1
|
Sharma V, Gupta M, Kumar P, Sharma A. A Comprehensive Review on Fused Heterocyclic as DNA Intercalators: Promising Anticancer Agents. Curr Pharm Des 2021; 27:15-42. [PMID: 33213325 DOI: 10.2174/1381612826666201118113311] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/02/2020] [Indexed: 12/09/2022]
Abstract
Since the discovery of DNA intercalating agents (by Lerman, 1961), a growing number of organic, inorganic, and metallic compounds have been developed to treat life-threatening microbial infections and cancers. Fused-heterocycles are amongst the most important group of compounds that have the ability to interact with DNA. DNA intercalators possess a planar aromatic ring structure that inserts itself between the base pairs of nucleic acids. Once inserted, the aromatic structure makes van der Waals interactions and hydrogen-bonding interactions with the base pairs. The DNA intercalator may also contain an ionizable group that can form ionic interactions with the negatively charged phosphate backbone. After the intercalation, other cellular processes could take place, leading ultimately to cell death. The heterocyclic nucleus present in the DNA intercalators can be considered as a pharmacophore that plays an instrumental role in dictating the affinity and selectivity exhibited by these compounds. In this work, we have carried out a revision of small organic molecules that bind to the DNA molecule via intercalation and cleaving and exert their antitumor activity. A general overview of the most recent results in this area, paying particular attention to compounds that are currently under clinical trials, is provided. Advancement in spectroscopic techniques studying DNA interaction can be examined in-depth, yielding important information on structure-activity relationships. In this comprehensive review, we have focused on the introduction to fused heterocyclic agents with DNA interacting features, from medicinal point of view. The structure-activity relationships points, cytotoxicity data, and binding data and future perspectives of medicinal compounds have been discussed in detail.
Collapse
Affiliation(s)
- Vikas Sharma
- IIMT College of Pharmacy, Knowledge Park III, Greater Noida, Uttar Pradesh-201308, India
| | - Mohit Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Sciences Building, 2730 South Moody Avenue, Portland, OR 97201, United States
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Atul Sharma
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
2
|
Abstract
Gapmers are antisense oligonucleotides composed of a central DNA segment flanked by nucleotides of modified chemistry. Hybridizing with transcripts by sequence complementarity, gapmers recruit ribonuclease H and induce target RNA degradation. Since its concept first emerged in the 1980s, much work has gone into developing gapmers for use in basic research and therapy. These include improvements in gapmer chemistry, delivery, and therapeutic safety. Gapmers have also successfully entered clinical trials for various genetic disorders, with two already approved by the U.S. Food and Drug Administration for the treatment of familial hypercholesterolemia and transthyretin amyloidosis-associated polyneuropathy. Here, we review the events surrounding the early development of gapmers, from conception to their maturity, and briefly conclude with perspectives on their use in therapy.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, Herth MM. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials 2018; 179:209-245. [PMID: 30007471 DOI: 10.1016/j.biomaterials.2018.06.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
Pretargeted nuclear imaging and radiotherapy have recently attracted increasing attention for diagnosis and treatment of cancer with nanomedicines. This is because it conceptually offers better imaging contrast and therapeutic efficiency while reducing the dose to radiosensitive tissues compared to conventional strategies. In conventional imaging and radiotherapy, a directly radiolabeled nano-sized vector is administered and allowed to accumulate in the tumor, typically on a timescale of several days. In contrast, pretargeting is based on a two-step approach. First, a tumor-accumulating vector carrying a tag is administered followed by injection of a fast clearing radiolabeled agent that rapidly recognizes the tag of the tumor-bound vector in vivo. Therefore, pretargeting circumvents the use of long-lived radionuclides that is a necessity for sufficient tumor accumulation and target-to-background ratios using conventional approaches. In this review, we give an overview of recent advances in pretargeted imaging strategies. We will critically reflect on the advantages and disadvantages of current state-of-the-art conventional imaging approaches and compare them to pretargeted strategies. We will discuss the pretargeted imaging concept and the involved chemistry. Finally, we will discuss the steps forward in respect to clinical translation, and how pretargeted strategies could be applied to improve state-of-the-art radiotherapeutic approaches.
Collapse
Affiliation(s)
- E Johanna L Stéen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Patricia E Edem
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
4
|
Schneider PN, Olthoff JT, Matthews AJ, Houston DW. Use of fully modified 2'-O-methyl antisense oligos for loss-of-function studies in vertebrate embryos. Genesis 2011; 49:117-23. [PMID: 21442720 DOI: 10.1002/dvg.20689] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Antisense oligonucleotides are commonly employed to study the roles of genes in development. Although morpholino phosphorodiamidate oligonucleotides (morpholinos) are widely used to block translation or splicing of target gene products' the usefulness of other modifications in mediating RNase-H independent inhibition of gene activity in embryos has not been investigated. In this study, we investigated the extent that fully modified 2'-O-methyl oligonucleotides (2'-OMe oligos) that can function as translation inhibiting reagents in vivo, using Xenopus and zebrafish embryos. We find that oligos against Xenopus β-catenin, wnt11, and bmp4 and against zebrafish chordin (chd), which can efficiently and specifically generate embryonic loss-of-function phenotypes comparable with morpholino injection and other methods. These results show that fully modified 2'-OMe oligos can function as RNase-H independent antisense reagents in vertebrate embryos and can thus serve as an alternative modification to morpholinos in some cases.
Collapse
|
5
|
Chen M, Du Q, Zhang HY, Wang X, Liang Z. High-throughput screening using siRNA (RNAi) libraries. Expert Rev Mol Diagn 2009; 7:281-91. [PMID: 17489735 DOI: 10.1586/14737159.7.3.281] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) has become one of the most important research tools in functional genomics analysis ever since the discovery of the phenomenon. The robustness of the method has enabled construction of RNAi libraries in the forms of long double-stranded RNA or short-interfering RNA that can cover the whole or significant parts of the genomes of different organisms. Over the last few years, such libraries have been used in different high-throughput formats to establish functional links between genes and phenotypes. In this review, available RNAi library resources and application of these strategic tools will be discussed.
Collapse
Affiliation(s)
- Meihong Chen
- Chinese Human Genome Center Beijing, Institute of Basic Medical Sciences, Beijing, China.
| | | | | | | | | |
Collapse
|
6
|
Fraser GL, Wahlestedt C. Section Review: Biologicals & Immunologicals: Applications of antisense technology to both basic and clinical research. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.7.637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Sang Cho-Chung Y. Overview: Oncologic, Endocrine & Metabolic Antisense oligonucleotides for the treatment of cancer. ACTA ACUST UNITED AC 2008. [DOI: 10.1517/13543776.3.12.1737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Zenkova MA, Karpova GG. Imperfectly matched nucleic acid complexes and their biochemical manifestation. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1993v062n04abeh000023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Montenay-Garestier T, Hélène C, Thuong NT. Design of sequence-specific bifunctional nucleic acid ligands. CIBA FOUNDATION SYMPOSIUM 2007; 158:147-57; discussion 204-12. [PMID: 1935419 DOI: 10.1002/9780470514085.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Homopyrimidine oligodeoxynucleotides have been covalently linked to intercalating agents. These bifunctional nucleic acid ligands bind to the major groove of DNA at homopurine.homopyrimidine sequences, where they form triple helices. The homopyrimidine oligonucleotide binds parallel to the purine strand of the double helix. Two hydrogen bonds are formed between bases of the oligonucleotide and the purines engaged in Watson-Crick base pairs. The intercalating agent inserts its aromatic ring at the triplex-duplex junction, resulting in a strong stabilization of the triple helical structure. Bifunctional oligonucleotide-intercalator conjugates provide new tools for a selective control of gene expression. In addition, irreversible reactions can be targeted to the oligonucleotide recognition sequence. Cleavage reactions can be induced by a copper-phenanthroline chelate or an ellipticine derivative covalently linked to the triple helix-forming oligonucleotide.
Collapse
Affiliation(s)
- T Montenay-Garestier
- Laboratoire de Biophysique, INSERM U201, CNRS UA481, Muséum National d'Histoire Naturelle, Paris, France
| | | | | |
Collapse
|
10
|
Vasseur JJ, Peoc'h D, Rayner B, Imbach JL. Derivatization of Oligonucleotides Through Abasic Site Formation. ACTA ACUST UNITED AC 2007. [DOI: 10.1080/07328319108046439] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- J.-J. Vasseur
- a Laboratoire de Chimie Bio-Organique, U.R.A. 488 du CNRS, affilié à l'INSERM , Université de Montpellier II, Sciences et Techniques du Languedoc , case courrier 008, Place Eugène-Bataillon, 34095 , Montpellier Cédex 5 , France
| | - D. Peoc'h
- a Laboratoire de Chimie Bio-Organique, U.R.A. 488 du CNRS, affilié à l'INSERM , Université de Montpellier II, Sciences et Techniques du Languedoc , case courrier 008, Place Eugène-Bataillon, 34095 , Montpellier Cédex 5 , France
| | - B. Rayner
- a Laboratoire de Chimie Bio-Organique, U.R.A. 488 du CNRS, affilié à l'INSERM , Université de Montpellier II, Sciences et Techniques du Languedoc , case courrier 008, Place Eugène-Bataillon, 34095 , Montpellier Cédex 5 , France
| | - J.-L. Imbach
- a Laboratoire de Chimie Bio-Organique, U.R.A. 488 du CNRS, affilié à l'INSERM , Université de Montpellier II, Sciences et Techniques du Languedoc , case courrier 008, Place Eugène-Bataillon, 34095 , Montpellier Cédex 5 , France
| |
Collapse
|
11
|
Huarte E, Tirapu I, Arina A, Vera M, Alfaro C, Murillo O, Palencia B, Busto V, Marín V, Mazzolini G, Melero I. Intratumoural administration of dendritic cells: hostile environment and help by gene therapy. Expert Opin Biol Ther 2005; 5:7-22. [PMID: 15709906 DOI: 10.1517/14712598.5.1.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Like paratroopers in special operations, dendritic cells (DCs) can be deployed behind the enemy borders of malignant tissue to ignite an antitumour immune response. 'Cross-priming T cell responses' is the code name for their mission, which consists of taking up antigen from transformed cells or their debris, migrating to lymphoid tissue ferrying the antigenic cargo, and meeting specific T cells. This must be accomplished in such an immunogenic manner that specific T lymphocytes would mount a robust enough response as to fully reject the malignancy. To improve their immunostimulating activity, local gene therapy can be very beneficial, either by transfecting DCs with genes enhancing their performance, or by preparing tumour tissue with pro-inflammatory mediators. In addition, endogenous DCs from the tumour host can be attracted into the malignant tissue following transfection of certain chemokine genes into tumour cells. On their side, tumour stroma and malignant cells set up a hostile immunosuppressive environment for artificially released or attracted DCs. This milieu is usually rich in transforming growth factor-beta, vascular endothelial growth factor, and IL-10, -6 and -8, among other substances that diminish DC performance. Several molecular strategies are being devised to interfere with the immunosuppressive actions of these substances and to further enhance the level of anticancer immunity achieved after artificial release of DCs intratumourally.
Collapse
Affiliation(s)
- Eduardo Huarte
- University of Navarra School of Medicine, Gene Therapy Unit, Centro Investigación Médica Aplicada (CIMA), Avda/Pio XII,55, 31080 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gutiérrez-Puente Y, Tari AM, Ford RJ, Tamez-Guerra R, Mercado-Hernandez R, Santoyo-Stephano M, Lopez-Berestein G. Cellular pharmacology of P-ethoxy antisense oligonucleotides targeted to Bcl-2 in a follicular lymphoma cell line. Leuk Lymphoma 2004; 44:1979-85. [PMID: 14738153 DOI: 10.1080/1042819031000099733] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A P-ethoxy oligonucleotide (oligo), 20 bases long and specific for the translation initiation site of human Bcl-2 mRNA, was incorporated into liposomes to increase its intracellular delivery. This oligo selectively inhibited Bcl-2 protein expression and induced growth inhibition in t(14;18)-positive transformed follicular lymphoma (FL) cell lines. We studied the inhibitory effects of shorter liposomal P-ethoxy oligos (7, 9, 11 or 15 mer) in order to determine the activity of different oligo chain lengths targeted to the same Bcl-2 mRNA. At 12 microM, all the oligos inhibited the growth of a FL cell line. We compared the 7-mer oligo with the 20-mer oligo. The two oligos inhibited Bcl-2 protein expression similarly: 66% and 60% for the 7- and 20-mer, respectively. The uptake and retention of both oligos were also very similar. Our results indicate that the Bcl-2 inhibitory activity is maintained with P-ethoxy antisense oligos ranging from 7 to 20 bases.
Collapse
Affiliation(s)
- Yolanda Gutiérrez-Puente
- Immunobiology and Drug Carriers Section, Department of Bioimmunotherapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Pileur F, Andreola ML, Dausse E, Michel J, Moreau S, Yamada H, Gaidamakov SA, Crouch RJ, Toulmé JJ, Cazenave C. Selective inhibitory DNA aptamers of the human RNase H1. Nucleic Acids Res 2003; 31:5776-88. [PMID: 14500841 PMCID: PMC206449 DOI: 10.1093/nar/gkg748] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human RNase H1 binds double-stranded RNA via its N-terminal domain and RNA-DNA hybrid via its C-terminal RNase H domain, the latter being closely related to Escherichia coli RNase HI. Using SELEX, we have generated a set of DNA sequences that can bind efficiently (K(d) values ranging from 10 to 80 nM) to the human RNase H1. None of them could fold into a simple perfect double-stranded DNA hairpin confirming that double-stranded DNA does not constitute a trivial ligand for the enzyme. Only two of the 37 DNA aptamers selected were inhibitors of human RNase H1 activity. The two inhibitory oligomers, V-2 and VI-2, were quite different in structure with V-2 folding into a large, imperfect but stable hairpin loop. The VI-2 structure consists of a central region unimolecular quadruplex formed by stacking of two guanine quartets flanked by the 5' and 3' tails that form a stem of six base pairs. Base pairing between the 5' and 3' tails appears crucial for conferring the inhibitory properties to the aptamer. Finally, the inhibitory aptamers were capable of completely abolishing the action of an antisense oligonucleotide in a rabbit reticulocyte lysate supplemented with human RNase H1, with IC50 ranging from 50 to 100 nM.
Collapse
Affiliation(s)
- Frédéric Pileur
- INSERM U386, IFR Pathologies Infectieuses, Université Victor Segalen Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Manoharan M. Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:103-28. [PMID: 12074364 DOI: 10.1089/108729002760070849] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review summarizes the effect of conjugating small molecules and large biomacromolecules to antisense oligonucleotides to improve their therapeutic potential. In many cases, favorable changes in pharmacokinetic and pharmacodynamic properties were observed. Opportunities exist to change the terminating mechanism of antisense action or to enhance the RNase H mode of action via conjugate formation.
Collapse
Affiliation(s)
- Muthiah Manoharan
- Department of Medicinal Chemistry, Isis Pharmaceuticals, Inc, Carlsbad, CA 92008, USA.
| |
Collapse
|
15
|
Walton SP, Stephanopoulos GN, Yarmush ML, Roth CM. Thermodynamic and kinetic characterization of antisense oligodeoxynucleotide binding to a structured mRNA. Biophys J 2002; 82:366-77. [PMID: 11751323 PMCID: PMC1302476 DOI: 10.1016/s0006-3495(02)75401-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antisense oligonucleotides act as exogenous inhibitors of gene expression by binding to a complementary sequence on the target mRNA, preventing translation into protein. Antisense technology is being applied successfully as a research tool and as a molecular therapeutic. However, a quantitative understanding of binding energetics between short oligonucleotides and longer mRNA targets is lacking, and selecting a high-affinity antisense oligonucleotide sequence from the many possibilities complementary to a particular RNA is a critical step in designing an effective antisense inhibitor. Here, we report measurements of the thermodynamics and kinetics of hybridization for a number of oligodeoxynucleotides (ODNs) complementary to the rabbit beta-globin (RBG) mRNA using a binding assay that facilitates rapid separation of bound from free species in solution. A wide range of equilibrium dissociation constants were observed, and association rate constants within the measurable range correlated strongly with binding affinity. In addition, a significant correlation was observed of measured binding affinities with binding affinity values predicted using a thermodynamic model involving DNA and RNA unfolding, ODN hybridization, and RNA restructuring to a final free energy minimum. In contrast to the behavior observed for hybridization of short strands, the association rate constant increased with temperature, suggesting that the kinetics of association are related to disrupting the native structure of the target RNA. The rate of cleavage of the RBG mRNA in the presence of ribonuclease H and ODNs of varying association kinetics displayed apparent first-order kinetics, with the rate constant exhibiting binding-limited behavior at low association rates and reaction-limited behavior at higher rates. Implications for the rational design of effective antisense reagents are discussed.
Collapse
Affiliation(s)
- S Patrick Walton
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School and Shriners Burns Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
16
|
Toulmé JJ, Di Primo C, Moreau S. Modulation of RNA function by oligonucleotides recognizing RNA structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:1-46. [PMID: 11550792 DOI: 10.1016/s0079-6603(01)69043-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Numerous RNA structures are responsible for regulatory processes either because they constitute a signal, like the hairpins or pseudoknots involved in ribosomal frameshifting, or because they are binding sites for proteins such as the trans-activating responsive RNA element of the human immunodeficiency virus whose binding to the viral protein Tat and cellular proteins allows full-length transcription of the retroviral genome. Selective ligands able to bind with high affinity to such RNA motifs may serve as tools for dissecting the molecular mechanisms in which they are involved. Such ligands might also constitute prototypes of therapeutic agents when RNA structures play a role in the expression of dysfunctional genes or in the multiplication of pathogens. Different classes of ligands (aminoglycosides, interacalating agents, peptides) are of interest to this aim. However, oligonucleotides deserve particular consideration. They have been extensively used in the frame of the antisense strategy. The apparent simplicity of this rational approach is, at first sight, very attractive. Indeed, numerous successful studies have been published describing the efficient inhibition of translation, splicing, or reverse transcription in cell-free systems, in cultured cells, or in vivo by oligomers complementary to an RNA region. However, RNA structures restrict the access of the target site to the antisense sequence: The competition between the intramolecular association of RNA regions weakens or even abolishes the antisense effect. Various possibilities have been developed to circumvent this limitation. This includes both rational and combinatorial strategies. High-affinity oligomers were designed to invade the RNA structure. Alternatively, triplex-forming oligonucleotides (TFO) and aptamers may recognize the folded RNA motif. Whereas the use of TFOs is rather limited owing to the strong sequence constraints for triple-helix formation, in vitro selection offers a way to explore vast oligoribo or oligodeoxyribo libraries to identify strong, selective oligonucleotide binders. The candidates (aptamers) selected against the TAR RNA element of HIV-1, which form stable loop-loop (kissing) complexes with the target, provide interesting examples of oligonucleotides recognizing a functional RNA structure through an important contribution of tertiary interactions.
Collapse
Affiliation(s)
- J J Toulmé
- INSERM U 386, IFR Pathologies Infectieuses, Université Victor Segalen, Bordeaux, France.
| | | | | |
Collapse
|
17
|
Affiliation(s)
- C A Stein
- Columbia University, 630 West 168 Street, New York, New York 10032, USA.
| |
Collapse
|
18
|
Stein CA. The experimental use of antisense oligonucleotides: a guide for the perplexed. J Clin Invest 2001; 108:641-4. [PMID: 11544265 PMCID: PMC209389 DOI: 10.1172/jci13885] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- C A Stein
- Columbia University, 630 West 168 Street, New York, New York 10032, USA.
| |
Collapse
|
19
|
Abstract
Antisense oligonucleotides have been used for more than a decade to downregulate gene expression. Phosphodiester oligonucleotides are nuclease sensitive, and the more nuclease-resistant phosphorothioate oligonucleotides are now in common use in the laboratory and have entered clinical trials. However, these molecules are highly bioactive and may inhibit gene expression by more than one mechanism. Although some dramatic successes have been demonstrated, it can still be difficult to properly interpret experimental data derived from the use of this class of oligonucleotide. This review discusses some of these issues with particular reference to a major area of current interest--inhibition of bcl-2 expression in tumor cells.
Collapse
Affiliation(s)
- I Lebedeva
- College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
20
|
Zamaratski E, Pradeepkumar PI, Chattopadhyaya J. A critical survey of the structure-function of the antisense oligo/RNA heteroduplex as substrate for RNase H. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 48:189-208. [PMID: 11384757 DOI: 10.1016/s0165-022x(01)00149-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this review is to draw a correlation between the structure of the DNA/RNA hybrid and its properties as a substrate for the RNase H, as well as to point the crucial structural requirements for the modified AONs to preserve their RNase H potency. The review is divided into the following parts: (1) mechanistic considerations, (2) target RNA folding-AON folding-RNase H assistance in AON/RNA hybrid formation, (3) carbohydrate modifications, (4) backbone modifications, (5) base modifications, (6) conjugated AONs, (7) importance of the tethered chromophore in AON for the AON/RNA hybrid interactions with the RNase H. The structural changes in the AON/RNA hybrid duplexes brought by different modifications of the sugar, backbone or base in the antisense strand, and the effect of these changes on the RNase H recognition of the modified substrates have been addressed. Only those AON modifications and the corresponding AON/RNA hybrids, which have been structurally characterized by spectroscopic means and functionally analyzed by their ability to elicit RNase H potency in comparison with the native counterpart have been presented here.
Collapse
Affiliation(s)
- E Zamaratski
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, S-75123, Uppsala, Sweden
| | | | | |
Collapse
|
21
|
Ding Y, Lawrence CE. Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. Nucleic Acids Res 2001; 29:1034-46. [PMID: 11222752 PMCID: PMC29728 DOI: 10.1093/nar/29.5.1034] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Revised: 01/11/2001] [Accepted: 01/11/2001] [Indexed: 11/13/2022] Open
Abstract
Single-stranded regions in RNA secondary structure are important for RNA-RNA and RNA-protein interactions. We present a probability profile approach for the prediction of these regions based on a statistical algorithm for sampling RNA secondary structures. For the prediction of phylogenetically-determined single-stranded regions in secondary structures of representative RNA sequences, the probability profile offers substantial improvement over the minimum free energy structure. In designing antisense oligonucleotides, a practical problem is how to select a secondary structure for the target mRNA from the optimal structure(s) and many suboptimal structures with similar free energies. By summarizing the information from a statistical sample of probable secondary structures in a single plot, the probability profile not only presents a solution to this dilemma, but also reveals 'well-determined' single-stranded regions through the assignment of probabilities as measures of confidence in predictions. In antisense application to the rabbit beta-globin mRNA, a significant correlation between hybridization potential predicted by the probability profile and the degree of inhibition of in vitro translation suggests that the probability profile approach is valuable for the identification of effective antisense target sites. Coupling computational design with DNA-RNA array technique provides a rational, efficient framework for antisense oligonucleotide screening. This framework has the potential for high-throughput applications to functional genomics and drug target validation.
Collapse
MESH Headings
- Algorithms
- Animals
- Binding Sites
- Escherichia coli/genetics
- Nucleic Acid Conformation
- Phylogeny
- Probability
- RNA/chemistry
- RNA/genetics
- RNA, Antisense/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Transfer, Ala/chemistry
- RNA, Transfer, Ala/genetics
- Rabbits
- Tetrahymena thermophila/genetics
- Xenopus laevis/genetics
Collapse
Affiliation(s)
- Y Ding
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| | | |
Collapse
|
22
|
Amirkhanov N, Zamaratski E, Chattopadhyaya J. The recognition and cleavage of RNA in the antisense oligo–RNA hybrid duplexes by RNase H. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(00)01997-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Abstract
Peptide nucleic acids, or PNAs, are oligonucleotide analogs in which the phosphodiester backbone is replaced with a polyamide structure. First synthesized less than 10 years ago, they have received great attention due to their several favorable properties, including resistance to nuclease and protease digestion, stability in serum and cell extracts, and their high affinity for RNA and single and double-stranded DNA targets. Although initially designed and demonstrated to function as antisense and antigene reagents that inhibit both transcription and translation by steric hindrance, more recent applications have included gene activation by synthetic promoter formation and mutagenesis of chromosomal targets. Most notably for gene delivery, they have been used to specifically label plasmids and act as adapters to link synthetic peptides or ligands to the DNA. Thus, their great potential lies in the ability to attach specific targeting peptides to plasmids to circumvent such barriers to gene transfer as cell-targeting or nuclear localization, thereby increasing the efficacy of gene therapy.
Collapse
Affiliation(s)
- D A Dean
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
24
|
Ma DD, Rede T, Naqvi NA, Cook PD. Synthetic oligonucleotides as therapeutics: the coming of age. BIOTECHNOLOGY ANNUAL REVIEW 2000; 5:155-96. [PMID: 10875000 DOI: 10.1016/s1387-2656(00)05035-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Synthetic oligonucleotides (ODNs) are short nucleic acid chains that can act in a sequence specific manner to control gene expression. Significant progress has been made in the development of synthetic ODN therapeutics since the first demonstration of gene inhibition by antisense ODNs in a cell culture system two decades ago. This new class of therapeutic agents can potentially target any abnormally expressed genes in a broad range of diseases from viral infections to psychoneurological disorders. A number of "first" generation synthetic ODNs have entered into human clinical trials in the last few years. The eminent approval of the first ODN for the treatment of cytomaglovirus retinitis by the FDA in USA will provide much excitement that this new class of compounds holds great promise as a therapeutic "magic bullet". However, many obstacles still exist in the development of this technology. In this review, the current status of synthetic ODN chemistry, drug delivery methods, mechanisms of ODN action, potential clinical applications and its limitations in a wide range of human disorders will be described.
Collapse
Affiliation(s)
- D D Ma
- Department of Haematology, St Vincents Hospital, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
25
|
Compagno D, Lampe JN, Bourget C, Kutyavin IV, Yurchenko L, Lukhtanov EA, Gorn VV, Gamper HB, Toulmé JJ. Antisense oligonucleotides containing modified bases inhibit in vitro translation of Leishmania amazonensis mRNAs by invading the mini-exon hairpin. J Biol Chem 1999; 274:8191-8. [PMID: 10075723 DOI: 10.1074/jbc.274.12.8191] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complementary oligodeoxynucleotides (ODNs) that contain 2-aminoadenine and 2-thiothymine interact weakly with each other but form stable hybrids with unmodified complements. These selectively binding complementary (SBC) agents can invade duplex DNA and hybridize to each strand (Kutyavin, I. V., Rhinehart, R. L., Lukhtanov, E. A., Gorn, V. V., Meyer, R. B., and Gamper, H. B. (1996) Biochemistry 35, 11170-11176). Antisense ODNs with similar properties should be less encumbered by RNA secondary structure. Here we show that SBC ODNs strand invade a hairpin in the mini-exon RNA of Leishmania amazonensis and that the resulting heteroduplexes are substrates for Escherichia coli RNase H. SBC ODNs either with phosphodiester or phosphorothioate backbones form more stable hybrids with RNA than normal base (NB) ODNs. Optimal binding was observed when the entire hairpin sequence was targeted. Translation of L. amazonensis mRNA in a cell-free extract was more efficiently inhibited by SBC ODNs complementary to the mini-exon hairpin than by the corresponding NB ODNs. Nonspecific protein binding in the cell-free extract by phosphorothioate SBC ODNs rendered them ineffective as antisense agents in vitro. SBC phosphorothioate ODNs displayed a modest but significant improvement of leishmanicidal properties compared with NB phosphorothioate ODNs.
Collapse
Affiliation(s)
- D Compagno
- INSERM Unité 386, IFR Pathologies Infectieuses, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Le Tinévez R, Mishra RK, Toulmé JJ. Selective inhibition of cell-free translation by oligonucleotides targeted to a mRNA hairpin structure. Nucleic Acids Res 1998; 26:2273-8. [PMID: 9580674 PMCID: PMC147550 DOI: 10.1093/nar/26.10.2273] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Using an in vitro selection approach we have previously isolated oligodeoxy aptamers that can bind to a DNA hairpin structure without disrupting the double-stranded stem. We report here that these oligomers can bind to the RNA version of this hairpin, mostly through pairing with a designed 6 nt anchor. The part of the aptamer selected against the DNA hairpin did not increase stability of the RNA-aptamer complex. However, it contributed to the binding site for Escherichia coli RNase H, leading to very efficient cleavage of the target RNA. In addition, a 2'- O -methyloligoribonucleotide analogue of one selected sequence selectively blocked in vitro translation of luciferase in wheat germ extract by binding to the hairpin region inserted upstream of the initiation codon of the reporter gene. Therefore, non-complementary oligomers can exhibit antisense properties following hybridization with the target RNA. Our study also suggests that in vitro selection might provide a means to extend the repertoire of sequences that can be targetted by antisense oligonucleotides to structured RNA motifs of biological importance.
Collapse
Affiliation(s)
- R Le Tinévez
- INSERM U 386, IFR Pathologies Infectieuses, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux cédex, France
| | | | | |
Collapse
|
27
|
Blaschke M, Gremmels D, Everts I, Weigand E, Heinemann SF, Hollmann M, Keller BU. Pharmacological differentiation between neuronal and recombinant glutamate receptor channels expressed in Xenopus oocytes. Neuropharmacology 1997; 36:1489-501. [PMID: 9517419 DOI: 10.1016/s0028-3908(97)00151-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To determine the molecular components of neuronal glutamate receptors, it is important to identify pharmacological tools that allow differentiation between different glutamate receptor types. Here, we utilized the naphthalene derivative Evans Blue (EB) and a collection of other subtype-specific compounds (polyamine toxins, concanavalin A, cyclothiazide) to compare the pharmacological profile of neuronal and recombinant glutamate receptors GluR1-GluR6 expressed in Xenopus oocytes. Submicromolar concentrations of EB selectively reduced the activity of homomeric glutamate receptors GluR1, GluR2(Q) and GluR4. Applied at concentrations above 100 microM, EB potentiated kainate responses of receptors GluR1, GluR3 and GluR4, while receptors GluR2(Q) and GluR6(Q) were completely blocked. Similar experiments were performed on identified neurones in brain slices and after injection of rat brain RNA in Xenopus oocytes. Neuronal kainate responses were (i) potentiated by 100 microM cyclothiazide, (ii) slightly blocked after preincubation in 10 microM concanavalin A, and (iii) not significantly affected by either low (< 1 microM) or high (> 100 microM) concentrations of EB. Their pharmacological properties were markedly different from those of recombinant glutamate receptor channels GluR1-GluR6 investigated in heterologous expression systems.
Collapse
Affiliation(s)
- M Blaschke
- Center for Physiology and Pathophysiology, University of Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Nzita L, Ladame S, Gomez L, Moreau S. Synthesis of a 2-Hydroxy-oxolane Derivative as a New Potential Crosslinking Agent of DNA. ACTA ACUST UNITED AC 1997. [DOI: 10.1080/07328319708006277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Milner N, Mir KU, Southern EM. Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nat Biotechnol 1997; 15:537-41. [PMID: 9181575 DOI: 10.1038/nbt0697-537] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An array of 1,938 oligodeoxynucleotides (ONs) ranging in length from monomers to 17-mers was fabricated on the surface of a glass plate and used to measure the potential of oligonucleotide for heteroduplex formation with rabbit beta-globin mRNA. The oligonucleotides were complementary to the first 122 bases of mRNA comprising the 5' UTR and bases 1 to 69 of the first exon. Surprisingly few oligonucleotides gave significant heteroduplex yield. Antisense activity, measured in a RNase H assay and by in vitro translation, correlated well with yield of heteroduplex on the array. These results help to explain the variable success that is commonly experienced in the choice of antisense oligonucleotides. For the optimal ON, the concentration required to inhibit translation by 50% was found to be five times less than for any other ON. We find no obvious features in the mRNA sequence or the predicted secondary structure that can explain the variation in heteroduplex yield. However, the arrays provide a simple empirical method of selecting effective antisense oligonucleotides for any RNA target of known sequence.
Collapse
Affiliation(s)
- N Milner
- Department of Biochemistry, University of Oxford, UK
| | | | | |
Collapse
|
31
|
Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1997; 7:187-95. [PMID: 9212909 DOI: 10.1089/oli.1.1997.7.187] [Citation(s) in RCA: 766] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Antisense promised major advances in treating a broad range of intractable diseases, but in recent years progress has been stymied by technical problems, most notably inadequate specificity, ineffective delivery into the proper subcellular compartment, and unpredictable activity within cells. Herein is an overview of the design, preparation, and properties of Morpholino oligos, a novel antisense structural type that solves the sequence specificity problem and provides high and predictable activity in cells. Morpholino oligos also exhibit little or no nonantisense activity, afford good water solubility, are immune to nucleases, and are designed to have low production costs.
Collapse
|
32
|
|
33
|
Brossalina E, Demchenko E, Demchenko Y, Vlassov V, Toulmé JJ. Triplex-forming oligonucleotides trigger conformation changes of a target hairpin sequence. Nucleic Acids Res 1996; 24:3392-8. [PMID: 8811094 PMCID: PMC146096 DOI: 10.1093/nar/24.17.3392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We used a DNA duplex formed between the 5' end of a 69mer (69T) and an 11mer (OL7) as a substrate for BamHI. The former oligonucleotide folds into a hairpin structure, the stem of which contains a stretch of pyrimidines in one strand and consequently a stretch of purines in the other strand. The oligomer 69T was used as a target for complementary oligodeoxypyrimidines made of 10 nt (OL1), 16 nt (OL5) or 26 nt (OL2) which can engage the same 10 pyrimidine-purine-pyrimidine triplets with the 69T hairpin stem. Although the binding site of OL7 did not overlap that of OL1, OL2 or OL5, the BamHI activity on 69T-OL7 complexes was drastically modified in the presence of these triplex-forming oligomers: OL1 abolished the cleavage by BamHI whereas OL5 and OL2 strongly increased it. Using footprinting assays and point-mutated oligonucleotides we demonstrated that these variations were due to different conformations of the 69T-OL7 complex induced by the binding of oligomers OL1, OL2 or OL5. Therefore, oligonucleotides can act as structural switchers, offering one additional mode for modulating gene expression.
Collapse
Affiliation(s)
- E Brossalina
- Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
34
|
Abstract
The presence of folded regions in RNA competes with the binding of a complementary oligonucleotide, resulting in a weak antisense effect. Due to the key role played by a number of RNA structures in the natural regulation of gene expression it might be of interest to design antisense sequences able to selectively interact with such motifs in order to interfere with the biological processes they mediate. Different possibilities have been explored. A high affinity oligomer will disrupt the structure; if the target structure is solved one can take advantage of unpaired bases (bulges, loops) to minimize the thermodynamic cost of the binding. Alternatively, the folded structure can be accommodated within the complex via the formation of a local triple helix. Oligomers able to adapt to the RNA structure (aptamers) can be extracted by in vitro selection from randomly synthesized libraries comprising several billions of sequences.
Collapse
Affiliation(s)
- J J Toulmé
- INSERM U386, IFR Pathologies Infectieuses, Université Victor Segalen, Bordeaux II, France
| | | | | |
Collapse
|
35
|
Abstract
The high affinity of even relatively short sequences of DNA for their target mRNA suggests that antisense agents represent an ideal method of suppressing specific gene products both in vitro and in vivo. In experiments performed thus far, an effect on the target mRNA in cultured vascular cells and in the vessel wall can be documented. The in vitro activity, toxicity, and pharmacokinetic data of antisense oligonucleotides are encouraging, and the in vivo animal experiments demonstrating suppression of neointimal formation are very promising. If animals trials presently under way show continued suppression not only of intimal formation but also of loss of lumen caliber after a single application, then effective delivery of antisense oligonucleotides is a realistic possibility. Nevertheless, some words of caution regarding the use of antisense oligonucleotides are warranted. Potential nonspecific effects of antisense oligonucleotides should be carefully considered in studies in which antisense agents are used to define biological functions of specific genes. In particular, demonstration that the target mRNA has been suppressed does not prove that other sequences within the mRNA pool have not also been suppressed. Critical control measures include adding back the target mRNA or protein and demonstrating similar biological effects with antisense sequences, which also suppress target gene expression directed at different regions of the target mRNA. At the clinical level, the systemic effects of antisense oligonucleotides, the dosage required, the timing of administration compared with mechanical intervention, and the toxicity of breakdown products all need to be established. In addition, the most appropriate targets for antisense use in restenosis remain largely obscure. Indiscriminate suppression of cell-cycle genes or proto-oncogenes may be as acutely toxic as current anticancer chemotherapy if the site delivery is not completely localized. Furthermore, much of the clinical evidence suggests that restenosis is a chronic process, continuing to develop weeks to months after the procedure. If this is the case, then the current approaches that rely on a transient, local application of an antisense agent may fail. If, however, a target gene is identified that is specific to vascular tissue, then repeated administration of an antisense agent may be tolerated via a systemic route. This approach has proved successful in targeting mutated genes with little suppression of closely related genes and with minimal systemic toxicity. An alternative approach is to transfect the target tissue with a gene that makes it susceptible to systemic delivery of a drug that is not normally toxic to mammalian cells.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M R Bennett
- Department of Pathology, University of Washington, Seattle, USA
| | | |
Collapse
|
36
|
Larrouy B, Boiziau C, Sproat B, Toulmé JJ. RNase H is responsible for the non-specific inhibition of in vitro translation by 2'-O-alkyl chimeric oligonucleotides: high affinity or selectivity, a dilemma to design antisense oligomers. Nucleic Acids Res 1995; 23:3434-40. [PMID: 7567453 PMCID: PMC307221 DOI: 10.1093/nar/23.17.3434] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ribonuclease H (RNase H) which recognizes and cleaves the RNA strand of mismatched RNA-DNA heteroduplexes can induce non-specific effects of antisense oligonucleotides. In a previous paper [Larrouy et al. (1992), Gene, 121, 189-194], we demonstrated that ODN1, a phosphodiester 15mer targeted to the AUG initiation region of alpha-globin mRNA, inhibited non-specifically beta-globin synthesis in wheat germ extract due to RNase H-mediated cleavage of beta-globin mRNA. Specificity was restored by using MP-ODN2, a methylphosphonate-phosphodiester sandwich analogue of ODN1, which limited RNase H activity on non-perfect hybrids. We report here that 2'-O-alkyl RNA-phosphodiester DNA sandwich analogues of ODN1, with the same phosphodiester window as MP-ODN2, are non-specific inhibitors of globin synthesis in wheat germ extract, whatever the substituent (methyl, allyl or butyl) on the 2'-OH. These sandwich oligomers induced the cleavage of non-target beta-globin RNA sites, similarly to the unmodified parent oligomer ODN1. This is likely due to the increased affinity of 2'-O-alkyl-ODN2 chimeric oligomers for both fully and partly complementary RNA, compared to MP-ODN2. In contrast, the fully modified 2'-O-methyl analogue of ODN1 was a very effective and highly specific antisense sequence. This was ascribed to its inability (i) to induce RNA cleavage by RNase H and (ii) to physically prevent the elongation of the polypeptide chain.
Collapse
Affiliation(s)
- B Larrouy
- INSERM U 386, Laboratoire de Biophysique Moléculaire, Université Bordeaux II, France
| | | | | | | |
Collapse
|
37
|
Godard G, Boutorine AS, Saison-Behmoaras E, Helene C. Antisense Effects of Cholesterol-Oligodeoxynucleotide Conjugates Associated with Poly(alkylcyanoacrylate) Nanoparticles. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20825.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Godard G, Boutorine AS, Saison-Behmoaras E, Helene C. Antisense Effects of Cholesterol-Oligodeoxynucleotide Conjugates Associated with Poly(alkylcyanoacrylate) Nanoparticles. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.404zz.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Affiliation(s)
- M Morris
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC 27157-1083, USA
| | | |
Collapse
|
40
|
Moulds C, Lewis JG, Froehler BC, Grant D, Huang T, Milligan JF, Matteucci MD, Wagner RW. Site and mechanism of antisense inhibition by C-5 propyne oligonucleotides. Biochemistry 1995; 34:5044-53. [PMID: 7536034 DOI: 10.1021/bi00015a015] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antisense gene inhibition occurs when an oligonucleotide (ON) has sufficient binding affinity such that it hybridizes its reverse complementary target RNA and prevents translation either by causing inactivation of the RNA (possibly by RNase H) or by interfering with a cellular process such as stalling a ribosome. The mechanisms underlying these processes were explored. Cellular antisense inhibition was evaluated in a microinjection assay using ON modifications which precluded or allowed in vitro RNase H cleavage of ON/RNA hybrids. RNase H-independent inhibition of protein synthesis could be achieved by targeting either the 5'-untranslated region or the 5'-splice junction of SV40 large T antigen using 2'-O-allyl phosphodiester ONs which contained C-5 propynylpyrimidines (C-5 propyne). Inhibition at both sites was 20-fold less active than inhibition using RNase H-competent C-5 propyne 2'-deoxy phosphorothioate ONs. In vitro analysis of association and dissociation of the two classes of ONs with complementary RNA showed that the C-5 propyne 2'-O-allyl phosphodiester ON bound to RNA as well as the C-5 propyne 2'-deoxy phosphorothioate ON. In vitro translation assays suggested that the two classes of ONs should yield equivalent antisense effects in the absence of RNase H. Next, ON/T antigen RNA hybrids were injected into the nuclei and cytoplasm of cells. Injection of C-5 propyne 2'-O-allyl phosphodiester ON/RNA hybrids resulted in expression of T antigen, implying that the ONs dissociated from the RNA in cells which likely accounted for their low potency. In contrast, when C-5 propyne 2'-deoxy phosphorothioate ON/T antigen RNA complexes were injected into the nucleus, the duplexes were stable enough to completely block T antigen translation, presumably by RNA inactivation. Thus, a dramatic finding is that C-5 propyne 2'-deoxy phosphorothioate ONs, once hybridized to RNA, are completely effective at preventing mRNA translation. The implication is that further increases in complex stability coupled with effective RNase H cleavage will not result in enhanced potency. We predict that the development of more effective ONs will only come from modifications which increase the rate of ON/RNA complex formation within the nucleus.
Collapse
Affiliation(s)
- C Moulds
- Gilead Sciences, Foster City, California 94404, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cierniewski CS, Babinska A, Swiatkowska M, Wilczynska M, Okruszek A, Stec WJ. Inhibition by modified oligodeoxynucleotides of the expression of type-1 plasminogen activator inhibitor in human endothelial cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:494-9. [PMID: 7851428 DOI: 10.1111/j.1432-1033.1995.tb20415.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antisense phosphodiester and phosphorothioate oligodeoxynucleotides (23-residue or 24-residue oligodeoxynucleotides) were constructed for sequences of type-1 plasminogen-activator-inhibitor mRNA to assess their capability to modulate type-1 plasminogen-activator-inhibitor-mediated fibrinolysis. Antisense oligodeoxynucleotides were targeted at the mRNA sequence coding a signal peptide, at a part of the reactive center Ile342-Pro349, and at an internally translated segment Asn265-Leu272. The effect of antisense oligonucleotides on the concentration of type-1 plasminogen activator inhibitor in conditioned media and human endothelial cells was determined by the activity test with fibrin as a substrate, and by immunoprecipitation after metabolic labelling of cells with [35S]methionine. Three phosphorothioate oligodeoxynucleotides were specifically inhibitory while phosphodiester oligodeoxynucleotides with the same sequence did not show any activity. Phosphorothioate oligodeoxynucleotides 2, 4 and 6 inhibited the synthesis of type-1 plasminogen activator inhibitor in endothelial cells in a time-dependent and concentration-dependent manner. These data suggest that antisense oligodeoxynucleotides may be useful in the design of antithrombolytic therapeutics.
Collapse
Affiliation(s)
- C S Cierniewski
- Department of Biophysics, Medical University in Lodz, Poland
| | | | | | | | | | | |
Collapse
|
42
|
[6] Hybrid arrest screening in oocytes. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1043-9471(05)80036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Frank P, Albert S, Cazenave C, Toulmé JJ. Purification and characterization of human ribonuclease HII. Nucleic Acids Res 1994; 22:5247-54. [PMID: 7816613 PMCID: PMC332068 DOI: 10.1093/nar/22.24.5247] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A ribonuclease H activity from human placenta has been separated by ion exchange chromatography from the major RNase HI enzyme. Additional chromatographic steps allowed further purification, more than 3,000 fold compared to the crude extract in which it represents about 15% of the total RNase H activity. The enzyme requires Mg2+ ions for its activity, is strongly inhibited by the addition of Mn2+ ions or other divalent transition metal ions, and exhibits a pH optimum between 8.5 and 9. It shows a strong sensitivity to the SH-blocking agent N-ethylmaleimide. It has a strict specificity for double-stranded RNA-DNA duplexes and exhibits neither single-stranded nor double-stranded RNase (or DNase) activities. Therefore, this enzyme displays the characteristics of class II RNase H and is now termed RNase HII. Renaturation gel assays and gel filtration experiments proved a monomeric structure for the active enzyme with a native molecular weight of about 33 kDa. The human RNase HII acts as an endonuclease and releases oligoribonucleotides with 3'-OH and 5'-phosphate ends. It is therefore a candidate for the RNase H-mediated effect of antisense oligodeoxynucleotides.
Collapse
Affiliation(s)
- P Frank
- Laboratoire de Biophysique Moléculaire, INSERM U 386, Université de Bordeaux II, France
| | | | | | | |
Collapse
|
44
|
Cazenave C, Frank P, Toulme J, Büsen W. Characterization and subcellular localization of ribonuclease H activities from Xenopus laevis oocytes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31515-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Pascolo E, Hudrisier D, Sproat B, Nguyen TT, Toulmé JJ. Relative contribution of photo-addition, helper oligonucleotide and RNase H to the antisense effect of psoralen-oligonucleotide conjugates, on in vitro translation of Leishmania mRNAs. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:98-106. [PMID: 8086483 DOI: 10.1016/0167-4781(94)90251-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We investigated the properties of two antisense oligonucleotides, 11 alpha Pso and 14TMP, 11 and 14 nucleotides long, respectively, and conjugated to psoralen derivatives. These oligonucleotides were complementary to the mini-exon sequence of Leishmania amazonensis. Upon ultraviolet (UV) irradiation these oligomers were selectively cross-linked to DNA or RNA target sequences, either 14 or 35 nucleotides long. The yield of photo-addition was much lower on the longer targets than on the shorter ones, due to the presence of a hairpin structure. The co-addition of a helper oligonucleotide, whose binding site, on the 35-mer, was adjacent to that of the psoralen-derivatized antisense oligomer, improved the cross-linking efficiency. We then determined the effect of 14TMP on in vitro translation of Leishmania mRNA in cell-free extracts. Non-irradiated antisense oligonucleotide/mRNA complexes reduced the protein synthesis in wheat germ extract but not in rabbit reticulocyte lysate. Conversely, UV irradiation induced a 14TMP-dependent reduction of translation in reticulocyte lysate whereas the inhibition was not improved in the wheat germ extract. These results are discussed with respect to the involvement of RNase-H in the oligonucleotide-mediated effect on protein synthesis.
Collapse
Affiliation(s)
- E Pascolo
- Laboratoire de Biophysique Moléculaire, INSERM U386, Université de Bordeaux II, France
| | | | | | | | | |
Collapse
|
46
|
Wong YF, Chung TK, Cheung TH, Lam SK, Chang AM. Effects of human papillomavirus type-specific antisense oligonucleotides on cervical cancer cells containing papillomavirus type 16. Med Oncol 1994; 11:149-51. [PMID: 7633836 DOI: 10.1007/bf02999867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Y F Wong
- Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Shatin, N.T
| | | | | | | | | |
Collapse
|
47
|
Fakler B, Herlitze S, Amthor B, Zenner H, Ruppersberg J. Short antisense oligonucleotide-mediated inhibition is strongly dependent on oligo length and concentration but almost independent of location of the target sequence. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33991-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Ghosh MK, Ghosh K, Dahl O, Cohen JS. Evaluation of some properties of a phosphorodithioate oligodeoxyribonucleotide for antisense application. Nucleic Acids Res 1993; 21:5761-6. [PMID: 8284226 PMCID: PMC310546 DOI: 10.1093/nar/21.24.5761] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
An all phosphorodithioate oligodeoxyribonucleotide (PS2; 17-mer) complementary to the coding region of the rabbit beta-globin mRNA was compared with the normal (PO2) and phosphorothioate (POS) oligonucleotide of the same size and sequence with respect to physicochemical properties and antisense activity in cell-free systems. The melting temperature (Tm) of the PS2-cDNA duplex was reduced by 17 degrees C relative to the PO2-cDNA duplex, compared to 11 degrees C for the POS-cDNA duplex, suggesting a decreased stability of the duplex with an increasing sulfur substitution. Like the POS-derivative, the PS2 oligonucleotide is quite stable against exonucleases, but these modified oligonucleotides showed different stability towards endonucleases and also towards different sub-cellular fractions of MCF-7 cells. During in vitro protein binding studies, the PS2 oligonucleotide showed similar binding (10-20%) to that of the PO2 oligonucleotide, while the POS oligonucleotide bound 60%. In cell-free translation, the PS2 oligonucleotide produced slightly higher specific translation inhibition of rabbit beta-globin mRNA compared to that of the PO2 oligonucleotide, and this was true only at concentration below 2 mM. The POS-derivative, except at 10 mM concentration, always showed higher translation arrest of the rabbit beta-globin mRNA compared to that of the other two oligonucleotides. The present study suggests that the PS2 oligonucleotide offers very little advantage over the POS oligonucleotide for use as an antisense analog.
Collapse
Affiliation(s)
- M K Ghosh
- Pharmacology Department, Georgetown University Medical Center, Washington, DC 20007
| | | | | | | |
Collapse
|
49
|
Morgan R, Edge M, Colman A. A more efficient and specific strategy in the ablation of mRNA in Xenopus laevis using mixtures of antisense oligos. Nucleic Acids Res 1993; 21:4615-20. [PMID: 8233799 PMCID: PMC311199 DOI: 10.1093/nar/21.19.4615] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previously, antisense oligodeoxyribonucleotides (oligos) have been used to ablate specific mRNAs from the maternal RNA pool of Xenopus laevis oocytes. However, this strategy is limited by the dose of oligo which can be used and the fact that 100% cleavage of the target RNA is rare. Further, non-specific cleavage of other RNAs can also occur. We demonstrate that the use of several oligos against the histone H4 RNA results in a marked improvement in the efficiency of target degradation, due to synergistic action between oligos and the existence of RNA in at least two different secondary structures. We show, by using a set of overlapping oligos complementary to the entire H4 RNA, that the amount of oligo required for efficient target ablation is greatly lowered and non-specific effects are reduced.
Collapse
Affiliation(s)
- R Morgan
- School of Biochemistry, University of Birmingham, UK
| | | | | |
Collapse
|
50
|
Kady IO, Groves JT. Synthesis of iron-binding oligonucleotides and their reactions with single-stranded DNA. Bioorg Med Chem Lett 1993. [DOI: 10.1016/s0960-894x(00)80350-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|