1
|
Demlow CM, Fox TD. Activity of mitochondrially synthesized reporter proteins is lower than that of imported proteins and is increased by lowering cAMP in glucose-grown Saccharomyces cerevisiae cells. Genetics 2004; 165:961-74. [PMID: 14668357 PMCID: PMC1462836 DOI: 10.1093/genetics/165.3.961] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We selected for increased phenotypic expression of a synthetic cox2::arg8m-G66S reporter gene inserted into Saccharomyces cerevisiae mtDNA in place of COX2. Recessive mutations in ras2 and cyr1, as well as elevated dosage of PDE2, allowed cox2::arg8m-G66S to support Arg prototrophy. Each of these genetic alterations should decrease cellular cAMP levels. The resulting signal was transduced through redundant action of the three cAMP-dependent protein kinases, TPK1, TPK2, and TPK3. ras2 had little or no effect on the level of wild-type Arg8p encoded by cox2::ARG8m, but did increase Arg8p activity, as judged by growth phenotype. ras2 also caused increased fluorescence in cells carrying the synthetic cox3::GFPm reporter in mtDNA, but had little effect on the steady-state level of GFP polypeptide detected immunologically. Thus, decreased cAMP levels did not affect the synthesis of mitochondrially coded protein reporters in glucose-grown cells, but rather elevated activities in the matrix that promote efficient folding. Furthermore, we show that when Arg8p is synthesized in the cytoplasm and imported into mitochondria, it has greater activity than when it is synthesized in the matrix. Thus, mitochondrially synthesized proteins may not have the same access to matrix chaperones as cytoplasmically synthesized proteins emerging from the import apparatus.
Collapse
Affiliation(s)
- Christina M Demlow
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
2
|
Saudohar M, Bencina M, van de Vondervoort PJI, Panneman H, Legisa M, Visser J, Ruijter GJG. Cyclic AMP-dependent protein kinase is involved in morphogenesis of Aspergillus niger. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2635-2645. [PMID: 12177358 DOI: 10.1099/00221287-148-8-2635] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cAMP signal transduction pathway controls many processes in fungi. The pkaR gene, encoding the regulatory subunit (PKA-R) of cAMP-dependent protein kinase (PKA), was cloned from the industrially important filamentous fungus Aspergillus niger. To investigate the involvement of PKA in morphology of A. niger, a set of transformants which overexpressed pkaR or pkaC (encoding the catalytic subunit of PKA) either individually or simultaneously was prepared as well as mutants in which pkaR and/or pkaC were disrupted. Strains overexpressing pkaR or both pkaC and pkaR could not be distinguished from the wild-type, suggesting that regulation of PKA activity is normal in these strains. Absence of PKA activity resulted in a two- to threefold reduction in colony diameter on plates. The most severe phenotype was observed in the absence of PKA-R, i.e., very small colonies on plates, absence of sporulation and complete loss of growth polarity during submerged growth. Suppressor mutations easily developed in the DeltapkaR mutant and one of these mutants appeared to lack PKA-C activity. These data suggest that cAMP-dependent protein phosphorylation in A. niger regulates growth polarity and formation of conidiospores.
Collapse
Affiliation(s)
- Mojca Saudohar
- National Institute of Chemistry, Department for Biotechnology and Industrial Mycology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia1
| | - Mojca Bencina
- National Institute of Chemistry, Department for Biotechnology and Industrial Mycology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia1
| | - Peter J I van de Vondervoort
- Wageningen University, Section Molecular Genetics of Industrial Micro-organisms, Dreijenlaan 2, 6703HA Wageningen, The Netherlands2
| | - Henk Panneman
- Wageningen University, Section Molecular Genetics of Industrial Micro-organisms, Dreijenlaan 2, 6703HA Wageningen, The Netherlands2
| | - Matic Legisa
- National Institute of Chemistry, Department for Biotechnology and Industrial Mycology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia1
| | - Jaap Visser
- Wageningen University, Section Molecular Genetics of Industrial Micro-organisms, Dreijenlaan 2, 6703HA Wageningen, The Netherlands2
| | - George J G Ruijter
- Wageningen University, Section Molecular Genetics of Industrial Micro-organisms, Dreijenlaan 2, 6703HA Wageningen, The Netherlands2
| |
Collapse
|
3
|
Cytryńska M, Frajnt M, Jakubowicz T. Saccharomyces cerevisiae pyruvate kinase Pyk1 is PKA phosphorylation substrate in vitro. FEMS Microbiol Lett 2001; 203:223-7. [PMID: 11583852 DOI: 10.1111/j.1574-6968.2001.tb10845.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Fractionation of Saccharomyces cerevisiae postribosomal extract on DEAE-cellulose revealed two fractions of cAMP-dependent protein kinase (PKA-1 and PKA-2). The presence of PKA in both fractions was confirmed by immunoblotting with anti-Bcy1 antibodies. Yeast pyruvate kinase Pyk1 identified by amino acid microsequencing analysis and immunoblotting with anti-Pyk1 antibodies copurified with the PKA-1 but not the -2 fraction. Pyk1 can be phosphorylated by yeast PKA in vitro in the presence of cAMP and cGMP. Two-dimensional gel electrophoretic analysis revealed four phosphorylated forms of Pyk1 modified by PKA. In phosphorylation of Pyk1 mainly the Tpk2 catalytic subunit of yeast PKA was involved.
Collapse
Affiliation(s)
- M Cytryńska
- Department of Molecular Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | | | | |
Collapse
|
4
|
Hoshino K, Nomura K, Suzuki N. Cyclic-AMP-dependent activation of an inter-phylum hybrid histone-kinase complex reconstituted from sea urchin sperm-regulatory subunits and bovine heart catalytic subunits. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:612-23. [PMID: 9057823 DOI: 10.1111/j.1432-1033.1997.00612.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cAMP-dependent histone kinase was purified and characterized from spermatozoa of the sea urchin Hemicentrotus pulcherrimus. The molecular mass of the kinase was estimated to be 178 kDa by native PAGE and 400 kDa by gel chromatography on a Superose 6 HR 10/30 column. The enzyme, composed of two 39-kDa catalytic subunits and two 48-kDa regulatory subunits, phosphorylates the lysine-rich histone subspecies (H1 and H2B) isolated from H. pulcherrimus spermatozoa. We isolated cDNA clones encoding a 39-kDa catalytic subunit and a 48-kDa regulatory subunit of the enzyme. The cDNA clone for the 39-kDa subunit was 3881 bp, and the 352-residue deduced amino acid sequence showed 78% similarity with the catalytic subunit of/mammalian cAMP-dependent protein kinase (PKA). The cDNA for the 48-kDa subunit was 4589 bp and the 368-residue deduced amino acid sequence showed 57% similarity with the regulatory subunit of mammalian PKA, although the N-terminal 77 residues showed poor similarity. The mRNAs encoding both the catalytic subunit (7.5 kb) and the regulatory subunit (4.6 kb) were expressed in testis, ovary and egg. An inter-phylum hybrid enzyme, reconstituted from the regulatory subunit of cAMP-dependent histone kinase of sea urchin sperm and the catalytic subunit of bovine heart PKA, has a cAMP-dependent histone kinase activity. Thus, we suggest that the N-terminal 77-amino-acid residues of the regulatory subunit are not essential for inhibition by the regulatory subunit of the catalytic subunit, and that cAMP-dependent inhibitory activity of the regulatory subunit resides in the sequence between the inhibitory site and the C-terminus.
Collapse
Affiliation(s)
- K Hoshino
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
5
|
Neuman-Silberberg FS, Bhattacharya S, Broach JR. Nutrient availability and the RAS/cyclic AMP pathway both induce expression of ribosomal protein genes in Saccharomyces cerevisiae but by different mechanisms. Mol Cell Biol 1995; 15:3187-96. [PMID: 7760815 PMCID: PMC230551 DOI: 10.1128/mcb.15.6.3187] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
By differential hybridization, we identified a number of genes in Saccharomyces cerevisiae that are activated by addition of cyclic AMP (cAMP) to cAMP-depleted cells. A majority, but not all, of these genes encode ribosomal proteins. While expression of these genes is also induced by addition of the appropriate nutrient to cells starved for a nitrogen source or for a sulfur source, the pathway for nutrient activation of ribosomal protein gene transcription is distinct from that of cAMP activation: (i) cAMP-mediated transcriptional activation was blocked by prior addition of an inhibitor of protein synthesis whereas nutrient-mediated activation was not, and (ii) cAMP-mediated induction of expression occurred through transcriptional activation whereas nutrient-mediated induction was predominantly a posttranscriptional response. Transcriptional activation of the ribosomal protein gene RPL16A by cAMP is mediated through a upstream activation sequence element consisting of a pair of RAP1 binding sites and sequences between them, suggesting that RAP1 participates in the cAMP activation process. Since RAP1 protein decays during starvation for cAMP, regulation of ribosomal protein genes under these conditions may directly relate to RAP1 protein availability. These results define additional critical targets of the cAMP-dependent protein kinase, suggest a mechanism to couple ribosome production to the metabolic activity of the cell, and emphasize that nutrient regulation is independent of the RAS/cAMP pathway.
Collapse
|
6
|
McEntee CM, Cantwell-Ibdah R, Hudson AP. Regulation of stringent mitochondrial transcription in yeast following amino-acid deprivation. Gene 1994; 141:129-32. [PMID: 8163164 DOI: 10.1016/0378-1119(94)90140-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the yeast Saccharomyces cerevisiae, a phenotypically identical stringent response is induced by either nutritional downshift or starvation for a required auxotrophic amino acid (aa); in each case, the response selectively includes transcriptional curtailment for the mitochondrial (mt) genome. We have shown previously that the downshift-induced mt stringent response is governed by changing cellular cyclic AMP (cAMP) levels, via a mt cAMP-dependent protein kinase. In contrast, we demonstrate here that cAMP levels are not altered in yeast following starvation for a required aa, and we use in vitro mt transcription assays with organelles from wild-type and mutant strains to confirm that the aa starvation-induced mt stringent response is not governed by cAMP. Rather, such stringent organellar transcriptional attenuation may result from altered availability of an unidentified small molecule which is probably a product of the cytoplasmic and/or mt protein synthesis systems.
Collapse
Affiliation(s)
- C M McEntee
- Department of Microbiology and Immunology, Medical College of Pennsylvania, Philadelphia 19129
| | | | | |
Collapse
|
7
|
Abstract
Messenger RNA translation initiation and cytoplasmic poly(A) tail shortening require the poly(A)-binding protein (PAB) in yeast. The PAB-dependent poly(A) ribonuclease (PAN) has been purified to near homogeneity from S. cerevisiae based upon its PAB requirement, and its gene has been cloned. The essential PAN1 gene encodes a 161 kd protein organized into distinct domains containing repeated sequence elements. Deletion analysis of the gene revealed that only one-third of the protein is needed to maintain cell viability. Conditional mutations in PAN1 lead to an arrest of translation initiation and alterations in mRNA poly(A) tail lengths. These data suggest that PAN could mediate each of the PAB-dependent reactions within the cell, and they provide evidence for a direct relationship between translation initiation and mRNA metabolism.
Collapse
Affiliation(s)
- A B Sachs
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | | |
Collapse
|
8
|
The Saccharomyces cerevisiae CDC25 gene product binds specifically to catalytically inactive ras proteins in vivo. Mol Cell Biol 1992. [PMID: 1569942 DOI: 10.1128/mcb.12.5.2091] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic data suggest that the yeast cell cycle control gene CDC25 is an upstream regulator of RAS2. We have been able to show for the first time that the guanine nucleotide exchange proteins Cdc25 and Sdc25 from Saccharomyces cerevisiae bind directly to their targets Ras1 and Ras2 in vivo. Using the characteristics of the yeast Ace1 transcriptional activator to probe for protein-protein interaction, we found that the CDC25 gene product binds specifically to wild-type Ras2 but not to the mutated Ras2Val-19 and Ras2 delta Val-19 proteins. The binding properties of Cdc25 to Ras2 were strongly diminished in yeast cells expressing an inactive Ira1 protein, which normally acts as a negative regulator of Ras activity. On the basis of these data, we propose that the ability of Cdc25 to interact with Ras2 proteins is strongly dependent on the activation state of Ras2. Cdc25 binds predominantly to the catalytically inactive GDP-bound form of Ras2, whereas a conformational change of Ras2 to its activated GTP-bound state results in its loss of binding affinity to Cdc25.
Collapse
|
9
|
Munder T, Fürst P. The Saccharomyces cerevisiae CDC25 gene product binds specifically to catalytically inactive ras proteins in vivo. Mol Cell Biol 1992; 12:2091-9. [PMID: 1569942 PMCID: PMC364380 DOI: 10.1128/mcb.12.5.2091-2099.1992] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genetic data suggest that the yeast cell cycle control gene CDC25 is an upstream regulator of RAS2. We have been able to show for the first time that the guanine nucleotide exchange proteins Cdc25 and Sdc25 from Saccharomyces cerevisiae bind directly to their targets Ras1 and Ras2 in vivo. Using the characteristics of the yeast Ace1 transcriptional activator to probe for protein-protein interaction, we found that the CDC25 gene product binds specifically to wild-type Ras2 but not to the mutated Ras2Val-19 and Ras2 delta Val-19 proteins. The binding properties of Cdc25 to Ras2 were strongly diminished in yeast cells expressing an inactive Ira1 protein, which normally acts as a negative regulator of Ras activity. On the basis of these data, we propose that the ability of Cdc25 to interact with Ras2 proteins is strongly dependent on the activation state of Ras2. Cdc25 binds predominantly to the catalytically inactive GDP-bound form of Ras2, whereas a conformational change of Ras2 to its activated GTP-bound state results in its loss of binding affinity to Cdc25.
Collapse
Affiliation(s)
- T Munder
- Department of Biotechnology, CIBA-GEIGY Ltd., Basel, Switzerland
| | | |
Collapse
|
10
|
Müller G, Bandlow W. Two lipid-anchored cAMP-binding proteins in the yeast Saccharomyces cerevisiae are unrelated to the R subunit of cytoplasmic protein kinase A. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:299-308. [PMID: 1722148 DOI: 10.1111/j.1432-1033.1991.tb16376.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We show that the yeast, Saccharomyces cerevisiae, contains two cAMP-binding proteins in addition to the well-characterized regulatory (R) subunit of cytoplasmic cAMP-dependent protein kinase (PKA). We provide evidence that they comprise a new type of cAMP receptor, membrane-anchored by covalently attached lipid structures. They are genetically not related to the cytoplasmic R subunit. The respective proteins can be detected in sral mutants, in which the gene for the R subunit of PKA has been disrupted and a monoclonal antibody raised against the cytoplasmic R subunit does not cross-react with the two membrane-bound cAMP-binding proteins. In addition, they differ from the cytoplasmic species also with respect to their location and the peptide maps of the photoaffinity-labeled proteins. Although they differ from one another in molecular mass and subcellular location, peptide maps of the cAMP-binding domains resemble each other and both proteins are membrane-anchored by lipid structures, one to the outer surface of the plasma membrane, the other to the outer surface of the inner mitochondrial membrane. Both anchors can be metabolically labeled by Etn, myo-Ins and fatty acids. In addition, the anchor structure of the cAMP receptor from plasma membranes can be radiolabeled by GlcN and Man. After cleavage of the anchor with glycosylphosphatidylinositol-specific phospholipase C from trypanosomes, the solubilized cAMP-binding protein from plasma membranes reacts with antibodies which specifically recognize the cross-reacting determinant from soluble trypanosomal coat protein, suggesting similarity of the anchors. Degradation studies also point to the glycosylphosphatidylinositol nature of the anchor from the plasma membrane, whereas the mitochondrial counterpart is less complex in that it lacks carbohydrates. The plasma membrane cAMP receptor is, in addition, modified by an N-glycosidically linked carbohydrate side chain, responsible mainly for its higher molecular mass.
Collapse
Affiliation(s)
- G Müller
- Hoechst AG, Pharmaceutical Research Division, Metabolism, Frankfurt, Federal Republic of Germany
| | | |
Collapse
|
11
|
Abstract
Purified plasma membranes from the yeast Saccharomyces cerevisiae bind about 1.2 pmol of cAMP/mg of protein with high affinity (Kd = 6 nM). By using photoaffinity labeling with 8-N3-[32P]cAMP, we have identified in plasma membrane vesicles a cAMP-binding protein (Mr = 54,000) that is present also in bcy1 disruption mutants, lacking the cytoplasmic R subunit of protein kinase A (PKA). This argues that it is genetically unrelated to PKA. Neither high salt, nor alkaline carbonate, nor cAMP extract the protein from the membrane, suggesting that it is not peripherally bound. The observation that (glycosyl)phosphatidylinositol-specific phospholipases (or nitrous acid) release the amphiphilic protein from the membrane, thereby converting it to a hydrophilic form, indicates anchorage by a glycolipidic membrane anchor. Treatment with N-glycanase reduces the Mr to 44,000-46,000 indicative of a modification by N-linked carbohydrate side chain(s). In addition to the action of a phospholipase, the efficient release from the membrane requires the removal of the carbohydrate side chain(s) or the presence of high salt or methyl alpha-mannopyranoside, suggesting complex interactions with the membrane involving not only the glycolipidic anchor but also the glycan side chain(s). Topological studies show that the protein is exposed to the periplasmic space, raising intriguing questions for the function of this protein.
Collapse
Affiliation(s)
- G Müller
- Institut für Biochemie I, Universität Heidelberg, Federal Republic ofGermany
| | | |
Collapse
|
12
|
Sachse O, Jelen H. [Purification and characterization of cAMP-dependent protein kinases of yeasts in a Saccharomyces cerevisiae wild strain and selected mutants of cAMP metabolism]. J Basic Microbiol 1991; 31:195-205. [PMID: 1656014 DOI: 10.1002/jobm.3620310306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein kinases represent a diverse family of enzymes that play a critical role in regulation. Among nearly 100 known protein kinases, the cAMP-dependent enzyme is best understood biochemically. Unlike other protein kinases, cAMP-dependent protein kinase consists of two different types of subunits that dissociate, a regulatory subunit (R), which is the receptor for cAMP, and a catalytic subunit (C). In the absence of cAMP, the enzyme exists as an inactive tetramer, R2C2. The binding of intracellular cAMP to the R subunit decreases the affinity of the R subunit for the C subunit by approximately four orders of magnitude and, under physiological conditions, leads to dissociation of the holoenzyme into R2(cAMP)4 dimer and two free C subunits that are catalytically active. Mutants of the cAMP metabolism, adenylate cyclase and cell cycle mutants, provided further information about protein synthesis and cellular growth in Saccharomyces cerevisiae. The purified protein kinases were divided into different types according to their elution profiles from the DEAE-cellulose matrix. Two types of cAMP-dependent and two types of cAMP-independent protein kinases were isolated from the wild strain. Differences in the activities of the kinases in the mutants showed a close relationship to the locus of the respective mutations in the cell-cycle. Some properties of the protein kinases are discussed with respect to individual mutations.
Collapse
Affiliation(s)
- O Sachse
- Martin-Luther-Universität Halle (Saale), Germany
| | | |
Collapse
|
13
|
Cannon JF, Gitan R, Tatchell K. Yeast cAMP-dependent protein kinase regulatory subunit mutations display a variety of phenotypes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38484-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Dupont CH, Rigoulet M, Aigle M, Guérin B. Isolation and genetic study of triethyltin-resistant mutants of Saccharomyces cerevisiae. Curr Genet 1990; 17:465-72. [PMID: 2202522 DOI: 10.1007/bf00313073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three mutants of Saccharomyces cerevisiae resistant to triethyltin (an inhibitor of mitochondrial ATPase) on non-fermentative media, and non-resistant to this drug on fermentative media, were isolated and named TTR1, TTR2 and TTR3. Apart from triethyltin resistance, these mutants show the following common characteristics: (1) Increased intracellular cytochrome c concentration. (2) Increased respiration rate. (3) Decreased growth yield. (4) Increased growth sensitivity to several drugs inhibiting oxidative phosphorylation: namely, CCCP (permeabilizing inner mitochondrial membrane to protons), valinomycin (permeabilizing inner mitochondrial membrane to potassium) and oligomycin (inhibitor of mitochondrial ATPase). (5) Increased sensitivity to carbon source starvation. For each mutant, these characteristics appeared to be due to a single pleiotropic nuclear mutation. Mutation TTR1 causes additional phenotypic characteristics which do not appear in mutants TTR2 and TTR3: (1) Pinkish coloration of colonies which is more pronounced after a long growth period. (2) Inability of the cells to store glycogen. (3) Growth defect of the cells on a galactose-containing medium. (4) Inability of a diploid homozygote mutant strain to sporulate. All these phenotypic characteristics have already been described in yeast mutants deregulated in cAMP-dependent protein phosphorylation. Crossing of a strain bearing the TTR1 mutation with a strain mutated in the adenylate cyclase structural gene suggested that the TTR1 phenotype is due to a modification in regulation of cAPK by cAMP, making cell multiplication possible without intracellular cAMP.
Collapse
Affiliation(s)
- C H Dupont
- Institut de Biochimie Cellulaire et Neurochimie, CNRS, Bordeaux, France
| | | | | | | |
Collapse
|
15
|
Association of catalytic and regulatory subunits of cyclic AMP-dependent protein kinase requires a negatively charged side group at a conserved threonine. Mol Cell Biol 1990. [PMID: 2106066 DOI: 10.1128/mcb.10.3.1066] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, as in higher eucaryotes, cyclic AMP (cAMP)-dependent protein kinase is a tetramer composed of two catalytic (C) subunits and two regulatory (R) subunits. In the absence of cAMP, the phosphotransferase activity of the C subunit is inhibited by the tight association with R. Mutation of Thr-241 to Ala in the C1 subunit of S. cerevisiae reduces the affinity of this subunit for the R subunit approximately 30-fold and results in a monomeric cAMP-independent C subunit. The analogous residue in the mammalian C subunit is known to be phosphorylated. Peptide maps of in vivo 32P-labeled wild-type C1 and mutant C1(Ala241) suggest that Thr-241 is phosphorylated in yeast cells. Substituting Thr-241 with either aspartate or glutamate partially restored affinity for the R subunit. Uncharged and positively charged residues substituted at this site resulted in C subunits that failed to associate with the R subunit. Replacement with the phosphorylatable residue serine resulted in a C subunit with wild-type affinity for the R subunit. Analysis of this protein revealed that it appears to be phosphorylated on Ser-241 in vivo. These data suggest that the interaction between R and C involves a negatively charged phosphothreonine at position 241 of yeast C1, which can be mimicked by either aspartate, glutamate, or phosphoserine.
Collapse
|
16
|
Levin LR, Zoller MJ. Association of catalytic and regulatory subunits of cyclic AMP-dependent protein kinase requires a negatively charged side group at a conserved threonine. Mol Cell Biol 1990; 10:1066-75. [PMID: 2106066 PMCID: PMC360967 DOI: 10.1128/mcb.10.3.1066-1075.1990] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In Saccharomyces cerevisiae, as in higher eucaryotes, cyclic AMP (cAMP)-dependent protein kinase is a tetramer composed of two catalytic (C) subunits and two regulatory (R) subunits. In the absence of cAMP, the phosphotransferase activity of the C subunit is inhibited by the tight association with R. Mutation of Thr-241 to Ala in the C1 subunit of S. cerevisiae reduces the affinity of this subunit for the R subunit approximately 30-fold and results in a monomeric cAMP-independent C subunit. The analogous residue in the mammalian C subunit is known to be phosphorylated. Peptide maps of in vivo 32P-labeled wild-type C1 and mutant C1(Ala241) suggest that Thr-241 is phosphorylated in yeast cells. Substituting Thr-241 with either aspartate or glutamate partially restored affinity for the R subunit. Uncharged and positively charged residues substituted at this site resulted in C subunits that failed to associate with the R subunit. Replacement with the phosphorylatable residue serine resulted in a C subunit with wild-type affinity for the R subunit. Analysis of this protein revealed that it appears to be phosphorylated on Ser-241 in vivo. These data suggest that the interaction between R and C involves a negatively charged phosphothreonine at position 241 of yeast C1, which can be mimicked by either aspartate, glutamate, or phosphoserine.
Collapse
Affiliation(s)
- L R Levin
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
17
|
Affiliation(s)
- J R Broach
- Department of Biology, Princeton University, New Jersey 08544
| | | |
Collapse
|
18
|
Garrett S, Broach J. Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev 1989; 3:1336-48. [PMID: 2558053 DOI: 10.1101/gad.3.9.1336] [Citation(s) in RCA: 178] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The yeast Saccharomyces cerevisiae contains two functionally redundant genes RAS1 and RAS2, which are homologous to the mammalian ras gene family and are required for vegetative growth. We isolated and characterized five temperature-sensitive alleles of RAS2. In a ras1 strain, these alleles cause growth arrest at the G1 stage of the cell cycle. Revertants capable of growth at the nonpermissive temperature define four recessive, extragenic complementation groups. Suppressors in one complementation group (designated yak1) are particularly intriguing because they appear to alleviate only the growth defect of the temperature-sensitive ras mutants and do not show any of the phenotypes, such as heat shock sensitivity or starvation sensitivity, associated with increased production of cAMP. The YAK1 gene has been cloned, and disruptions generated in vitro reveal that it is not essential for growth and that its loss confers growth to a strain deleted for tpk1, tpk2, and tpk3, the structural genes for the catalytic subunit of the cAMP-dependent protein kinase. These results place Yak1 downstream from, or on a parallel pathway to, the kinase step in the Ras/cAMP pathway. Finally, the coding region predicts a protein with significant homology to the family of protein kinases, suggesting that loss of cAMP-dependent protein kinase function can be suppressed by the loss of a second protein kinase.
Collapse
Affiliation(s)
- S Garrett
- Department of Biology, Princeton University, New Jersey 08544
| | | |
Collapse
|
19
|
Mortimer RK, Schild D, Contopoulou CR, Kans JA. Genetic map of Saccharomyces cerevisiae, edition 10. Yeast 1989; 5:321-403. [PMID: 2678811 DOI: 10.1002/yea.320050503] [Citation(s) in RCA: 250] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- R K Mortimer
- Department of Molecular and Cellular Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
20
|
Jones RH, Jones NC. Mammalian cAMP-responsive element can activate transcription in yeast and binds a yeast factor(s) that resembles the mammalian transcription factor ANF. Proc Natl Acad Sci U S A 1989; 86:2176-80. [PMID: 2538834 PMCID: PMC286874 DOI: 10.1073/pnas.86.7.2176] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The human ATF and AP1 transcription factors bind to highly related DNA sequences. Their consensus binding sites differ by a single nucleotide, but this single change is crucial in determining factor binding specificity. We have previously identified an AP1 (yAP1) binding activity in yeast. In this report we identify a yeast ATF (yATF) binding activity whose specificity can be distinguished from that of yAP1 by the same crucial nucleotide that distinguishes binding of human ATF and AP1. The ATF binding site can act as an efficient upstream activating sequence in vivo, suggesting that yATF is a transcriptional activator. The yATF DNA-binding complex is phosphorylated and the binding activity of partially purified yATF can be enhanced in vitro by the addition of protein kinase A, indicating that the phosphorylation state of yATF may be important in determining its ability to bind DNA.
Collapse
Affiliation(s)
- R H Jones
- Imperial Cancer Research Fund, London, England
| | | |
Collapse
|
21
|
Paveto C, Passeron S, Corbin JD, Moreno S. Two different intrachain cAMP sites in the cAMP-dependent protein kinase of the dimorphic fungus Mucor rouxii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 179:429-34. [PMID: 2537210 DOI: 10.1111/j.1432-1033.1989.tb14571.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
cAMP sites of the cAMP-dependent protein kinase from the fungus Mucor rouxii have been characterized through the study of the effects of cAMP and of cAMP analogs on the phosphotransferase activity and through binding kinetics. The tetrameric holoenzyme, which contains two regulatory (R) and two catalytic (C) subunits, exhibited positive cooperativity in activation by cAMP, suggesting multiple cAMP-binding sites. Several other results indicated that the Mucor kinase contained two different cooperative cAMP-binding sites on each R subunit, with properties similar to those of the mammalian cAMP-dependent protein kinase. Under optimum binding conditions, the [3H]cAMP dissociation behavior indicated equal amounts of two components which had dissociation rate constants of 0.09 min-1 (site 1) and 0.90 min-1 (site 2) at 30 degrees C. Two cAMP-binding sites could also be distinguished by C-8 cAMP analogs (site-1-selective) and C-6 cAMP analogs (site-2-selective); combinations of site-1- and site-2-selective analogs were synergistic in protein kinase activation. The two different cooperative binding sites were probably located on the same R subunit, since the proteolytically derived dimeric form of the enzyme, which contained one R and one C component, retained the salient properties of the untreated tetrameric enzyme. Unlike any of the mammalian cyclic-nucleotide-dependent isozymes described thus far, the Mucor kinase was much more potently activated by C-6 cAMP analogs than by C-8 cAMP analogs. In the ternary complex formed by the native Mucor tetramer and cAMP, only the two sites 1 contained bound cAMP, a feature which has also not yet been demonstrated for the mammalian cAMP-dependent protein kinase.
Collapse
Affiliation(s)
- C Paveto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
22
|
Purification and characterization of C1, the catalytic subunit of Saccharomyces cerevisiae cAMP-dependent protein kinase encoded by TPK1. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)76518-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Kuno T, Shuntoh H, Sakaue M, Saijoh K, Takeda T, Fukuda K, Tanaka C. Site-directed mutagenesis of the cAMP-binding sites of the recombinant type I regulatory subunit of cAMP-dependent protein kinase. Biochem Biophys Res Commun 1988; 153:1244-50. [PMID: 2839171 DOI: 10.1016/s0006-291x(88)81361-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The type I regulatory subunit (R-I) of rat brain cAMP-dependent protein kinase was expressed in E. coli and site-directed mutagenesis was used to substitute amino acids in the putative cAMP-binding sites. The wild-type recombinant R-I bound 2 mol of cAMP/mol subunit, while two mutant R-Is with a single amino acid substitution in one of the two intrachain cAMP-binding sites (clone N153:a glutamate for Gly-200, and clone C254:an aspartate for Gly-324) bound 1 mol of cAMP/mol subunit. When these two substitutions were made in one mutant, cAMP did not bind to this mutant, indicating that binding of cAMP to N153 or C254 was to their nonmutated sites. Competition experiments with site-selective analogs and dissociation of bound cAMP from mutant R-Is provided evidence for strong intrachain interactions between the two classes of cAMP-binding sites in R-I.
Collapse
Affiliation(s)
- T Kuno
- Department of Pharmacology, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Cameron S, Levin L, Zoller M, Wigler M. cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell 1988; 53:555-66. [PMID: 2836063 DOI: 10.1016/0092-8674(88)90572-7] [Citation(s) in RCA: 226] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Genes encoding the regulatory (BCY1) and catalytic (TPK1, TPK2, and TPK3) subunits of the cAMP-dependent protein kinase (cAPK) are found in S. cerevisiae. bcy1- yeast strains do not respond properly to nutrient conditions. Unlike wild type, bcy1- strains do not accumulate glycogen, form spores, or become resistant to heat shock when nutrient limited. We have isolated mutant TPK genes that suppress all of the bcy1- defects. The mutant TPK genes appear to encode functionally attenuated catalytic subunits of the cAPK. bcy1- yeast strains containing the mutant TPK genes respond appropriately to nutrient conditions, even in the absence of CDC25, both RAS genes, or CYR1. Together, these genes encode the known components of the cAMP-generating machinery. The results indicate that cAMP-independent mechanisms must exist for regulating glycogen accumulation, sporulation, and the acquisition of thermotolerance in S. cerevisiae.
Collapse
Affiliation(s)
- S Cameron
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
25
|
Behrens MM, Mazón MJ. Yeast cAMP-dependent protein kinase can be associated to the plasma membrane. Biochem Biophys Res Commun 1988; 151:561-7. [PMID: 2831892 DOI: 10.1016/0006-291x(88)90631-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using an anti-yeast regulatory subunit antibody and the synthetic peptide Kemptide as specific substrate we show in this work that purified preparations of yeast plasma membrane have an associated form of the regulatory subunit and cAMP-dependent protein kinase activity. Treatment of the plasma membrane "in vitro" with 1 microM cAMP releases cAMP-independent protein kinase activity while regulatory subunit remains on the membrane as revealed by immunoblotting. Incubation of the plasma membrane with [gamma-32P]ATP results in the phosphorylation of the regulatory subunit.
Collapse
Affiliation(s)
- M M Behrens
- Instituto de Investigaciones Biomédicas del C.S.I.C., Facultad de Medicina de la U A M, Madrid, Spain
| | | |
Collapse
|
26
|
The yeast ARD1 gene product is required for repression of cryptic mating-type information at the HML locus. Mol Cell Biol 1988. [PMID: 3316986 DOI: 10.1128/mcb.7.10.3713] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the ARD1 gene prevent yeast cells from displaying G1-specific growth arrest in response to nitrogen deprivation and cause MATa haploids (but not MAT alpha haploids) to be mating defective. Analysis of cell type-specific gene expression by examination of RNA transcripts and measurement of beta-galactosidase activity from yeast gene-lacZ fusions demonstrated that the mating defect of MATa ard1 mutants was due to an inability to express genes required by MATa cells for the mating process. The lack of mating-specific gene expression in MATa cells was found to be due solely to derepression of the normally silent alpha information at the HML locus. The cryptic a information at the HMR locus was only very slightly derepressed in ard1 mutants, to a level insufficient to affect the mating efficiency of MAT alpha cells. The preferential elevation of expression from HML over HMR was also observed in ard1 mutants which contained the alternate arrangement of a information at HML and alpha information at HMR. Hence, the effect of the ard1 mutation was position specific (rather than information specific). Although the phenotype of ard1 mutants resembled that of cells with mutations in the SIR1 gene, both genetic and biochemical findings indicated that ARD1 control of HML expression was independent of the regulation imposed by SIR1 and the other SIR genes. These results suggest that the ARD1 gene encodes a protein product that acts, directly or indirectly, at the HML locus to repress its expression and, by analogy, may control expression of other genes involved in monitoring nutritional conditions.
Collapse
|
27
|
Veron M, Mutzel R, Lacombe ML, Simon MN, Wallet V. cAMP-dependent protein kinase from Dictyostelium discoideum. DEVELOPMENTAL GENETICS 1988; 9:247-58. [PMID: 3072132 DOI: 10.1002/dvg.1020090407] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cAMP-dependent protein kinase (cAK) from Dictyostelium discoideum is an enzyme composed of one catalytic and one regulatory subunit. Upon binding of cAMP, the holoenzyme dissociates to liberate free active catalytic subunits. The cAK is developmentally regulated, ranging from very little activity in vegetative cells to maximal expression in postaggregative cells. Although there is no immunological cross-reaction between the subunits of cAKs from Dictyostelium and from other organisms, they share several biochemical properties. A complete cDNA for the regulatory subunit has been cloned and sequenced. Only one copy of the gene for the regulatory subunit is present per haploid genome. On the basis of the comparison of the structure of the cAK from Dictyostelium with its counterparts in yeast and higher eukaryotes, we propose a model for the evolution of cyclic-nucleotide-binding proteins.
Collapse
Affiliation(s)
- M Veron
- Unité de Biochimie Cellulaire, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
28
|
Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol 1987. [PMID: 2823100 DOI: 10.1128/mcb.7.8.2653] [Citation(s) in RCA: 136] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the SRA1 or SRA3 gene eliminate the requirement for either RAS gene (RAS1 or RAS2) in Saccharomyces cerevisiae. We cloned SRA1 and SRA3 and determined their DNA sequences. SRA1 encodes the regulatory subunit of the cyclic AMP (cAMP)-dependent protein kinase and therefore is identical to REG1 and BCY1. This gene is not essential, but its deletion confers many traits: reduction of glycogen accumulation, temperature sensitivity, reduced growth rate on maltose and sucrose, inability to grow on galactose and nonfermentable carbon sources, and nitrogen starvation intolerance. SRA3 is homologous to protein kinases that phosphorylate serine and threonine and likely encodes the catalytic subunit of the cAMP-dependent protein kinase. The wild-type SRA3 gene either triplicated in the chromosome or on episomal, low-copy plasmids behaves like spontaneous dominant SRA3 mutations by suppressing ras2-530 (RAS2::LEU2 disruption), cdc25, and cdc35 mutations. These findings indicate that the yeast RAS genes are dispensable if there is constitutive cAMP-dependent protein kinase activity.
Collapse
|
29
|
Yamano S, Tanaka K, Matsumoto K, Toh-e A. Mutant regulatory subunit of 3',5'-cAMP-dependent protein kinase of yeast Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:413-8. [PMID: 2828890 DOI: 10.1007/bf00327191] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Four mutants with amino acid substitution(s) at or near the putative phosphorylation site (Arg142 Arg143 Thr144 Ser145) of the regulatory subunit of cAMP-dependent protein kinase were obtained by site-directed mutagenesis. Three mutants, BCY1A1a145 (Ser145 to Ala), BCY1His143 (Arg143 to His) and BCY1Asn144, Ala145 (Thr144 to Asn and Ser145 to Ala) complemented a bcy1 mutant, whereas BCY1Gly143 (Arg143 to Gly) did not. In addition, mutant, BCY1Asn144, Ala145 exhibited a dominant cold-sensitive phenotype, which can be most easily explained by the functional alteration of the regulatory subunit of cAMP-dependent protein kinase by the mutations. Analyses of these mutant genes revealed that phosphorylation of the regulatory subunit is not a prerequisite for the regulation of the cAMP-dependent protein kinase activity in responding to the cAMP level.
Collapse
Affiliation(s)
- S Yamano
- Department of Fermentation Technology, Hiroshima University, Japan
| | | | | | | |
Collapse
|
30
|
Whiteway M, Freedman R, Van Arsdell S, Szostak JW, Thorner J. The yeast ARD1 gene product is required for repression of cryptic mating-type information at the HML locus. Mol Cell Biol 1987; 7:3713-22. [PMID: 3316986 PMCID: PMC368027 DOI: 10.1128/mcb.7.10.3713-3722.1987] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutations in the ARD1 gene prevent yeast cells from displaying G1-specific growth arrest in response to nitrogen deprivation and cause MATa haploids (but not MAT alpha haploids) to be mating defective. Analysis of cell type-specific gene expression by examination of RNA transcripts and measurement of beta-galactosidase activity from yeast gene-lacZ fusions demonstrated that the mating defect of MATa ard1 mutants was due to an inability to express genes required by MATa cells for the mating process. The lack of mating-specific gene expression in MATa cells was found to be due solely to derepression of the normally silent alpha information at the HML locus. The cryptic a information at the HMR locus was only very slightly derepressed in ard1 mutants, to a level insufficient to affect the mating efficiency of MAT alpha cells. The preferential elevation of expression from HML over HMR was also observed in ard1 mutants which contained the alternate arrangement of a information at HML and alpha information at HMR. Hence, the effect of the ard1 mutation was position specific (rather than information specific). Although the phenotype of ard1 mutants resembled that of cells with mutations in the SIR1 gene, both genetic and biochemical findings indicated that ARD1 control of HML expression was independent of the regulation imposed by SIR1 and the other SIR genes. These results suggest that the ARD1 gene encodes a protein product that acts, directly or indirectly, at the HML locus to repress its expression and, by analogy, may control expression of other genes involved in monitoring nutritional conditions.
Collapse
Affiliation(s)
- M Whiteway
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114
| | | | | | | | | |
Collapse
|
31
|
Cannon JF, Tatchell K. Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol 1987; 7:2653-63. [PMID: 2823100 PMCID: PMC367881 DOI: 10.1128/mcb.7.8.2653-2663.1987] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mutations in the SRA1 or SRA3 gene eliminate the requirement for either RAS gene (RAS1 or RAS2) in Saccharomyces cerevisiae. We cloned SRA1 and SRA3 and determined their DNA sequences. SRA1 encodes the regulatory subunit of the cyclic AMP (cAMP)-dependent protein kinase and therefore is identical to REG1 and BCY1. This gene is not essential, but its deletion confers many traits: reduction of glycogen accumulation, temperature sensitivity, reduced growth rate on maltose and sucrose, inability to grow on galactose and nonfermentable carbon sources, and nitrogen starvation intolerance. SRA3 is homologous to protein kinases that phosphorylate serine and threonine and likely encodes the catalytic subunit of the cAMP-dependent protein kinase. The wild-type SRA3 gene either triplicated in the chromosome or on episomal, low-copy plasmids behaves like spontaneous dominant SRA3 mutations by suppressing ras2-530 (RAS2::LEU2 disruption), cdc25, and cdc35 mutations. These findings indicate that the yeast RAS genes are dispensable if there is constitutive cAMP-dependent protein kinase activity.
Collapse
Affiliation(s)
- J F Cannon
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
32
|
Kuno T, Ono Y, Hirai M, Hashimoto S, Shuntoh H, Tanaka C. Molecular cloning and cDNA structure of the regulatory subunit of type I cAMP-dependent protein kinase from rat brain. Biochem Biophys Res Commun 1987; 146:878-83. [PMID: 3619906 DOI: 10.1016/0006-291x(87)90612-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Complementary DNA (cDNA) clones encoding the regulatory subunit of the type I cAMP-dependent protein kinase (R-I) were isolated by screening of rat brain cDNA libraries. A 1.5-kilobase (kb) cDNA insert containing the entire coding region was sequenced and full amino acid sequence has been deduced from the nucleotide sequence. The clone encodes for a protein of 380 amino acids that shows 97% homology to the bovine R-I subunit. Northern blot analysis demonstrated two major mRNA species (2.8 and 4.4 kb in size) in rat brain and liver.
Collapse
|
33
|
Johnson KE, Cameron S, Toda T, Wigler M, Zoller MJ. Expression in Escherichia coli of BCY1, the regulatory subunit of cyclic AMP-dependent protein kinase from Saccharomyces cerevisiae. Purification and characterization. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47461-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Abstract
The regulatory subunit of the cAMP-dependent protein kinase expressed in clones isolated by immunoscreening of a lambda gt11 cDNA library from Dictyostelium discoideum exhibits high affinity for cAMP [Mutzel et al., Proc. Natl. Acad. Sci. USA 84 (1987) 6-10]. Based on this property, we have developed a screening procedure to detect in situ cAMP-binding activity directly on phage plaques transferred to nitrocellulose filters. Highly radioactive cAMP was synthesized using [alpha-32P]ATP at 3000 Ci/mmol as the substrate of purified adenylate cyclase from Bordetella pertussis. Filter replicas of the library plated at 3 X 10(4) pfu/dish, were incubated in the presence of 2 nM [32P]cAMP and then washed thoroughly. Three clones out of 1.2 X 10(5) were detected, all of which coded for the regulatory subunit, as judged by hybridization with a specific DNA probe. The cAMP binding to the purified clones was characterized in situ by displacement with specific analogues. The ability to displace labelled cAMP was in accord with the affinities of the analogues previously reported for the regulatory subunit of the Dictyostelium cAMP-dependent protein kinase. We are able to detect fmol levels of regulatory subunit contained in phage plaques and therefore the method could be used to screen libraries from other organisms for proteins exhibiting high affinities for cyclic nucleotides.
Collapse
Affiliation(s)
- M L Lacombe
- Unité de Biochimie Cellulaire, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
35
|
Cigan AM, Donahue TF. Sequence and structural features associated with translational initiator regions in yeast--a review. Gene X 1987; 59:1-18. [PMID: 3325335 DOI: 10.1016/0378-1119(87)90261-7] [Citation(s) in RCA: 336] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have compared the translational initiator regions of 131 yeast genes. 95% utilize the first AUG from the 5' end of the message as the start codon for translation. Yeast leader regions in general are rich in adenine nucleotides (nt), have an average length of 52 nt, and are void of significant secondary structure. Sequences immediately adjacent to AUG start codons are preferred, however, the bias in nucleotide distribution (5'-A-YAA-UAAUGUCU-3') does not reflect a higher eukaryotic consensus (5'-CACCAUGG-3') with the exception of an adenine nucleotide preference at the -3 position. A minority of yeast mRNAs that contain AUG codons in the leader region that do not serve as the start codon for the primary gene product differ from the majority of mRNAs by one or more of these general properties. This analysis appears to indicate that basic features associated with yeast leader regions are consistent with a general mechanism of initiation of protein synthesis in eukaryotes, as proposed by the ribosomal 'scanning' model, but perhaps only basic features associated with ribosomal recognition of an AUG start codon are intact.
Collapse
Affiliation(s)
- A M Cigan
- Department of Molecular Biology, Northwestern University Medical School, Chicago, IL 60611
| | | |
Collapse
|