1
|
Siddaway R, Milos S, Coyaud É, Yun HY, Morcos SM, Pajovic S, Campos EI, Raught B, Hawkins C. The in vivo Interaction Landscape of Histones H3.1 and H3.3. Mol Cell Proteomics 2022; 21:100411. [PMID: 36089195 PMCID: PMC9540345 DOI: 10.1016/j.mcpro.2022.100411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
Chromatin structure, transcription, DNA replication, and repair are regulated via locus-specific incorporation of histone variants and posttranslational modifications that guide effector chromatin-binding proteins. Here we report unbiased, quantitative interactomes for the replication-coupled (H3.1) and replication-independent (H3.3) histone H3 variants based on BioID proximity labeling, which allows interactions in intact, living cells to be detected. Along with a significant proportion of previously reported interactions detected by affinity purification followed by mass spectrometry, three quarters of the 608 histone-associated proteins that we identified are new, uncharacterized histone associations. The data reveal important biological nuances not captured by traditional biochemical means. For example, we found that the chromatin assembly factor-1 histone chaperone not only deposits the replication-coupled H3.1 histone variant during S-phase but also associates with H3.3 throughout the cell cycle in vivo. We also identified other variant-specific associations, such as with transcription factors, chromatin regulators, and with the mitotic machinery. Our proximity-based analysis is thus a rich resource that extends the H3 interactome and reveals new sets of variant-specific associations.
Collapse
Affiliation(s)
- Robert Siddaway
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada,Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Scott Milos
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada,Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Université de Lille, Lille, France
| | - Hwa Young Yun
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shahir M. Morcos
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sanja Pajovic
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric I. Campos
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada,Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,For correspondence: Cynthia Hawkins
| |
Collapse
|
2
|
Elisafenko EA, Evtushenko EV, Vershinin AV. The origin and evolution of a two-component system of paralogous genes encoding the centromeric histone CENH3 in cereals. BMC PLANT BIOLOGY 2021; 21:541. [PMID: 34794377 PMCID: PMC8603533 DOI: 10.1186/s12870-021-03264-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/12/2021] [Indexed: 06/07/2023]
Abstract
BACKGROUND The cereal family Poaceae is one of the largest and most diverse angiosperm families. The central component of centromere specification and function is the centromere-specific histone H3 (CENH3). Some cereal species (maize, rice) have one copy of the gene encoding this protein, while some (wheat, barley, rye) have two. We applied a homology-based approach to sequenced cereal genomes, in order to finally trace the mutual evolution of the structure of the CENH3 genes and the nearby regions in various tribes. RESULTS We have established that the syntenic group or the CENH3 locus with the CENH3 gene and the boundaries defined by the CDPK2 and bZIP genes first appeared around 50 Mya in a common ancestor of the subfamilies Bambusoideae, Oryzoideae and Pooideae. This locus came to Pooideae with one copy of CENH3 in the most ancient tribes Nardeae and Meliceae. The βCENH3 gene as a part of the locus appeared in the tribes Stipeae and Brachypodieae around 35-40 Mya. The duplication was accompanied by changes in the exon-intron structure. Purifying selection acts mostly on αCENH3s, while βCENH3s form more heterogeneous structures, in which clade-specific amino acid motifs are present. In barley species, the βCENH3 gene assumed an inverted orientation relative to αCENH3 and the CDPK2 gene was substituted with LHCB-l. As the evolution and domestication of plant species went on, the locus was growing in size due to an increasing distance between αCENH3 and βCENH3 because of a massive insertion of the main LTR-containing retrotransposon superfamilies, gypsy and copia, without any evolutionary preference on either of them. A comparison of the molecular structure of the locus in the A, B and D subgenomes of the hexaploid wheat T. aestivum showed that invasion by mobile elements and concomitant rearrangements took place in an independent way even in evolutionarily close species. CONCLUSIONS The CENH3 duplication in cereals was accompanied by changes in the exon-intron structure of the βCENH3 paralog. The observed general tendency towards the expansion of the CENH3 locus reveals an amazing diversity of ways in which different species implement the scenario described in this paper.
Collapse
Affiliation(s)
- Evgeny A Elisafenko
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia
| | - Elena V Evtushenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia
| | - Alexander V Vershinin
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
3
|
Mendiratta S, Gatto A, Almouzni G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 2018; 218:39-54. [PMID: 30257851 PMCID: PMC6314538 DOI: 10.1083/jcb.201807179] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mendiratta et al. review the interplay between the different regulatory layers that affect the transcription and dynamics of distinct histone H3 variants along the cell cycle. As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulation, we highlight situations where perturbations in histone balance may lead to cellular dysfunction and pathologies.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Genevieve Almouzni
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| |
Collapse
|
4
|
Alrezk R, Suarez A, Tena I, Pacak K. Update of Pheochromocytoma Syndromes: Genetics, Biochemical Evaluation, and Imaging. Front Endocrinol (Lausanne) 2018; 9:515. [PMID: 30538672 PMCID: PMC6277481 DOI: 10.3389/fendo.2018.00515] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCCs/PGLs) are rare commonly benign neuroendocrine tumors that share pathology features and clinical behavior in many cases. While PCCs are chromaffin-derived tumors that arise within the adrenal medulla, PGLs are neural-crest-derived tumors that originate at the extraadrenal paraganglia. Pheochromocytoma-paraganglioma (PPGL) syndromes are rapidly evolving entities in endocrinology and oncology. Discoveries over the last decade have significantly improved our understanding of the disease. These include the finding of new hereditary forms of PPGL and their associated susceptibility genes. Additionally, the availability of new functional imaging tools and advances in targeted radionuclide therapy have improved diagnostic accuracy and provided us with new therapeutic options. In this review article, we present the most recent advances in this field and provide an update of the biochemical classification that further reflects our understanding of the disease.
Collapse
Affiliation(s)
- Rami Alrezk
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- Cleveland Clinic, Adrenal Center, Endocrinology and Metabolism Institute, Cleveland, OH, United States
| | - Andres Suarez
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Isabel Tena
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Provincial Hospital, Castellon, Spain
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Karel Pacak
| |
Collapse
|
5
|
El Kennani S, Adrait A, Shaytan AK, Khochbin S, Bruley C, Panchenko AR, Landsman D, Pflieger D, Govin J. MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones. Epigenetics Chromatin 2017; 10:2. [PMID: 28096900 PMCID: PMC5223428 DOI: 10.1186/s13072-016-0109-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Histones and histone variants are essential components of the nuclear chromatin. While mass spectrometry has opened a large window to their characterization and functional studies, their identification from proteomic data remains challenging. Indeed, the current interpretation of mass spectrometry data relies on public databases which are either not exhaustive (Swiss-Prot) or contain many redundant entries (UniProtKB or NCBI). Currently, no protein database is ideally suited for the analysis of histones and the complex array of mammalian histone variants. RESULTS We propose two proteomics-oriented manually curated databases for mouse and human histone variants. We manually curated >1700 gene, transcript and protein entries to produce a non-redundant list of 83 mouse and 85 human histones. These entries were annotated in accordance with the current nomenclature and unified with the "HistoneDB2.0 with Variants" database. This resource is provided in a format that can be directly read by programs used for mass spectrometry data interpretation. In addition, it was used to interpret mass spectrometry data acquired on histones extracted from mouse testis. Several histone variants, which had so far only been inferred by homology or detected at the RNA level, were detected by mass spectrometry, confirming the existence of their protein form. CONCLUSIONS Mouse and human histone entries were collected from different databases and subsequently curated to produce a non-redundant protein-centric resource, MS_HistoneDB. It is dedicated to the proteomic study of histones in mouse and human and will hopefully facilitate the identification and functional study of histone variants.
Collapse
Affiliation(s)
- Sara El Kennani
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Annie Adrait
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Saadi Khochbin
- CNRS UMR 5309 INSERM U1209, Institute of Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Christophe Bruley
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Delphine Pflieger
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Jérôme Govin
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
6
|
Yao X, Xing M, Ooi WF, Tan P, Teh BT. Epigenomic Consequences of Coding and Noncoding Driver Mutations. Trends Cancer 2016; 2:585-605. [PMID: 28741489 DOI: 10.1016/j.trecan.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/27/2022]
Abstract
Chromatin alterations are integral to the pathogenic process of cancer, as demonstrated by recent discoveries of frequent mutations in chromatin-modifier genes and aberrant DNA methylation states in different cancer types. Progress is being made on elucidating how chromatin alterations, and how proteins catalyzing these alterations, mechanistically contribute to tissue-specific tumorigenesis. In parallel, technologies enabling the genome-wide profiling of histone modifications have revealed the existence of noncoding driver genetic alterations in cancer. In this review, we survey the current knowledge of coding and noncoding cancer drivers, and discuss their impact on the chromatin landscape. Translational implications of these findings for novel cancer therapies are also presented.
Collapse
Affiliation(s)
- Xiaosai Yao
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Manjie Xing
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Fong Ooi
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Patrick Tan
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore; SingHealth/Duke-NUS Precision Medicine Institute, Singapore 168752, Singapore.
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore; SingHealth/Duke-NUS Precision Medicine Institute, Singapore 168752, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673.
| |
Collapse
|
7
|
Konstantinov NK, Ulff-Møller CJ, Dimitrov S. Histone variants and melanoma: facts and hypotheses. Pigment Cell Melanoma Res 2016; 29:426-33. [DOI: 10.1111/pcmr.12467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Stefan Dimitrov
- Institut Albert Bonniot; U823, INSERM/Université Joseph Fourier; Grenoble Cedex 9 France
| |
Collapse
|
8
|
Kallappagoudar S, Yadav RK, Lowe BR, Partridge JF. Histone H3 mutations--a special role for H3.3 in tumorigenesis? Chromosoma 2015; 124:177-89. [PMID: 25773741 PMCID: PMC4446520 DOI: 10.1007/s00412-015-0510-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
Brain tumors are the most common solid tumors in children. Pediatric high-grade glioma (HGG) accounts for ∼8–12 % of these brain tumors and is a devastating disease as 70–90 % of patients die within 2 years of diagnosis. The failure to advance therapy for these children over the last 30 years is largely due to limited knowledge of the molecular basis for these tumors and a lack of disease models. Recently, sequencing of tumor cells revealed that histone H3 is frequently mutated in pediatric HGG, with up to 78 % of diffuse intrinsic pontine gliomas (DIPGs) carrying K27M and 36 % of non-brainstem gliomas carrying either K27M or G34R/V mutations. Although mutations in many chromatin modifiers have been identified in cancer, this was the first demonstration that histone mutations may be drivers of disease. Subsequent studies have identified high-frequency mutation of histone H3 to K36M in chondroblastomas and to G34W/L in giant cell tumors of bone, which are diseases of adolescents and young adults. Interestingly, the G34 mutations, the K36M mutations, and the majority of K27M mutations occur in genes encoding the replacement histone H3.3. Here, we review the peculiar characteristics of histone H3.3 and use this information as a backdrop to highlight current thinking about how the identified mutations may contribute to disease development.
Collapse
Affiliation(s)
- Satish Kallappagoudar
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | | | | | | |
Collapse
|
9
|
Yuen BTK, Knoepfler PS. Histone H3.3 mutations: a variant path to cancer. Cancer Cell 2013; 24:567-74. [PMID: 24229707 PMCID: PMC3882088 DOI: 10.1016/j.ccr.2013.09.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 12/31/2022]
Abstract
A host of cancer types exhibit aberrant histone modifications. Recently, distinct and recurrent mutations in a specific histone variant, histone H3.3, have been implicated in a high proportion of malignant pediatric brain cancers. The presence of mutant H3.3 histone disrupts epigenetic posttranslational modifications near genes involved in cancer processes and in brain function. Here, we review possible mechanisms by which mutant H3.3 histones may act to promote tumorigenesis. Furthermore, we discuss how perturbations in normal H3.3 chromatin-related and epigenetic functions may more broadly contribute to the formation of human cancers.
Collapse
Affiliation(s)
- Benjamin T K Yuen
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, 4303 Tupper Hall, Davis, CA 95616, USA; Genome Center, University of California Davis School of Medicine, 451 Health Sciences Drive, Davis, CA 95616, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817, USA
| | | |
Collapse
|
10
|
Vardabasso C, Hasson D, Ratnakumar K, Chung CY, Duarte LF, Bernstein E. Histone variants: emerging players in cancer biology. Cell Mol Life Sci 2013; 71:379-404. [PMID: 23652611 DOI: 10.1007/s00018-013-1343-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023]
Abstract
Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology.
Collapse
Affiliation(s)
- Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | | | | | | | | | | |
Collapse
|
11
|
The human histone H3 complement anno 2011. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:577-86. [DOI: 10.1016/j.bbagrm.2011.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/17/2022]
|
12
|
Kim H, Heo K, Choi J, Kim K, An W. Histone variant H3.3 stimulates HSP70 transcription through cooperation with HP1γ. Nucleic Acids Res 2011; 39:8329-41. [PMID: 21742762 PMCID: PMC3201866 DOI: 10.1093/nar/gkr529] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Histone variant H3.3 and heterochromatin protein 1γ (HP1γ) are two functional components of chromatin with role in gene transcription. However, the regulations of their dynamics during transcriptional activation and the molecular mechanisms underlying their actions remain poorly understood. Here, we provide evidence that heat shock-induced transcription of the human HSP70 gene is regulated via the coordinated and interdependent action of H3.3 and HP1γ. H3.3 and HP1γ are rapidly co-enriched at the human HSP70 promoters upon heat shock in a manner that closely parallels the initiation of transcription. Knockdown of H3.3 prevents the stable recruitment of HP1γ, inhibits active histone modifications, and attenuates HSP70 promoter activity. Likewise, knockdown of HP1γ leads to the decreased levels of H3.3 in the promoter regions and the repression of HSP70 genes. HP1γ selectively recognizes particular modification states of H3.3 in the nucleosome for its action. Moreover, HP1γ is overexpressed in three representative cancer cell lines, and its knockdown leads to reduction in HSP70 gene transcription and inhibition of cancer cell proliferation. We conclude that the physical and functional interactions between H3.3 and HP1γ make a unique contribution to acute HSP70 transcription and cancer development related to the misregulation of this transcription event.
Collapse
Affiliation(s)
- Hyunjung Kim
- Department of Biochemistry and Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
13
|
Ingouff M, Berger F. Histone3 variants in plants. Chromosoma 2009; 119:27-33. [PMID: 19701762 DOI: 10.1007/s00412-009-0237-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/23/2009] [Accepted: 08/06/2009] [Indexed: 12/25/2022]
Abstract
Regulation of chromatin activity by covalent histone modifications has been long recognized. Histones that constitute the nucleosome are encoded by large families of genes and display a strong degree of conservation. However, histone variants exist and it is becoming clear that they play important roles in genome regulation. While most studies of the role of histone3 (H3) variants in transcriptional control comes from animal models, emerging data in plants suggest functional conservation, although plant-specific roles are likely. We review these data and speculate on the biological significance of H3 variants in plants.
Collapse
Affiliation(s)
- Mathieu Ingouff
- Department of Biological Sciences, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| | | |
Collapse
|
14
|
Happel N, Doenecke D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 2008; 431:1-12. [PMID: 19059319 DOI: 10.1016/j.gene.2008.11.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/31/2008] [Accepted: 11/02/2008] [Indexed: 01/21/2023]
Abstract
The lysine-rich H1 histone family in mammals includes eleven different subtypes, and thus it is the most divergent class of histone proteins. The central globular H1 domain asymmetrically interacts with DNA at the exit or entry end of the nucleosomal core DNA, and the C-terminal domain has a major impact on the linker DNA conformation and chromatin condensation. H1 histones are thus involved in the formation of higher order chromatin structures, and they modulate the accessibility of regulatory proteins, chromatin remodeling factors and histone modification enzymes to their target sites. The major posttranslational modification of H1 histones is phosphorylation, which reaches a peak during G2 and mitosis. Phosphorylation is, however, also involved in the control of DNA replication and it contributes to the regulation of gene expression. Disruption of linker histone genes, initially performed in order to delineate subtype-specific functions, revealed that disruption of one or two H1 subtype genes is quantitatively compensated by an increased expression of other subtypes. This suggests a functional redundancy among H1 subtypes. However, the inactivation of three subtypes and the reduction of the H1 moiety in half finally resulted in a phenotypic effect. On the other hand, studies on the role of particular subtypes at specific developmental stages in lower eukaryotes, but also in vertebrates suggest that specific subtypes of H1 participate in particular systems of gene regulation.
Collapse
Affiliation(s)
- Nicole Happel
- Institute of Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | |
Collapse
|
15
|
Chowdhary R, Ali RA, Albig W, Doenecke D, Bajic VB. Promoter modeling: the case study of mammalian histone promoters. Bioinformatics 2005; 21:2623-8. [PMID: 15769833 DOI: 10.1093/bioinformatics/bti387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
MOTIVATION Histone proteins play important roles in chromosomal functions. They are significantly evolutionarily conserved across species, which suggests similarity in their transcription regulation. The abundance of experimental data on histone promoters provides an excellent background for the evaluation of computational methods. Our study addresses the issue of how well computational analysis can contribute to unveiling the biologically relevant content of promoter regions for a large number of mammalian histone genes taken across several species, and suggests the consensus promoter models of different histone groups. RESULTS This is the first study to unveil the detailed promoter structures of all five mammalian histone groups and their subgroups. This is also the most comprehensive computational analysis of histone promoters performed to date. The most exciting fact is that the results correlate very well with the biologically known facts and experimental data. Our analysis convincingly demonstrates that computational approach can significantly contribute to elucidation of promoter content (identification of biologically relevant signals) complementing tedious wet-lab experiments. We believe that this type of analysis can be easily applied to other functional gene classes, thus providing a general framework for modelling promoter groups. These results also provide the basis to hunt for genes co-regulated with histone genes across mammalian genomes.
Collapse
Affiliation(s)
- Rajesh Chowdhary
- Knowledge Extraction Lab, Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613
| | | | | | | | | |
Collapse
|
16
|
Mancini P, Pulcrano G, Piscopo M, Aniello F, Branno M, Fucci L. A New Family of ?H3L-Like? Histone Genes. J Mol Evol 2004; 59:458-63. [PMID: 15638457 DOI: 10.1007/s00239-004-2637-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The H3L histone variant gene in Paracentrotus lividus (sea urchin) shows almost all typical features of the replication-dependent histone genes, but it codes for the H3.3 histone protein with the S.//. A.IG amino acid motif, which is typical of the variants synthesized in a replication-independent manner. "H3L-like" histone genes have been found in several unrelated organisms. These genes are intronless and encode for the typical H3.3 histone proteins. The newly described family of H3L-like variants, nearly ubiquitous within the animal kingdom, could represent the common ancestor of H3 and H3.3 histone genes.
Collapse
Affiliation(s)
- P Mancini
- Department of Genetics, General and Molecular Biology, University of Naples Federico II, Via Mezzocannone 8, 80134 Naples, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Frank D, Doenecke D, Albig W. Differential expression of human replacement and cell cycle dependent H3 histone genes. Gene 2003; 312:135-43. [PMID: 12909349 DOI: 10.1016/s0378-1119(03)00609-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Histones are the major protein component of chromatin. Except H4, all histone classes consist of several subtypes. The H3 family includes two replacement histone genes, H3.3A and H3.3B, which both encode the same protein and are expressed independently from the cell cycle. Since the two genes encode an identical protein, we analyzed whether they are differentially expressed. Therefore we cloned, sequenced and characterized the regulatory structures of the H3.3A gene and compared these with the corresponding regions in the H3.3B gene. In contrast to the H3.3B promoter, the promoter region of the H3.3A gene revealed neither a TATA nor any CCAAT boxes but an initiator element and several SP1 binding sequence motifs within an overall GC-rich sequence. Northern blot analysis of RNA from six human cell lines revealed that every cell line expressed each of the H3 isoform genes H3.1, H3.3A and H3.3B. In contrast, analysis of total RNA from human tissues showed a differential expression of the H3 isoform genes. The H3.3 genes are essentially only expressed in adult tissue, whereas the H3.1 gene is transcribed just in fetal tissue. The functional relevance of the elements identified by sequence analysis was established using a reporter gene assay with deletion constructs of the H3.3A promoter. In this assay a 256 bp fragment was sufficient for the full promoter activity and three promoter segments, each containing SP1 binding motifs, contribute to the H3.3A gene expression. The possible functional relevance of the differences between the two H3.3 genes in structure and expression is discussed.
Collapse
Affiliation(s)
- Derk Frank
- Institut für Biochemie und Molekulare Zellbiologie, Abteilung Molekularbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
18
|
Mancini P, Dentice M, Aniello F, Branno M, Piscopo M, Pulcrano G, Fucci L. The replacement H3.3 histone gene in Paracentrotus lividus sea urchin: structure and regulatory elements. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1519:39-45. [PMID: 11406269 DOI: 10.1016/s0167-4781(01)00205-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have isolated the Paracentrotus lividus sea urchin H3.3 histone gene and characterized the nucleotide sequences of the gene and its proximal promoter. Band shift experiments showed that two cAMP/PMA responsive elements (CRE/TRE), present in the proximal promoter, bind nuclear factors present in embryos at the blastula and gastrula stages (CRE1) and at the blastula stage (CRE2). The putative H3.3 coding region activating sequences (CRAS) failed to bind nuclear factors while the corresponding elements of the two replication-dependent genes (H3L and late H3) clearly recognized nuclear proteins. These results suggest some role of the CRE/TRE elements but not CRAS elements in the transcriptional regulation of the replication-independent histone genes in invertebrates.
Collapse
Affiliation(s)
- P Mancini
- Department of Genetics, General and Molecular Biology, University of Naples Frederico II, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Alvelo-Ceron D, Niu L, Collart DG. Growth regulation of human variant histone genes and acetylation of the encoded proteins. Mol Biol Rep 2000; 27:61-71. [PMID: 11092552 DOI: 10.1023/a:1007156629024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The family of human histone genes consists of replication-dependent and independent subtypes. The replication-independent histone genes, also known as variants, give rise to distinct mRNAs, whose expression is regulated depending on the growth state of the cell, tissue type and developmental stage. In turn, the histone variants are differentially synthesized and modified by acetylation. Consequently, chromatin structure is altered resulting in complex changes in gene expression. The high conservation among histone protein subtypes suggests that they are indispensable. In addition, conservation of the positions of acetylation within subtypes suggests that the location of these sites is functionally important for the eukaryotic cell. For example, the structures of transcriptionally active and repressed chromatin are different depending on the acetylation state of histone proteins [1-3]. In addition, transcriptionally active and repressed chromatin contains distinct histone variants [4]. Specialized histone variants are targeted to the centromere of the chromosome, where they are essential for chromosome segregation [5]. Other specialized histones exist that are essential for development [6]. Changes in histone acetylation have been implicated in the down-regulation of a tumour suppressor gene in human breast cancer [7]. Acetylation also plays an important role in X chromosome inactivation as well as hormone-mediated transcriptional regulation [8, 9]. We propose here a novel model for histone variant gene regulation at the post-transcriptional level, which provides the groundwork to define the pathways regulating the synthesis of these variants.
Collapse
Affiliation(s)
- D Alvelo-Ceron
- Department of Biological Sciences, Clark Atlanta University, GA 30314, USA
| | | | | |
Collapse
|
20
|
Chambers CB, Lee JM, Troncoso JC, Reich S, Muma NA. Overexpression of four-repeat tau mRNA isoforms in progressive supranuclear palsy but not in Alzheimer's disease. Ann Neurol 1999; 46:325-32. [PMID: 10482263 DOI: 10.1002/1531-8249(199909)46:3<325::aid-ana8>3.0.co;2-v] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Perturbations in the microtubule-associated protein tau occur in several human neurodegenerative diseases. In Alzheimer's disease and progressive supranuclear palsy (PSP), tau proteins assemble into straight and paired helical filaments that form intraneuronal deposits of neurofibrillary tangles (NFTs). The mechanisms underlying the aberrant assembly of tau into NFTs is unknown. To determine whether alterations in the expression of the carboxyl-terminal variants of tau contribute to NFT formation, we analyzed tau mRNA isoform expression in select regions of control, Alzheimer's disease, and PSP brains. In Alzheimer's disease, there were no alterations in tau mRNA isoform expression. However, in PSP, the levels of tau mRNA isoforms containing four microtubule binding domains were increased in the brainstem but not the frontal cortex or cerebellum. The brainstem in PSP has extensive NFT pathology, whereas the frontal cortex and cerebellum are relatively spared, suggesting that alterations in tau mRNA isoform expression occur in NFT-vulnerable regions in this disease. An increase in the four-repeat tau mRNA may lead to an increase in four-repeat tau protein isoforms and may contribute to the formation of NFTs in PSP. A similar increase in four-repeat tau mRNA has been reported for mutations associated with frontotemporal dementia and parkinsonism linked to chromosome 17.
Collapse
Affiliation(s)
- C B Chambers
- Department of Pharmacology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
21
|
Witt O, Albig W, Doenecke D. cAMP/phorbol ester response element is involved in transcriptional regulation of the human replacement histone gene H3.3B. Biochem J 1998; 329 ( Pt 3):609-13. [PMID: 9445389 PMCID: PMC1219083 DOI: 10.1042/bj3290609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human histone H3.3B gene belongs to the group of replacement histone genes, which are up-regulated during differentiation of cells. Here we provide evidence that a cAMP response element/PMA response element (CRE/TRE) located in the proximal promoter contributes to the expression of the H3.3B gene. (1) Band shift and supershift analysis demonstrated the binding of AP-1 and transcription factors of the CRE-binding protein/activating-transcription-factor family to the H3.3B CRE/TRE. (2) Treatment of HeLa cells with PMA led to a 4-fold increase in H3. 3B mRNA levels within 2 h, whereas transcription of the cell cycle-dependent H3 histone genes remained constant. In contrast with PMA, cAMP did not affect H3.3B transcription. (3) PMA treatment of cells transiently transfected with H3.3B promoter constructs linked to a luciferase gene caused a 4-5-fold increase in reporter gene activity, whereas mutation of the CRE/TRE element abolished the PMA response. These results demonstrate that activation of the protein kinase C pathway by PMA results in an early up-regulation of H3.3B gene expression via the CRE/TRE element. Furthermore treatment with PMA apparently leads to differential induction of H3 histone subtype genes and this in turn can result in a remodelling of chromatin structure of cells before or during differentiation processes.
Collapse
Affiliation(s)
- O Witt
- Institut für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Federal Republic of Germany
| | | | | |
Collapse
|
22
|
Lin X, Wells DE. Localization of the human H3F3A histone gene to 1q41, outside of the normal histone gene clusters. Genomics 1997; 46:526-8. [PMID: 9441765 DOI: 10.1006/geno.1997.5037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- X Lin
- Department of Biology, University of Houston, Texas 77204, USA
| | | |
Collapse
|
23
|
Bramlage B, Kosciessa U, Doenecke D. Differential expression of the murine histone genes H3.3A and H3.3B. Differentiation 1997; 62:13-20. [PMID: 9373943 DOI: 10.1046/j.1432-0436.1997.6210013.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The histone family of proteins is subdivided into two major groups: the main type histones, which are synthesized in coordination with DNA replication during the S-phase of the cell cycle, and the replacement histones, which can be synthesized in the absence of DNA replication substituting main type histone isoforms. Accumulation of replacement histone variants has been observed in several terminally differentiated tissues that have stopped cell division. The replacement subtype of the H3 class is termed H3.3. This protein is encoded by two different genes (H3.3A and H3.3B) that both code for the same amino acid sequence, but differ in nucleotide sequences and gene organization. This has been shown for human and avian H3.3A and H3.3B genes and for a murine H3.3B cDNA. In an attempt to define patterns of replacement histone H3.3 gene expression during male germ cell differentiation, we have constructed mouse testicular cDNA libraries and have isolated cDNAs corresponding to the murine H3.3A and H3.3B genes. Using probes specific for these two different genes we show by RNase protection analysis and by nonradioactive in situ hybridization with testis sections that H3.3A mRNA is present in pre- and postmeiotic cells, whereas expression of the H3.3B gene is essentially restricted to cells of the meiotic prophase.
Collapse
Affiliation(s)
- B Bramlage
- Institute of Biochemistry and Molecular Cell Biology, Georg-August-Universität Göttingen, Germany
| | | | | |
Collapse
|
24
|
Abstract
In contrast to the cell-cycle-dependent histone genes, replacement histone genes are transcribed independently of DNA replication and their expression is upregulated during differentiation. We have investigated the transcriptional regulation of the recently characterized human replacement histone gene H3.3B. Using reporter gene assays of promoter-luciferase gene-constructs, we show that promoter activity largely depends on an intact Oct and CRE/TRE element within the proximal 145 bp of the promoter. DNase I footprinting revealed binding of proteins to a 40-bp region covering these two elements. Band shift experiments identified binding proteins as Oct-1 and factors of the CREB/ATF and AP-1 family, respectively. The unexpected transcriptional regulation of this replacement histone gene is discussed.
Collapse
Affiliation(s)
- O Witt
- Institut fur Biochemie und Molekulare Zellbiologie, Universität Göttingen, Germany
| | | | | |
Collapse
|
25
|
López-Alãnón DM, Lopez-Fernández LA, Castañeda V, Krimer DB, Del Mazo J. H3.3A variant histone mRNA containing an alpha-globin insertion: modulated expression during mouse gametogenesis correlates with meiotic onset. DNA Cell Biol 1997; 16:639-44. [PMID: 9174168 DOI: 10.1089/dna.1997.16.639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Replacement-variant H3.3 histones have been isolated and sequenced in different eukaryotes, but no functional H3.3A gene has been characterized in the mouse so far. We have cloned an H3.3A cDNA from a mouse fetal ovary library, differentially screened with testis versus somatic cDNA probes. We showed this gene contains a region homologous to the reverse and complementary alpha-globin gene. We believe such a structure could have been generated by retroposition during the evolution of both globin and histone gene families. The sequence coding for H3.3A is 76.6% homologous to the mouse H3.3B gene at the nucleotide level and differs in only one amino acid at the protein level. The high degree of homology between these genes and the H3.3 variant histones from other eukaryotes reveals the conservation of these replication-independent class of histones throughout evolution. Analysis of gene expression reveals a developmental regulation concurrent with meiotic progression, with the highest level of transcript detection coincident with meiotic onset during both oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- D M López-Alãnón
- Department of Cell and Developmental Biology, Centro de Investigaciones Biológicas (C.S.I.C.), Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Taylor A, Webster KA, Gustafson TA, Kedes L. The anti-cancer agent distamycin A displaces essential transcription factors and selectively inhibits myogenic differentiation. Mol Cell Biochem 1997; 169:61-72. [PMID: 9089632 DOI: 10.1023/a:1006898812618] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The anticancer drug, distamycin A, alters DNA conformation by binding to A/T-rich domains. We propose that binding of the drug to DNA alters transcription factor interactions and that this may alter genetic regulation. We have analyzed the effects of distamycin A upon expression of the muscle-specific cardiac and skeletal alpha-actin genes which have A/T-rich regulatory elements in their promoters. Distamycin A specifically inhibited endogenous muscle genes in the myogenic C2 cell line and effectively eliminated the myogenic program. Conversely, when 10T1/2C18 derived pleuripotential TA1 cells were induced to differentiate in the presence of distamycin A, adipocyte differentiation was enhanced whereas the numbers of cells committing to the myogenic program decreased dramatically. Using the mobility shift assay distamycin A selectively inhibited binding of two important transcription factors, SRF and MEF2, to their respective A/T-rich elements. The binding of factors Sp1 and MyoD were not affected. The inhibition of factor binding correlated with a repression of muscle-specific promoter activity as assayed by transient transfection assays. Co-expression of the myoD gene, driven by a distamycin A-insensitive promoter, failed to relieve the inhibition of these muscle-specific promoters by distamycin A. Additionally, SRF and MEF2 dependent promoters were selectively down regulated by distamycin A. These results suggest that distamycin A may inhibit muscle-specific gene expression by selectively interfering with transcription factor interactions and demonstrate the importance of these A/T-rich elements in regulating differentiation of this specific cell type.
Collapse
Affiliation(s)
- A Taylor
- Department of Biological Sciences, Wichita State University, KS 67208, USA
| | | | | | | |
Collapse
|
27
|
Urbero B, Eurwilaichitr L, Stansfield I, Tassan JP, Le Goff X, Kress M, Tuite MF. Expression of the release factor eRF1 (Sup45p) gene of higher eukaryotes in yeast and mammalian tissues. Biochimie 1997; 79:27-36. [PMID: 9195043 DOI: 10.1016/s0300-9084(97)87622-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polypeptide chain termination in eukaryotic cells is mediated in part by the release factor eRF1 (Sup45p). We have isolated and characterised cDNAs encoding this translation factor from Syrian hamster (Mesocricetus auratus) and human (Homo sapiens) Daudi cells. Comparison of the deduced amino acid sequence of these new eRF1 (Sup45p) sequences with those published for Saccharomyces cerevisiae, Arabidopsis thaliana, Xenopus laevis and human indicates a high degree of amino acid identity across a broad evolutionary range of species. Both the 5' and 3' UTRs of the mammalian eRF1 (Sup45p)-encoding cDNAs show an unusually high degree of conservation for non-coding regions. In addition, the presence of two different lengths of 3' UTR sequences in the mammalian eRF1 (Sup45p) cDNAs indicated that alternative polyadenylation sites might be used in vivo. Northern blot analysis demonstrated that eRF1 (Sup45p) transcripts of differing length, consistent with the use of alternative polyadenylation sites, were detectable in a wide range of mammalian tissues. The Xenopus, human and Syrian hamster eRF1 (Sup45p) cDNAs were shown to support the viability of a strain of S cerevisiae carrying an otherwise lethal sup45::HIS3 gene disruption indicating evolutionary conservation of function. However, the yeast strains expressing the heterogenous eRF1 (Sup45p) showed a defect in translation termination as defined by an enhancement of nonsense suppressor tRNA activity in vivo. Western blot analysis confirmed that Xenopus eRF1 (Sup45p) was primarily ribosome-associated when expressed in yeast indicating that the ribosome-binding domain of eRF1 (Sup45p) is also conserved.
Collapse
Affiliation(s)
- B Urbero
- Genetique Moleculaire et Integration des Fonctions Cellulaire, CNRS UPR9044, IRC, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Akhmanova A, Miedema K, Hennig W. Identification and characterization of the Drosophila histone H4 replacement gene. FEBS Lett 1996; 388:219-22. [PMID: 8690091 DOI: 10.1016/0014-5793(96)00551-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Replacement variant genes for different histones have been described in most higher eukaryotes. However, so far no such gene has been found for histone H4. We have isolated from both Drosophila melanogaster and D. hydei a novel histone H4 encoding gene, H4r, which displays all the properties of a histone replacement variant gene: it contains introns, generates polyadenylated mRNA, represents the predominant H4 transcript in non-dividing tissues and is present in the genome as a single copy. The encoded polypeptide is identical to the Drosophila cell-cycle regulated histone H4. The fact that it is a single copy gene makes it prone to genetic analysis and it might be a useful tool for studying nucleosome structure and function.
Collapse
Affiliation(s)
- A Akhmanova
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
29
|
Abbaszadegan MR, Foley NE, Gleason-Guzman MC, Dalton WS. Resistance to the chemosensitizer verapamil in a multi-drug-resistant (MDR) human multiple myeloma cell line. Int J Cancer 1996; 66:506-14. [PMID: 8635866 DOI: 10.1002/(sici)1097-0215(19960516)66:4<506::aid-ijc14>3.0.co;2-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inhibitors of P-glycoprotein (P-gp) or chemosensitizers, such as verapamil, are used to reverse multi-drug resistance (MDR) in cancer patients. Clinical studies in patients with myeloma have shown that some patients with P-gp-positive cancer cells respond to the chemosensitizing effect of verapamil. However, this response is short-lived and tumor cells ultimately become resistant to chemosensitizers. To study mechanisms of resistance to chemosensitizers, a human myeloma cell line, 8226/MDR10V, was selected from a P-gp-positive cell line, 8226/Dox40, in the continuous presence of doxorubicin and verapamil. MDR10V cells are consistently more resistant to MDR drugs than parent cells, Dox40. Chemosensitizers, including verapamil and cyclosporin A, were less effective in reversing resistance in MDR10V compared with Dox40 cells. Verapamil and cyclosporin A were only partially effective in blocking P-gp drug efflux in MDR10V compared to Dox40 cells. Despite higher resistance to cytotoxic agents, MDR10V cells express less P-gp in the plasma membrane than do its parent cells, Dox40. [3H]Azidopine photoaffinity labeling of P-gp and its binding competition with unlabeled verapamil showed similar affinity for P-gp between Dox40 and MDR10V cell lines. Non-P-gp-mediated mechanisms of drug resistance, including over-expression of MRP and alterations in topoisomerase II, were not different for MDR10V cells compared with Dox40 cells.
Collapse
Affiliation(s)
- M R Abbaszadegan
- Bone Marrow Transplant Program, University of Arizona, Tucson, USA
| | | | | | | |
Collapse
|
30
|
Kanazin V, Blake T, Shoemaker RC. Organization of the histone H3 genes in soybean, barley and wheat. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:137-47. [PMID: 8628212 DOI: 10.1007/bf02174172] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Several variants of the replacement histone H3 genes from soybean, barley and wheat have been cloned and sequenced. Analysis of segregating populations in barley and soybean, as well as analysis of clones isolated from a soybean genomic library, suggested that these genes are dispersed throughout the genome. Several genes contains introns located in similar positions, but of different lengths and sequence. Comparison of mRNA levels in different tissues revealed that the intron-containing and intronless genes have different expression patterns. The distribution of the introns in the histone H3 genes across several plant species suggests that some of the introns might have been lost during the evolution of the gene family. Sequence divergence among introns and gene-flanking sequences in cloned gene variants allowed us to use them as specific probes for localizing individual gene copies and analyzing the genomic distribution of these variants across a range of genotypes.
Collapse
Affiliation(s)
- V Kanazin
- Department of Agronomy and USDA-ARS-FCR, Iowa State University, Ames,50011, USA
| | | | | |
Collapse
|
31
|
Alevizopoulos A, Dusserre Y, Tsai-Pflugfelder M, von der Weid T, Wahli W, Mermod N. A proline-rich TGF-beta-responsive transcriptional activator interacts with histone H3. Genes Dev 1995; 9:3051-66. [PMID: 8543151 DOI: 10.1101/gad.9.24.3051] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The molecular mechanisms involved in the regulation of gene expression by transforming growth factor-beta (TGF-beta) have been analyzed. We show that TGF-beta specifically induces the activity of the proline-rich trans-activation domain of CTF-1, a member of the CTF/NF-I family of transcription factors. A TGF-beta-responsive domain (TRD) in the proline-rich transcriptional activation sequence of CTF-1 was shown to mediate TGF-beta induction in NIH-3T3 cells. Mutagenesis studies indicated that this domain is not the primary target of regulatory phosphorylations, suggesting that the growth factor may regulate a CTF-1-interacting protein. A two-hybrid screening assay identified a nucleosome component, histone H3, as a specific CTF-1-interacting protein in yeast. Furthermore, the CTF-1 trans-activation domain was shown to interact with histone H3 in both transiently and stably transfected mammalian cells. This interaction requires the TRD, and it appears to be upregulated by TGF-beta in vivo. Moreover, point mutations in the TRD that inhibit TGF-beta induction also reduce interaction with histone H3. In vitro, the trans-activation domain of CTF-1 specifically contacts histone H3 and oligomers of histones H3 and H4, and full-length CTF-1 was shown to alter the interaction of reconstituted nucleosomal cores with DNA. Thus, the growth factor-regulated trans-activation domain of CTF-1 can interact with chromatin components through histone H3. These findings suggest that such interactions may regulate chromatin dynamics in response to growth factor signaling.
Collapse
Affiliation(s)
- A Alevizopoulos
- Institute of Animal Biology, University of Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Lowe K, Bowen B, Hoerster G, Ross M, Bond D, Pierce D, Gordon-Kamm B. Germline Transformation of Maize Following Manipulation of Chimeric Shoot Meristems. Nat Biotechnol 1995. [DOI: 10.1038/nbt0795-677] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Akhmanova AS, Bindels PC, Xu J, Miedema K, Kremer H, Hennig W. Structure and expression of histone H3.3 genes in Drosophila melanogaster and Drosophila hydei. Genome 1995; 38:586-600. [PMID: 7557364 DOI: 10.1139/g95-075] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We demonstrate that in Drosophila melanogaster the histone H3.3 replacement variant is encoded by two genes, H3.3A and H3.3B. We have isolated cDNA clones for H3.3A and cDNA and genomic clones for H3.3B. The genes encode exactly the same protein but are widely divergent in their untranslated regions (UTR). Both genes are expressed in embryos and adults; they are expressed in the gonads as well as in somatic tissues of the flies. However, only one of them, H3.3A, shows strong testes expression. The 3' UTR of the H3.3A gene is relatively short (approximately 250 nucleotides (nt)). H3.3B transcripts can be processed at several polyadenylation sites, the longest with a 3' UTR of more than 1500 nt. The 3' processing sites, preferentially used in the gonads and somatic tissues, are different. We have also isolated the Drosophila hydei homologues of the two H3.3 genes. They are quite similar to the D. melanogaster genes in their expression patterns. However, in contrast to their vertebrate counterparts, which are highly conserved in their noncoding regions, the Drosophila genes display only limited sequence similarity in these regions.
Collapse
Affiliation(s)
- A S Akhmanova
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Castiglia D, Cestelli A, Scaturro M, Nastasi T, Di Liegro I. H1(0) and H3.3B mRNA levels in developing rat brain. Neurochem Res 1994; 19:1531-7. [PMID: 7877725 DOI: 10.1007/bf00969002] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two overlapping rat cDNAs, covering a continuous region of 1107 base pairs, have been isolated and sequenced. The clones contain identical open reading frames, encoding a 136 amino acid long polypeptide which exhibits 100% identity to other mammalian H3.3 histone variants. We show that the inserts derive, in particular, from the H3.3B gene. We used these inserts and an insert from an H1(0) encoding clone, previously described (6), as probes to study the accumulation of mRNAs encoding the corresponding histone replacement variants (namely, H1(0) and H3.3) during rat brain development. We found that the concentration of both H1(0) and H3.3B mRNAs decreases from the embryonal day 18 (E18) to the postnatal day 10 (P10), with inverse correlation to protein accumulation.
Collapse
Affiliation(s)
- D Castiglia
- Dipartimento di Biologia Cellulare e dello Sviluppo, Alberto Monroy, Palermo, Italy
| | | | | | | | | |
Collapse
|
35
|
Futscher BW, Abbaszadegan MR, Domann F, Dalton WS. Analysis of MRP mRNA in mitoxantrone-selected, multidrug-resistant human tumor cells. Biochem Pharmacol 1994; 47:1601-6. [PMID: 8185674 DOI: 10.1016/0006-2952(94)90538-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
MRP, a gene recently isolated from a non-P-glycoprotein-mediated multidrug-resistant small cell lung cancer cell line, is a candidate multidrug-resistance gene. Mitoxantrone, an anthracenedione antitumor agent, frequently selects for non-P-glycoprotein-mediated multidrug resistance in in vitro models. To determine whether mitoxantrone-selected multidrug resistance was due to overexpression of MRP, we examined the expression of MRP in four mitoxantrone-selected, multidrug-resistant human tumor cell lines, using a reverse transcriptase/polymerase chain reaction assay. Results from these experiments suggest that overexpression of MRP does not appear to play a primary role in mitoxantrone-selected multidrug resistance in these cell lines, and that other novel drug-resistance mechanisms are likely.
Collapse
Affiliation(s)
- B W Futscher
- Bone Marrow Transplant Program, Arizona Cancer Center, Tucson 85724
| | | | | | | |
Collapse
|
36
|
Stein GS, Stein JL, van Wijnen AJ, Lian JB. Histone gene transcription: a model for responsiveness to an integrated series of regulatory signals mediating cell cycle control and proliferation/differentiation interrelationships. J Cell Biochem 1994; 54:393-404. [PMID: 8014188 DOI: 10.1002/jcb.240540406] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone gene expression is restricted to the S-phase of the cell cycle. Control is at multiple levels and is mediated by the integration of regulatory signals in response to cell cycle progression and the onset of differentiation. The H4 gene promoter is organized into a series of independent and overlapping regulatory elements which exhibit selective, phosphorylation-dependent interactions with multiple transactivation factors. The three-dimensional organization of the promoter and, in particular, its chromatin structure, nucleosome organization, and interactions with the nuclear matrix may contribute to interrelationships of activities at multiple promoter elements. Molecular mechanisms are discussed that may participate in the coordinate expression of S-phase-specific core and H1 histone genes, together with other genes functionally coupled with DNA replication.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | |
Collapse
|
37
|
Thatcher TH, MacGaffey J, Bowen J, Horowitz S, Shapiro DL, Gorovsky MA. Independent evolutionary origin of histone H3.3-like variants of animals and Tetrahymena. Nucleic Acids Res 1994; 22:180-6. [PMID: 8121802 PMCID: PMC307769 DOI: 10.1093/nar/22.2.180] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
All three genes encoding histone H3 proteins were cloned and sequenced from Tetrahymena thermophila. Two of these genes encode a major H3 protein identical to that of T. pyriformis and 87% identical to the major H3 of vertebrates. The third gene encodes hv2, a quantitatively minor replication independent (replacement) variant. The sequence of hv2 is only 85% identical to the animal replacement variant H3.3 and is the most divergent H3 replacement variant described. Phylogenetic analysis of 73 H3 protein sequences suggests that hv2, H3.3, and the plant replacement variant H3.III evolved independently, and that H3.3 is not the ancestral H3 gene, as was previously suggested (Wells, D., Bains, W., and Kedes, L. 1986, J. Mol. Evol., 23: 224-241). These results suggest it is the replication independence and not the particular protein sequence that is important in the function of H3 replacement variants.
Collapse
Affiliation(s)
- T H Thatcher
- Department of Biology, University of Rochester, NY 14627
| | | | | | | | | | | |
Collapse
|
38
|
Xuei X, Bhairi S, Staples RC, Yoder OC. INF56 represents a family of differentiation-specific genes from Uromyces appendiculatus. Curr Genet 1993; 24:84-8. [PMID: 8102947 DOI: 10.1007/bf00324669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In germlings of U. appendiculatus, a gene designated INF56 is preferentially expressed during development of the infection structures. A comparison of sequences between INF56 genomic DNA and a cDNA revealed several differences, randomly distributed throughout the coding region, which resulted in RFLPs at ASpI, HphI, NruI and ScaI sites. This observation, along with DNA-blot analysis, which revealed multiple copies of INF56 in uredospore genomic DNA, indicated that INF56 represents a multigene family. All copies of INF56 examined contain the same 67-bp intron reported previously (Xuei et al. 1992).
Collapse
Affiliation(s)
- X Xuei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853
| | | | | | | |
Collapse
|
39
|
Duret L, Dorkeld F, Gautier C. Strong conservation of non-coding sequences during vertebrates evolution: potential involvement in post-transcriptional regulation of gene expression. Nucleic Acids Res 1993; 21:2315-22. [PMID: 8506129 PMCID: PMC309526 DOI: 10.1093/nar/21.10.2315] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Comparison of nucleotide sequences from different classes of vertebrates that diverged more than 300 million years ago, revealed the existence of highly conserved regions (HCRs) with more than 70% similarity over 100 to 1450 nt in non-coding parts of genes. Such a conservation is unexpected because it is much longer and stronger than what is necessary for specifying the binding of a regulatory protein. HCRs are relatively frequent, particularly in genes that are essential to cell life. In multigene families, conserved regions are specific of each isotype and are probably involved in the control of their specific pattern of expression. Studying HCRs distribution within genes showed that functional constraints are generally much stronger in 3'-non-coding regions than in promoters or introns. The 3'-HCRs are particularly A + T-rich and are always located in the transcribed untranslated regions of genes, which suggests that they are involved in post-transcriptional processes. However, current knowledge of mechanisms that regulate mRNA export, localisation, translation, or degradation is not sufficient to explain the strong functional constraints that we have characterised.
Collapse
Affiliation(s)
- L Duret
- Laboratoire de Biométrie, Génétique et Biologie des Populations, Université Claude Bernard, Lyon I, URA-CNRS 243, Villeurbanne, France
| | | | | |
Collapse
|
40
|
Collart D, Romain PL, Huebner K, Pockwinse S, Pilapil S, Cannizzaro LA, Lian JB, Croce CM, Stein JL, Stein GS. A human histone H2B.1 variant gene, located on chromosome 1, utilizes alternative 3' end processing. J Cell Biochem 1992; 50:374-85. [PMID: 1469070 DOI: 10.1002/jcb.240500406] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A variant human H2B histone gene (GL105), previously shown to encode a 2300 nt replication independent mRNA, has been cloned. We demonstrate this gene expresses alternative mRNAs regulated differentially during the HeLa S3 cell cycle. The H2B-Gl105 gene encodes both a 500 nt cell cycle dependent mRNA and a 2300 nt constitutively expressed mRNA. The 3' end of the cell cycle regulated mRNA terminates immediately following the region of hyphenated dyad symmetry typical of most histone mRNAs, whereas the constitutively expressed mRNA has a 1798 nt non-translated trailer that contains the same region of hyphenated dyad symmetry but is polyadenylated. The cap site for the H2B-GL105 mRNAs is located 42 nt upstream of the protein coding region. The H2B-GL105 histone gene was localized to chromosome region 1q21-1q23 by chromosomal in situ hybridization and by analysis of rodent-human somatic cell hybrids using an H2B-GL105 specific probe. The H2B-GL105 gene is paired with a functional H2A histone gene and this H2A/H2B gene pair is separated by a bidirectionally transcribed intergenic promoter region containing consensus TATA and CCAAT boxes and an OTF-1 element. These results demonstrate that cell cycle regulated and constitutively expressed histone mRNAs can be encoded by the same gene, and indicate that alternative 3' end processing may be an important mechanism for regulation of histone mRNA. Such control further increases the versatility by which cells can modulate the synthesis of replication-dependent as well as variant histone proteins during the cell cycle and at the onset of differentiation.
Collapse
Affiliation(s)
- D Collart
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rogers SO, Bendich AJ. Variability and inheritance of histone genes H3 and H4 in Vicia faba. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:617-623. [PMID: 24201349 DOI: 10.1007/bf00224160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/1991] [Accepted: 01/10/1992] [Indexed: 06/02/2023]
Abstract
We have compared copy numbers and blothybridization patterns of histone genes (H3 plus H4) between and within individuals of broad bean (Vicia faba). Copy number differences among individuals in the population of 200 individuals were as great as 27 fold, and as much as 3.2 fold among separate leaves of the same plant. Among F2 progeny from genetic crosses, up to a 5.4-fold range was seen (mean=3.5 fold), and among F1 progeny of self-pollinated plants, up to a 5.9-fold range was observed (mean=2.3 fold). Histone gene blot-hybridization patterns for EcoRI and HindIII were also variable among individuals and indicated that the genes are probably clustered in only a few chromosomal loci. The degree of variation in histone gene copy number per haploid genome (2-55 copies, or 27 fold) was similar to that found previously for ribosomal RNA genes (230-22000, or 95 fold) of V. faba. However, the two gene families change independently, since individuals with a high or low copy number for one gene can have either a high or low copy number for the other. The mechanisms(s) for rapid gene copy number change may be similar for these gene families.
Collapse
Affiliation(s)
- S O Rogers
- Department of Environmental and Forest Biology College of Envirnmental Science and Forestry, State University of New York, 13210, Syracuse, NY, USA
| | | |
Collapse
|
42
|
Chaubet N, Clement B, Gigot C. Genes encoding a histone H3.3-like variant in Arabidopsis contain intervening sequences. J Mol Biol 1992; 225:569-74. [PMID: 1593639 DOI: 10.1016/0022-2836(92)90943-e] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two genes encoding a particular H3 histone variant were isolated from Arabidopsis thaliana. These genes differ from the H3 genes previously cloned from Arabidopsis and other plants by several interesting properties: (1) the two genes are located close to each other; (2) their coding regions are interrupted by two or three small introns, the two closest to the initiation codon being located at the same place in the two genes; (3) another, long intron is located in the 5'-untranslated region just before the initiation codon of gene I as deduced from the sequence of several corresponding cDNAs, and very likely also of gene II; (4) these genes do not show preferential expression in organs containing meristematic tissues contrary to the classical intronless replication-dependent histone genes, thus suggesting that their expression is not replication-dependent; (5) the protein encoded by both genes is the same and corresponds to a minor H3 variant highly conserved among all the plant species studied up to now. All these characteristics are common with the animal replication-independent H3.3 histone genes and it is assumed that the genes described here are the first example of the equivalent H3.3 gene family in plants. Interestingly, the promoter regions of the two genes have the same general structure as the Arabidopsis intronless genes. Possible implications on the regulation of H3 genes expression are discussed.
Collapse
Affiliation(s)
- N Chaubet
- Institut de Biologie Moléculaire des Plantes, CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
43
|
Abstract
Histone genes are expressed during the S phase of the cell cycle. Control is at multiple levels and is mediated by the integration of regulatory signals in response to cell-cycle progression and the onset of differentiation. Much work has been carried out on the H4 gene promoter, which appears to be organized into a series of distinct regulatory elements. The three-dimensional organization of the promoter and, in particular, its spatial relationship with the nuclear matrix scaffold, may be important factors of transcription regulation.
Collapse
Affiliation(s)
- G S Stein
- University of Massachusetts Medical Center, Worcester
| | | | | | | |
Collapse
|
44
|
Kremer EJ, Kistler WS. Analysis of the promoter for the gene encoding the testis-specific histone H1t in a somatic cell line: evidence for cell-cycle regulation and modulation by distant upstream sequences. Gene 1992; 110:167-73. [PMID: 1537553 DOI: 10.1016/0378-1119(92)90644-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene H1t encodes a testis-specific variant of the H1 histone family expressed in pachytene spermatocytes during the meiotic phase of spermatogenesis. Fusions between various upstream fragments of the H1t gene and the chloramphenicol acetyltransferase-encoding reporter gene were analyzed in mouse L cells by both transient and permanent transfection. Expression of the minimal promoter [174 nucleotides (nt) upstream from the transcription start point] was enhanced by sequences extending to nt -693, but was reduced in constructs with kb of upstream sequence. Using synchronized cells, expression was at least twofold higher in growing than in inhibited cells. Thus, the H1t promoter is modulated both positively and negatively by distant upstream sequences, and it displays some of the S-phase-dependent character of a replication-dependent histone.
Collapse
Affiliation(s)
- E J Kremer
- Department of Chemistry, University of South Carolina, Columbia 29208
| | | |
Collapse
|
45
|
Porteus MH, Brice AE, Bulfone A, Usdin TB, Ciaranello RD, Rubenstein JL. Isolation and characterization of a library of cDNA clones that are preferentially expressed in the embryonic telencephalon. ACTA ACUST UNITED AC 1992; 12:7-22. [PMID: 1372074 DOI: 10.1016/0169-328x(92)90063-h] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to isolate genes involved in development of the mammalian telencephalon we employed an efficient cDNA library procedure. By subtracting an adult mouse telencephalic cDNA library from an embryonic day 15 (E15) mouse telencephalic cDNA library we generated two subtracted libraries (ES1 and ES2). We estimate that ES1 contains between 200 and 600 different cDNA clones, which approximates the number of genes that are preferentially expressed in the E15 telencephalon, compared to the adult telencephalon. Northern analysis of 20 different cDNA clones shows that 14 of these are expressed at least 5-fold more in the E15 telencephalon than the adult telencephalon. Limited sequencing of the 14 differentially expressed clones reveals that 10 have no significant identity to sequences in GenBank and EMBL databases, whereas the other 4 have significant sequence identity to vimentin, histone 3.3, topoisomerase I and the B2 repeat element. In situ hybridization using one of the differentially expressed cDNAs, TES-1, demonstrates that it is transiently expressed in the anlage of the basal ganglia. In situ hybridization with another differentially expressed cDNA clone, TES-4, shows that it is specifically expressed in differentiating cells of the neural axis with a distinctive rostral-caudal temporal pattern. These findings, and the methods that we have developed, provide a framework for future investigations of the genetic control of telencephalon development.
Collapse
Affiliation(s)
- M H Porteus
- Nancy Prizker Laboratory of Developmental and Molecular Neurobiology, Department of Psychiatry and Behavioral Sciences, Stanford University, CA 94305
| | | | | | | | | | | |
Collapse
|
46
|
Fretzin S, Allan BD, van Daal A, Elgin SC. A Drosophila melanogaster H3.3 cDNA encodes a histone variant identical with the vertebrate H3.3. Gene 1991; 107:341-2. [PMID: 1748304 DOI: 10.1016/0378-1119(91)90337-b] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cDNA encoding an H3.3 histone variant in Drosophila melanogaster predicts a protein with an amino acid (aa) sequence identical with that in vertebrates. The D. melanogaster H3.3 nucleotide (nt) sequence has diverged significantly from that of both the H3.3 gene of vertebrates and the H3.1 gene of D. melanogaster, largely through third nt changes in its codons. The perfect H3.3 aa sequence conservation between organisms as phylogenetically divergent as vertebrates and flies suggests that the H3.3 histone variant itself is an important structural component of chromatin, apart from the value of its replication-independent expression pattern.
Collapse
Affiliation(s)
- S Fretzin
- Department of Biology, Washington University, St. Louis, MO 63130
| | | | | | | |
Collapse
|
47
|
van Wijnen AJ, Choi TK, Owen TA, Wright KL, Lian JB, Jaenisch R, Stein JL, Stein GS. Involvement of the cell cycle-regulated nuclear factor HiNF-D in cell growth control of a human H4 histone gene during hepatic development in transgenic mice. Proc Natl Acad Sci U S A 1991; 88:2573-7. [PMID: 2006193 PMCID: PMC51275 DOI: 10.1073/pnas.88.6.2573] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regulation of the cell cycle-controlled histone gene promoter factor HiNF-D was examined in vivo. Proliferative activity was measured by DNA replication-dependent histone mRNA levels, and HiNF-D binding activity was found to correlate with cell proliferation in most tissues. Furthermore, HiNF-D is down-regulated during hepatic development, reflecting the onset of differentiation and quiescence. The contribution of transcription to histone gene expression was directly addressed in transgenic mice by using a set of fusion constructs containing a human H4 histone gene promoter linked to three different genes. Transgene expression in both fetal and adult mice paralleled endogenous mouse histone mRNA levels in most tissues, consistent with this promoter conferring developmental, cell growth-related transcriptional regulation. Our results suggest that HiNF-D is stringently regulated in vivo in relation to cell growth and support a primary role for HiNF-D in the proliferation-specific expression of H4 histone genes in the intact animal. Further, the data presented here provide an example in which apparent tissue specificity of gene expression reflects the proliferative state of various tissues and demonstrate that multiple levels of histone gene regulation are operative in vivo.
Collapse
Affiliation(s)
- A J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wells D, Bains W. Characterization of an unusual human histone H3.3 pseudogene. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1991; 2:125-7. [PMID: 1777675 DOI: 10.3109/10425179109039681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The analysis of a genomic loci containing human histone H3.3 processed pseudogenes, has revealed two regions that are unusually rich in other retroposons. At one of the loci the H3.3 pseudogene is itself interrupted by 2 Alu repetitive sequences. The characterization of these two recently transposed Alus provides confirmation of the "multiple origin" hypothesis of these repetitive elements. The unusual occurrence of 3 different types of retroposons in a small region suggests that there may be particular chromosomal regions that are hot spots for retroposon insertion.
Collapse
Affiliation(s)
- D Wells
- Dept. of Biology, University of Houston, TX 77204
| | | |
Collapse
|
49
|
Rinke de Wit TF, Struyk L, Vloemans S, Glazebrook J, Boyle JM, Stern PL, van den Elsen PJ. HLA class I homologous transcripts in the human embryonal carcinoma cell line Tera-2. Immunogenetics 1990; 32:187-94. [PMID: 1699886 DOI: 10.1007/bf02114972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have used the human teratocarcinoma-derived embryonal carcinoma cell line Tera-2 cl. 13 to explore the putative expression of novel HLA class I(-like) genes. Serological analyses revealed that Tera-2 cells do not express polymorphic HLA class I (-A, -B, -C) specificities, but do express HLA class I-like antigens. These phenotypic properties parallel those of certain mouse embryonal carcinoma cells. To study the expression of HLA class I(-like) genes in the Tera-2 cells two different approaches were used. Screening of a Tera-2 cDNA library with a full-length HLA class I cDNA probe under conditions that would allow for the identification of relatively distinct HLA class I-like sequences yielded 27 positive clones, all of which were of the regular HLA-A, -B, -C type. Reverse northern hybridizations of the restriction enzyme-digested Tlab region comprising cosmids with Tera-2 cDNA as the probe resulted in the identification of several putative human genes whose equivalents map within the mouse Tla region. However, none of these genes appeared to be structurally related to HLA class I. A putative H3.3 histone gene was identified in the proximal Tla region of the C57BL/10 mouse. It is concluded that no structural homologues of mouse Qa/Tla genes are expressed in the human developmental cell line Tera-2.
Collapse
Affiliation(s)
- T F Rinke de Wit
- Department of Immunohaematology and Bloodbank, Leiden University Hospital, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
|