1
|
Chiou CS, Hong YP, Wang YW, Chen BH, Teng RH, Song HY, Liao YS. Antimicrobial Resistance and Mechanisms of Azithromycin Resistance in Nontyphoidal Salmonella Isolates in Taiwan, 2017 to 2018. Microbiol Spectr 2023; 11:e0336422. [PMID: 36688703 PMCID: PMC9927516 DOI: 10.1128/spectrum.03364-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Antimicrobial resistance was investigated in 2,341 nontyphoidal Salmonella (NTS) isolates recovered from humans in Taiwan from 2017 to 2018 using antimicrobial susceptibility testing. Azithromycin resistance determinants were detected in 175 selected isolates using PCR and confirmed in 81 selected isolates using whole-genome sequencing. Multidrug resistance was found in 47.3% of total isolates and 96.2% of Salmonella enterica serovar Anatum and 81.7% of S. enterica serovar Typhimurium isolates. Resistance to the conventional first-line drugs (ampicillin, chloramphenicol, and cotrimoxazole), cefotaxime and ceftazidime, and ciprofloxacin was found in 32.5 to 49.0%, 20.3 to 20.4%, and 3.2% of isolates, respectively. A total of 76 (3.1%) isolates were resistant to azithromycin, which was associated with mph(A), erm(42), erm(B), and possibly the enhanced expression of efflux pump(s) due to ramAp or defective ramR. mph(A) was found in 53% of the 76 azithromycin-resistant isolates from 11 serovars and located in an IS26-mph(A)-mrx(A)-mphR(A)-IS6100 unit in various incompatibility plasmids and the chromosomes. erm(42) in S. enterica serovar Albany was carried by an integrative and conjugative element, ICE_erm42, and in S. enterica serovar Enteritidis and S. Typhimurium was located in IS26 composite transposons in the chromosomes. erm(B) was carried by IncI1-I(α) plasmids in S. Enteritidis and S. Typhimurium. ramAp was a plasmid-borne ramA, a regulatory activator of efflux pump(s), found in only S. enterica serovar Goldcoast. Since the azithromycin resistance determinants are primarily carried on mobile genetic elements, they could easily be disseminated among human bacterial pathogens. The ramAp-carrying S. Goldcoast isolates displayed azithromycin MICs of 16 to 32 mg/L. Thus, the epidemiological cutoff value of ≤16 mg/L of azithromycin proposed for wild-type NTS should be reconsidered. IMPORTANCE Antimicrobial resistance in NTS isolates is a major public health concern in Taiwan, and the mechanisms of azithromycin resistance are rarely investigated. Azithromycin and carbapenems are the last resort for the treatment of invasive salmonellosis caused by multidrug-resistant (MDR) and extensively drug-resistant Salmonella strains. Our study reports the epidemiological trend of resistance in NTS in Taiwan and the genetic determinants involved in azithromycin resistance. We point out that nearly half of NTS isolates from 2017 to 2018 are MDR, and 20% are resistant to third-generation cephalosporins. The azithromycin resistance rate (3.1%) for the NTS isolates from Taiwan is much higher than those for the NTS isolates from the United States and Europe. Our study also indicates that azithromycin resistance is primarily mediated by mph(A), erm(42), erm(B), and ramAp, which are frequently carried on mobile genetic elements. Thus, the azithromycin resistance determinants could be expected to be disseminated among diverse bacterial pathogens.
Collapse
Affiliation(s)
- Chien-Shun Chiou
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Yu-Ping Hong
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - You-Wun Wang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Bo-Han Chen
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ru-Hsiou Teng
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Hui-Yung Song
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ying-Shu Liao
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| |
Collapse
|
2
|
Darphorn TS, Brul S, Ter Kuile BH. Genetic editing of multi-resistance plasmids in Escherichia coli isolated from meat during transfer. Plasmid 2022; 122:102640. [PMID: 35870604 DOI: 10.1016/j.plasmid.2022.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Resistance plasmids mediate the rapid spread of antimicrobial resistance, which poses a threat to veterinary and human healthcare. This study addresses the question whether resistance plasmids from Escherichia coli isolated from foodstuffs always transfer unchanged to recipient E. coli cells, or that genetic editing can occur. Strains containing between one and five different plasmids were co-incubated with a standard recipient strain. Plasmids isolated from transconjugant strains were sequenced using short and long read technologies and compared to the original plasmids from the donor strains. After one hour of co-incubation only a single plasmid was transferred from donor to recipient strains. If the donor possessed several plasmids, longer co-incubation resulted in multiple plasmids being transferred. Transferred plasmids showed mutations, mostly in mobile genetic elements, in the conjugative transfer gene pilV and in genes involved in plasmid maintenance. In one transconjugant, a resistance cluster encoding tetracycline resistance was acquired by the IncI1 plasmid from the IncX1 plasmid that was also present in the donor strain, but that was not transferred. A single plasmid transferred twelve times back and forth between E. coli strains resulted in a fully conserved plasmid with no mutations, apart from repetitive rearrangements of pilV from and back to its original conformation in the donor strain. The overall outcome suggests that some genetic mutations and rearrangements can occur during plasmid transfer. The possibility of such mutations should be taken into consideration in epidemiological research aimed at attribution of resistance to specific sources.
Collapse
Affiliation(s)
- Tania S Darphorn
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Benno H Ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Netherlands Food and Consumer Product Safety Authority, Office for Risk Assessment, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Interference of ISEcp1-bla CTX-M-1 with the shufflon rearrangement in IncI1 plasmids. Plasmid 2021; 116:102578. [PMID: 33964314 DOI: 10.1016/j.plasmid.2021.102578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
IncI1 plasmids are known disseminators of the extended-spectrum cephalosporin resistance (ESC) gene blaCTX-M-1, among species of the Enterobacteriaceae family. In several IncI1 plasmids, this gene was found incorporated into the transposition unit, ISEcp1-blaCTX-M-1-orf477, interrupting a shufflon region, a hallmark of IncI1 conjugative plasmids. The shufflon diversifies pilV gene that encodes the adhesine-type protein found on the tip of the conjugative pilus. To further elucidate the shufflon rearrangement, we examined to what extent the shufflon rearrangement was affected by the transposition-unit insertion. As expected, the interrupted shufflons generated a lower number of shufflon variants and exhibited an altered segment-deletion pattern compared to the non-interrupted shufflon. Interestingly, segment-loss frequency of the interrupted shufflons was distinctive in different plasmid hosts. Finally, the analysis of the 3' end of the pilV gene revealed that shufflon rearrangement favoured segment A to complete pilV partial open reading frame regardless of the shufflon. Thereby, it could be assumed that the A-segment has greater importance during conjugation, however, this remained a hypothesis. Further exploration of shufflon rearrangement and its importance in the plasmid-recipient selection during conjugation would be beneficial as the knowledge could be applied in developing a strategy to limit IncI1 mediated antimicrobial resistance dissemination.
Collapse
|
4
|
Smyshlyaev G, Bateman A, Barabas O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol Syst Biol 2021; 17:e9880. [PMID: 34018328 PMCID: PMC8138268 DOI: 10.15252/msb.20209880] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Mobile genetic elements (MGEs) sequester and mobilize antibiotic resistance genes across bacterial genomes. Efficient and reliable identification of such elements is necessary to follow resistance spreading. However, automated tools for MGE identification are missing. Tyrosine recombinase (YR) proteins drive MGE mobilization and could provide markers for MGE detection, but they constitute a diverse family also involved in housekeeping functions. Here, we conducted a comprehensive survey of YRs from bacterial, archaeal, and phage genomes and developed a sequence-based classification system that dissects the characteristics of MGE-borne YRs. We revealed that MGE-related YRs evolved from non-mobile YRs by acquisition of a regulatory arm-binding domain that is essential for their mobility function. Based on these results, we further identified numerous unknown MGEs. This work provides a resource for comparative analysis and functional annotation of YRs and aids the development of computational tools for MGE annotation. Additionally, we reveal how YRs adapted to drive gene transfer across species and provide a tool to better characterize antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Georgy Smyshlyaev
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| | - Alex Bateman
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Orsolya Barabas
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
5
|
Li W, Li Y, Jia Y, Sun H, Zhang C, Hu G, Yuan L. Genomic characteristics of mcr-1 and bla CTX-M-type in a single multidrug-resistant Escherichia coli ST93 from chicken in China. Poult Sci 2021; 100:101074. [PMID: 33774373 PMCID: PMC8025056 DOI: 10.1016/j.psj.2021.101074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
This study was undertaken to discern the transmission characteristics of mcr-1 and blaCTX-M-type in one multidrug-resistant Escherichia coli LWY24 from chicken in China. The genetic profiles of LWY24 isolate were determined by conjugation, S1-pulsed-field gel electrophoresis, southern blot hybridization, and whole genome sequencing analysis. Meanwhile, co-transfer of plasmids in LWY24 isolate was screened by dual conjugation assays. The LWY24 isolate was identified as ST93, and harbored 3 conjugative plasmids, pLWY24J-3 (blaCTX-M-55-bearing IncFⅡ), pLWY24J-mcr-1 (mcr-1-carrying IncI2), and pLWY24J-4 (non-resistance-conferring IncI1), and one nonconjugative plasmid pLWY24 (blaCTX-M-14-containing IncHI2/IncHI2A). Numerous resistance genes, insertion sequences (especially IS26), and transposons were found in the 4 plasmids, suggesting that horizontal transmission have occurred by plasmid mating, homologous recombination, and transpositions. Under the selection pressure of cefotaxime and colistin or cefotaxime alone, the mcr-1-bearing plasmid and the blaCTX-M-55-harboring plasmid could be co-transferred at a similar frequency, with 8.00 × 10−4 or 9.00 × 10−4 transconjugants per donor cell, respectively. The specific shufflon region in mcr-1-encoding plasmid could generate up to 6 diverse PilV structures, which may further accelerate the horizontal transfer of plasmid. In conclusion, the transmission characteristics of mcr-1 and blaCTX-M-type in LWY24 isolate could due to clonal spread of ST93, selective pressure of cefotaxime, IS26-mediate homologous recombination and transposition, and the specific shufflon region.
Collapse
Affiliation(s)
- Wenya Li
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yinshu Li
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yating Jia
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huarun Sun
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Chunhui Zhang
- College of Animal Medicine, Henan University of Animal Husbandry & Economy, Zhengzhou 450046, China
| | - Gongzheng Hu
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Li Yuan
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Leekitcharoenphon P, Sørensen G, Löfström C, Battisti A, Szabo I, Wasyl D, Slowey R, Zhao S, Brisabois A, Kornschober C, Kärssin A, Szilárd J, Černý T, Svendsen CA, Pedersen K, Aarestrup FM, Hendriksen RS. Cross-Border Transmission of Salmonella Choleraesuis var. Kunzendorf in European Pigs and Wild Boar: Infection, Genetics, and Evolution. Front Microbiol 2019; 10:179. [PMID: 30787923 PMCID: PMC6373457 DOI: 10.3389/fmicb.2019.00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/23/2019] [Indexed: 11/21/2022] Open
Abstract
Salmonella enterica subspecies enterica serotype Choleraesuis is a swine adapted serovar. S. Choleraesuis variant Kunzendorf is responsible for the majority of outbreaks among pigs. S. Choleraesuis is rare in Europe, although there have been serious outbreaks in pigs including two outbreaks in Denmark in 1999–2000 and 2012–2013. Here, we elucidate the epidemiology, possible transmission routes and sources, and clonality of European S. Choleraesuis isolates including the Danish outbreak isolates. A total of 102 S. Choleraesuis isolates from different European countries and the United States, covering available isolates from the last two decades were selected for whole genome sequencing. We applied a temporally structured sequence analysis within a Bayesian framework to reconstruct a temporal and spatial phylogenetic tree. MLST type, resistance genes, plasmid replicons, and accessory genes were identified using bioinformatics tools. Fifty-eight isolates including 11 out of 12 strains from wild boars were pan-susceptible. The remaining isolates carried multiple resistance genes. Eleven different plasmid replicons in eight plasmids were determined among the isolates. Accessory genes were associated to the identified resistance genes and plasmids. The European S. Choleraesuis was estimated to have emerged in ∼1837 (95% credible interval, 1733–1983) with the mutation rate of 1.02 SNPs/genome/year. The isolates were clustered according to countries and neighbor countries. There were transmission events between strains from the United States and European countries. Wild boar and pig isolates were genetically linked suggesting cross-border transmission and transmission due to a wildlife reservoir. The phylogenetic tree shows that multiple introductions were responsible for the outbreak of 2012–2013 in Denmark, and suggests that poorly disinfected vehicles crossing the border into Denmark were potentially the source of the outbreak. Low levels of single nucleotide polymorphisms (SNPs) differences (0–4 SNPs) can be observed between clonal strains isolated from different organs of the same animal. Proper disinfection of livestock vehicles and improved quality control of livestock feed could help to prevent future spread of S. Choleraesuis or other more serious infectious diseases such as African swine fever (ASF) in the European pig production system.
Collapse
Affiliation(s)
- Pimlapas Leekitcharoenphon
- European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Center for Antimicrobial Resistance in Food Borne Pathogens and Genomics, Research Group for Genomic Epidemiology, National Food Institute, Kongens Lyngby, Denmark
| | - Gitte Sørensen
- European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Center for Antimicrobial Resistance in Food Borne Pathogens and Genomics, Research Group for Genomic Epidemiology, National Food Institute, Kongens Lyngby, Denmark
| | | | - Antonio Battisti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, National Reference Laboratory for Antimicrobial Resistance, Rome, Italy
| | - Istvan Szabo
- National Salmonella Reference Laboratory, Unit Molecular Microbiology and Genome Analysis, Federal Institute for Risk Assessment, Berlin, Germany
| | - Dariusz Wasyl
- National Veterinary Research Institute Department of Microbiology, National Reference Laboratory for Salmonellosis and Antimicrobial Resistance, Puławy, Poland
| | - Rosemarie Slowey
- Department of Agriculture, Food and the Marine Laboratories, Celbridge, Ireland
| | - Shaohua Zhao
- Division of Animal and Food Microbiology, Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Anne Brisabois
- French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France
| | | | - Age Kärssin
- Veterinaar- ja Toidulaboratoorium, Tartu, Estonia
| | - Jánosi Szilárd
- Bakteriológiai Laboratórium, Állategészségügyi Diagnosztikai Igazgatóság, Nemzeti Élelmiszerlánc-biztonsági Hivatal, Budapest, Hungary
| | - Tomáš Černý
- Státní Veterinární Ústav Praha, Prague, Czechia
| | - Christina Aaby Svendsen
- European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Center for Antimicrobial Resistance in Food Borne Pathogens and Genomics, Research Group for Genomic Epidemiology, National Food Institute, Kongens Lyngby, Denmark
| | - Karl Pedersen
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Frank M Aarestrup
- European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Center for Antimicrobial Resistance in Food Borne Pathogens and Genomics, Research Group for Genomic Epidemiology, National Food Institute, Kongens Lyngby, Denmark
| | - Rene S Hendriksen
- European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Center for Antimicrobial Resistance in Food Borne Pathogens and Genomics, Research Group for Genomic Epidemiology, National Food Institute, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Zhang D, Zhao Y, Feng J, Hu L, Jiang X, Zhan Z, Yang H, Yang W, Gao B, Wang J, Li J, Yin Z, Zhou D. Replicon-Based Typing of IncI-Complex Plasmids, and Comparative Genomics Analysis of IncIγ/K1 Plasmids. Front Microbiol 2019; 10:48. [PMID: 30761100 PMCID: PMC6361801 DOI: 10.3389/fmicb.2019.00048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
IncI-complex plasmids can be divided into seven subgroups IncI1, IncI2, IncIγ, IncB/O, IncK1, IncK2, and IncZ. In this study, a replicon-based scheme was proposed for typing IncI-complex plasmids into four separately clustering subgroups IncI2, IncI1/B/O, IncIγ/K1 and IncK2/Z, the last three of which were combined from IncI1 and IncB/O, IncIγ and IncK1, and IncK2 and IncZ, respectively. Four IncIγ/K1 plasmids p205880-NR2, p14E509-CTXM, p11011-CTXM and p61806-CTXM were fully sequenced and compared with IncIγ/K1 reference pCT, IncI2 reference R721, IncI1/B/O reference R64 and IncK2/Z reference pO26-CRL-125. These plasmids shared conserved gene organization in the replication and conjugal transfer regions, but displaying considerable sequence diversity among different subgroups. Remarkable modular differences were observed in the maintenance and transfer leading regions. p205880-NR2 contained no resistance genes or accessory modules, while the other seven plasmids acquired one or more accessory modules, which harbored mobile elements [including unit transposons, insertion sequence (IS)-based transposition units and individual IS elements] and associated resistance markers (especially including those involved in resistance to β-lactams, aminoglycosides, tetracyclins, phenicols, streptomycins, trimethoprims, sulphonamides, tunicamycins and erythromycins). Data presented here provided a deeper insight into diversification and evolution of IncI-complex plasmids.
Collapse
Affiliation(s)
- Defu Zhang
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China.,Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Bohai University, Jinzhou, China.,College of Food Science and Project Engineering, Bohai University, Jinzhou, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuzong Zhao
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China.,Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Bohai University, Jinzhou, China.,College of Food Science and Project Engineering, Bohai University, Jinzhou, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Zhan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianrong Li
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China.,Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Bohai University, Jinzhou, China.,College of Food Science and Project Engineering, Bohai University, Jinzhou, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
8
|
Carattoli A, Villa L, Fortini D, García-Fernández A. Contemporary IncI1 plasmids involved in the transmission and spread of antimicrobial resistance in Enterobacteriaceae. Plasmid 2018; 118:102392. [PMID: 30529488 DOI: 10.1016/j.plasmid.2018.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
IncI1 has become one of the most common plasmid families in contemporary Enterobacteriaceae from both human and animal sources. In clinical epidemiology, this plasmid type ranks first as the confirmed vehicle of transmission of extended spectrum beta-lactamase and plasmid AmpC genes in isolates from food-producing animals. In this review, we describe the epidemiology and evolution of IncI1 plasmids and closely related IncIγ plasmids. We highlight the emergence of epidemic plasmids circulating among different bacterial hosts in geographically distant countries, and we address the phylogeny of the IncI1 and IncIγ family based on plasmid Multilocus Sequence Typing.
Collapse
Affiliation(s)
- Alessandra Carattoli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Laura Villa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela Fortini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Aurora García-Fernández
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
9
|
Diversity of CTX-M-1-producing E. coli from German food samples and genetic diversity of the bla CTX-M-1 region on IncI1 ST3 plasmids. Vet Microbiol 2018; 221:98-104. [PMID: 29981716 DOI: 10.1016/j.vetmic.2018.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/07/2018] [Accepted: 06/07/2018] [Indexed: 11/22/2022]
Abstract
Antimicrobial resistance to cephalosporins is commonly mediated by extended-spectrum β-lactamases (ESBL) or plasmidic AmpC β-lactamases (pAmpC). In livestock blaCTX-M-1 is the most frequently detected ESBL-encoding gene. As transmission to consumers through contaminated food is often proposed, this study characterized ESBL/pAmpC-producing E. coli collected from food samples. Therefore, samples from food products of animal origin and vegetables were screened for phenotypically resistant E. coli by selective cultivation. The ESBL genotype was confirmed for 404 isolates with the majority of them (n = 212) harboring the blaCTX-M-1 gene. PFGE and MLST analyses as well as plasmid characterization were carried out for 89 isolates, selected under epidemiological aspects. In addition, 44 isolates were investigated by whole genome sequencing and/or sequencing of their plasmids on an Illumina Miseq platform. MLST and PFGE indicated a diverse population of CTX-M-1-producing E. coli in German food samples with no spread of single clonal lineages. The majority of the isolates harbored the blaCTX-M-1 gene on IncI1 plasmids. Frequently, the gene was associated with the ISEcp1 element and located on a ∼100 kb IncI1 plasmid depicting the plasmid multilocus sequence type (ST) 3. The blaCTX-M-1 gene and its flanking sequences were located within the shufflon of the type IV pilus region in diverse orientations. In conclusion, dissemination of the CTX-M-1 β-lactamase within food samples of animal origin is driven by the transmission of a ∼100 kb large IncI1 ST3 plasmid. Apart from conjugal transfer of IncI1 ST3 plasmids the transmission of the blaCTX-M-1 gene might be further promoted through mobilization due to its location within a recombination hot-spot of IncI1 plasmids.
Collapse
|
10
|
Genetic Relationships among Multidrug-Resistant Salmonella enterica Serovar Typhimurium Strains from Humans and Animals. Antimicrob Agents Chemother 2018; 62:AAC.00213-18. [PMID: 29581119 DOI: 10.1128/aac.00213-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 11/20/2022] Open
Abstract
We identified 20 to 22 resistance genes, carried in four incompatibility groups of plasmids, in each of five genetically closely related Salmonella enterica serovar Typhimurium strains recovered from humans, pigs, and chickens. The genes conferred resistance to aminoglycosides, chloramphenicol, sulfonamides, trimethoprim, tetracycline, fluoroquinolones, extended-spectrum cephalosporins and cefoxitin, and azithromycin. This study demonstrates the transmission of multidrug-resistant Salmonella strains among humans and food animals and may be the first identification of mphA in azithromycin-resistant Salmonella strains in Taiwan.
Collapse
|
11
|
Sekizuka T, Kawanishi M, Ohnishi M, Shima A, Kato K, Yamashita A, Matsui M, Suzuki S, Kuroda M. Elucidation of quantitative structural diversity of remarkable rearrangement regions, shufflons, in IncI2 plasmids. Sci Rep 2017; 7:928. [PMID: 28424528 PMCID: PMC5430464 DOI: 10.1038/s41598-017-01082-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
A multiple DNA inversion system, the shufflon, exists in incompatibility (Inc) I1 and I2 plasmids. The shufflon generates variants of the PilV protein, a minor component of the thin pilus. The shufflon is one of the most difficult regions for de novo genome assembly because of its structural diversity even in an isolated bacterial clone. We determined complete genome sequences, including those of IncI2 plasmids carrying mcr-1, of three Escherichia coli strains using single-molecule, real-time (SMRT) sequencing and Illumina sequencing. The sequences assembled using only SMRT sequencing contained misassembled regions in the shufflon. A hybrid analysis using SMRT and Illumina sequencing resolved the misassembled region and revealed that the three IncI2 plasmids, excluding the shufflon region, were highly conserved. Moreover, the abundance ratio of whole-shufflon structures could be determined by quantitative structural variation analysis of the SMRT data, suggesting that a remarkable heterogeneity of whole-shufflon structural variations exists in IncI2 plasmids. These findings indicate that remarkable rearrangement regions should be validated using both long-read and short-read sequencing data and that the structural variation of PilV in the shufflon might be closely related to phenotypic heterogeneity of plasmid-mediated transconjugation involved in horizontal gene transfer even in bacterial clonal populations.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjyuku-ku, Tokyo, 162-8640, Japan.
| | - Michiko Kawanishi
- Assay Division II, Bacterial Assay Section, National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji-shi, 185-8511, Tokyo, Japan
| | - Mamoru Ohnishi
- Ohnishi Laboratory of Veterinary Microbiology, 10-3-3 Nishirokujyouminami, Shibetsugunnakashibetsu-cho, 086-1106, Hokkaido, Japan
| | - Ayaka Shima
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Kengo Kato
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjyuku-ku, Tokyo, 162-8640, Japan
| | - Akifumi Yamashita
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjyuku-ku, Tokyo, 162-8640, Japan
| | - Mari Matsui
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Satowa Suzuki
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjyuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
12
|
Venturelli OS, Egbert RG, Arkin AP. Towards Engineering Biological Systems in a Broader Context. J Mol Biol 2016; 428:928-44. [DOI: 10.1016/j.jmb.2015.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/24/2015] [Accepted: 10/28/2015] [Indexed: 01/18/2023]
|
13
|
Brouwer MSM, Tagg KA, Mevius DJ, Iredell JR, Bossers A, Smith HE, Partridge SR. IncI shufflons: Assembly issues in the next-generation sequencing era. Plasmid 2015; 80:111-7. [PMID: 25952328 DOI: 10.1016/j.plasmid.2015.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 11/18/2022]
Abstract
The shufflon is a site-specific recombination system first identified in the IncI1 plasmid R64. The R64 shufflon consists of four segments, separated by short repeats, which are rearranged and inverted by the recombinase protein Rci, generating diversity in the C-terminal end of the PilV protein. PilV is the tip adhesin of the thin pilus structure involved in bacterial conjugation and may play a role in determining recipient cell specificity during liquid mating. The variable arrangements of the shufflon region would be expected to make plasmid assembly difficult, particularly with short-read sequencing technology, but this is not usually mentioned in recent publications reporting IncI plasmid sequences. Here we discuss the issues we encountered with assembly of IncI1 sequence data obtained from the Roche-454 and Illumina platforms and make some suggestions for assembly of the shufflon region. Comparison of shufflon segments from a collection of IncI1 plasmids from The Netherlands and Australia, together with sequences available in GenBank, suggests that the number of shufflon segments present is conserved among plasmids grouped together by plasmid multi-locus sequencing typing but the different reported arrangements of shufflon segments may not be meaningful. This analysis also indicated that the sequences of the shufflon segments are highly conserved, with very few nucleotide changes.
Collapse
Affiliation(s)
- Michael S M Brouwer
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands.
| | - Kaitlin A Tagg
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Dik J Mevius
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Alex Bossers
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Hilde E Smith
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
14
|
Chen YT, Lin JC, Fung CP, Lu PL, Chuang YC, Wu TL, Siu LK. KPC-2-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. J Antimicrob Chemother 2013; 69:628-31. [PMID: 24123430 DOI: 10.1093/jac/dkt409] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Two plasmids carrying bla(KPC-2) isolated from carbapenem-resistant Escherichia coli (CR-EC) and carbapenem-resistant Klebsiella pneumoniae (CR-KP), respectively, were completely sequenced. The CR-KP strain was selected from an outbreak in 2012, and the CR-EC strain was the first blaKPC-2-carrying E. coli identified in the same carbapenem resistance monitoring programme in Taiwan. METHODS Antimicrobial susceptibility tests, multilocus sequence typing (MLST) and the conjugal transfer of plasmids were performed. Complete sequencing of the plasmids was performed using a shotgun approach. RESULTS The CR-EC and CR-KP strains in this study were determined to be ST410 and ST11, respectively, by MLST. From CR-EC, we identified a 145 kb conjugative plasmid that carries bla(KPC-2), bla(CMY-2), bla(CTX-M-3) and bla(TEM-1). The plasmid is a chimera composed of three regions related to IncI, IncN and RepFIC replicons. From CR-KP, we identified an 86.5 kb plasmid, pKPC-LK30, which carries bla(KPC-2) and bla(SHV-11). The plasmid is very similar to two bla(KPC-2)-carrying IncFII(K) plasmids, but lacks one of the replication origins and cannot conjugate. CONCLUSIONS The differences in cross-species transferability of the two plasmids can be explained by genetic differences between their backbones and could have resulted in the confined bla(KPC-2)-carrying CR-KP outbreak in Taiwan. Plasmid pKPC-LKEc is the first bla(KPC-2)-carrying plasmid identified from CR-EC in Taiwan. With relatively high transferability it should be closely monitored.
Collapse
Affiliation(s)
- Ying-Tsong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Stecher B, Denzler R, Maier L, Bernet F, Sanders MJ, Pickard DJ, Barthel M, Westendorf AM, Krogfelt KA, Walker AW, Ackermann M, Dobrindt U, Thomson NR, Hardt WD. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc Natl Acad Sci U S A 2012; 109:1269-74. [PMID: 22232693 PMCID: PMC3268327 DOI: 10.1073/pnas.1113246109] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian gut harbors a dense microbial community interacting in multiple ways, including horizontal gene transfer (HGT). Pangenome analyses established particularly high levels of genetic flux between Gram-negative Enterobacteriaceae. However, the mechanisms fostering intraenterobacterial HGT are incompletely understood. Using a mouse colitis model, we found that Salmonella-inflicted enteropathy elicits parallel blooms of the pathogen and of resident commensal Escherichia coli. These blooms boosted conjugative HGT of the colicin-plasmid p2 from Salmonella enterica serovar Typhimurium to E. coli. Transconjugation efficiencies of ~100% in vivo were attributable to high intrinsic p2-transfer rates. Plasmid-encoded fitness benefits contributed little. Under normal conditions, HGT was blocked by the commensal microbiota inhibiting contact-dependent conjugation between Enterobacteriaceae. Our data show that pathogen-driven inflammatory responses in the gut can generate transient enterobacterial blooms in which conjugative transfer occurs at unprecedented rates. These blooms may favor reassortment of plasmid-encoded genes between pathogens and commensals fostering the spread of fitness-, virulence-, and antibiotic-resistance determinants.
Collapse
Affiliation(s)
- Bärbel Stecher
- Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Rémy Denzler
- Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | - Lisa Maier
- Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | - Florian Bernet
- Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | - Mandy J. Sanders
- Welcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Derek J. Pickard
- Welcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Manja Barthel
- Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital, University Duisburg-Essen, 45122 Essen, Germany
| | - Karen A. Krogfelt
- Department of Surveillance and Research, Statens Serum Institut, 2300 S Copenhagen, Denmark
| | - Alan W. Walker
- Welcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Martin Ackermann
- Department of Environmental Sciences, ETH Zürich, 8092 Zürich, Switzerland
- Department of Environmental Microbiology, Eawag, 8600 Dubendorf, Switzerland
| | - Ulrich Dobrindt
- Institute for Molecular Infectious Biology, University of Würzburg, 97080 Würzburg, Germany; and
- Institute for Hygiene, University of Münster, 48149 Münster, Germany
| | - Nicholas R. Thomson
- Welcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
16
|
Bikard D, Marraffini LA. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Curr Opin Immunol 2011; 24:15-20. [PMID: 22079134 DOI: 10.1016/j.coi.2011.10.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/21/2011] [Indexed: 12/26/2022]
Abstract
Bacteria are constantly challenged by bacteriophages (viruses that infect bacteria), the most abundant microorganism on earth. Bacteria have evolved a variety of immunity mechanisms to resist bacteriophage infection. In response, bacteriophages can evolve counter-resistance mechanisms and launch a 'virus versus host' evolutionary arms race. In this context, rapid evolution is fundamental for the survival of the bacterial cell. Programmed genetic variation mechanisms at loci involved in immunity against bacteriophages generate diversity at a much faster rate than random point mutation and enable bacteria to quickly adapt and repel infection. Diversity-generating retroelements (DGRs) and phase variation mechanisms enhance the generic (innate) immune response against bacteriophages. On the other hand, the integration of small bacteriophage sequences in CRISPR loci provide bacteria with a virus-specific and sequence-specific adaptive immune response. Therefore, although using different molecular mechanisms, both prokaryotes and higher organisms rely on programmed genetic variation to increase genetic diversity and fight rapidly evolving infectious agents.
Collapse
Affiliation(s)
- David Bikard
- Laboratory of Bacteriology, The Rockefeller University, 10065 New York, NY, USA
| | | |
Collapse
|
17
|
Furushita M, Akagi H, Kaneoka A, Awamura K, Maeda T, Ohta M, Shiba T. Structural variation of Tn10 that carries tetB found in fish farm bacteria. Microbes Environ 2011; 26:84-7. [PMID: 21487208 DOI: 10.1264/jsme2.me10160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Three variants of the composite transposon Tn10 were extracted from transferable plasmids of fish farm bacteria. These variants were identical in insertions with IS10, but differed in another class I transposon insertion and a region of homologous recombination downstream of tetB.
Collapse
Affiliation(s)
- Manabu Furushita
- Department of Food Science and Technology, National Fisheries University, Shimonoseki, 759–6595, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Takahashi H, Shao M, Furuya N, Komano T. The genome sequence of the incompatibility group Iγ plasmid R621a: Evolution of IncI plasmids. Plasmid 2011; 66:112-21. [DOI: 10.1016/j.plasmid.2011.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 06/21/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
|
19
|
Complete genome sequence of the incompatibility group I1 plasmid R64. Plasmid 2010; 64:92-103. [DOI: 10.1016/j.plasmid.2010.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 11/20/2022]
|
20
|
ICEEc2, a new integrative and conjugative element belonging to the pKLC102/PAGI-2 family, identified in Escherichia coli strain BEN374. J Bacteriol 2010; 192:5026-36. [PMID: 20675467 DOI: 10.1128/jb.00609-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity of the Escherichia coli species is in part due to the large number of mobile genetic elements that are exchanged between strains. We report here the identification of a new integrative and conjugative element (ICE) of the pKLC102/PAGI-2 family located downstream of the tRNA gene pheU in the E. coli strain BEN374. Indeed, this new region, which we called ICEEc2, can be transferred by conjugation from strain BEN374 to the E. coli strain C600. We were also able to transfer this region into a Salmonella enterica serovar Typhimurium strain and into a Yersinia pseudotuberculosis strain. This transfer was then followed by the integration of ICEEc2 into the host chromosome downstream of a phe tRNA gene. Our data indicated that this transfer involved a set of three genes encoding DNA mobility enzymes and a type IV pilus encoded by genes present on ICEEc2. Given the wide distribution of members of this family, these mobile genetic elements are likely to play an important role in the diversification of bacteria.
Collapse
|
21
|
The Pseudomonas aeruginosa pathogenicity island PAPI-1 is transferred via a novel type IV pilus. J Bacteriol 2010; 192:3249-58. [PMID: 20363934 DOI: 10.1128/jb.00041-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments, including humans, is in part due to its large and diverse genomic repertoire. The genomes of most strains contain a significant number of large and small genomic islands, including those carrying virulence determinants (pathogenicity islands). The pathogenicity island PAPI-1 of strain PA14 is a cluster of 115 genes, and some have been shown to be responsible for virulence phenotypes in a number of infection models. We have previously demonstrated that PAPI-1 can be transferred to other P. aeruginosa strains following excision from the chromosome of the donor. Here we show that PAPI-1 is transferred into recipient P. aeruginosa by a conjugative mechanism, via a type IV pilus, encoded in PAPI-1 by a 10-gene cluster which is closely related to the genes in the enterobacterial plasmid R64. We also demonstrate that the precursor of the major pilus subunit, PilS2, is processed by the chromosomally encoded prepillin peptidase PilD but not its paralog FppA. Our results suggest that the pathogenicity island PAPI-1 may have evolved by acquisition of a conjugation system but that because of its dependence on an essential chromosomal determinant, its transfer is restricted to P. aeruginosa or other species capable of providing a functional prepilin peptidase.
Collapse
|
22
|
Ham TS, Lee SK, Keasling JD, Arkin AP. Design and construction of a double inversion recombination switch for heritable sequential genetic memory. PLoS One 2008; 3:e2815. [PMID: 18665232 PMCID: PMC2481393 DOI: 10.1371/journal.pone.0002815] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 06/30/2008] [Indexed: 11/18/2022] Open
Abstract
Background Inversion recombination elements present unique opportunities for computing and information encoding in biological systems. They provide distinct binary states that are encoded into the DNA sequence itself, allowing us to overcome limitations posed by other biological memory or logic gate systems. Further, it is in theory possible to create complex sequential logics by careful positioning of recombinase recognition sites in the sequence. Methodology/Principal Findings In this work, we describe the design and synthesis of an inversion switch using the fim and hin inversion recombination systems to create a heritable sequential memory switch. We have integrated the two inversion systems in an overlapping manner, creating a switch that can have multiple states. The switch is capable of transitioning from state to state in a manner analogous to a finite state machine, while encoding the state information into DNA. This switch does not require protein expression to maintain its state, and “remembers” its state even upon cell death. We were able to demonstrate transition into three out of the five possible states showing the feasibility of such a switch. Conclusions/Significance We demonstrate that a heritable memory system that encodes its state into DNA is possible, and that inversion recombination system could be a starting point for more complex memory circuits. Although the circuit did not fully behave as expected, we showed that a multi-state, temporal memory is achievable.
Collapse
Affiliation(s)
- Timothy S Ham
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | | | | | | |
Collapse
|
23
|
Gyohda A, Zhu S, Furuya N, Komano T. Asymmetry of Shufflon-specific Recombination Sites in Plasmid R64 Inhibits Recombination between Direct sfx Sequences. J Biol Chem 2006; 281:20772-20779. [PMID: 16723350 DOI: 10.1074/jbc.m513654200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The shufflon of plasmid R64 consists of four DNA segments separated and flanked by seven sfx recombination sites. Rci-mediated recombination between any inverted sfx sequences causes inversion of the DNA segments independently or in groups. The R64 shufflon selects one of seven pilV genes encoding type IV pilus adhesins, in which the N-terminal region is constant, while the C-terminal regions are variable. The R64 sfx sequences are asymmetric. The sfx central region and right arm sequences are conserved, but left arm sequences are not. Here we constructed a symmetric sfx sequence, in which the sfx left arm sequence was changed to the inverted repeat of the right arm sequence and made artificial shufflon segments carrying symmetric sfx sequences in inverted or direct orientations. The symmetric sfx sequence exhibited the highest inversion frequency in a shufflon segment flanked by two inverted sfx sequences. Rci-dependent deletion of a shufflon segment flanked by two direct symmetric sfx sequences was observed, suggesting that asymmetry of R64 sfx sequences inhibits recombination between direct sfx sequences. In addition, intermolecular recombination between symmetric sfx sequences was also observed. The extra C-terminal domain of Rci was shown to be essential for inversion of the R64 shufflon using asymmetric sfx sequences but not essential for recombination using symmetric sfx sequences, suggesting that the Rci C-terminal segment helps the binding of Rci to asymmetric sfx sequences. Rci protein lacking the C-terminal domain bound to both arms of symmetric sfx sequence but only to the right arm of asymmetric sfx sequence.
Collapse
Affiliation(s)
- Atsuko Gyohda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Shujuan Zhu
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Nobuhisa Furuya
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Teruya Komano
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
24
|
Ishiwa A, Komano T. PilV Adhesins of Plasmid R64 Thin Pili Specifically Bind to the Lipopolysaccharides of Recipient Cells. J Mol Biol 2004; 343:615-25. [PMID: 15465049 DOI: 10.1016/j.jmb.2004.08.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/11/2004] [Accepted: 08/13/2004] [Indexed: 10/26/2022]
Abstract
IncI1 plasmid R64 encodes type IV pili or thin pili, which contain PilV adhesins. The C-terminal segments of PilV adhesins are exchanged into seven types by shufflon multiple DNA inversion. PilV adhesins determine recipient specificity in R64 liquid matings through the recognition of lipopolysaccharides (LPSs) on the surface of recipient cells. Using various waa mutants of Escherichia coli R1 as recipient cells, liquid mating experiments suggest that PilVA adhesin recognizes the GlcNAc(beta1-3)Glc moiety of E.coli R1 type LPS. The direct binding of PilV adhesins to LPSs of the recipient bacterial strains was demonstrated using filter overlay assays. The specificity of PilV-LPS binding is in close agreement with the recipient specificity determined by R64 liquid matings. The C-terminal segments of PilVA, PilVC, PilVC', and PilVD' adhesins were expressed as fusion proteins with glutathione-S-transferase (GST). GST-A, GST-C, GST-C', and GST-D' proteins bound to their respective LPSs with the specificities identical with those determined in the R64 liquid matings, indicating that the C-terminal segments of PilV adhesins bind to specific moieties of LPS molecules.
Collapse
Affiliation(s)
- Akiko Ishiwa
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
25
|
Sun Y, Polishchuk EA, Radoja U, Cullen WR. Identification and quantification of arsC genes in environmental samples by using real-time PCR. J Microbiol Methods 2004; 58:335-49. [PMID: 15279938 DOI: 10.1016/j.mimet.2004.04.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 04/24/2004] [Accepted: 04/26/2004] [Indexed: 11/24/2022]
Abstract
The arsC gene is responsible for the first step in arsenate biotransformation encoding the enzyme arsenate reductase. The quantitative real-time PCR method was developed to quantify the abundance of the arsC genes in environmental samples contaminated with arsenic. Two sets of primers that showed high specificity for the target arsC gene were designed based on consensus sequences from 13 bacterial species. The arsC gene was used as an external standard instead of total DNA in the calibration curve for real-time PCR, which was linear over six orders of magnitude and the detection limit was estimated to be about three copies of the gene. Soil samples from arsenic contaminated sites were screened for arsC genes by using PCR and showed the presence of this gene. The copy numbers of the gene ranging from 0.88 x 10(4) to 1.56 x 10(5) per ng total DNA were found in eight arsenic contaminated samples. Soil samples from a bioreactor containing pulp mill biomass and high concentration of arsenate showed a tenfold higher count of arsC gene copies than soil samples collected underground from an arsenic-rich gold mine.
Collapse
Affiliation(s)
- Yongmei Sun
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | | | | | | |
Collapse
|
26
|
Froehlich B, Holtzapple E, Read TD, Scott JR. Horizontal transfer of CS1 pilin genes of enterotoxigenic Escherichia coli. J Bacteriol 2004; 186:3230-7. [PMID: 15126486 PMCID: PMC400639 DOI: 10.1128/jb.186.10.3230-3237.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CS1 is one of a limited number of serologically distinct pili found in enterotoxigenic Escherichia coli (ETEC) strains associated with disease in people. The genes for the CS1 pilus are on a large plasmid, pCoo. We show that pCoo is not self-transmissible, although our sequence determination for part of pCoo shows regions almost identical to those in the conjugative drug resistance plasmid R64. When we introduced R64 into a strain containing pCoo, we found that pCoo was transferred to a recipient strain in mating. Most of the transconjugant pCoo plasmids result from recombination with R64, leading to acquisition of functional copies of all of the R64 transfer genes. Temporary coresidence of the drug resistance plasmid R64 with pCoo leads to a permanent change in pCoo so that it is now self-transmissible. We conclude that when R64-like plasmids are transmitted to an ETEC strain containing pCoo, their recombination may allow for spread of the pCoo plasmid to other enteric bacteria.
Collapse
Affiliation(s)
- Barbara Froehlich
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
27
|
Hurst MRH, O'Callaghan M, Glare TR. Peripheral sequences of the Serratia entomophila pADAP virulence-associated region. Plasmid 2004; 50:213-29. [PMID: 14597010 DOI: 10.1016/s0147-619x(03)00062-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Some strains of the Enterobacteriaceae Serratia entomophila and Serratia proteamaculans cause amber disease in the grass grub, Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. The genes responsible for this disease reside on a large, 155-kb plasmid designated amber disease-associated plasmid (pADAP). Herein, we report the DNA sequencing of approximately 50 kb upstream and 10 kb downstream of the virulence-encoding region. Based on similarity with proteins in the current databases, and potential ribosome-binding sites, 63 potential ORFs were determined. Eleven of these ORFs belong to a type IV pilus cluster (pilL-V) and a further eight have similarities to the translated products of the plasmid transfer traH-N genes of the plasmid R64. In addition, a degenerate 785-nt direct repeat flanks a 44.7-kb region with the potential to encode three Bacillus subtilis Yee-type proteins, a fimbrial gene cluster, the sep virulence-associated genes and several remnant IS elements.
Collapse
Affiliation(s)
- Mark R H Hurst
- Biocontrol and Biosecurity, AgResearch, PO Box 60, Lincoln, New Zealand.
| | | | | |
Collapse
|
28
|
Ishiwa A, Komano T. Thin pilus PilV adhesins of plasmid R64 recognize specific structures of the lipopolysaccharide molecules of recipient cells. J Bacteriol 2003; 185:5192-9. [PMID: 12923092 PMCID: PMC181018 DOI: 10.1128/jb.185.17.5192-5199.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IncI1 plasmid R64 encodes a type IV pilus called a thin pilus, which includes PilV adhesins. Seven different sequences for the C-terminal segments of PilV adhesins can be produced by shufflon DNA rearrangement. The expression of the seven PilV adhesins determines the recipient specificity in liquid matings of plasmid R64. Salmonella enterica serovar Typhimurium LT2 was recognized by the PilVA' and PilVB' adhesins, while Escherichia coli K-12 was recognized by the PilVA', PilVC, and PilVC' adhesins. Lipopolysaccharide (LPS) on the surfaces of recipient cells was previously shown to be the specific receptor for the seven PilV adhesins. To identify the specific receptor structures of LPS for various PilV adhesins, R64 liquid matings were carried out with recipient cells consisting of various S. enterica serovar Typhimurium LT2 and E. coli K-12 waa mutants and their derivatives carrying various waa genes of different origins. From the mating experiments, including inhibition experiments, we propose that the GlcNAc(alpha1-2)Glc and Glc(alpha1-2)Gal structures of the LPS core of S. enterica serovar Typhimurium LT2 function as receptors for the PilVB' and PilVC' adhesins, respectively, while the PilVC' receptor in the wild-type LT2 LPS core may be masked. We further propose that the GlcNAc(beta1-7)Hep and Glc(alpha1-2)Glc structures of the LPS core of E. coli K-12 function as receptors for the PilVC and PilVC' adhesins, respectively.
Collapse
Affiliation(s)
- Akiko Ishiwa
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
29
|
Tojo N, Komano T. The IntP C-terminal segment is not required for excision of bacteriophage Mx8 from the Myxococcus xanthus chromosome. J Bacteriol 2003; 185:2187-93. [PMID: 12644488 PMCID: PMC151502 DOI: 10.1128/jb.185.7.2187-2193.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During lysogenization of myxophage Mx8, phage DNA can be integrated into the attB site of the Myxococcus xanthus chromosome through site-specific recombination. We previously demonstrated that the Mx8 attP site is located within the coding sequence of the Mx8 intP gene. Hence, the integration of Mx8 into the M. xanthus chromosome results in the conversion of the 112-amino-acid C-terminal segment of the IntP protein into a 13-amino-acid C-terminal segment of a new protein, IntR. To examine whether IntR is active for Mx8 excision, we have constructed a series of plasmids carrying various lengths of the intP-attP or intR-attR regions as well as the lacZ gene. The integrated Mx8 was excised at a high frequency, indicating that IntR is active for the excision. For Mx8 excision, a gene designated xis was shown to be required in addition to intR.
Collapse
Affiliation(s)
- Nobuki Tojo
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji-shi, Tokyo 192-0397, Japan
| | | |
Collapse
|
30
|
Collyn F, Léty MA, Nair S, Escuyer V, Ben Younes A, Simonet M, Marceau M. Yersinia pseudotuberculosis harbors a type IV pilus gene cluster that contributes to pathogenicity. Infect Immun 2002; 70:6196-205. [PMID: 12379698 PMCID: PMC130390 DOI: 10.1128/iai.70.11.6196-6205.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fimbriae have been shown to play an essential role in the adhesion of pathogenic gram-negative bacteria to host cells. In the enteroinvasive bacterium Yersinia pseudotuberculosis, we characterized a previously unknown 11-kb chromosomal locus involved in the synthesis of type IV pili. The locus consists of 11 open reading frames forming a polycistronic unit and encoding putative Pil proteins, PilLMNOPQRSUVW. When introduced into Escherichia coli, the Y. pseudotuberculosis operon reconstituted bundles of filaments at a pole on the bacterial surface, demonstrating that the pil locus was functional in a heterogenous genetic background. Environmental factors regulated transcription of the Y. pseudotuberculosis operon; in particular, temperature, osmolarity, and oxygen tension were critical cues. Deletion of the type IV pilus gene cluster was associated with a reduction of Y. pseudotuberculosis pathogenicity for mice infected orally. Forty-one percent of Y. pseudotuberculosis strains isolated from human or animal sources harbored the type IV pilus locus. Therefore, the pil locus of Y. pseudotuberculosis might constitute an "adaptation island," permitting the microorganism to colonize a vast reservoir.
Collapse
Affiliation(s)
- François Collyn
- Equipe Mixte Inserm (E9919)-Université (JE2225)-Institut Pasteur de Lille, Institut de Biologie de Lille, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Gyohda A, Furuya N, Kogure N, Komano T. Sequence-specific and non-specific binding of the Rci protein to the asymmetric recombination sites of the R64 shufflon. J Mol Biol 2002; 318:975-83. [PMID: 12054795 DOI: 10.1016/s0022-2836(02)00195-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific cleavages within the shufflon-specific recombination site of plasmid R64 were detected by primer extension when a DNA fragment carrying the recombination site was incubated with the shufflon-specific Rci recombinase. Rci-dependent cleavages occurred in the form of a 5' protruding 7 bp staggered cut, suggesting that DNA cleavage and rejoining in the shufflon system take place at these positions. As a result, shufflon crossover sites were designated as sfx sequences consisting of a central 7 bp spacer sequence, and left and right 12 bp arms. R64 sfx sequences are unique among various site-specific recombination sites, since only the spacer sequence and the right arm sequence are conserved among various R64 sfxs, whereas the left arm sequence is not conserved and is not related to the right arm sequence. From nuclease protection analyses, Rci protein was shown to bind to entire R64 and artificial sfx sequences, suggesting that one Rci molecule binds to the conserved sfx right arm in a sequence-specific manner and the second to the sfx left arm in a non-specific manner. The sfx left arm sequences as well as the right arm sequences were shown to determine affinity to Rci and subsequently inversion frequency. Asymmetry of the sfx sequence may be the reason why Rci protein acts only on the inverted sfx sequences.
Collapse
Affiliation(s)
- Atsuko Gyohda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, 192-0397, Japan
| | | | | | | |
Collapse
|
32
|
Abstract
The shufflon, a multiple DNA inversion system in plasmid R64, consists of four invertible DNA segments which are separated and flanked by seven 19-bp repeat sequences. The product of a site-specific recombinase gene, rci, promotes site-specific recombination between any two of the inverted 19-bp repeat sequences of the shufflon. To analyze the molecular mechanism of this recombination reaction, Rci protein was overproduced and purified. The purified Rci protein promoted the in vitro recombination reaction between the inverted 19-bp repeats of supercoiled DNA of a plasmid carrying segment A of the R64 shufflon. The recombination reaction was enhanced by the bacterial host factor HU. Gel electrophoretic analysis indicated that the Rci protein specifically binds to the DNA segments carrying the 19-bp sequences. The binding affinity of the Rci protein to the four shufflon segments as well as four synthetic 19-bp sequences differed greatly: among the four 19-bp repeat sequences, the repeat-a and -d sequences displayed higher affinity to Rci protein. These results suggest that the differences in the affinity of Rci protein for the 19-bp repeat sequences determine the inversion frequencies of the four segments.
Collapse
Affiliation(s)
- A Gyohda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
33
|
Abstract
Conservative site-specific recombination functions to create biological diversity in prokaryotes. Simple site-specific recombination systems consist of two recombination sites and a recombinase gene. The plasmid R64 shufflon contains seven recombination sites, which flank and separate four DNA segments. Site-specific recombinations mediated by the product of the rci gene between any two inverted recombination sites result in the inversion of four DNA segments independently or in groups. The shufflon functions as a biological switch to select one of seven C-terminal segments of the PilV proteins, which is a minor component of R64 thin pilus. The shufflon determines the recipient specificity in liquid matings of plasmid R64. Other multiple inversion systems as well as integrons, which are multiple insertion systems, are also described in this review.
Collapse
Affiliation(s)
- T Komano
- Department of Biology, Tokyo Metropolitan University, Japan.
| |
Collapse
|
34
|
Komano T, Yoshida T, Narahara K, Furuya N. The transfer region of IncI1 plasmid R64: similarities between R64 tra and legionella icm/dot genes. Mol Microbiol 2000; 35:1348-59. [PMID: 10760136 DOI: 10.1046/j.1365-2958.2000.01769.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The entire nucleotide sequence of the transfer region of IncI1 plasmid R64 was determined together with previously reported sequences. Twenty-two transfer genes, traE-Y and nuc, were newly identified in the present study. The protein products of 17 genes were detected by maxicell experiments or by the T7 RNA polymerase expression system. Mutagenesis experiments indicated that 16 genes were indispensable for R64 transfer both in liquid and on surfaces. In summary, the R64 transfer region located within an approximately 54 kb DNA segment was shown to encode the most complex transfer system so far studied. It contains at least 49 genes and may produce 58 different proteins as a result of shufflon DNA rearrangement and overlapping genes. Among the 49 genes, 23 tra, trb and nik genes have been shown to be indispensable for R64 conjugal transfer in liquid and on surfaces. Twelve additional pil genes are required only for liquid matings. The amino acid sequences of 10 R64 tra/trb products share similarity with those of the icm/dot products of Legionella pneumophila that are responsible for its virulence, suggesting that the R64 transfer and L. pneumophila icm/dot systems have evolved from a common ancestral genetic system.
Collapse
Affiliation(s)
- T Komano
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji-shi, Tokyo 192-0397, Japan.
| | | | | | | |
Collapse
|
35
|
Sakai D, Komano T. The pilL and pilN genes of IncI1 plasmids R64 and ColIb-P9 encode outer membrane lipoproteins responsible for thin pilus biogenesis. Plasmid 2000; 43:149-52. [PMID: 10686134 DOI: 10.1006/plas.1999.1434] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The predicted amino acid sequences of the pilL and pilN genes, required for the thin pilus formation of IncI1 plasmids R64 and ColIb-P9, contain N-terminal lipoprotein signal peptide motifs. The pilL and pilN products were labeled with [(3)H]palmitic acid as 38- and 57-kDa proteins, respectively, indicating that they are lipoproteins. Both PilL and PilN were localized to the outer membrane.
Collapse
Affiliation(s)
- D Sakai
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | | |
Collapse
|
36
|
Abstract
The IncI1 plasmid R64 produces two kinds of sex pili: a thin pilus and a thick pilus. The thin pilus, which belongs to the type IV family, is required only for liquid matings. Fourteen genes, pilI to -V, were found in the DNA region responsible for the biogenesis of the R64 thin pilus (S.-R. Kim and T. Komano, J. Bacteriol. 179:3594-3603, 1997). In this study, we introduced frameshift mutations into each of the 14 pil genes to test their requirement for R64 thin pilus biogenesis. From the analyses of extracellular secretion of thin pili and transfer frequency in liquid matings, we found that 12 genes, pilK to -V, are required for the formation of the thin pilus. Complementation experiments excluded the possible polar effects of each mutation on the expression of downstream genes. Two genes, traBC, were previously shown to be required for the expression of the pil genes. In addition, the rci gene is responsible for modulating the structure and function of the R64 thin pilus via the DNA rearrangement of the shufflon. Altogether, 15 genes, traBC, pilK through pilV, and rci, are essential for R64 thin pilus formation and function.
Collapse
Affiliation(s)
- T Yoshida
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
37
|
Horiuchi T, Komano T. Mutational analysis of plasmid R64 thin pilus prepilin: the entire prepilin sequence is required for processing by type IV prepilin peptidase. J Bacteriol 1998; 180:4613-20. [PMID: 9721303 PMCID: PMC107475 DOI: 10.1128/jb.180.17.4613-4620.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The thin pili of IncI1 plasmid R64, which is required for conjugation in liquid media, belong to the type IV pilus family. They consist of a major subunit, the pilS product, and a minor component, one of the seven pilV products. The pilS product is first synthesized as a 22-kDa prepilin, processed to a 19-kDa mature pilin by the function of the pilU product, and then secreted outside the cell. The mature pilin is assembled to form a thin pilus with the pilV product. To reveal the relationship between the structure and function of the pilS product, 27 missense mutations, three N-terminal deletions, and two C-terminal deletions were constructed by PCR and site-directed mutagenesis. The characteristics of 32 mutant pilS products were analyzed. Four pilS mutant phenotype classes were identified. The products of 10 class I mutants were not processed by prepilin peptidase; the extracellular secretion of the products of two class II mutants was inhibited; from 11 class III mutants, thin pili with reduced activities in liquid mating were formed; from 9 class IV mutants, thin pili with mating activity similar to that of the wild-type pilS gene were formed. The point mutations of the class I mutants were distributed throughout the prepilin sequence, suggesting that processing of the pilS product requires the entire prepilin sequence.
Collapse
Affiliation(s)
- T Horiuchi
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
38
|
Yoshida T, Furuya N, Ishikura M, Isobe T, Haino-Fukushima K, Ogawa T, Komano T. Purification and characterization of thin pili of IncI1 plasmids ColIb-P9 and R64: formation of PilV-specific cell aggregates by type IV pili. J Bacteriol 1998; 180:2842-8. [PMID: 9603870 PMCID: PMC107247 DOI: 10.1128/jb.180.11.2842-2848.1998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thin pili of the closely related IncI1 plasmids ColIb-P9 and R64 are required only for liquid mating and belong to the type IV family of pili. They were sedimented by ultracentrifugation from culture medium in which Escherichia coli cells harboring ColIb-P9- or R64-derived plasmids had been grown, and then the pili were purified by CsCl density gradient centrifugation. In negatively stained thin pilus samples, long rods with a diameter of 6 nm, characteristic of type IV pili, were observed under an electron microscope. Gel electrophoretic analysis of purified ColIb-P9 thin pili indicated that thin pili consist of two kinds of proteins, pilin and the PilV protein. Pilin was demonstrated to be the product of the pilS gene. Pilin was first synthesized as a 22-kDa prepilin from the pilS gene and subsequently processed to a 19-kDa protein by the function of the pilU product. The N-terminal amino group of the processed protein was shown to be modified. The C-terminal segments of the pilV products vary among six or seven different types, as a result of shufflon DNA rearrangements of the pilV gene. These PilV proteins were revealed to comprise a minor component of thin pili. Formation of PilV-specific cell aggregates by ColIb-P9 and R64 thin pili was demonstrated and may play an important role in liquid mating.
Collapse
Affiliation(s)
- T Yoshida
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhang XL, Morris C, Hackett J. Molecular cloning, nucleotide sequence, and function of a site-specific recombinase encoded in the major 'pathogenicity island' of Salmonella typhi. Gene 1997; 202:139-46. [PMID: 9427557 DOI: 10.1016/s0378-1119(97)00466-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The genome of the typhoid fever bacterium, Salmonella typhi, contains at least three large insertions ('pathogenicity islands') relative to the chromosome of Salmonella typhimurium (which is normally non-invasive for humans) [Liu, S.-L., Sanderson, K.E., 1995. Rearrangements in the genome of the bacterium Salmonella typhi. Proc. Natl. Acad. Sci. USA 92, 1018-1022]. DNA encoding a site-specific recombinase (the rci gene) and an adjacent putative pilus-tip adhesin protein (the pilV gene) was located (near min 94) in the major 'pathogenicity island' of the S. typhi chromosome, cloned, and sequenced. It was shown that the Rci protein inverted a DNA segment of 490 bp, between two 19-bp inverted repeat elements, to place either of two possible C-termini on a constant N-terminal region of the PilV protein. Both possible PilV proteins were seen when the alternative pilV genes were transcribed from the T7 promoter and translated in vivo. Both the rci and the N-terminal region of the pilV gene show a high degree of homology to genes encoded by the IncI2 plasmid R721 and the IncI1 plasmid R64. One of the possible pilV C-termini (in the pilV1 gene) is highly homologous to shufflon C (one of the possible PilV C-termini) of R64; the other possible pilV C-terminus (in the pilV2 gene) shows no homology to any published shufflon. In the R64 plasmid, the PilV proteins are pilus-tip adhesins; different PilV proteins recognize different potential recipient bacterial strains as a prelude to mating in liquid culture [Komano, T., Kim, S.-R., Yoshida, T., Nisioka, T., 1994. DNA rearrangement of the shufflon determines recipient specificity in liquid mating of IncI1 plasmid R64. J. Mol. Biol. 243, 6-9]. It is likely that S. typhi encodes pili bearing two alternative PilV proteins as tip adhesins, one of which recognizes, specifically, a membrane component of Escherichia coli K-12, while the specificity of the other PilV protein is not known.
Collapse
Affiliation(s)
- X L Zhang
- Department of Biochemistry, Hong Kong University of Science and Technology, Kowloon, People's Republic of China.
| | | | | |
Collapse
|
40
|
Abstract
The entire nucleotide sequence of the pil region of the IncI1 plasmid R64 was determined. Analysis of the sequence indicated that 14 genes, designated pilI through pilV, are involved in the formation of the R64 thin pilus. Protein products of eight pil genes were identified by the maxicell procedure. The pilN product was shown to be a lipoprotein by an experiment using globomycin. A computer search revealed that several R64 pil genes have amino acid sequence homology with proteins involved in type IV pilus biogenesis, protein secretion, and transformation competence. The pilS and pilV products were suggested to be prepilins for the R64 thin pilus, and the pilU product appears to be a prepilin peptidase. These results suggest that the R64 thin pilus belongs to the type IV family, specifically group IVB, of pili. The requirement of the pilR and pilU genes for R64 liquid mating was demonstrated by constructing their frameshift mutations. Comparison of three type IVB pilus biogenesis systems, the pil system of R64, the toxin-coregulated pilus (tcp) system of Vibrio cholerae, and the bundle-forming pilus (bfp) system of enteropathogenic Escherichia coli, suggests that they have evolved from a common ancestral gene system.
Collapse
Affiliation(s)
- S R Kim
- Department of Biology, Tokyo Metropolitan University, Hachioji, Japan
| | | |
Collapse
|
41
|
Abstract
The shufflon, a multiple DNA inversion system in the plasmid R64, consists of four DNA segments flanked and separated by seven 19-bp repeat sequences. Site-specific recombinations mediated by the rci product occur between each inverted repeat sequence, resulting in inversions of the four segments independently or in groups. The seven 19-bp repeat sequences are classified into four types (repeat-a, -b, -c, and -d), according to their 3-bp variable sequences. We individually cloned A, B, and C segments of the R64 shufflon and determined the in vivo inversion frequency of each segment. The inversion frequencies of three segments differed greatly. The inversion frequency declined in the following order: segments A, B, and C. Synthetic 19-mer oligonucleotides corresponding to both strands of repeat-a, -b, -c, and -d sequences were inserted into appropriate sites of pBR322. The rci-mediated DNA inversion occurred between two synthetic inverted repeats, indicating that the 19-bp inverted repeat sequences are the sole elements required in cis for the shufflon system. The inversion frequencies of DNA segments flanked by various sequences indicate that the four types of repeat sequences determine the inversion frequency of the four DNA segments of the R64 shufflon. Deletion of a DNA segment flanked by direct repeat sequences could not be detected.
Collapse
Affiliation(s)
- A Gyohda
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | |
Collapse
|
42
|
Narahara K, Rahman E, Furuya N, Komano T. Requirement of a limited segment of the sog gene for plasmid R64 conjugation. Plasmid 1997; 38:1-11. [PMID: 9281491 DOI: 10.1006/plas.1997.1297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The sog gene of the IncI1 plasmid R64 was sequenced and characterized. The sog gene was shown to express two acidic proteins, SogL and SogS, with 1255 and 844 amino acid residues, respectively. The SogS protein was expressed by translational reinitiation within the SogL reading frame. Analysis of dnaG-suppression activity using the Escherichia coli dnaG strain indicated that the domain for this activity was located within the N-terminal one-third segment of the SogL protein. A Deltasog mutation was constructed by replacing most of the sog coding sequence with a DNA fragment encoding a tetracycline resistance gene. Introduction of the Deltasog mutation into an R64 derivative resulted in approximately a 50-fold reduction in transfer frequency. It was observed that only a limited portion of the SogL or SogS protein corresponding to an internal 0.94-kb EcoRV-SnaBI segment of the sog gene was required for the conjugal transfer of R64.
Collapse
Affiliation(s)
- K Narahara
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Tokyo, 192-03, Japan
| | | | | | | |
Collapse
|
43
|
Dworkin J, Blaser MJ. Generation of Campylobacter fetus S-layer protein diversity utilizes a single promoter on an invertible DNA segment. Mol Microbiol 1996; 19:1241-53. [PMID: 8730866 DOI: 10.1111/j.1365-2958.1996.tb02469.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Wild-type strains of Campylobacter fetus contain a monomolecular array of surface layer proteins (SLPs) and vary the antigenicity of the predominant SLP expressed. Reciprocal recombination events among the eight genomic SLP gene cassettes, which encode 97- to 149 kDa SLPs, permit this variation. To explore whether SLP expression utilizes a single promoter, we created mutant bacterial strains using insertional mutagenesis by rescue of a marker from plasmids. Experimental analysis of the mutants created clearly indicates that SLP expression solely utilizes the single sapA promoter, and that for variation C. fetus uses a mechanism of DNA rearrangement involving inversion of a 6.2 kb segment of DNA containing this promoter. This DNA inversion positions the sapA promoter immediately upstream of one of two oppositely oriented SLP gene cassettes, leading to its expression. Additionally, a second mechanism of DNA rearrangement occurs to replace at least one of the two SLP gene cassettes bracketing the invertible element. As previously reported promoter inversions in prokaryotes, yeasts and viruses involve alternate expression of at most two structural genes, the ability of C. fetus to use this phenomenon to express one of multiple cassettes is novel.
Collapse
Affiliation(s)
- J Dworkin
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
44
|
Furuya N, Komano T. Nucleotide sequence and characterization of the trbABC region of the IncI1 Plasmid R64: existence of the pnd gene for plasmid maintenance within the transfer region. J Bacteriol 1996; 178:1491-7. [PMID: 8626273 PMCID: PMC177830 DOI: 10.1128/jb.178.6.1491-1497.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A 6.72-kb DNA sequence between the exc gene and the oriT operon within the transfer region of IncI1 plasmid R64 was sequenced and characterized. Three novel transfer genes, trbA, trbB, and trbC, were found in this region, along with the pnd gene responsible for plasmid maintenance. The trbABC genes appear to be organized into an operon located adjacent to the oriT operon in the opposite orientation. The trbA and trbC genes were shown to be indispensable for R64 plasmid transfer, while residual transfer activity was detected in the case of R64 derivatives carrying the trbB++ deletion mutation. The T7 RNA polymerase-promoter system revealed that the trbB gene produced a 43-kDa protein and the trbC gene produced an 85-kDa protein. The nucleotide sequence of the pnd gene is nearly identical to that of plasmid R483, indicating a function in plasmid maintenance. The plasmid stability test indicated that the mini-R64 derivatives with the pnd gene are more stably maintained in Escherichia coli cells under nonselective conditions than the mini-R64 derivatives without the pnd gene. It was also shown that the R64 transfer system itself is involved in plasmid stability to a certain degree. Deletion of the pnd gene from the tra+ mini-R64 derivative did not affect transfer frequency. DNA segments between the exc and trbA genes for IncI1 plasmids R64, Colb-P9, and R144 were compared in terms of their physical and genetic organization.
Collapse
Affiliation(s)
- N Furuya
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Japan
| | | |
Collapse
|
45
|
Komano T, Kim SR, Yoshida T. Mating variation by DNA inversions of shufflon in plasmid R64. ADVANCES IN BIOPHYSICS 1995; 31:181-93. [PMID: 7625273 DOI: 10.1016/0065-227x(95)99391-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene organization of the 54-kb transfer region of IncI1 plasmid R64 was deduced from the DNA sequence. Forty-eight ORFs were found in this region. A unique DNA rearrangement designated shufflon is located at the downstream region of an operon responsible for synthesis of thin pilus. The shufflon of R64 consists of four DNA segments, designated as A, B, C, and D, which are flanked and separated by seven 19-bp repeat sequences. Site-specific recombination mediated by the product of the rci gene between any two inverted repeats results in a complex DNA rearrangement. An analysis of open reading frames revealed that the shufflon is a biological switch to select one of seven C-terminal segments of the pilV genes. The products of pilV genes were shown to be components of thin pilus which was required for liquid mating. Seven R64 derivatives where the pilV genes were fixed in the seven C-terminal segments were constructed and their transfer frequencies in liquid mating were measured using various bacterial strains as recipients. Transfer frequencies of R64 in liquid mating strongly depended on the combination of C-terminal segments of the pilV genes in donor cells and bacterial strains of recipient cells, suggesting that the shufflon determines the recipient specificity in liquid mating of plasmid R64.
Collapse
Affiliation(s)
- T Komano
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | |
Collapse
|
46
|
Kim SR, Funayama N, Komano T. Nucleotide sequence and characterization of the traABCD region of IncI1 plasmid R64. J Bacteriol 1993; 175:5035-42. [PMID: 8349545 PMCID: PMC204969 DOI: 10.1128/jb.175.16.5035-5042.1993] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A 3.6-kb BglII-SmaI segment of the transfer region of IncI1 plasmid R64drd-11 was sequenced and characterized. Analysis of the DNA sequence indicated the presence of four genes, traA, traB, traC, and traD, in this region. The expression of the traB, traC, and traD genes was examined by maxicell experiments and that of the traA gene was examined by constructing the traA-lacZ fusion gene. The introduction of frameshift mutations into the four genes indicated that the traB and traC genes are essential for conjugal transfer in liquid medium and on a solid surface. Both were also required for the formation of the thin pilus, which is the receptor for phages I alpha and PR64FS. Upstream of the traA gene, a promoter sequence for sigma 70 of E. coli RNA polymerase was identified by S1 nuclease mapping and primer extension experiments.
Collapse
Affiliation(s)
- S R Kim
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | |
Collapse
|
47
|
Abstract
The shufflon is a DNA region that undergoes complex rearrangement mediated by the product of a putative site-specific recombinase gene, rci. The DNA sequences of the shufflon region and the rci gene of IncI2 plasmid R721 were determined. The R721 shufflon consists of three invertible DNA segments that are homologous to the shufflon segments found in IncI1 plasmid R64. Structural analysis of open reading frames indicated that the R721 shufflon possibly functions as a biological switch for selecting one of the six pilV genes in which the N-terminal region is constant and the C-terminal region is variable. The R721 rci gene was shown to encode a basic protein of 374 amino acid residues.
Collapse
Affiliation(s)
- S R Kim
- Department of Biology, Tokyo Metropolitan University, Japan
| | | |
Collapse
|
48
|
Sandmeier H, Iida S, Hübner P, Hiestand-Nauer R, Arber W. Gene organization in the multiple DNA inversion region min of plasmid p15B of E.coli 15T-: assemblage of a variable gene. Nucleic Acids Res 1991; 19:5831-8. [PMID: 1945872 PMCID: PMC329034 DOI: 10.1093/nar/19.21.5831] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The bacteriophage P1-related plasmid p15B of E. coli 15T- contains a 3.5 kb long region which frequently undergoes complex rearrangements by DNA inversion. Site-specific recombination mediated by the Min DNA invertase occurs at six crossover sites and it eventually results in a population of 240 isomeric configurations of this region. We have determined 8.3-kb sequences of the invertible DNA and its flanking regions. The result explains how DNA inversion fuses variable 3' parts to a constant 5' part, thereby alternatively assembling one out of six different open reading frames (ORF). The resulting variable gene has a coding capacity of between 739 and 762 amino acids. A large portion of its constant part is composed of repeated sequences. The p15B sequences in front of the variable fusion gene encode a small ORF and a phage-specific late promoter and are highly homologous to P1 DNA. Adjacent to the DNA invertase gene min, we have found a truncated 5' region of a DNA invertase gene termed psi cin which is highly homologous to the phage P1 cin gene. Its recombinational enhancer segment is inactive, but it can be activated by the substitution of two nucleotides.
Collapse
Affiliation(s)
- H Sandmeier
- Abteilung Mikrobiologie, Universität Basel, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Furuya N, Komano T. Determination of the nick site at oriT of IncI1 plasmid R64: global similarity of oriT structures of IncI1 and IncP plasmids. J Bacteriol 1991; 173:6612-7. [PMID: 1917882 PMCID: PMC208999 DOI: 10.1128/jb.173.20.6612-6617.1991] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The nick site at the origin of transfer, oriT, of IncI1 plasmid R64 was determined. A site-specific and strand-specific cleavage of the phosphodiester bond was introduced during relaxation of the oriT plasmid DNA. Cleavage occurred between 2'-deoxyguanosine and thymidine residues, within the 44-bp oriT core sequence. The nick site was located 8 bp from the 17-bp repeat. A protein appeared to be associated with the cleaved DNA strand at the oriT site following relaxation. This protein was observed to bind to the 5' end of the cleaved strand, since the 5'-phosphate of the cleaved strand was resistant to the phosphate exchange reaction by polynucleotide kinase. In contrast, the 3' end of the cleaved strand appeared free, since it was susceptible to primer extension by DNA polymerase I. The global similarity of the oriT structures of IncI1 and IncP plasmids is discussed.
Collapse
Affiliation(s)
- N Furuya
- Department of Biology, Tokyo Metropolitan University, Japan
| | | |
Collapse
|
50
|
Abstract
Recent progress in studies on the bacterial chromosome is summarized. Although the greatest amount of information comes from studies on Escherichia coli, reports on studies of many other bacteria are also included. A compilation of the sizes of chromosomal DNAs as determined by pulsed-field electrophoresis is given, as well as a discussion of factors that affect gene dosage, including redundancy of chromosomes on the one hand and inactivation of chromosomes on the other hand. The distinction between a large plasmid and a second chromosome is discussed. Recent information on repeated sequences and chromosomal rearrangements is presented. The growing understanding of limitations on the rearrangements that can be tolerated by bacteria and those that cannot is summarized, and the sensitive region flanking the terminator loci is described. Sources and types of genetic variation in bacteria are listed, from simple single nucleotide mutations to intragenic and intergenic recombinations. A model depicting the dynamics of the evolution and genetic activity of the bacterial chromosome is described which entails acquisition by recombination of clonal segments within the chromosome. The model is consistent with the existence of only a few genetic types of E. coli worldwide. Finally, there is a summary of recent reports on lateral genetic exchange across great taxonomic distances, yet another source of genetic variation and innovation.
Collapse
Affiliation(s)
- S Krawiec
- Department of Biology, Lehigh University, Bethlehem, Pennsylvania 18015
| | | |
Collapse
|