1
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
2
|
Grøsvik K, Tesfahun AN, Muruzábal-Lecumberri I, Haugland GT, Leiros I, Ruoff P, Kvaløy JT, Knævelsrud I, Ånensen H, Alexeeva M, Sato K, Matsuda A, Alseth I, Klungland A, Bjelland S. The Escherichia coli alkA Gene Is Activated to Alleviate Mutagenesis by an Oxidized Deoxynucleoside. Front Microbiol 2020; 11:263. [PMID: 32158436 PMCID: PMC7051996 DOI: 10.3389/fmicb.2020.00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/04/2020] [Indexed: 12/01/2022] Open
Abstract
The cellular methyl donor S-adenosylmethionine (SAM) and other endo/exogenous agents methylate DNA bases non-enzymatically into products interfering with replication and transcription. An important product is 3-methyladenine (m3A), which in Escherichia coli is removed by m3A-DNA glycosylase I (Tag) and II (AlkA). The tag gene is constitutively expressed, while alkA is induced by sub-lethal concentrations of methylating agents. We previously found that AlkA exhibits activity for the reactive oxygen-induced thymine (T) lesion 5-formyluracil (fU) in vitro. Here, we provide evidence for AlkA involvement in the repair of oxidized bases by showing that the adenine (A) ⋅ T → guanine (G) ⋅ cytosine (C) mutation rate increased 10-fold in E. coli wild-type and alkA– cells exposed to 0.1 mM 5-formyl-2′-deoxyuridine (fdU) compared to a wild-type specific reduction of the mutation rate at 0.2 mM fdU, which correlated with alkA gene induction. G⋅C → A⋅T alleviation occurred without alkA induction (at 0.1 mM fdU), correlating with a much higher AlkA efficiency for fU opposite to G than for that to A. The common keto form of fU is the AlkA substrate. Mispairing with G by ionized fU is favored by its exclusion from the AlkA active site.
Collapse
Affiliation(s)
- Kristin Grøsvik
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Almaz Nigatu Tesfahun
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Izaskun Muruzábal-Lecumberri
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | | | - Ingar Leiros
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Peter Ruoff
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Jan Terje Kvaløy
- Department of Mathematics and Physics, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ingeborg Knævelsrud
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Hilde Ånensen
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Marina Alexeeva
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Kousuke Sato
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Svein Bjelland
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
3
|
Vandamme P, Peeters C, De Smet B, Price EP, Sarovich DS, Henry DA, Hird TJ, Zlosnik JEA, Mayo M, Warner J, Baker A, Currie BJ, Carlier A. Comparative Genomics of Burkholderia singularis sp. nov., a Low G+C Content, Free-Living Bacterium That Defies Taxonomic Dissection of the Genus Burkholderia. Front Microbiol 2017; 8:1679. [PMID: 28932212 PMCID: PMC5592201 DOI: 10.3389/fmicb.2017.01679] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/21/2017] [Indexed: 12/03/2022] Open
Abstract
Four Burkholderia pseudomallei-like isolates of human clinical origin were examined by a polyphasic taxonomic approach that included comparative whole genome analyses. The results demonstrated that these isolates represent a rare and unusual, novel Burkholderia species for which we propose the name B. singularis. The type strain is LMG 28154T (=CCUG 65685T). Its genome sequence has an average mol% G+C content of 64.34%, which is considerably lower than that of other Burkholderia species. The reduced G+C content of strain LMG 28154T was characterized by a genome wide AT bias that was not due to reduced GC-biased gene conversion or reductive genome evolution, but might have been caused by an altered DNA base excision repair pathway. B. singularis can be differentiated from other Burkholderia species by multilocus sequence analysis, MALDI-TOF mass spectrometry and a distinctive biochemical profile that includes the absence of nitrate reduction, a mucoid appearance on Columbia sheep blood agar, and a slowly positive oxidase reaction. Comparisons with publicly available whole genome sequences demonstrated that strain TSV85, an Australian water isolate, also represents the same species and therefore, to date, B. singularis has been recovered from human or environmental samples on three continents.
Collapse
Affiliation(s)
- Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent UniversityGhent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent UniversityGhent, Belgium
| | - Birgit De Smet
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent UniversityGhent, Belgium
| | - Erin P. Price
- Global and Tropical Health Division, Menzies School of Health Research, DarwinNT, Australia
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy DownsQLD, Australia
| | - Derek S. Sarovich
- Global and Tropical Health Division, Menzies School of Health Research, DarwinNT, Australia
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy DownsQLD, Australia
| | - Deborah A. Henry
- Centre for Understanding and Preventing Infection in Children, Department of Pediatrics, University of British Columbia, VancouverBC, Canada
| | - Trevor J. Hird
- Centre for Understanding and Preventing Infection in Children, Department of Pediatrics, University of British Columbia, VancouverBC, Canada
| | - James E. A. Zlosnik
- Centre for Understanding and Preventing Infection in Children, Department of Pediatrics, University of British Columbia, VancouverBC, Canada
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, DarwinNT, Australia
| | - Jeffrey Warner
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, TownsvilleQLD, Australia
| | - Anthony Baker
- Tasmanian Institute of Agriculture, University of Tasmania, HobartTAS, Australia
| | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, DarwinNT, Australia
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent UniversityGhent, Belgium
| |
Collapse
|
4
|
Characterization of a conserved interaction between DNA glycosylase and ParA in Mycobacterium smegmatis and M. tuberculosis. PLoS One 2012; 7:e38276. [PMID: 22675536 PMCID: PMC3366916 DOI: 10.1371/journal.pone.0038276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/02/2012] [Indexed: 11/19/2022] Open
Abstract
The chromosome partitioning proteins, ParAB, ensure accurate segregation of genetic materials into daughter cells and most bacterial species contain their homologs. However, little is known about the regulation of ParAB proteins. In this study, we found that 3-methyladenine DNA glycosylase I MsTAG(Ms5082) regulates bacterial growth and cell morphology by directly interacting with MsParA (Ms6939) and inhibiting its ATPase activity in Mycobacterium smegmatis. Using bacterial two-hybrid and pull-down techniques in combination with co-immunoprecipitation assays, we show that MsTAG physically interacts with MsParA both in vitro and in vivo. Expression of MsTAG under conditions of DNA damage induction exhibited similar inhibition of growth as the deletion of the parA gene in M. smegmatis. Further, the effect of MsTAG on mycobacterial growth was found to be independent of its DNA glycosylase activity, and to result instead from direct inhibition of the ATPase activity of MsParA. Co-expression of these two proteins could counteract the growth defect phenotypes observed in strains overexpressing MsTAG alone in response to DNA damage induction. Based on protein co-expression and fluorescent co-localization assays, MsParA and MsTAG were further found to co-localize in mycobacterial cells. In addition, the interaction between the DNA glycosylase and ParA, and the regulation of ParA by the glycosylase were conserved in M. tuberculosis and M. smegmatis. Our findings provide important new insights into the regulatory mechanism of cell growth and division in mycobacteria.
Collapse
|
5
|
Baute J, Depicker A. Base excision repair and its role in maintaining genome stability. Crit Rev Biochem Mol Biol 2008; 43:239-76. [PMID: 18756381 DOI: 10.1080/10409230802309905] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For all living organisms, genome stability is important, but is also under constant threat because various environmental and endogenous damaging agents can modify the structural properties of DNA bases. As a defense, organisms have developed different DNA repair pathways. Base excision repair (BER) is the predominant pathway for coping with a broad range of small lesions resulting from oxidation, alkylation, and deamination, which modify individual bases without large effect on the double helix structure. As, in mammalian cells, this damage is estimated to account daily for 10(4) events per cell, the need for BER pathways is unquestionable. The damage-specific removal is carried out by a considerable group of enzymes, designated as DNA glycosylases. Each DNA glycosylase has its unique specificity and many of them are ubiquitous in microorganisms, mammals, and plants. Here, we review the importance of the BER pathway and we focus on the different roles of DNA glycosylases in various organisms.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Gent, Belgium
| | | |
Collapse
|
6
|
Sidorenko VS, Mechetin GV, Nevinsky GA, Zharkov DO. Ionic strength and magnesium affect the specificity of Escherichia coli and human 8-oxoguanine-DNA glycosylases. FEBS J 2008; 275:3747-60. [PMID: 18557781 DOI: 10.1111/j.1742-4658.2008.06521.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An abundant oxidative lesion, 8-oxo-7,8-dihydroguanine (8-oxoG), often directs the misincorporation of dAMP during replication. To prevent mutations, cells possess an enzymatic system for the removal of 8-oxoG. A key element of this system is 8-oxoguanine-DNA glycosylase (Fpg in bacteria, OGG1 in eukaryotes), which must excise 8-oxoG from 8-oxoG:C pairs but not from 8-oxoG:A. We investigated the influence of various factors, including ionic strength, the presence of Mg(2+) and organic anions, polyamides, crowding agents and two small heterocyclic compounds (biotin and caffeine) on the activity and opposite-base specificity of Escherichia coli Fpg and human OGG1. The activity of both enzymes towards 8-oxoG:A decreased sharply with increasing salt and Mg(2+) concentration, whereas the activity on 8-oxoG:C was much more stable, resulting in higher opposite-base specificity when salt and Mg(2+) were at near-physiological concentrations. This tendency was observed with both Cl(-) and glutamate as the major anions in the reaction mixture. Kinetic and binding parameters for the processing of 8-oxoG:C and 8-oxoG:A by Fpg and OGG1 were determined under several different conditions. Polyamines, crowding agents, biotin and caffeine affected the activity and specificity of Fpg or OGG1 only marginally. We conclude that, in the intracellular environment, the specificity of Fpg and OGG1 for 8-oxoG:C versus 8-oxoG:A is mostly due to high ionic strength and Mg(2+).
Collapse
|
7
|
Rutledge LR, Durst HF, Wetmore SD. Computational comparison of the stacking interactions between the aromatic amino acids and the natural or (cationic) methylated nucleobases. Phys Chem Chem Phys 2008; 10:2801-12. [DOI: 10.1039/b718621e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Dalhus B, Helle IH, Backe PH, Alseth I, Rognes T, Bjørås M, Laerdahl JK. Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats. Nucleic Acids Res 2007; 35:2451-9. [PMID: 17395642 PMCID: PMC1874660 DOI: 10.1093/nar/gkm039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
3-methyladenine DNA glycosylases initiate repair of cytotoxic and promutagenic alkylated bases in DNA. We demonstrate by comparative modelling that Bacillus cereus AlkD belongs to a new, fifth, structural superfamily of DNA glycosylases with an alpha–alpha superhelix fold comprising six HEAT-like repeats. The structure reveals a wide, positively charged groove, including a putative base recognition pocket. This groove appears to be suitable for the accommodation of double-stranded DNA with a flipped-out alkylated base. Site-specific mutagenesis within the recognition pocket identified several residues essential for enzyme activity. The results suggest that the aromatic side chain of a tryptophan residue recognizes electron-deficient alkylated bases through stacking interactions, while an interacting aspartate–arginine pair is essential for removal of the damaged base. A structural model of AlkD bound to DNA with a flipped-out purine moiety gives insight into the catalytic machinery for this new class of DNA glycosylases.
Collapse
Affiliation(s)
- Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience (CMBN) and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, N-0027 Oslo, Norway, Institute of Clinical Biochemistry, University of Oslo, N-0027 Oslo, Norway and Department of Informatics, University of Oslo, PO Box 1080 Blindern, N-0316 Oslo, Norway
| | - Ina Høydal Helle
- Centre for Molecular Biology and Neuroscience (CMBN) and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, N-0027 Oslo, Norway, Institute of Clinical Biochemistry, University of Oslo, N-0027 Oslo, Norway and Department of Informatics, University of Oslo, PO Box 1080 Blindern, N-0316 Oslo, Norway
| | - Paul H. Backe
- Centre for Molecular Biology and Neuroscience (CMBN) and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, N-0027 Oslo, Norway, Institute of Clinical Biochemistry, University of Oslo, N-0027 Oslo, Norway and Department of Informatics, University of Oslo, PO Box 1080 Blindern, N-0316 Oslo, Norway
| | - Ingrun Alseth
- Centre for Molecular Biology and Neuroscience (CMBN) and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, N-0027 Oslo, Norway, Institute of Clinical Biochemistry, University of Oslo, N-0027 Oslo, Norway and Department of Informatics, University of Oslo, PO Box 1080 Blindern, N-0316 Oslo, Norway
| | - Torbjørn Rognes
- Centre for Molecular Biology and Neuroscience (CMBN) and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, N-0027 Oslo, Norway, Institute of Clinical Biochemistry, University of Oslo, N-0027 Oslo, Norway and Department of Informatics, University of Oslo, PO Box 1080 Blindern, N-0316 Oslo, Norway
| | - Magnar Bjørås
- Centre for Molecular Biology and Neuroscience (CMBN) and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, N-0027 Oslo, Norway, Institute of Clinical Biochemistry, University of Oslo, N-0027 Oslo, Norway and Department of Informatics, University of Oslo, PO Box 1080 Blindern, N-0316 Oslo, Norway
| | - Jon K. Laerdahl
- Centre for Molecular Biology and Neuroscience (CMBN) and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, N-0027 Oslo, Norway, Institute of Clinical Biochemistry, University of Oslo, N-0027 Oslo, Norway and Department of Informatics, University of Oslo, PO Box 1080 Blindern, N-0316 Oslo, Norway
- *To whom correspondence should be addressed. +47 22844784+47 22844782
| |
Collapse
|
9
|
Alseth I, Rognes T, Lindbäck T, Solberg I, Robertsen K, Kristiansen KI, Mainieri D, Lillehagen L, Kolstø AB, Bjørås M. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD. Mol Microbiol 2006; 59:1602-9. [PMID: 16468998 PMCID: PMC1413580 DOI: 10.1111/j.1365-2958.2006.05044.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Soil bacteria are heavily exposed to environmental methylating agents such as methylchloride and may have special requirements for repair of alkylation damage on DNA. We have used functional complementation of an Escherichia coli tag alkA mutant to screen for 3-methyladenine DNA glycosylase genes in genomic libraries of the soil bacterium Bacillus cereus. Three genes were recovered: alkC, alkD and alkE. The amino acid sequence of AlkE is homologous to the E. coli AlkA sequence. AlkC and AlkD represent novel proteins without sequence similarity to any protein of known function. However, iterative and indirect sequence similarity searches revealed that AlkC and AlkD are distant homologues of each other within a new protein superfamily that is ubiquitous in the prokaryotic kingdom. Homologues of AlkC and AlkD were also identified in the amoebas Entamoeba histolytica and Dictyostelium discoideum, but no other eukaryotic counterparts of the superfamily were found. The alkC and alkD genes were expressed in E. coli and the proteins were purified to homogeneity. Both proteins were found to be specific for removal of N-alkylated bases, and showed no activity on oxidized or deaminated base lesions in DNA. B. cereus AlkC and AlkD thus define novel families of alkylbase DNA glycosylases within a new protein superfamily.
Collapse
Affiliation(s)
- Ingrun Alseth
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
| | - Torbjørn Rognes
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
- Department of Informatics, University of OsloPO Box 1080 Blindern, N-0316 Oslo, Norway.
| | - Toril Lindbäck
- Department of Food Safety and Infection BiologyNorwegian School of Veterinary Science, N-0033 Oslo, Norway
- Biotechnology Centre of Oslo and Department of Pharmaceutical Biosciences, University of OsloPO Box 1125 Blindern, N-0317 Oslo, Norway
| | - Inger Solberg
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
| | - Kristin Robertsen
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
| | - Knut Ivan Kristiansen
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
| | - Davide Mainieri
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
| | - Lucy Lillehagen
- Biotechnology Centre of Oslo and Department of Pharmaceutical Biosciences, University of OsloPO Box 1125 Blindern, N-0317 Oslo, Norway
| | - Anne-Brit Kolstø
- Biotechnology Centre of Oslo and Department of Pharmaceutical Biosciences, University of OsloPO Box 1125 Blindern, N-0317 Oslo, Norway
| | - Magnar Bjørås
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
- *For correspondence. E-mail ; Tel. (+47) 23074061; Fax (+47) 23074060
| |
Collapse
|
10
|
Berti PJ, McCann JAB. Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem Rev 2006; 106:506-55. [PMID: 16464017 DOI: 10.1021/cr040461t] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Paul J Berti
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
11
|
Theron T, Fousteri MI, Volker M, Harries LW, Botta E, Stefanini M, Fujimoto M, Andressoo JO, Mitchell J, Jaspers NGJ, McDaniel LD, Mullenders LH, Lehmann AR. Transcription-associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome. Mol Cell Biol 2005; 25:8368-78. [PMID: 16135823 PMCID: PMC1234319 DOI: 10.1128/mcb.25.18.8368-8378.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Defects in the XPD gene can result in several clinical phenotypes, including xeroderma pigmentosum (XP), trichothiodystrophy, and, less frequently, the combined phenotype of XP and Cockayne syndrome (XP-D/CS). We previously showed that in cells from two XP-D/CS patients, breaks were introduced into cellular DNA on exposure to UV damage, but these breaks were not at the sites of the damage. In the present work, we show that three further XP-D/CS patients show the same peculiar breakage phenomenon. We show that these breaks can be visualized inside the cells by immunofluorescence using antibodies to either gamma-H2AX or poly-ADP-ribose and that they can be generated by the introduction of plasmids harboring methylation or oxidative damage as well as by UV photoproducts. Inhibition of RNA polymerase II transcription by four different inhibitors dramatically reduced the number of UV-induced breaks. Furthermore, the breaks were dependent on the nucleotide excision repair (NER) machinery. These data are consistent with our hypothesis that the NER machinery introduces the breaks at sites of transcription initiation. During transcription in UV-irradiated XP-D/CS cells, phosphorylation of the carboxy-terminal domain of RNA polymerase II occurred normally, but the elongating form of the polymerase remained blocked at lesions and was eventually degraded.
Collapse
Affiliation(s)
- Therina Theron
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Davidsen T, Bjørås M, Seeberg EC, Tønjum T. Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species. J Bacteriol 2005; 187:2801-9. [PMID: 15805527 PMCID: PMC1070393 DOI: 10.1128/jb.187.8.2801-2809.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome alterations due to horizontal gene transfer and stress constantly generate strain on the gene pool of Neisseria meningitidis, the causative agent of meningococcal (MC) disease. The DNA glycosylase MutY of the base excision repair pathway is involved in the protection against oxidative stress. MC MutY expressed in Escherichia coli exhibited base excision activity towards DNA substrates containing A:7,8-dihydro-8-oxo-2'-deoxyguanosine and A:C mismatches. Expression in E. coli fully suppressed the elevated spontaneous mutation rate found in the E. coli mutY mutant. An assessment of MutY activity in lysates of neisserial wild-type and mutY mutant strains showed that both MC and gonococcal (GC) MutY is expressed and active in vivo. Strikingly, MC and GC mutY mutants exhibited 60- to 140-fold and 20-fold increases in mutation rates, respectively, compared to the wild-type strains. Moreover, the differences in transitions and transversions in rpoB conferring rifampin resistance observed with the wild type and mutants demonstrated that the neisserial MutY enzyme works in preventing GC-->AT transversions. These findings are important in the context of models linking mutator phenotypes of disease isolates to microbial fitness.
Collapse
Affiliation(s)
- T Davidsen
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway
| | | | | | | |
Collapse
|
13
|
Aamodt RM, Falnes PØ, Johansen RF, Seeberg E, Bjørås M. The Bacillus subtilis counterpart of the mammalian 3-methyladenine DNA glycosylase has hypoxanthine and 1,N6-ethenoadenine as preferred substrates. J Biol Chem 2004; 279:13601-6. [PMID: 14729667 DOI: 10.1074/jbc.m314277200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AAG family of 3-methyladenine DNA glycosylases was initially thought to be limited to mammalian cells, but genome sequencing efforts have revealed the presence of homologous proteins in certain prokaryotic species as well. Here, we report the first molecular characterization of a functional prokaryotic AAG homologue, i.e. YxlJ, termed bAag, from Bacillus subtilis. The B. subtilis aag gene was expressed in Escherichia coli, and the protein was purified to homogeneity. As expected, B. subtilis Aag was found to be a DNA glycosylase, which releases 3-alkylated purines and hypoxanthine, as well as the cyclic etheno adduct 1,N(6)-ethenoadenine from DNA. However, kinetic analysis showed that bAag removed hypoxanthine much faster than human AAG with a 10-fold higher value for k(cat), whereas the rate of excision of 1, N(6)-ethenoadenine was found to be similar. In contrast, it was found that bAag removes 3-methyladenine and 3-methylguanine approximately 10-20 times more slowly than human AAG, and there was hardly any detectable excision of 7-methylguanine. It thus appears that bAag has a minor role in the repair of DNA alkylation damage and an important role in preventing the mutagenic effects of deaminated purines and cyclic etheno adducts in Bacillus subtilis.
Collapse
Affiliation(s)
- Randi M Aamodt
- Department of Molecular Biology, Institute of Medical Microbiology, University of Oslo, National Hospital, N-0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
14
|
Kwon K, Cao C, Stivers JT. A novel zinc snap motif conveys structural stability to 3-methyladenine DNA glycosylase I. J Biol Chem 2003; 278:19442-6. [PMID: 12654914 DOI: 10.1074/jbc.m300934200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli 3-methyladenine DNA glycosylase I (TAG) is a DNA repair enzyme that excises 3-methyladenine in DNA and is the smallest member of the helix-hairpin-helix (HhH) superfamily of DNA glycosylases. Despite many studies over the last 25 years, there has been no suggestion that TAG was a metalloprotein. However, here we establish by heteronuclear NMR and other spectroscopic methods that TAG binds 1 eq of Zn2+ extremely tightly. A family of refined NMR structures shows that 4 conserved residues contributed from the amino- and carboxyl-terminal regions of TAG (Cys4, His17, His175, and Cys179) form a Zn2+ binding site. The Zn2+ ion serves to tether the otherwise unstructured amino- and carboxyl-terminal regions of TAG. We propose that this unexpected "zinc snap" motif in the TAG family (CX(12-17)HX(approximately 150)HX(3)C) serves to stabilize the HhH domain thereby mimicking the functional role of protein-protein interactions in larger HhH superfamily members.
Collapse
Affiliation(s)
- Keehwan Kwon
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
15
|
Osman F, Bjørås M, Alseth I, Morland I, McCready S, Seeberg E, Tsaneva I. A new Schizosaccharomyces pombe base excision repair mutant, nth1, reveals overlapping pathways for repair of DNA base damage. Mol Microbiol 2003; 48:465-80. [PMID: 12675805 DOI: 10.1046/j.1365-2958.2003.03440.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endonuclease III (Nth) enzyme from Escherichia coli is involved in base excision repair of oxidised pyrimidine residues in DNA. The Schizosaccharomyces pombe Nth1 protein is a sequence and functional homologue of E. coli Nth, possessing both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activity. Here, we report the construction and characterization of the S. pombe nth1 mutant. The nth1 mutant exhibited no enhanced sensitivity to oxidising agents, UV or gamma-irradiation, but was hypersensitive to the alkylating agent methyl methanesulphonate (MMS). Analysis of base excision from DNA exposed to [3H]methyl-N-nitrosourea showed that the purified Nth1 enzyme did not remove alkylated bases such as 3-methyladenine and 7-methylguanine whereas methyl-formamidopyrimidine was excised efficiently. The repair of AP sites in S. pombe has previously been shown to be independent of Apn1-like AP endonuclease activity, and the main reason for the MMS sensitivity of nth1 cells appears to be their lack of AP lyase activity. The nth1 mutant also exhibited elevated frequencies of spontaneous mitotic intrachromosomal recombination, which is a phenotype shared by the MMS-hypersensitive DNA repair mutants rad2, rhp55 and NER repair mutants rad16, rhp14, rad13 and swi10. Epistasis analyses of nth1 and these DNA repair mutants suggest that several DNA damage repair/tolerance pathways participate in the processing of alkylation and spontaneous DNA damage in S. pombe.
Collapse
Affiliation(s)
- Fekret Osman
- Department of Biochemistry and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Recent work has uncovered a novel DNA repair enzyme: the AlkB protein of Escherichia coli, which oxidises the methyl groups of 1-methyladenine and 3-methylcytosine to hydroxymethyl moieties; the oxidised groups are subsequently released as formaldehyde, regenerating the unmodified bases.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland.
| |
Collapse
|
17
|
Hendricks CA, Razlog M, Matsuguchi T, Goyal A, Brock AL, Engelward BP. The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. DNA Repair (Amst) 2002; 1:645-59. [PMID: 12509287 DOI: 10.1016/s1568-7864(02)00072-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA glycosylases, such as the Mag1 3-methyladenine (3MeA) DNA glycosylase, initiate the base excision repair (BER) pathway by removing damaged bases to create abasic apurinic/apyrimidinic (AP) sites that are subsequently repaired by downstream BER enzymes. Although unrepaired base damage may be mutagenic or recombinogenic, BER intermediates (e.g. AP sites and strand breaks) may also be problematic. To investigate the molecular basis for methylation-induced homologous recombination events in Saccharomyces cerevisiae, spontaneous and methylation-induced recombination were studied in strains with varied MAG1 expression levels. We show that cells lacking Mag1 have increased susceptibility to methylation-induced recombination, and that disruption of nucleotide excision repair (NER; rad4) in mag1 cells increases cellular susceptibility to these events. Furthermore, expression of Escherichia coli Tag 3MeA DNA glycosylase suppresses recombination events, providing strong evidence that unrepaired 3MeA lesions induce recombination. Disruption of REV3 (required for polymerase zeta (Pol zeta)) in mag1 rad4 cells causes increased susceptibility to methylation-induced toxicity and recombination, suggesting that Pol zeta can replicate past 3MeAs. However, at subtoxic levels of methylation damage, disruption of REV3 suppresses methylation-induced recombination, indicating that the effects of Pol zeta on recombination are highly dose-dependent. We also show that overproduction of Mag1 can increase the levels of spontaneous recombination, presumably due to increased levels of BER intermediates. However, additional APN1 endonuclease expression or disruption of REV3 does not affect MAG1-induced recombination, suggesting that downstream BER intermediates (e.g. single strand breaks) are responsible for MAG1-induced recombination, rather than uncleaved AP sites. Thus, too little Mag1 sensitizes cells to methylation-induced recombination, while too much Mag1 can put cells at risk of recombination induced by single strand breaks formed during BER.
Collapse
Affiliation(s)
- C A Hendricks
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
18
|
Knaevelsrud I, Ruoff P, Anensen H, Klungland A, Bjelland S, Birkeland NK. Excision of uracil from DNA by the hyperthermophilic Afung protein is dependent on the opposite base and stimulated by heat-induced transition to a more open structure. Mutat Res 2001; 487:173-90. [PMID: 11738943 DOI: 10.1016/s0921-8777(01)00115-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydrolytic deamination of DNA-cytosines into uracils is a major source of spontaneously induced mutations, and at elevated temperatures the rate of cytosine deamination is increased. Uracil lesions are repaired by the base excision repair pathway, which is initiated by a specific uracil DNA glycosylase enzyme (UDG). The hyperthermophilic archaeon Archaeoglobus fulgidus contains a recently characterized novel type of UDG (Afung), and in this paper we describe the over-expression of the afung gene and characterization of the encoded protein. Fluorescence and activity measurements following incubation at different temperatures may suggest the following model describing structure-activity relationships: At temperatures from 20 to 50 degrees C Afung exists as a compact protein exhibiting low enzyme activity, whereas at temperatures above 50 degrees C, the Afung conformation opens up, which is associated with the acquisition of high enzyme activity. The enzyme exhibits opposite base-dependent excision of uracil in the following order: U>U:T>U:C>>U:G>>U:A. Afung is product-inhibited by uracil and shows a pronounced inhibition by p-hydroxymercuribenzoate, indicating a cysteine residue essential for enzyme function. The Afung protein was estimated to be present in A. fulgidus at a concentration of approximately 1000 molecules per cell. Kinetic parameters determined for Afung suggest a significantly lower level of enzymatic uracil release in A. fulgidus as compared to the mesophilic Escherichia coli.
Collapse
Affiliation(s)
- I Knaevelsrud
- School of Science and Technology, Stavanger University College, Ullandhaug, P.O. Box 2557, N-4091 Stavanger, Norway
| | | | | | | | | | | |
Collapse
|
19
|
Olsen AK, Bjørtuft H, Wiger R, Holme J, Seeberg E, Bjørås M, Brunborg G. Highly efficient base excision repair (BER) in human and rat male germ cells. Nucleic Acids Res 2001; 29:1781-90. [PMID: 11292851 PMCID: PMC31315 DOI: 10.1093/nar/29.8.1781] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The quality of germ cell DNA is critical for the fate of the offspring, yet there is limited knowledge of the DNA repair capabilities of such cells. One of the main DNA repair pathways is base excision repair (BER) which is initiated by DNA glycosylases that excise damaged bases, followed by incision of the generated abasic (AP) sites. We have studied human and rat methylpurine-DNA glycosylase (MPG), uracil-DNA glycosylase (UNG), and the major AP endonuclease (HAP1/APEX) in male germ cells. Enzymatic activities and western analyses indicate that these enzymes are present in human and rat male germ cells in amounts that are at least as high as in somatic cells. Minor differences were observed between different cellular stages of rat spermatogenesis and spermiogenesis. Repair of methylated DNA was also studied at the cellular level using the Comet assay. The repair was highly efficient in both human and rat male germ cells, in primary spermatocytes as well as round spermatids, compared to rat mononuclear blood cells or hepatocytes. This efficient BER removes frequently occurring DNA lesions that arise spontaneously or via environmental agents, thereby minimising the number of potential mutations transferred to the next generation.
Collapse
Affiliation(s)
- A K Olsen
- Section for Product Toxicology, Department of Environmental Medicine, National Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
20
|
Terato H, Masaoka A, Kobayashi M, Fukushima S, Ohyama Y, Yoshida M, Ide H. Enzymatic repair of 5-formyluracil. II. Mismatch formation between 5-formyluracil and guanine during dna replication and its recognition by two proteins involved in base excision repair (AlkA) and mismatch repair (MutS). J Biol Chem 1999; 274:25144-50. [PMID: 10455196 DOI: 10.1074/jbc.274.35.25144] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
5-Formyluracil (fU), a major methyl oxidation product of thymine, forms correct (fU:A) and incorrect (fU:G) base pairs during DNA replication. In the accompanying paper (Masaoka, A., Terato, H., Kobayashi, M., Honsho, A., Ohyama, Y., and Ide, H. (1999) J. Biol. Chem. 274, 25136-25143), it has been shown that fU correctly paired with A is recognized by AlkA protein (Escherichia coli 3-methyladenine DNA glycosylase II). In the present work, mispairing frequency of fU with G and cellular repair protein that specifically recognized fU:G mispairs were studied using defined oligonucleotide substrates. Mispairing frequency of fU was determined by incorporation of 2'-deoxyribonucleoside 5'-triphosphate of fU opposite template G using DNA polymerase I Klenow fragment deficient in 3'-5' exonuclease. Mispairing frequency of fU was dependent on the nearest neighbor base pair in the primer terminus and 2-12 times higher than that of thymine at pH 7.8 and 2.6-6.7 times higher at pH 9.0 with an exception of the nearest neighbor T(template):A(primer). AlkA catalyzed the excision of fU placed opposite G, as well as A, and the excision efficiencies of fU for fU:G and fU:A pairs were comparable. In addition, MutS protein involved in methyl-directed mismatch repair also recognized fU:G mispairs and bound them with an efficiency comparable to T:G mispairs, but it did not recognize fU:A pairs. Prior complex formation between MutS and a heteroduplex containing an fU:G mispair inhibited the activity of AlkA to fU. These results suggest that fU present in DNA can be restored by two independent repair pathways, i.e. the base excision repair pathway initiated by AlkA and the methyl-directed mismatch repair pathway initiated by MutS. Biological relevance of the present results is discussed in light of DNA replication and repair in cells.
Collapse
Affiliation(s)
- H Terato
- Graduate Department of Gene Science, Faculty of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Glassner BJ, Rasmussen LJ, Najarian MT, Posnick LM, Samson LD. Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci U S A 1998; 95:9997-10002. [PMID: 9707589 PMCID: PMC21450 DOI: 10.1073/pnas.95.17.9997] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased spontaneous mutation is associated with increased cancer risk. Here, by using a model system, we show that spontaneous mutation can be increased several hundred-fold by a simple imbalance between the first two enzymes involved in DNA base excision repair. The Saccharomyces cerevisiae MAG1 3-methyladenine (3MeA) DNA glycosylase, when expressed at high levels relative to the apurinic/apyrimidinic endonuclease, increases spontaneous mutation by up to approximately 600-fold in S. cerevisiae and approximately 200-fold in Escherichia coli. Genetic evidence suggests that, in yeast, the increased spontaneous mutation requires the generation of abasic sites and the processing of these sites by the REV1/REV3/REV7 lesion bypass pathway. Comparison of the mutator activity produced by Mag1, which has a broad substrate range, with that produced by the E. coli Tag 3MeA DNA glycosylase, which has a narrow substrate range, indicates that the removal of endogenously produced 3MeA is unlikely to be responsible for the mutator effect of Mag1. Finally, the human AAG 3-MeA DNA glycosylase also can produce a small (approximately 2-fold) but statistically significant increase in spontaneous mutation, a result which could have important implications for carcinogenesis.
Collapse
Affiliation(s)
- B J Glassner
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
22
|
Schärer OD, Nash HM, Jiricny J, Laval J, Verdine GL. Specific binding of a designed pyrrolidine abasic site analog to multiple DNA glycosylases. J Biol Chem 1998; 273:8592-7. [PMID: 9535832 DOI: 10.1074/jbc.273.15.8592] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the base excision DNA repair pathway, DNA glycosylases recognize damaged bases in DNA and catalyze their excision through hydrolysis of the N-glycosidic bond. Attempts to understand the structural basis for DNA damage recognition by DNA glycosylases have been hampered by the short-lived association of these enzymes with their DNA substrates. To overcome this problem, we have employed an approach involving the design and synthesis of inhibitors that form stable complexes with DNA glycosylases, which can then be studied biochemically and structurally. We have previously reported that double-stranded DNA containing a pyrrolidine abasic site analog (PYR) forms an extremely stable complex with the DNA glycosylase AlkA and potently inhibits the reaction catalyzed by the enzyme (Schärer, O. D., Ortholand, J.-Y., Ganesan, A., Ezaz-Nikpay, K., and Verdine, G. L. (1995) J. Am. Chem. Soc. 117, 6623-6624). Here we investigate the interaction of this inhibitor with a variety of additional DNA glycosylases. With the exception of uracil DNA glycosylase all the glycosylases tested bind specifically to PYR-containing oligonucleotides. By comparing the interaction of DNA glycosylases with PYR and the structurally related tetrahydrofuran abasic site analog, we assess the importance of the positively charged ammonium group of the pyrrolidine in binding to the active site of these enzymes. Such a general inhibitor of DNA glycosyases provides a valuable tool to study stable complexes of these enzymes bound to substrate-like molecules.
Collapse
Affiliation(s)
- O D Schärer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
23
|
Berdal KG, Johansen RF, Seeberg E. Release of normal bases from intact DNA by a native DNA repair enzyme. EMBO J 1998; 17:363-7. [PMID: 9430628 PMCID: PMC1170387 DOI: 10.1093/emboj/17.2.363] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Base excision repair is initiated by DNA glycosylases removing inappropriate bases from DNA. One group of these enzymes, comprising 3-methyladenine DNA glycosylase II (AlkA) from Escherichia coli and related enzymes from other organisms, has been found to have an unusual broad specificity towards quite different base structures. We tested whether such enzymes might also be capable of removing normal base residues from DNA. The native enzymes from E.coli, Saccharomyces cerevisiae and human cells promoted release of intact guanines with significant frequencies, and further analysis of AlkA showed that all the normal bases can be removed. Transformation of E. coli with plasmids expressing different levels of AlkA produced an increased spontaneous mutation frequency correlated with the expression levels, indicating that excision of normal bases occurs at biologically significant rates. We propose that the broad specificity 3-methyladenine DNA glycosylases represent a general type of repair enzyme 'pulling' bases in DNA largely at random, without much preference for a specific structure. The specificity for release of damaged bases occurs because base structure alterations cause instability of the base-sugar bonds. Damaged bases are therefore released more readily than normal bases once the bond activation energy is reduced further by the enzyme. Qualitatively, the model correlates quite well with the relative rate of excision observed for most, if not all, of the substrates described for AlkA and analogues.
Collapse
Affiliation(s)
- K G Berdal
- Department of Molecular Biology, Institute of Medical Microbiology, The National Hospital, University of Oslo, Norway
| | | | | |
Collapse
|
24
|
Hang B, Singer B, Margison GP, Elder RH. Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine. Proc Natl Acad Sci U S A 1997; 94:12869-74. [PMID: 9371767 PMCID: PMC24230 DOI: 10.1073/pnas.94.24.12869] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has previously been reported that 1,N6-ethenoadenine (epsilonA), deaminated adenine (hypoxanthine, Hx), and 7,8-dihydro-8-oxoguanine (8-oxoG), but not 3,N4-ethenocytosine (epsilonC), are released from DNA in vitro by the DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG). To assess the potential contribution of APNG to the repair of each of these mutagenic lesions in vivo, we have used cell-free extracts of tissues from APNG-null mutant mice and wild-type controls. The ability of these extracts to cleave defined oligomers containing a single modified base was determined. The results showed that both testes and liver cells of these knockout mice completely lacked activity toward oligonucleotides containing epsilonA and Hx, but retained wild-type levels of activity for epsilonC and 8-oxoG. These findings indicate that (i) the previously identified epsilonA-DNA glycosylase and Hx-DNA glycosylase activities are functions of APNG; (ii) the two structurally closely related mutagenic adducts epsilonA and epsilonC are repaired by separate gene products; and (iii) APNG does not contribute detectably to the repair of 8-oxoG.
Collapse
Affiliation(s)
- B Hang
- Donner Laboratory, Lawrence Berkeley National Laboratory, University of California, 94720, USA
| | | | | | | |
Collapse
|
25
|
Abstract
A wide range of cytotoxic and mutagenic DNA bases are removed by different DNA glycosylases, which initiate the base excision repair pathway. DNA glycosylases cleave the N-glycosylic bond between the target base and deoxyribose, thus releasing a free base and leaving an apurinic/apyrimidinic (AP) site. In addition, several DNA glycosylases are bifunctional, since they also display a lyase activity that cleaves the phosphodiester backbone 3' to the AP site generated by the glycosylase activity. Structural data and sequence comparisons have identified common features among many of the DNA glycosylases. Their active sites have a structure that can only bind extrahelical target bases, as observed in the crystal structure of human uracil-DNA glycosylase in a complex with double-stranded DNA. Nucleotide flipping is apparently actively facilitated by the enzyme. With bacteriophage T4 endonuclease V, a pyrimidine-dimer glycosylase, the enzyme gains access to the target base by flipping out an adenine opposite to the dimer. A conserved helix-hairpin-helix motif and an invariant Asp residue are found in the active sites of more than 20 monofunctional and bifunctional DNA glycosylases. In bifunctional DNA glycosylases, the conserved Asp is thought to deprotonate a conserved Lys, forming an amine nucleophile. The nucleophile forms a covalent intermediate (Schiff base) with the deoxyribose anomeric carbon and expels the base. Deoxyribose subsequently undergoes several transformations, resulting in strand cleavage and regeneration of the free enzyme. The catalytic mechanism of monofunctional glycosylases does not involve covalent intermediates. Instead the conserved Asp residue may activate a water molecule which acts as the attacking nucleophile.
Collapse
Affiliation(s)
- H E Krokan
- UNIGEN Center for Molecular Biology, The Medical Faculty, Norwegian University of Science and Technology, N-7005 Trondheim, Norway
| | | | | |
Collapse
|
26
|
Abstract
Our genetic information is constantly challenged by exposure to endogenous and exogenous DNA-damaging agents, by DNA polymerase errors, and thereby inherent instability of the DNA molecule itself. The integrity of our genetic information is maintained by numerous DNA repair pathways, and the importance of these pathways is underscored by their remarkable structural and functional conservation across the evolutionary spectrum. Because of the highly conserved nature of DNA repair, the enzymes involved in this crucial function are often able to function in heterologous cells; as an example, the E. coli Ada DNA repair methyltransferase functions efficiently in yeast, in cultured rodent and human cells, in transgenic mice, and in ex vivo-modified mouse bone marrow cells. The heterologous expression of DNA repair functions has not only been used as a powerful cloning strategy, but also for the exploration of the biological and biochemical features of numerous enzymes involved in DNA repair pathways. In this review we highlight examples where the expression of DNA repair enzymes in heterologous cells was used to address fundamental questions about DNA repair processes in many different organisms.
Collapse
Affiliation(s)
- A Memisoglu
- Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Bjelland S, Seeberg E. Different efficiencies of the Tag and AlkA DNA glycosylases from Escherichia coli in the removal of 3-methyladenine from single-stranded DNA. FEBS Lett 1996; 397:127-9. [PMID: 8941728 DOI: 10.1016/s0014-5793(96)01166-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Escherichia coli possesses two different DNA repair glycosylases, Tag and AlkA, which have similar ability to remove the alkylation product 3-methyladenine from double-stranded DNA. In this study we show that these enzymes have quite different activities for the excision of 3-methyladenine from single-stranded DNA, AlkA being 10-20 times more efficient than Tag. We propose that AlkA and perhaps other glycosylases as well may have an important role in the excision of base damage from single-stranded regions transiently formed in DNA during transcription and replication.
Collapse
Affiliation(s)
- S Bjelland
- Norwegian Defence Research Establishment, Division for Environmental Toxicology, Kjeller.
| | | |
Collapse
|
28
|
Damia G, Imperatori L, Citti L, Mariani L, D'Incalci M. 3-methyladenine-DNA-glycosylase and O6-alkyl guanine-DNA-alkyltransferase activities and sensitivity to alkylating agents in human cancer cell lines. Br J Cancer 1996; 73:861-5. [PMID: 8611396 PMCID: PMC2074260 DOI: 10.1038/bjc.1996.153] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The activities and the expression of 3-methyladenine glycosylase (3-meAde gly) and O6-alkylguanine-DNA-alkyltransferase (O6 ATase) were investigated in ten human cancer cell lines. Both 3-meAde gly and O6 ATase activities were variable among different cell lines. mRNA levels of the O6 ATase gene, appeared to be related to the content of O6 ATase in different cell lines, whereas no apparent correlation was found between mRNA of 3-meAde gly and the enzyme activity. No correlation was found between the activity of the two enzymes and the sensitivity to alkylating agents of different structures such as CC-1065, tallimustine, dimethylsulphate (DMSO), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), cis-diamminedichloroplatinum (cDDP) and melphalan (L-PAM). The most striking finding of this study is that a correlation exists between the activity of O6 ATase and 3-meAde gly in the various cell lines investigated (P<0.01), suggesting a common mechanism of regulation of two DNA repair enzymes.
Collapse
Affiliation(s)
- G Damia
- Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | |
Collapse
|
29
|
Sun B, Latham KA, Dodson ML, Lloyd RS. Studies on the catalytic mechanism of five DNA glycosylases. Probing for enzyme-DNA imino intermediates. J Biol Chem 1995; 270:19501-8. [PMID: 7642635 DOI: 10.1074/jbc.270.33.19501] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNA glycosylases catalyze scission of the N-glycosylic bond linking a damaged base to the DNA sugar phosphate backbone. Some of these enzymes carry out a concomitant abasic (apyrimidinic/apurinic(AP)) lyase reaction at a rate approximately equal to that of the glycosylase step. As a generalization of the mechanism described for T4 endonuclease V, a repair glycosylase/AP lyase that is specific for ultraviolet light-induced cis-syn pyrimidine dimers, a hypothesis concerning the mechanism of these repair glycosylases has been proposed. This hypothesis describes the initial action of all DNA glycosylases as a nucleophilic attack at the sugar C-1' of the damaged base nucleoside, resulting in scission of the N-glycosylic bond. It is proposed that the enzymes that are only glycosylases differ in the chemical nature of the attacking nucleophile from the glycosylase/AP lyases. Those DNA glycosylases, which carry out the AP lyase reaction at a rate approximately equal to the glycosylase step, are proposed to use an amino group as the nucleophile, resulting in an imino enzyme-DNA intermediate. The simple glycosylases, lacking the concomitant AP lyase activity, are propose to use some nucleophile from the medium, e.g. an activated water molecule. This paper reports experimental tests of this hypothesis using five representative enzymes, and these data are consistent with this hypothesis.
Collapse
Affiliation(s)
- B Sun
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston 77555-1071, USA
| | | | | | | |
Collapse
|
30
|
Abstract
New insights into the workings of the repair enzymes that police the genome for damage to DNA come from the recently determined structures of two uracil-DNA glycosylases.
Collapse
Affiliation(s)
- B Demple
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
Roy R, Brooks C, Mitra S. Purification and biochemical characterization of recombinant N-methylpurine-DNA glycosylase of the mouse. Biochemistry 1994; 33:15131-40. [PMID: 7999773 DOI: 10.1021/bi00254a024] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mouse N-methylpurine-DNA glycosylase (MPG), responsible for the removal of most N-alkyladducts in DNA, was purified to homogeneity as a recombinant nonfusion protein from Escherichia coli. Only 10-15% of the protein was present in the soluble form in E. coli cells. The N-terminal amino acid sequence of the purified protein which lacks 48 residues from the amino terminus of the wild type protein was identical to that predicted from the nucleotide sequence. The glycosylase hydrolyzes 3-methyladenine (m3A), 7-methylguanine(m7G), and 3-methylguanine (m3G) from DNA, and the Km and kcat values were 130 nM and 0.8 min-1 for m3A, and 860 nM and 0.2 min-1 for m7G, respectively, when methylated calf thymus DNA was used as the substrate. A comparison of kcat/Km values for different bases indicates that the enzyme was more efficient in excising both m3A and m3G than m7G from methylated DNA. The enzyme showed moderate binding affinities (KA) for both methylated (5.8 x 10(7) M-1) and nonmethylated DNAs (4.2 x 10(7) M-1). The mouse protein has an extinction coefficient E280nm1% of 10.5 and a pI of 9.3. The enzyme activity was optimal in the presence of 100 mM NaCl, with a broad pH optimum of 8.5-9.5. The enzymatic release of both m3A and m7G was stimulated 50-75% by 0.5 mM MgCl2 and 0.02 mM spermine but inhibited by higher concentrations of these agents. Product inhibition by 40-50% of the reaction occurred in the presence of 10 mM m3A or m7G. However, 1.0 mM m3A stimulated release of m7G. The enzyme was inhibited by 60% in the presence of 0.9 mg/mL DNA which, at the same time, protected it from thermal inactivation.
Collapse
Affiliation(s)
- R Roy
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston 77555
| | | | | |
Collapse
|
32
|
Bjelland S, Birkeland NK, Benneche T, Volden G, Seeberg E. DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43840-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
33
|
Klungland A, Bjørås M, Hoff E, Seeberg E. Increased removal of 3-alkyladenine reduces the frequencies of hprt mutations induced by methyl- and ethylmethanesulfonate in Chinese hamster fibroblast cells. Nucleic Acids Res 1994; 22:1670-4. [PMID: 8202370 PMCID: PMC308047 DOI: 10.1093/nar/22.9.1670] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have previously reported the isolation of mammalian cell lines expressing the 3-methyladenine DNA glycosylase I (tag) gene from E. coli. These cells are 2-5 fold more resistant to the toxic effects of methylating agents than normal cells (15). Kinetic measurements of 3-methyladenine removal from the genome in situ show a moderate (3-fold) increase in Tag expressing cells relative to normal as compared to a high (50-fold) increase in exogenous alkylated DNA in vitro by cell extracts. Excision of 7-methylguanine is as expected, unaffected by the tag+ gene expression. The frequency of mutations formed in the hypoxanthine phosphoribosyl transferase (hprt) locus was investigated after methylmethanesulfonate (MMS), ethylmethanesulfonate (EMS), N-nitroso-N-methylurea (NMU) and N-nitroso-N-ethylurea (NEU) exposure. Tag expression reduced the frequency of MMS and EMS induced mutations to about half the normal rate, whereas the mutation frequency in cells exposed to NMU or NEU is not affected by the tag+ gene expression. These results indicate that after exposure to compounds which produce predominantly N-alkylations in DNA, a substantial proportion of the mutations induced is formed at 3-alkyladenine residues in DNA.
Collapse
|
34
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
35
|
Bjelland S, Bjørås M, Seeberg E. Excision of 3-methylguanine from alkylated DNA by 3-methyladenine DNA glycosylase I of Escherichia coli. Nucleic Acids Res 1993; 21:2045-9. [PMID: 8502545 PMCID: PMC309463 DOI: 10.1093/nar/21.9.2045] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Escherichia coli has two DNA glycosylases for repair of DNA damage caused by simple alkylating agents. The inducible AlkA DNA glycosylase (3-methyladenine [m3A] DNA glycosylase II) removes several different alkylated bases including m3A and 3-methylguanine (m3G) from DNA, whereas the constitutively expressed Tag enzyme (m3A DNA glycosylase I) has appeared to be specific for excision of m3A. In this communication we have reexamined the substrate specificity of Tag by using synthetic DNA rich in GC base pairs to facilitate detection of any possible methyl-G removal. In such DNA alkylated with [3H]dimethyl sulphate, we found that m3G was excised from double-stranded DNA by both glycosylases, although more efficiently by AlkA than by Tag. This was further confirmed using both N-[3H]methyl-N-nitrosourea- and [3H]dimethyl sulphate-treated native DNA, from which Tag excised m3G with an efficiency that was about 70 times lower than for AlkA. These results can explain the previous observation that high levels of Tag expression will suppress the alkylation sensitivity of alkA mutant cells, further implying that m3G is formed in quantity sufficient to represent an important cytotoxic lesion if left unrepaired in cells exposed to alkylating agents.
Collapse
Affiliation(s)
- S Bjelland
- Norwegian Defence Research Establishment, Division for Environmental Toxicology, Kjeller
| | | | | |
Collapse
|
36
|
Taverna P, Garattini E, Citti L, Damia G, D'Incalci M. Expression of E. coli tag gene encoding 3-methyladenine glycosylase I in NIH-3T3 murine fibroblasts. Biochem Biophys Res Commun 1992; 185:41-6. [PMID: 1599478 DOI: 10.1016/s0006-291x(05)80952-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NIH-3T3 fibroblasts were co-transfected with pSV2neo and pSG5tag by the calcium-phosphate precipitation method. The stable integration of the tag gene sequence and its transcription was verified by Southern and Northern blot analysis. 3-Methyladenine glycosylase activity in pSG5tag transfected 3T3 cells was approximately 400 times higher than in cells transfected with the control plasmid pSG5 or in the parental cells and was inhibited by 3-methyladenine. Bacterial tag gene can thus be expressed in mammalian cells and the encoded enzyme is functionally active. These transfected cells could serve as an important tool to investigate the importance of the repair of N3-adenine as a mechanism of protection against the mutagenicity and cytotoxicity of alkylating agents.
Collapse
Affiliation(s)
- P Taverna
- Cancer Chemotherapy Laboratory, Centro Daniela e Catullo Borgomainerio, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | |
Collapse
|
37
|
Chakravarti D, Ibeanu G, Tano K, Mitra S. Cloning and expression in Escherichia coli of a human cDNA encoding the DNA repair protein N-methylpurine-DNA glycosylase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98467-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Affiliation(s)
- K Sakumi
- Department of Biochemistry, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
39
|
Abstract
Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, including acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.
Collapse
Affiliation(s)
- C P Selby
- Department of Biochemistry, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
40
|
Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39680-2] [Citation(s) in RCA: 262] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Purification and Characterization of 5-Hydroxymethyluracil-DNA Glycosylase from Calf Thymus. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51629-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|