphorylation appears to occur indirectly, as within the context of in vitro kinase reactions, purified ORF66p phosphorylates a peptide derived from ORF62p, a known substrate, but does not phosphorylate HDAC. These results support a model where ORF66p is necessary but not sufficient to effect hyperphosphorylation of HDAC1 and HDAC2.
Collapse
|
32
|
Regulation of the catalytic activity of herpes simplex virus 1 protein kinase Us3 by autophosphorylation and its role in pathogenesis. J Virol 2009; 83:5773-83. [PMID: 19297494 DOI: 10.1128/jvi.00103-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Us3 is a serine/threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). We recently identified serine at Us3 position 147 (Ser-147) as a physiological phosphorylation site of Us3 (A. Kato, M. Tanaka, M. Yamamoto, R. Asai, T. Sata, Y. Nishiyama, and Y. Kawaguchi, J. Virol. 82:6172-6189, 2008). In the present study, we investigated the effects of phosphorylation of Us3 Ser-147 on regulation of Us3 catalytic activity in infected cells and on HSV-1 pathogenesis. Our results were as follows. (i) Only a small fraction of Us3 purified from infected cells was phosphorylated at Ser-147. (ii) Us3 phosphorylated at Ser-147 purified from infected cells had significantly higher kinase activity than Us3 not phosphorylated at Ser-147. (iii) Phosphorylation of Us3 Ser-147 in infected cells was dependent on Us3 kinase activity. (iv) Replacement of Us3 Ser-147 by alanine significantly reduced viral replication in the mouse cornea and the development of herpes stromal keratitis and periocular skin disease in mice. These results indicated that Us3 catalytic activity is tightly regulated by autophosphorylation of Ser-147 in infected cells and that regulation of Us3 activity by autophosphorylation appeared to play a critical role in viral replication in vivo and in HSV-1 pathogenesis.
Collapse
|
33
|
Herpes simplex virus 1 protein kinase Us3 phosphorylates viral envelope glycoprotein B and regulates its expression on the cell surface. J Virol 2008; 83:250-61. [PMID: 18945776 DOI: 10.1128/jvi.01451-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Us3 is a serine-threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). As reported here, we attempted to identify the previously unreported physiological substrate of Us3 in HSV-1-infected cells. Our results were as follows. (i) Bioinformatics analysis predicted two putative Us3 phosphorylation sites in the viral envelope glycoprotein B (gB) at codons 557 to 562 (RRVSAR) and codons 884 to 889 (RRNTNY). (ii) In in vitro kinase assays, the threonine residue at position 887 (Thr-887) in the gB domain was specifically phosphorylated by Us3, while the serine residue at position 560 was not. (iii) The phosphorylation of gB Thr-887 in Vero cells infected with wild-type HSV-1 was specifically detected using an antibody that recognized phosphorylated serine or threonine residues with arginine at the -3 and -2 positions. (iv) The phosphorylation of gB Thr-887 in infected cells was dependent on the kinase activity of Us3. (v) The replacement of Thr-887 with alanine markedly upregulated the cell surface expression of gB in infected cells, whereas replacement with aspartic acid, which sometimes mimics constitutive phosphorylation, restored the wild-type phenotype. The upregulation of gB expression on the cell surface also was observed in cells infected with a recombinant HSV-1 encoding catalytically inactive Us3. These results supported the hypothesis that Us3 phosphorylates gB and downregulates the cell surface expression of gB in HSV-1-infected cells.
Collapse
|
34
|
Identification of a physiological phosphorylation site of the herpes simplex virus 1-encoded protein kinase Us3 which regulates its optimal catalytic activity in vitro and influences its function in infected cells. J Virol 2008; 82:6172-89. [PMID: 18417577 DOI: 10.1128/jvi.00044-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Us3 is a serine/threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). Here, we report the identification of a physiological Us3 phosphorylation site on serine at position 147 (Ser-147) which regulates its protein kinase activity in vitro. Moreover, mutation of this site influences Us3 function, including correct localization of the enzyme and induction of the usual morphological changes in HSV-1-infected cells. These conclusions are based on the following observations: (i) in in vitro kinase assays, a domain of Us3 containing Ser-147 was specifically phosphorylated by Us3 and protein kinase A, while a mutant domain in which Ser-147 was replaced with alanine was not; (ii) in vitro, alanine replacement of Ser-147 (S147A) in Us3 resulted in significant impairment of the kinase activity of the purified molecule expressed in a baculovirus system; (iii) phosphorylation of Ser-147 in Us3 tagged with the monomeric fluorescent protein (FP) VenusA206K (VenusA206K-Us3) from Vero cells infected with a recombinant HSV-1 encoding VenusA206K-Us3 was specifically detected using an antibody that recognizes phosphorylated serine or threonine residues with arginine at the -3 and -2 positions; and (iv) the S147A mutation influenced some but not all Us3 functions, including the ability of the protein to localize itself properly and to induce wild-type cytopathic effects in infected cells. Our results suggest that some of the regulatory activities of Us3 in infected cells are controlled by phosphorylation at Ser-147.
Collapse
|
35
|
Cano-Monreal GL, Tavis JE, Morrison LA. Substrate specificity of the herpes simplex virus type 2 UL13 protein kinase. Virology 2008; 374:1-10. [PMID: 18207213 DOI: 10.1016/j.virol.2007.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/27/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
The UL13 protein kinase is conserved among many herpesviruses but HSV-2 UL13 specificity is not known. Here, we found that HSV-2 UL13 is a phosphoprotein that autophosphorylates, and that serines within ERK and Cdc2 motifs were important for autophosphorylation but not for UL13 phosphorylation of exogenous substrates. HSV-2 UL13 phosphorylated a peptide also recognized by ERK and Cdc2. However, mutation of substrate residues critical for Cdc2 or Erk phosphorylation did not alter HSV-2 UL13 phosphorylation of the peptide, and HSV-2 UL13 did not phosphorylate standard Cdc2 or Erk peptide substrates. Mutation of prolines surrounding the peptide phosphoacceptor site reduced phosphorylation by HSV-2 UL13, and a peptide containing serine-proline amid alanines and glycines was phosphorylated. Thus, HSV-2 UL13 does not mimic ERK or Cdc2 substrate recognition and its minimal recognition motif can be serine-proline. This motif's simplicity indicates that distal sequence or protein structure contributes to HSV-2 UL13 substrate specificity.
Collapse
Affiliation(s)
- Gina L Cano-Monreal
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | | | | |
Collapse
|
36
|
Poon APW, Roizman B. Mapping of key functions of the herpes simplex virus 1 U(S)3 protein kinase: the U(S)3 protein can form functional heteromultimeric structures derived from overlapping truncated polypeptides. J Virol 2006; 81:1980-9. [PMID: 17151133 PMCID: PMC1797600 DOI: 10.1128/jvi.02265-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier studies have shown that the herpes simplex virus (HSV) U(S)3 encodes two transcriptional units directing the synthesis of the U(S)3 (residues 1 to 481) and U(S)3.5 (residues 77 to 481) protein kinases. Both kinases phosphorylate histone deacetylase 1 (HDAC1) and HDAC2 and enable the expression of genes cotransduced into U2OS cells by recombinant baculoviruses, an activity designated the "helper function." The two kinases differ with respect to antiapoptotic activity. In the studies reported here, we made a series of FLAG-tagged amino- and carboxyl-terminal truncations of U(S)3 and these were tested for antiapoptotic activity, phosphorylation of HDAC1, and the helper function. We report the following. (i) HDAC1 phosphorylation and the helper function were expressed in cells transduced by the truncation encoding residues 182 to 481 but not in cells transduced by the truncation encoding residues 189 to 481 or the amino-terminal polypeptides encompassing the first 188 amino acids. (ii) The self-posttranslational modification requires residues 164 to 481. (iii) The antiapoptotic activity requires both the amino-terminal and the carboxyl-terminal domains, of which the truncated protein containing residues 1 to 163 and that containing residues 164 to 481, respectively, were the smallest fragments tested to be effective. The two domains need not be on the same molecule, but they must overlap. The smallest overlapping pair tested was the fragment containing residues 1 to 181 and that containing residues 164 to 481. Consistent with the hypothesis that the effective overlapping truncations form a heteromultimeric structure, antibody to FLAG coprecipitated untagged U(S)3 from lysates of cells cotransduced with FLAG-tagged, truncated U(S)3 constructs. Although U(S)3 has been reported to be a monomeric enzyme, the results indicate that it can form enzymatically active multimeric structures.
Collapse
Affiliation(s)
- Alice P W Poon
- Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, 910 East 58th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
37
|
Schaap-Nutt A, Sommer M, Che X, Zerboni L, Arvin AM. ORF66 protein kinase function is required for T-cell tropism of varicella-zoster virus in vivo. J Virol 2006; 80:11806-16. [PMID: 16971426 PMCID: PMC1642581 DOI: 10.1128/jvi.00466-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several functions have been attributed to the serine/threonine protein kinase encoded by open reading frame 66 (ORF66) of varicella-zoster virus (VZV), including modulation of the apoptosis and interferon pathways, down-regulation of major histocompatibility complex class I cell surface expression, and regulation of IE62 localization. The amino acid sequence of the ORF66 protein contains a recognizable conserved kinase domain. Point mutations were introduced into conserved protein kinase motifs to evaluate their importance to ORF66 protein functions. Two substitution mutants were generated, including a G102A substitution, which blocked autophosphorylation and altered IE62 localization, and an S250P substitution, which had no effect on either autophosphorylation or IE62 localization. Both kinase domain mutants grew to titers equivalent to recombinant parent Oka (pOka) in vitro. pOka66G102A had slightly reduced growth in skin, which was comparable to the reduction observed when ORF66 translation was prevented by stop codon insertions in pOka66S. In contrast, infection of T-cell xenografts with pOka66G102A was associated with a significant decrease in infectious virus production equivalent to the impaired T-cell tropism found with pOka66S infection of T-cell xenografts in vivo. Disrupting kinase activity with the G102A mutation did not alter IE62 cytoplasmic localization in VZV-infected T cells, suggesting that decreased T-cell tropism is due to other ORF66 protein functions. The G102A mutation reduced the antiapoptotic effects of VZV infection of T cells. These experiments indicate that the T-cell tropism of VZV depends upon intact ORF66 protein kinase function.
Collapse
Affiliation(s)
- Anne Schaap-Nutt
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5208, USA.
| | | | | | | | | |
Collapse
|
38
|
Kato A, Yamamoto M, Ohno T, Tanaka M, Sata T, Nishiyama Y, Kawaguchi Y. Herpes simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and regulates nuclear localization of viral envelopment factors UL34 and UL31. J Virol 2006; 80:1476-86. [PMID: 16415024 PMCID: PMC1346963 DOI: 10.1128/jvi.80.3.1476-1486.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UL13 and Us3 are protein kinases encoded by herpes simplex virus 1. We report here that Us3 is a physiological substrate for UL13 in infected cells, based on the following observations. (i) The electrophoretic mobility, in denaturing gels, of Us3 isoforms from Vero cells infected with wild-type virus was slower than that of isoforms from cells infected with a UL13 deletion mutant virus (DeltaUL13). After treatment with phosphatase, the electrophoretic mobility of the Us3 isoforms from cells infected with wild-type virus changed, with one isoform migrating as fast as one of the Us3 isoforms from DeltaUL13-infected cells. (ii) A recombinant protein containing a domain of Us3 was phosphorylated by UL13 in vitro. (iii) The phenotype of DeltaUL13 resembles that of a recombinant virus lacking the Us3 gene (DeltaUs3) with respect to localization of the viral envelopment factors UL34 and UL31, whose localization has been shown to be regulated by Us3. UL34 and UL31 are localized in a smooth pattern throughout the nuclei of cells infected with wild-type virus, whereas their localization in DeltaUL13- and DeltaUs3-infected cells appeared as nuclear punctate patterns. These results indicate that UL13 phosphorylates Us3 in infected cells and regulates UL34 and UL31 localization, either by phosphorylating Us3 or by a Us3-independent mechanism.
Collapse
Affiliation(s)
- Akihisa Kato
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Rautengarten C, Steinhauser D, Büssis D, Stintzi A, Schaller A, Kopka J, Altmann T. Inferring hypotheses on functional relationships of genes: Analysis of the Arabidopsis thaliana subtilase gene family. PLoS Comput Biol 2005; 1:e40. [PMID: 16193095 PMCID: PMC1236819 DOI: 10.1371/journal.pcbi.0010040] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 08/16/2005] [Indexed: 11/18/2022] Open
Abstract
The gene family of subtilisin-like serine proteases (subtilases) in Arabidopsis thaliana comprises 56 members, divided into six distinct subfamilies. Whereas the members of five subfamilies are similar to pyrolysins, two genes share stronger similarity to animal kexins. Mutant screens confirmed 144 T-DNA insertion lines with knockouts for 55 out of the 56 subtilases. Apart from SDD1, none of the confirmed homozygous mutants revealed any obvious visible phenotypic alteration during growth under standard conditions. Apart from this specific case, forward genetics gave us no hints about the function of the individual 54 non-characterized subtilase genes. Therefore, the main objective of our work was to overcome the shortcomings of the forward genetic approach and to infer alternative experimental approaches by using an integrative bioinformatics and biological approach. Computational analyses based on transcriptional co-expression and co-response pattern revealed at least two expression networks, suggesting that functional redundancy may exist among subtilases with limited similarity. Furthermore, two hubs were identified, which may be involved in signalling or may represent higher-order regulatory factors involved in responses to environmental cues. A particular enrichment of co-regulated genes with metabolic functions was observed for four subtilases possibly representing late responsive elements of environmental stress. The kexin homologs show stronger associations with genes of transcriptional regulation context. Based on the analyses presented here and in accordance with previously characterized subtilases, we propose three main functions of subtilases: involvement in (i) control of development, (ii) protein turnover, and (iii) action as downstream components of signalling cascades. Supplemental material is available in the Plant Subtilase Database (PSDB)
(http://csbdb.mpimp-golm.mpg.de/psdb.html)
, as well as from the CSB.DB (http://csbdb.mpimp-golm.mpg.de). The first complete plant genome sequence was available for Arabidopsis thaliana, a common weed. The number of genes in the Arabidopsis genome is estimated to be around 25,000. The functions of most of these gene are, however, still unknown. Many genes are grouped into gene families due to conserved sequences and predicted protein structures. In this article, the large subtilisin-like serine protease (subtilase) family of Arabidopsis is analysed. Although 56 subtilase genes have been identified in Arabidopsis, the function of only two subtilases is known. Analysis of mutants has revealed no further hints about the function of the other 54 subtilases. Here the authors present a novel approach to infer hypotheses about functions of the subtilase genes using computational analysis. Based on the analyses presented here and in accordance with previously characterized subtilases, they propose three main functions of subtilases: involvement in (i) control of development, (ii) protein degradation, and (iii) signalling. The results presented can be used to direct further analysis to elucidate functions of subtilases in plants.
Collapse
Affiliation(s)
- Carsten Rautengarten
- Institut für Biochemie und Biologie, Genetik, Universität Potsdam, Golm, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Yue W, Gershburg E, Pagano JS. Hyperphosphorylation of EBNA2 by Epstein-Barr virus protein kinase suppresses transactivation of the LMP1 promoter. J Virol 2005; 79:5880-5. [PMID: 15827205 PMCID: PMC1082719 DOI: 10.1128/jvi.79.9.5880-5885.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) BGLF4 gene encodes a serine/threonine protein kinase (PK) that is expressed in the cytolytic cycle. EBV nuclear antigen 2 (EBNA2) is a key latency gene essential for immortalization of B lymphocytes and transactivation of viral and cellular promoters. Here we report that EBV PK phosphorylates EBNA2 at Ser-243 and that these two proteins physically associate. PK suppresses EBNA2's ability to transactivate the LMP1 promoter, and Ser-243 of EBNA2 is involved in this suppression. Moreover, EBNA2 is hyperphosphorylated during EBV reactivation in latently infected B cells, which is associated with decreased LMP1 protein levels. This is the first report about the effect of EBV PK on the function of one of its target proteins and regulation of EBNA2 phosphorylation during the EBV lytic cycle.
Collapse
Affiliation(s)
- Wei Yue
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Campus Box 7295, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
41
|
Gershburg E, Marschall M, Hong K, Pagano JS. Expression and localization of the Epstein-Barr virus-encoded protein kinase. J Virol 2004; 78:12140-6. [PMID: 15507600 PMCID: PMC525081 DOI: 10.1128/jvi.78.22.12140-12146.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein kinase (PK) encoded by the Epstein-Barr Virus (EBV) BGLF4 gene is the only EBV protein kinase. The expression pattern of EBV PK during the reactivation of the viral lytic cycle and the subcellular localization of the protein were analyzed with a polyclonal antiserum raised against a peptide corresponding to the N terminus of EBV PK. Based on previously published data (E. Gershburg and J. S. Pagano, J. Virol. 76:998-1003, 2002) and the expression pattern described here, we conclude that EBV PK is an early protein that requires viral-DNA replication for maximum expression. By biochemical fractionation, the protein could be detected mainly in the nuclear fraction 4 h after viral reactivation in Akata cells. Nuclear localization could be visualized by indirect immunofluorescence in HeLa cells transiently expressing EBV BGLF4 in the absence of other viral products. Transient expression of 3'-terminal deletion mutants of EBV BGLF4 resulted in cytoplasmic localization, confirming the presence of a nuclear localization site in the C-terminal region of the protein. In contrast to the wild-type EBV PK, all of the mutants were unable to hyperphosphorylate EA-D during coexpression or to phosphorylate ganciclovir, as measured by an in-cell activity assay. Thus, the results demonstrate that the nuclear localization, as well as the kinase activity, of BGFL4 is dependent on an intact C-terminal region.
Collapse
Affiliation(s)
- E Gershburg
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB no. 7295, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
42
|
Calton CM, Randall JA, Adkins MW, Banfield BW. The pseudorabies virus serine/threonine kinase Us3 contains mitochondrial, nuclear and membrane localization signals. Virus Genes 2004; 29:131-45. [PMID: 15215691 DOI: 10.1023/b:viru.0000032796.27878.7f] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The serine/threonine kinase encoded by the Us3 gene is conserved amongst all known alphaherpesviruses. Us3 has been reported to function in a variety of aspects of the virus lifecycle including protection of cells from virus-induced apoptosis, de-envelopment of enveloped virus particles from the perinuclear space and cell-to-cell spread of virus infection. In this report, we examined the sub-cellular localization of the pseudorabies virus (PRV) Us3 homolog. The PRV Us3 gene encodes two proteins termed Us3a and Us3b. Us3a differs from Us3b in that it contains 54 additional N-terminal amino acids. In transfected cells, Us3a localized predominantly to the plasma membrane whereas the Us3b protein localized predominantly to the nucleus. To explore the differences in the localization of the Us3a and Us3b proteins, we fused the amino-terminal 54 amino acids of Us3a to the amino-terminus of the enhanced green fluorescent protein (EGFP). Surprisingly, this fusion protein localized exclusively to mitochondria in transfected cells. Analysis of mutated Us3-EGFP fusion proteins in transfected cells revealed that the carboxy-terminal 101 amino acids of Us3a and Us3b comprises a membrane/vesicular localization domain, and that the N-terminal 102 amino acids of Us3b comprises a nuclear localization domain. We provide a model to rationalize the complex localization of Us3a and Us3b in transfected cells and hypothesize that the mitochondrial, nuclear and membrane localization motifs function in the reported anti-apoptotic, egress and cell-to-cell spread functions of Us3.
Collapse
Affiliation(s)
- Christine M Calton
- Department of Microbiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
43
|
Gershburg E, Hong K, Pagano JS. Effects of maribavir and selected indolocarbazoles on Epstein-Barr virus protein kinase BGLF4 and on viral lytic replication. Antimicrob Agents Chemother 2004; 48:1900-3. [PMID: 15105156 PMCID: PMC400567 DOI: 10.1128/aac.48.5.1900-1903.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) homolog of the Epstein-Barr virus (EBV) protein kinase (PK), UL97, is inhibited by maribavir (1263W94) and selected indolocarbazoles. Here we show that only one of these indolocarbazoles (K252a), but not maribavir, inhibits autophosphorylation of the EBV PK, BGLF4. However, maribavir and another indolocarbazole, NGIC-I, do inhibit EBV DNA synthesis, suggesting that although these last compounds inhibit both HCMV and EBV, they seem to operate through differ-ent pathways.
Collapse
Affiliation(s)
- Edward Gershburg
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
44
|
Ogg PD, McDonell PJ, Ryckman BJ, Knudson CM, Roller RJ. The HSV-1 Us3 protein kinase is sufficient to block apoptosis induced by overexpression of a variety of Bcl-2 family members. Virology 2004; 319:212-24. [PMID: 14980482 DOI: 10.1016/j.virol.2003.10.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 10/14/2003] [Accepted: 10/20/2003] [Indexed: 10/26/2022]
Abstract
The Us3 protein kinase encoded by herpes simplex virus type-1 (HSV-1) suppresses apoptosis in infected cells and is sufficient to block apoptosis induced by overexpression of Bad [Proc. Natl. Acad. Sci. 98 (2001) 10410]. While Us3 can induce phosphorylation of Bad, phosphorylation of Bad is dispensable for Us3 anti-apoptotic function [J. Virol. 77 (2003) 6567]. We extend the findings with Bad to demonstrate that Us3 blocks apoptosis induced by overexpression of Bid, a factor parallel to Bad in the apoptotic pathway, and Bax, a factor downstream of Bad in the apoptotic pathway. A previous report suggested that Us3 exerts its effects at a premitochondrial stage [J. Virol. 75 (2001) 5491], but our results suggest that Us3 exerts anti-apoptotic effects downstream of the mitochondria. We show that the kinase activity of Us3 is necessary for Us3 anti-apoptotic effects, because a catalytically inactive form of Us3 was unable to block apoptosis. A second function of Us3, primary envelopment during viral egress, is conserved in the Us3 homologue of Pseudorabies virus (PRV) [J. Gen. Virol. 82 (2001) 2363]. Experiments published here demonstrate that PRV Us3 can also block apoptosis induced by Bax, suggesting that the anti-apoptotic activity of Us3 is conserved across alpha-herpesviruses.
Collapse
Affiliation(s)
- Paul D Ogg
- Molecular Biology Program, Roy J and Lucille P Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
45
|
Moffat JF, McMichael MA, Leisenfelder SA, Taylor SL. Viral and cellular kinases are potential antiviral targets and have a central role in varicella zoster virus pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:225-31. [PMID: 15023363 DOI: 10.1016/j.bbapap.2003.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Herpesviruses utilize viral and cellular kinases for replication, and these mediate essential functions that are important for viral pathogenesis. Elucidating the roles of kinases in herpesvirus infections may highlight virus-host interactions that are possible targets for kinase inhibitors with antiviral activity. Varicella zoster virus (VZV) encodes two kinases that phosphorylate viral proteins involved in regulation, assembly, and virulence. VZV infection also induces the activity of host cell cyclin-dependent kinases (cdk4 and cdk2) in nondividing cells, causing a disregulation of the cell cycle. Roscovitine and Purvalanol, kinase inhibitors that target cdks, prevent VZV replication at concentrations with few cytotoxic effects. Cdk inhibitors therefore have potential as antivirals that may extend to a broad range of viruses and have the added advantage that resistance does not arise easily.
Collapse
Affiliation(s)
- Jennifer F Moffat
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | |
Collapse
|
46
|
Kato K, Yokoyama A, Tohya Y, Akashi H, Nishiyama Y, Kawaguchi Y. Identification of protein kinases responsible for phosphorylation of Epstein-Barr virus nuclear antigen leader protein at serine-35, which regulates its coactivator function. J Gen Virol 2004; 84:3381-3392. [PMID: 14645919 DOI: 10.1099/vir.0.19454-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is a phosphoprotein suggested to play important roles in EBV-induced immortalization. Earlier studies have shown that the major site of phosphorylation of EBNA-LP by cellular kinase(s) is a serine residue at position 35 (Ser-35) and that the phosphorylation of Ser-35 is critical for regulation of the coactivator function of EBNA-LP (Yokoyama et al., J Virol 75, 5119-5128, 2001). In the present study, we have attempted to identify protein kinase(s) responsible for the phosphorylation of EBNA-LP at Ser-35. A purified chimeric protein consisting of glutathione S-transferase (GST) fused to a domain of EBNA-LP containing Ser-35 was found to be specifically phosphorylated by purified cdc2 in vitro, while GST fused to a mutated domain of EBNA-LP in which Ser-35 was replaced with alanine was not. In addition, overexpression of cdc2 in mammalian cells caused a significant increase in the phosphorylation of EBNA-LP, while this increased phosphorylation was eliminated if Ser-35 of EBNA-LP was replaced with alanine. These results indicate that the cellular protein kinase cdc2 mediates the phosphorylation of EBNA-LP at Ser-35. Recently, we reported that cdc2 and conserved protein kinases encoded by herpesviruses phosphorylate the same amino acid residue of target proteins (Kawaguchi et al., J Virol 77, 2359-2368, 2003). Consistent with this, the EBV-encoded conserved protein kinase BGLF4 specifically mediated the phosphorylation of EBNA-LP at Ser-35. These results indicate that the coactivator function of EBNA-LP can be regulated by the activity of these cellular and viral protein kinases.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Akihiko Yokoyama
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yukinobu Tohya
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukihiro Nishiyama
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasushi Kawaguchi
- PRESTO, Japan Science and Technology Corporation, Tachikawa, Tokyo 190-0012, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
47
|
Kawaguchi Y, Kato K. Protein kinases conserved in herpesviruses potentially share a function mimicking the cellular protein kinase cdc2. Rev Med Virol 2003; 13:331-40. [PMID: 12931342 DOI: 10.1002/rmv.402] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Herpesviruses encode protein kinases. A subset of these proteins, represented by HSV-1 UL13, are conserved throughout all members of the Herpesviridae, and here, are designated CHPKs (conserved herpesvirus protein kinases). In addition to conserved gene products like CHPKs, herpesviruses encode genes specific to respective herpesviruses. When acting upon conserved viral gene products or cellular factors, CHPKs may play conserved roles in the life cycles of herpesviruses. CHPKs may also express unique functions within the infectious process of individual herpesviruses when specific viral gene products are targeted. CHPKs demonstrate specific activity in multiple herpesvirus infections, functioning in the regulation of viral gene expression in HSV-1, tissue tropism in VZV, and viral DNA synthesis, encapsidation and egress from the nucleus in HCMV. The HCMV CHPK, however, can partially substitute for the HSV-1 CHPK. Representative CHPKs from all Herpesviridae subfamilies can also facilitate the hyperphosphorylation of the cellular translation factor, EF-1delta. This indicates that CHPKs have conserved functions. Recent data have shown that both CHPKs and a cellular protein kinase, cdc2, phosphorylate the same amino acid residues of target proteins. Thus, CHPKs may mimic cdc2 function in infected cells.
Collapse
Affiliation(s)
- Yasushi Kawaguchi
- Department of Virology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan.
| | | |
Collapse
|
48
|
Lyman MG, Demmin GL, Banfield BW. The attenuated pseudorabies virus strain Bartha fails to package the tegument proteins Us3 and VP22. J Virol 2003; 77:1403-14. [PMID: 12502856 PMCID: PMC140838 DOI: 10.1128/jvi.77.2.1403-1414.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bartha strain of pseudorabies virus has several recognized mutations, including a deletion in the unique short region encompassing the glycoprotein I (gI), gE, Us9, and Us2 genes and point mutations in the gC, gM, and UL21 genes. We have determined that Bartha has mutations in the serine/threonine kinase encoded by the Us3 gene relative to the wild-type Becker strain. Our analysis revealed that Becker virions contain the Us3 protein, whereas Bartha virions do not. To test whether the mutations in the Bartha Us3 protein were responsible for this observation, we constructed a recombinant Bartha strain, PRV632, which expresses the Becker Us3 protein. PRV632 failed to package Us3 into the tegument, indicating that mutations other than those in the Us3 primary amino acid sequence were responsible for the failure of Bartha to package its Us3 protein. A recombinant Becker strain, PRV634, which expresses the Bartha Us3 protein, was constructed to test whether it was capable of being packaged into virions. The Bartha Us3 protein was not incorporated into PRV634 virions efficiently, suggesting that the primary sequence of the Bartha Us3 protein affects packaging into the tegument. To determine whether the packaging of other tegument proteins was affected in the Bartha strain, we examined VP22. Whereas Becker packaged VP22 into virions, Bartha had a severe deficiency in VP22 incorporation. Analysis of VP22 expression in Bartha-infected cells revealed that Bartha VP22 had a slower mobility on sodium dodecyl sulfate-polyacrylamide gels, indicating either primary sequence differences and/or different posttranslational modifications relative to Becker VP22. Taken together, these data indicate that, while the primary sequence of the Us3 protein does affect its incorporation into the tegument, other factors are involved. Furthermore, our data suggest that one or more of the gI, gE, Us9, or Us2 genes influences the localization of the Us3 protein in infected cells, and this effect may be important for the proper incorporation of Us3 into virions.
Collapse
Affiliation(s)
- Mathew G Lyman
- Department of Microbiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
49
|
Ohsawa K, Black DH, Sato H, Eberle R. Sequence and genetic arrangement of the U(S) region of the monkey B virus (cercopithecine herpesvirus 1) genome and comparison with the U(S) regions of other primate herpesviruses. J Virol 2002; 76:1516-20. [PMID: 11773425 PMCID: PMC135856 DOI: 10.1128/jvi.76.3.1516-1520.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequence of the unique short (U(S)) region of monkey B virus (BV) was determined. The 13 genes identified are arranged in the same order and orientation as in herpes simplex virus (HSV). These results demonstrate that the BV U(S) region is entirely colinear with that of HSV type 1 (HSV-1), HSV-2, and simian agent 8 virus.
Collapse
Affiliation(s)
- Kazutaka Ohsawa
- Laboratory Animal Center for Biomedical Research, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | | | | | | |
Collapse
|
50
|
Demmin GL, Clase AC, Randall JA, Enquist LW, Banfield BW. Insertions in the gG gene of pseudorabies virus reduce expression of the upstream Us3 protein and inhibit cell-to-cell spread of virus infection. J Virol 2001; 75:10856-69. [PMID: 11602726 PMCID: PMC114666 DOI: 10.1128/jvi.75.22.10856-10869.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The alphaherpesvirus Us4 gene encodes glycoprotein G (gG), which is conserved in most viruses of the alphaherpesvirus subfamily. In the swine pathogen pseudorabies virus (PRV), mutant viruses with internal deletions and insertions in the gG gene have shown no discernible phenotypes. We report that insertions in the gG locus of the attenuated PRV strain Bartha show reduced virulence in vivo and are defective in their ability to spread from cell to cell in a cell-type-specific manner. Similar insertions in the gG locus of the wild-type PRV strain Becker had no effect on the ability of virus infection to spread between cells. Insertions in the gG locus of the virulent NIA-3 strain gave results similar to those found with the Bartha strain. To examine the role of gG in cell-to-cell spread, a nonsense mutation in the gG signal sequence was constructed and crossed into the Bartha strain. This mutant, PRV157, failed to express gG yet had cell-to-cell spread properties indistinguishable from those of the parental Bartha strain. These data indicated that, while insertions in the gG locus result in decreased cell-to-cell spread, the phenotype was not due to loss of gG expression as first predicted. Analysis of gene expression upstream and downstream of gG revealed that expression of the upstream Us3 protein is reduced by insertion of lacZ or egfp at the gG locus. By contrast, expression of the gene immediately downstream of gG, Us6, which encodes glycoprotein gD, was not affected by insertions in gG. These data indicate that DNA insertions in gG have polar effects and suggest that the serine/threonine kinase encoded by the Us3 gene, and not gG, functions in the spread of viral infection between cells.
Collapse
Affiliation(s)
- G L Demmin
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, 80262, USA
| | | | | | | | | |
Collapse
|