1
|
Souza M, Machado J, da Silva J, Ramos L, Nogueira L, Ribeiro P, Dias D, Santos J, Santos JC, Nóbrega Y, Souza A, Freitas S, da Paz MC, Felipe M, Torres F, Galdino A. Rational design and evaluation of the recombinant multiepitope protein for serodiagnosis of rubella. Curr Pharm Biotechnol 2021; 23:1094-1100. [PMID: 34493182 DOI: 10.2174/1389201022666210907170921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rubella is an infection caused by rubella virus (RV) and is generally regarded as a mild childhood disease. The disease continues to be of public health importance mainly because when the infection is acquired during early pregnancy it often results in fetal abnormalities, which are classified as congenital rubella syndrome (CRS). An accurate diagnosis for rubella is thus of pivotal importance for proper treatment. OBJECTIVE To produce a recombinant multiepitope protein (rMERUB) for the diagnosis of rubella, based on conserved immunodominant epitopes of glycoprotein E1 and E2. METHODS A synthetic gene was designed and cloned into vector pET21a with a 6xHis tag at the C-terminal for affinity purification and overexpressed in Escherichia coli cells. Biophysical analysis of rMERUB was performed by circular dichroism. Biological activity was assessed using an in-house ELISA assay. RESULTS Expression in Escherichia coli showed a ~22 kDa protein that was purified and used to perform structural assays and an IgG ELISA. Structural analyses reveal rMERUB has a β leaf pattern that promotes the exposure of epitopes, thus allowing antibody recognition. Evaluation of 33 samples (22=positive; 11=negative) was performed using in-house ELISA and this was compared with a commercial kit. The sensitivity was 100% (95% CI: 85-100) and specificity 90.91% (95% CI: 62-99). Excellent agreement (Kappa index = 0.9) was obtained between ELISA assays. CONCLUSIONS The careful choice of epitopes and the high epitope density, coupled with simple-step purification, pinpoints rMERUB as a promising alternative for rubella diagnosis, with potential for the development of a diagnostic kit.
Collapse
Affiliation(s)
- Marilen Souza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Juliana Machado
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Jonatas da Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Luana Ramos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Lais Nogueira
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Patrícia Ribeiro
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Daniel Dias
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Josiane Santos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - José Carlos Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Yanna Nóbrega
- Laboratório de Doenças Imunogenéticase Crônico-degenerativas, Faculdade de Saúde, Departamento de Ciências Farmacêuticas, Universidade de Brasília. Brazil
| | - Amanda Souza
- Laboratório de Biofísica, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília. Brazil
| | - Sonia Freitas
- Laboratório de Biofísica, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília. Brazil
| | - Mariana Campos da Paz
- Laboratório de Nanobiotecnologia & Biativos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, Divinópolis, MG, 35501-296. Brazil
| | - Maria Felipe
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Fernando Torres
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Alexsandro Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| |
Collapse
|
2
|
Mangala Prasad V, Klose T, Rossmann MG. Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus. PLoS Pathog 2017; 13:e1006377. [PMID: 28575072 PMCID: PMC5470745 DOI: 10.1371/journal.ppat.1006377] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/14/2017] [Accepted: 04/25/2017] [Indexed: 01/24/2023] Open
Abstract
Viral infections during pregnancy are a significant cause of infant morbidity and mortality. Of these, rubella virus infection is a well-substantiated example that leads to miscarriages or severe fetal defects. However, structural information about the rubella virus has been lacking due to the pleomorphic nature of the virions. Here we report a helical structure of rubella virions using cryo-electron tomography. Sub-tomogram averaging of the surface spikes established the relative positions of the viral glycoproteins, which differed from the earlier icosahedral models of the virus. Tomographic analyses of in vitro assembled nucleocapsids and virions provide a template for viral assembly. Comparisons of immature and mature virions show large rearrangements in the glycoproteins that may be essential for forming the infectious virions. These results present the first known example of a helical membrane-enveloped virus, while also providing a structural basis for its assembly and maturation pathway. Rubella virus (RV) causes serious fetal defects when contracted during pregnancy. Despite its medical importance, due to the irregular shapes and different sizes of the virions, the RV structure has remained unknown. Using cryo-electron tomography, we have determined the RV structure, which shows a unique, helical outer surface. Subsequent local averaging of the RV surface spikes has established the conformations of its immunogenic glycoproteins. In vitro assembly studies on the virus capsid protein have provided insights into the interactions necessary for virus assembly. Comparisons between mature and immature RV show large conformational changes in the virion structure that are essential for virus maturation. These results help to gain a structural understanding of RV pathogenicity, which may also be relevant to other teratogenic viruses.
Collapse
Affiliation(s)
- Vidya Mangala Prasad
- Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America
| | - Thomas Klose
- Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America
| | - Michael G. Rossmann
- Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
3
|
Analysis of complete genomes of the rubella virus genotypes 1E and 2B which circulated in China, 2000-2013. Sci Rep 2016; 6:39025. [PMID: 27959338 PMCID: PMC5154293 DOI: 10.1038/srep39025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023] Open
Abstract
Rubella viruses of genotypes 1E and 2B are currently the most frequently detected wild-type viruses in the world. Genotype 1E viruses from China have been genetically distinct from genotype 1E viruses found elsewhere, while genotype 2B viruses found in China are not distinguishable from genotype 2B viruses from other areas. Genetic clusters of viruses of both genotypes were defined previously using sequences of the 739-nt genotyping window. Here we report phylogenic analysis using whole genomic sequences from seven genotype 1E and three genotype 2B viruses which were isolated in China between 2000 and 2013 and confirm the subgrouping of current circulating genotypes 1E and 2B viruses. In addition, the whole genomic characterization of Chinese rubella viruses was clarified. The results indicated that the Chinese rubella viruses were highly conserved at the genomic level, and no predicted amino acid variations were found at positions where functional domains of the proteins were identified. Therefore, it gives us the idea that the rubella control and elimination goal should be achieved if vaccine immunization coverage continues maintaining at the high level.
Collapse
|
4
|
[The life cycle of Rubella Virus]. Uirusu 2014; 64:137-46. [PMID: 26437836 DOI: 10.2222/jsv.64.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rubella virus (RV), an infectious agent of rubella, is the sole member of the genus Rubivirus in the family of Togaviridae. RV has a positive-stranded sense RNA as a genome. A natural host of RV is limited to human, and rubella is considered to be a childhood disease in general. When woman is infected with RV during early pregnancy, her fetus may develop severe birth defects known as congenital rubella syndrome. In this review, the RV life cycle from the virus entry to budding is illustrated in comparison with those of member viruses of the genus alphavirus in the same family. The multiple functions of the RV capsid protein are also introduced.
Collapse
|
5
|
Abstract
Rubella virus is the only member of the Rubivirus genus within the Togaviridae family and is the causative agent of the childhood disease known as rubella or German measles. Here, we report the use of cryo-electron tomography to examine the three-dimensional structure of rubella virions and compare their structure to that of Ross River virus, a togavirus belonging the genus Alphavirus. The ectodomains of the rubella virus glycoproteins, E1 and E2, are shown to be organized into extended rows of density, separated by 9 nm on the viral surface. We also show that the rubella virus nucleocapsid structure often forms a roughly spherical shell which lacks high density at its center. While many rubella virions are approximately spherical and have dimensions similar to that of the icosahedral Ross River virus, the present results indicate that rubella exhibits a large degree of pleomorphy. In addition, we used rotation function calculations and other analyses to show that approximately spherical rubella virions lack the icosahedral organization which characterizes Ross River and other alphaviruses. The present results indicate that the assembly mechanism of rubella virus, which has previously been shown to differ from that of the alphavirus assembly pathway, leads to an organization of the rubella virus structural proteins that is different from that of alphaviruses.
Collapse
|
6
|
Determinants in the maturation of rubella virus p200 replicase polyprotein precursor. J Virol 2012; 86:6457-69. [PMID: 22491463 DOI: 10.1128/jvi.06132-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rubella virus (RUBV), a positive-strand RNA virus, replicates its RNA within membrane-associated replication complexes (RCs) in the cytoplasm of infected cells. RNA synthesis is mediated by the nonstructural proteins (NSPs) P200 and its cleavage products, P150 and P90 (N and C terminal within P200, respectively), which are processed by a protease residing at the C terminus of P150. In this study of NSP maturation, we found that early NSP localization into foci appeared to target the membranes of the endoplasmic reticulum. During maturation, P150 and P90 likely interact within the context of P200 and remain in a complex after cleavage. We found that P150-P90 interactions were blocked by mutational disruption of an alpha helix at the N terminus (amino acids [aa] 36 to 49) of P200 and that these mutations also had an effect on NSP targeting, processing, and membrane association. While the P150-P90 interaction also required residues 1700 to 1900 within P90, focus formation required the entire RNA-dependent RNA polymerase (aa 1700 to 2116). Surprisingly, the RUBV capsid protein (CP) rescued RNA synthesis by several alanine-scanning mutations in the N-terminal alpha helix, and packaged replicon assays showed that rescue could be mediated by CP in the virus particle. We hypothesize that CP rescues these mutations as well as internal deletions of the Q domain within P150 and mutations in the 5' and 3' cis-acting elements in the genomic RNA by chaperoning the maturation of P200. CP's ability to properly target the otherwise aggregated plasmid-expressed P200 provides support for this hypothesis.
Collapse
|
7
|
Abstract
The long-sought entry receptors for rubella, sindbis and respiratory syncytial viruses (RV, SV and RSV), together with the missing measles virus (MV) receptor for infection of epithelial cells, were identified in 2011. These have been major developments in the field of virus entry. In addition, 2011 was rich in new information about the interactions of MV, RSV and phleboviruses with DC-SIGN during infection of dendritic cells, a crucial step allowing the virus to breach the epithelial barrier and gain access to the lymph nodes. This faciliates dissemination to susceptible tissues where it can develop a vigorous and sustained replication, to eventually target specific organs from which it can propagate into the environment and efficiently infect new hosts, closing the merry-go-round of the virus cycle.
Collapse
|
8
|
Ilkow CS, Willows SD, Hobman TC. Rubella virus capsid protein: a small protein with big functions. Future Microbiol 2010; 5:571-84. [PMID: 20353299 DOI: 10.2217/fmb.10.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Virus replication occurs in the midst of a life or death struggle between the virus and the infected host cell. To limit virus replication, host cells can activate a number of antiviral pathways, the most drastic of which is programmed cell death. Whereas large DNA viruses have the luxury of encoding accessory proteins whose main function is to interfere with host cell defences, the genomes of RNA viruses are not large enough to encode proteins of this type. Recent studies have revealed that proteins encoded by RNA viruses often play multiple roles in the battles between viruses and host cells. In this article, we discuss the many functions of the rubella virus capsid protein. This protein has well-defined roles in virus assembly, but recent research suggests that it also functions to modulate virus replication and block host cell defences.
Collapse
Affiliation(s)
- Carolina S Ilkow
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | | | | |
Collapse
|
9
|
Sakata M, Komase K, Nakayama T. Histidine at position 1042 of the p150 region of a KRT live attenuated rubella vaccine strain is responsible for the temperature sensitivity. Vaccine 2008; 27:234-42. [PMID: 18996422 DOI: 10.1016/j.vaccine.2008.10.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/02/2008] [Accepted: 10/19/2008] [Indexed: 11/27/2022]
Abstract
The Japanese live attenuated KRT rubella vaccine strain has a temperature sensitivity (ts) phenotype. The objective of this study is to identify the region responsible for this phenotype. Genomic sequences of the KRT strain and the wild-type strain (RVi/Matsue.JPN/68) with the non-ts phenotype were investigated and reverse genetic systems (RG) for these strains were developed. The ts phenotype of KRT varied drastically on replacement of the p150 gene (encoding a methyltransferase and a nonstructural protease). Analysis of four chimeric viruses showed the region responsible for the ts phenotype to be located between Bsm I and Nhe I sites (genome position 2803-3243). There were two amino acid differences at positions 1007 and 1042. Mutations were introduced into the KRT cDNA clone, designated G1007D, H1042Y and G1007D-H1042Y. H1042Y and G1007D-H1042Y grew well at a restrictive temperature with a 100-fold higher titer than G1007D and the KRT strain, but a 10-fold lower titer than RVi/Matsue.JPN/68. Since the growth of H1042Y was not completely the same as that of the wild-type strain at the restrictive temperature, we also assessed whether other genomic regions have an additive effect with H1042Y on the ts phenotype. H1042Y-RViM SP having structural proteins of RVi/Matsue.JPN/68 grew better than H1042Y, similar to RVi/Matsue.JPN/68. Thus, we concluded that one mutation, of the histidine at position 1042 of p150, was essential for the ts phenotype of the KRT strain, and structural proteins of KRT had an additive effect with H1042Y on the ts phenotype.
Collapse
Affiliation(s)
- Masafumi Sakata
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, 5-9-1 Shirokane, Minato-ku, 108-8641 Tokyo, Japan
| | | | | |
Collapse
|
10
|
Rubella virus capsid protein interacts with poly(a)-binding protein and inhibits translation. J Virol 2008; 82:4284-94. [PMID: 18305028 DOI: 10.1128/jvi.02732-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During virus assembly, the capsid proteins of RNA viruses bind to genomic RNA to form nucleocapsids. However, it is now evident that capsid proteins have additional functions that are unrelated to nucleocapsid formation. Specifically, their interactions with cellular proteins may influence signaling pathways or other events that affect virus replication. Here we report that the rubella virus (RV) capsid protein binds to poly(A)-binding protein (PABP), a host cell protein that enhances translational efficiency by circularizing mRNAs. Infection of cells with RV resulted in marked increases in the levels of PABP, much of which colocalized with capsid in the cytoplasm. Mapping studies revealed that capsid binds to the C-terminal half of PABP, which interestingly is the region that interacts with other translation regulators, including PABP-interacting protein 1 (Paip1) and Paip2. The addition of capsid to in vitro translation reaction mixtures inhibited protein synthesis in a dose-dependent manner; however, the capsid block was alleviated by excess PABP, indicating that inhibition of translation occurs through a stoichiometric mechanism. To our knowledge, this is the first report of a viral protein that inhibits protein translation by sequestration of PABP. We hypothesize that capsid-dependent inhibition of translation may facilitate the switch from viral translation to packaging RNA into nucleocapsids.
Collapse
|
11
|
Abstract
Based on the sequence of the E1 glycoprotein gene, two clades and ten genotypes of Rubella virus have been distinguished; however, genomic sequences have been determined for viruses in only two of these genotypes. In this report, genomic sequences for viruses in an additional six genotypes were determined. The genome was found to be well conserved. The viruses in all eight of these genotypes had the same number of nucleotides in each of the two open reading frames (ORFs) and the untranslated regions (UTRs) at the 5' and 3' ends of the genome. Only the UTR between the ORFs (the junction region) exhibited differences in length. Of the nucleotides in the genome, 78% were invariant. The greatest observed distance between viruses in different genotypes was 8.74% and the maximum calculated genetic distance was 14.78 substitutions in 100 sites. This degree of variability was similar among regions of the genome with two exceptions, both within the P150 non-structural protein gene: the N-terminal region that encodes the methyl/guanylyltransferase domain was less variable, whereas the hypervariable domain in the middle of the gene was more divergent. Comparative phylogenetic analysis of different regions of the genome was done, using sequences from 43 viruses of the non-structural protease (near the 5' end of the genome), the junction region (the middle) and the E1 gene (the 3' end). Phylogenetic segregation of sequences from these three genomic regions was similar with the exception of genotype 1B viruses, among which a recombinational event near the junction region was identified.
Collapse
Affiliation(s)
- Yumei Zhou
- Department of Developmental Medical Sciences, Institute of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Hiroshi Ushijima
- Department of Developmental Medical Sciences, Institute of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Teryl K Frey
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
12
|
Wang X, Liang Y, Gillam S. Rescue of rubella virus replication-defective mutants using vaccinia virus recombinant expressing rubella virus nonstructural proteins. Virus Res 2002; 86:111-22. [PMID: 12076835 DOI: 10.1016/s0168-1702(02)00077-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genome of rubella virus (RV) is translated into a polyprotein precusor, p200, of the nonstructural proteins (NSPs). This is proteolytically processed by a viral-encoded protease into two mature products, p150 and p90. p150 contains sequence corresponding to the predicted methyltransferase and protease activities, while p90 has sequence for the proposed helicase and RNA-dependent RNA polymerase activities. Processing of p200 is essential for RV viral replication. RV NSPs are responsible for viral RNA replication, in which a full-length negative-strand RNA serves as the intermediate for the replication of positive-strand genomic RNA and the transcription of subgenomic RNA. Previously we demonstrated that p200 synthesizes negative- but not positive-strand RNA, and that cleavage products p150/p90 are required for efficient production of positive-strand RNA. To determine whether p150 or p90 alone or together is involved in positive-strand RNA synthesis, vaccinia virus recombinants expressing individual NSPs were constructed and characterized. These were used in in vivo rescue experiments to complement replication-defective mutants in virus replication. A protease-inactive mutant was rescued by p200 or p150 provided in trans by using vaccinia virus recombinants. Thus this protease can function in trans. Rescue of cleavage-defective mutant by either p200 alone, or p150 plus p90 but not by p150 or p90 alone suggests that p150 and p90 function together as a replication complex in positive-strand RNA synthesis.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Research Institute for Children's and Women's Health, 950 West 28th Avenue, Vancouver, BC, Canada
| | | | | |
Collapse
|
13
|
Liang Y, Gillam S. Mutational analysis of the rubella virus nonstructural polyprotein and its cleavage products in virus replication and RNA synthesis. J Virol 2000; 74:5133-41. [PMID: 10799588 PMCID: PMC110866 DOI: 10.1128/jvi.74.11.5133-5141.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rubella virus nonstructural proteins, translated from input genomic RNA as a p200 polyprotein and subsequently processed into p150 and p90 by an intrinsic papain-like thiol protease, are responsible for virus replication. To examine the effect of p200 processing on virus replication and to study the roles of nonstructural proteins in viral RNA synthesis, we introduced into a rubella virus infectious cDNA clone a panel of mutations that had variable defective effects on p200 processing. The virus yield and viral RNA synthesis of these mutants were examined. Mutations that completely abolished (C1152S and G1301S) or largely abolished (G1301A) cleavage of p200 resulted in noninfectious virus. Mutations that partially impaired cleavage of p200 (R1299A and G1300A) decreased virus replication. An RNase protection assay revealed that all of the mutants synthesized negative-strand RNA as efficiently as the wild type does but produced lower levels of positive-strand RNA. Our results demonstrated that processing of rubella virus nonstructural protein is crucial for virus replication and that uncleaved p200 could function in negative-strand RNA synthesis, whereas the cleavage products p150 and p90 are required for efficient positive-strand RNA synthesis.
Collapse
Affiliation(s)
- Y Liang
- Department of Pathology and Laboratory Medicine, Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | |
Collapse
|
14
|
Beatch MD, Hobman TC. Rubella virus capsid associates with host cell protein p32 and localizes to mitochondria. J Virol 2000; 74:5569-76. [PMID: 10823864 PMCID: PMC112044 DOI: 10.1128/jvi.74.12.5569-5576.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Togavirus nucleocapsids have a characteristic icosahedral structure and are composed of multiple copies of a capsid protein complexed with genomic RNA. The assembly of rubella virus nucleocapsids is unique among togaviruses in that the process occurs late in virus assembly and in association with intracellular membranes. The goal of this study was to identify host cell proteins which may be involved in regulating rubella virus nucleocapsid assembly through their interactions with the capsid protein. Capsid was used as bait to screen a CV1 cDNA library using the yeast two-hybrid system. One protein that interacted strongly with capsid was p32, a cellular protein which is known to interact with other viral proteins. The interaction between capsid and p32 was confirmed using a number of different in vitro and in vivo methods, and the site of interaction between these two proteins was shown to be at the mitochondria. Interestingly, overexpression of the rubella virus structural proteins resulted in clustering of the mitochondria in the perinuclear region. The p32-binding site in capsid is a potentially phosphorylated region that overlaps the viral RNA-binding domain of capsid. Our results are consistent with the possibility that the interaction of p32 with capsid plays a role in the regulation of nucleocapsid assembly and/or virus-host interactions.
Collapse
Affiliation(s)
- M D Beatch
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
15
|
Yao J, Gillam S. A single-amino-acid substitution of a tyrosine residue in the rubella virus E1 cytoplasmic domain blocks virus release. J Virol 2000; 74:3029-36. [PMID: 10708417 PMCID: PMC111801 DOI: 10.1128/jvi.74.7.3029-3036.2000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rubella virus particles, consisting of a nucleocapsid surrounded by a lipid envelope in which two virus-encoded glycoproteins E1 and E2 are embedded, assemble on intracellular membranes and are secreted from cells, possibly via the cellular secretory pathway. We have recently demonstrated that the cytoplasmic domain of E1 (residues 469 to 481, KCLYYLRGAIAPR) is required for virus release. Alteration of cysteine 470 to alanine did not affect virus release, whereas mutation of leucine 471 to alanine reduced virus production by 90%. In the present study, substitutions of remaining amino acids in the E1 cytoplasmic domain were made in order to investigate the role of each amino acid in regulating rubella virus release. Generated mutants were analyzed in the context of infectious full-length cDNA clone and virus-like particles using combined genetic, biochemical, and electron microscopic approaches. Substitution of a single residue of tyrosine 472 to alanine or tyrosine 473 to serine resulted in a block in virus release without affecting protein transport and virus budding into the lumen of the Golgi complexes. Infectious RNA transcripts bearing these mutations were incapable of forming plaques. Mutants with substitutions at the amino-terminal region (leucine 474, arginine 475, and glycine 476) in the E1 cytoplasmic domain had reduced virus release and small-plaque phenotype, while mutants with substitutions at the carboxy-terminal region (alanine 477, isoleucine 478, alanine 479, proline 480, and arginine 481) had only marginal defects in virus release. Plaque-forming revertants could be isolated from mutants Y472A and Y473S. Sequencing analysis revealed that the substituted serine residue in mutant Y473S reverted to the original tyrosine residue, whereas the substituted alanine residue in mutant Y472A was retained. These results indicate that the E1 cytoplasmic domain modulates virus release in a sequence-dependent manner and that the tyrosine residues are critical for this function. We postulate that residues YYLRG constitute a domain in the E1 tail that may interact with other proteins and this interaction is involved in regulating virus release.
Collapse
Affiliation(s)
- J Yao
- Department of Pathology and Laboratory Medicine, Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | |
Collapse
|
16
|
Lund KD, Chantler JK. Mapping of genetic determinants of rubella virus associated with growth in joint tissue. J Virol 2000; 74:796-804. [PMID: 10623741 PMCID: PMC111599 DOI: 10.1128/jvi.74.2.796-804.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rubella virus (RV) strains vary in their abilities to replicate and persist in cell cultures derived from human joint tissue (synovial cells [SC]), and this arthrotropism appears to be linked to their association with joint symptoms in vivo. In order to map the genetic determinants of arthrotropism, an infectious clone of the Cendehill vaccine strain of RV was constructed, as well as two chimeric clones containing cDNAs from both Cendehill and Therien (wild-type) strains. Replacement of the entire structural gene region of Therien in the infectious clone pROBO302 with the corresponding region of Cendehill did not affect growth in SC. A further observation that Cendehill bound equally well to SC and the permissive Vero cell line indicated that restriction was not at the level of receptor binding, a function of the envelope proteins. Mutations that affected growth in joint cells were mapped to two locations in the nonstructural gene region. The first of these (nucleotides 2803 and 6416) resulted in a 10-fold decrease in yield of progeny virus from SC. This region contained five mutations, at nucleotides 2829, 3060, 3164, and 3528 (near the carboxy terminus of P150 where the protease domain is located) and at nucleotide 4350 in p90. Further substitution of the sequence representing nucleotides 1 to 2803 to give a complete Cendehill infectious clone restricted growth in SC by a further 100-fold to less than 10 PFU/ml. This region contains three mutations, at nucleotides 34, 37, and 55, within the 5' stem-loop structure. In conclusion, the Cendehill-specific mutations believed to be determinants of joint cell growth are located in two regions, the 5' nontranslated region and in a sequence that encodes the carboxy-terminal region of p150 extending into the helicase domain of p90.
Collapse
Affiliation(s)
- K D Lund
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
17
|
Yao J, Gillam S. Mutational analysis, using a full-length rubella virus cDNA clone, of rubella virus E1 transmembrane and cytoplasmic domains required for virus release. J Virol 1999; 73:4622-30. [PMID: 10233921 PMCID: PMC112503 DOI: 10.1128/jvi.73.6.4622-4630.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on the construction of a full-length cDNA clone, pBRM33, derived from wild-type rubella virus M33 strain. The RNA transcripts synthesized in vitro from pBRM33 are highly infectious, and the viruses produced retain the phenotypic characteristics of the parental M33 virus in growth rate and plaque size. This cDNA clone was used to study the role of E1 transmembrane and cytoplasmic domains in virus assembly by site-directed mutagenesis. Three different alanine substitutions were introduced in the transmembrane domain of E1. These included substitution of leucine 464, cysteine 466, cysteine 467, and both cysteines 466 and 467 to alanine. In the E1 cytoplasmic domain, cysteine 470 and leucine 471 were altered to alanine. We found that these mutations did not significantly affect viral RNA replication, viral structural protein synthesis and transport, or E2/E1 heterodimer formation. Except for the substitution of cysteine 470, these mutations did, however, lead to a reduction in virus release. Substitution of cysteine 467 in the transmembrane region and of leucine 471 in the cytoplasmic domain dramatically reduced virus yield, resulting in the production of only 1 and 10% of the parental virus yield, respectively, in a parallel infection. These data show that E1 transmembrane and cytoplasmic domains play an important role in late stages of virus assembly, possibly during virus budding, consistent with earlier studies indicating that the E1 cytoplasmic domain may interact with nucleocapsids and that this interaction drives virus budding.
Collapse
Affiliation(s)
- J Yao
- Department of Pathology and Laboratory Medicine, Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | |
Collapse
|
18
|
Garbutt M, Law LM, Chan H, Hobman TC. Role of rubella virus glycoprotein domains in assembly of virus-like particles. J Virol 1999; 73:3524-33. [PMID: 10196241 PMCID: PMC104124 DOI: 10.1128/jvi.73.5.3524-3533.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rubella virus is a small enveloped positive-strand RNA virus that assembles on intracellular membranes in a variety of cell types. The virus structural proteins contain all of the information necessary to mediate the assembly of virus-like particles in the Golgi complex. We have recently identified intracellular retention signals within the two viral envelope glycoproteins. E2 contains a Golgi retention signal in its transmembrane domain, whereas a signal for retention in the endoplasmic reticulum has been localized to the transmembrane and cytoplasmic domains of E1 (T. C. Hobman, L. Woodward, and M. G. Farquhar, Mol. Biol. Cell 6:7-20, 1995; T. C. Hobman, H. F. Lemon, and K. Jewell, J. Virol. 71:7670-7680, 1997). In the present study, we have analyzed the role of these retention signals in the assembly of rubella virus-like particles. Deletion or replacement of these domains with analogous regions from other type I membrane glycoproteins resulted in failure of rubella virus-like particles to be secreted from transfected cells. The E1 transmembrane and cytoplasmic domains were not required for targeting of the structural proteins to the Golgi complex and, surprisingly, assembly and budding of virus particles into the lumen of this organelle; however, the resultant particles were not secreted. In contrast, replacement or alteration of the E2 transmembrane or cytoplasmic domain, respectively, abrogated the targeting of the structural proteins to the budding site, and consequently, no virion formation was observed. These results indicate that the transmembrane and cytoplasmic domains of E2 and E1 are required for early and late steps respectively in the viral assembly pathway and that rubella virus morphogenesis is very different from that of the structurally similar alphaviruses.
Collapse
Affiliation(s)
- M Garbutt
- Department of Cell Biology and Anatomy, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
19
|
Yang D, Hwang D, Qiu Z, Gillam S. Effects of mutations in the rubella virus E1 glycoprotein on E1-E2 interaction and membrane fusion activity. J Virol 1998; 72:8747-55. [PMID: 9765418 PMCID: PMC110290 DOI: 10.1128/jvi.72.11.8747-8755.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/1998] [Accepted: 07/27/1998] [Indexed: 12/12/2022] Open
Abstract
Rubella virus (RV) virions contain two glycosylated membrane proteins, E1 and E2, that exist as a heterodimer and form the viral spike complexes on the virion surface. Formation of an E1-E2 heterodimer is required for transport of E1 out of the endoplasmic reticulum lumen to the Golgi apparatus and plasma membrane. To investigate the nature of the E1-E2 interaction, we have introduced mutations in the internal hydrophobic region (residues 81 to 109) of E1. Substitution of serine at Cys82 (mutant C82S) or deletion of this hydrophobic domain (mutant dt) of E1 resulted in a disruption of the E1 conformation that ultimately affected E1-E2 heterodimer formation and cell surface expression of both E1 and E2. Substitution of either aspartic acid at Gly93 (G93D) or glycine at Pro104 (P104G) was found to impair neither E1-E2 heterodimer formation nor the transport of E1 and E2 to the cell surface. Fusion of RV-infected cells is induced by a brief treatment at a pH below 6. 0. To test whether this internal hydrophobic domain is involved in the membrane fusion activity of RV, transformed BHK cell lines expressing either wild-type or mutant spike proteins were exposed to an acidic pH and polykaryon formation was measured. No fusion activity was observed in the C82S, dt, and G93D mutants; however, the wild type and the P104G mutant exhibited fusogenic activities, with greater than 60% and 20 to 40% of the cells being fused, respectively, at pH 4.8. These results suggest that it is likely that the region of E1 between amino acids 81 and 109 is involved in the membrane fusion activity of RV and that it may be important for the interaction of that protein with E2 to form the E1-E2 heterodimer.
Collapse
Affiliation(s)
- D Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | |
Collapse
|
20
|
Ou D, Mitchell LA, Décarie D, Tingle AJ, Lacroix M, Zrein M. Point mutation of a rubella virus E1 protein T-cell epitope by substitution of single amino acid reversed the restrictive HLA-DR polymorphism: a possible mechanism maintaining HLA polymorphism. Viral Immunol 1998; 11:93-102. [PMID: 9765031 DOI: 10.1089/vim.1998.11.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The influence of single amino acid substitutions within a rubella E1 protein T-cell epitope, E1(273-284) on T-cell recognition was studied. Substitutions of an uncharged amino acid A for an E or for a T and substitution of a T for S were found to not significantly reduce the T-cell responses. However, substitution of a charged residue such as E for hydrophobic residues (I, V, or W); D for Q; or a relatively larger size amino acid for polar residues completely abolished the cytotoxicities mediated by E1(273-284)-specific T-cell clone. A set of single amino acid-substituted peptide analogs of E1(273-284) not eliciting cytotoxicity of the T-cell clone was used to test the influence of point mutation of the epitope on HLA DR restrictions. A panel of B-cell lines with different DR4 subtypes was used as targets in cytotoxicity assays to determine the restrictive HLA molecules. Results showed that modification of the T-cell epitope by point mutation could reverse the HLA DR restriction from one allele to other alleles. A model based on these results has been proposed to explain the mechanism balancing major histocompatibility complex (MHC) polymorphism in outbred populations.
Collapse
Affiliation(s)
- D Ou
- Department of Paediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Yao J, Yang D, Chong P, Hwang D, Liang Y, Gillam S. Proteolytic processing of rubella virus nonstructural proteins. Virology 1998; 246:74-82. [PMID: 9656995 DOI: 10.1006/viro.1998.9179] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The genomic RNA of rubella virus contains two long open reading frames (ORF), a 5'-proximal ORF that codes for the nonstructural proteins and a 3'-proximal ORF that encodes the structural proteins. The cDNA encoding the nonstructural protein ORF of the wild-type M33 strain of rubella virus has been obtained and sequenced. Comparison between the nonstructural proteins of the M33 and Therien strains of rubella virus revealed a 98% homology in nucleotide sequence and 98.1% in deduced amino acid sequence. To examine the processing of rubella virus nonstructural protein, the complete nonstructural protein ORF was expressed in BHK cells using a pSFV expression vector. Three nonstructural protein products (p200, p150, and p90) with molecular weights of 200, 150, and 90 kDa were identified using antisera raised against synthetic peptides corresponding to regions of the nonstructural proteins. p200 is the polyprotein precursor, while p150 and p90 are the cleavage products. Site-directed mutagenesis of the Cys-1151 residue (one of the catalytic dyad residues of the viral protease) and of the Gly-1300 residue (the viral protease cleavage site) abrogated protease activity and p200 precursor cleavage, respectively. Coexpression of mutant constructs in BHK cells indicated that rubella virus protease can function both in cis and in trans.
Collapse
Affiliation(s)
- J Yao
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Ou D, Mitchell LA, Décarie D, Tingle AJ, Nepom GT. Promiscuous T-cell recognition of a rubella capsid protein epitope restricted by DRB1*0403 and DRB1*0901 molecules sharing an HLA DR supertype. Hum Immunol 1998; 59:149-57. [PMID: 9548074 DOI: 10.1016/s0198-8859(98)00006-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two T cell clones derived from different donors with HLA-DRB1*0403 or DRB1*0901 phenotype recognize a rubella capsid peptide, C(265-273) in the context of several different HLA-DR molecules in addition to DRB1*0403 and DRB1*0901. All DR molecules restricting the T-cell clones have in common residues, R or Q at position beta 70, R at position beta 71, and E at position beta 74 in pocket '4' of the DR peptide binding groove, suggesting that a DR subregion structure or supertype, "Q/RRE" underlies the promiscuous T-cell recognition of this peptide. Single amino acid substituted analogs of peptide C(263-275) at anchor position 4 for natural residue R were tested for their ability to induce clonal T-cell cytotoxic responses. The results indicated that a positively charged residue, R or K, was required for T-cell recognition, suggesting a possible mechanism of electrostatic interactions between the negatively charged residue E at position beta 74 of these DR molecules and the positively charged residue at anchor position 4 of the peptide in T-cell recognition.
Collapse
Affiliation(s)
- D Ou
- Department of Paediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
23
|
Ou D, Mitchell LA, Décarie D, Gillam S, Tingle AJ. Characterization of an overlapping CD8+ and CD4+ T-cell epitope on rubella capsid protein. Virology 1997; 235:286-92. [PMID: 9281508 DOI: 10.1006/viro.1997.8704] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A synthetic peptide corresponding to rubella virus capsid protein residues 263 to 275 which contains an epitope recognized by a cloned CD4+ cytotoxic T-lymphocyte (CTL) line was used to induce CD8+ T-cell lines specific to this peptide. A peptide-specific CD8+ CTL clone was derived and characterized. This peptide-specific CD8+ CTL clone exhibited cytotoxicity against target cells infected by a vaccinia recombinant virus expressing rubella virus capsid protein, but not by target cells infected by vaccinia recombinant virus expressing rubella virus E1 or E2 envelope proteins. Analysis of HLA class I restriction of the CD8+ CTL clone revealed that A11 and A3 were restrictive elements. Fine mapping with truncated and overlapping peptide analogs revealed a nonamer sequence, C(264-272), as the T-cell epitope eliciting stronger cytotoxicity. Two anchor residues for binding to HLA A11 and A3 were identified at position 2 (isoleucine) and at position 9 (histidine) or at position 8 (arginine) of the epitope sequence. The identification of overlapping CD4+ and CD8+ T-cell epitopes within the capsid protein sequence C(263-275) implicates a strategy for using such epitopes in a candidate peptide-based rubella vaccine.
Collapse
Affiliation(s)
- D Ou
- Faculty of Medicine, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | | | | | | | | |
Collapse
|
24
|
Gros C, Linder M, Wengler G, Wengler G. Analyses of disulfides present in the rubella virus E1 glycoprotein. Virology 1997; 230:179-86. [PMID: 9143273 DOI: 10.1006/viro.1997.8462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The surface of Rubella virus contains the glycoproteins E1 and E2. The E1 protein induces neutralizing antibodies and has been implicated in the process of recognition of cellular receptors. To gain information on the structural organization of the E1 protein we have analyzed the disulfide bonds present within this molecule. The reactivity of the protein with radioactively labeled iodoacetic acid indicates that all 20 cysteine residues present in the ectodomain of the E1 protein are involved in disulfide formation. E1 protein was purified by preparative SDS-PAGE under nonreducing conditions from virus particles grown in tissue culture in the presence of [35S]cysteine. The purified protein was digested with a number of proteases followed by reversed phase high-performance liquid chromatography (HPLC). [35S]cysteine-containing peptides were identified and characterized by N-terminal amino acid sequence determination. These analyses identified the following eight disulfide bridges: C(1)-C(2); C(3)-C(15); C(6)-C(7); C(9)-C(10); C(11)-C(12); C(13)-C(14); C(17)-C(18); and C(19)-C(20). The two disulfide bridges formed by the residues C(4), C(5), C(8), and C(16) have not been identified with certainty, but a likely organization can be derived. The data obtained are discussed in the context of a possible structural and functional organization of the E1 protein.
Collapse
Affiliation(s)
- C Gros
- Institut für Virologie, Justus-Liebig-Universität Giessen, Germany
| | | | | | | |
Collapse
|
25
|
Johansson T, Enestam A, Kronqvist R, Schmidt M, Tuominen N, Weiss SA, Oker-Blom C. Synthesis of soluble rubella virus spike proteins in two lepidopteran insect cell lines: large scale production of the E1 protein. J Biotechnol 1996; 50:171-80. [PMID: 8987625 DOI: 10.1016/0168-1656(96)01562-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The two envelope glycoproteins of rubella virus (RV), E1 of 58 kDa and E2 of 42-47 kDa, were individually expressed in lepidopteran Spodoptera frugiperda as well as in Trichoplusia ni insect cells using baculovirus vectors. The authentic signal sequences of E1 and E2 were replaced with the honeybee melittin signal sequence, allowing efficient entrance into the secretory pathway of the insect cell. In addition, the hydrophobic transmembrane anchors at the carboxyl termini of E1 and E2 proteins were removed to enable secretion rather than maintenance in the cellular membranes. Synthesis of the recombinant proteins in the absence and presence of tunicamycin revealed that both E1 and E2 were glycosylated with apparent molecular weights of 52 kDa and 37 kDa, respectively. Recombinant E2 appeared to be partially secreted, whereas E1 was essentially found inside the infected insect cell. The E1 protein was produced in large scale using a 10-1 bioreactor and serum-free medium (SFM). Purification of the recombinant protein product was performed from cytoplasmic extracts by ammonium sulphate precipitation followed by Concanavalin A affinity chromatography. This type of purified recombinant viral glycoproteins may be useful not only in diagnostic medicine or for immunization, but should enable studies designed to solve the structure of the virus particle.
Collapse
Affiliation(s)
- T Johansson
- Abo Akademi University, Department of Biochemistry and Pharmacy, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
26
|
Liu Z, Yang D, Qiu Z, Lim KT, Chong P, Gillam S. Identification of domains in rubella virus genomic RNA and capsid protein necessary for specific interaction. J Virol 1996; 70:2184-90. [PMID: 8642641 PMCID: PMC190057 DOI: 10.1128/jvi.70.4.2184-2190.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In rubella virus-infected cells, genomic 40S and subgenomic 24S RNAs are present in the cytoplasm of infected cells. However, encapsidation by rubella virus capsid protein is specific for 40S genomic RNA. As a first step toward understanding the assembly of rubella virus nucleocapsid at the molecular level, the interaction between capsid protein and genomic RNA was studied by Northwestern (RNA-protein) blot analysis. RNA probes prepared by in vitro transcription were used to localize the RNA sequence that participates in binding to the capsid protein. We have identified a 29-nucleotide RNA sequence (nucleotides 347 to 375) that is essential for the binding. By using overlapping synthetic peptides of capsid protein, a peptide domain (residues 28 to 56) that displays specific RNA-binding activity of capsid protein has been located. This result suggests that the specific recognition of viral RNA during rubella virus assembly involves, at least in part, the nucleocapsid protein.
Collapse
Affiliation(s)
- Z Liu
- Department of Pathology and Laboratory Medicine, University of British Columbia Research Centre, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Cusi MG, Valassina M, Bianchi S, Wunner W, Valensin PE. Evaluation of rubella virus E2 and C proteins in protection against rubella virus in a mouse model. Virus Res 1995; 37:199-208. [PMID: 8533457 DOI: 10.1016/0168-1702(95)00037-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An animal model is described that can provide further information for evaluating novel vaccines against rubella virus (RV). A group of mice was immunized with the lysate of insect cells infected by a recombinant baculovirus expressing E2 and C proteins of RV. Another group of mice was immunized with the RA27/3 rubella vaccine. After 2 weeks, both groups of mice were challenged intramuscularly with live RV and the blood was drawn after 8, 24, 48 and 72 h. The presence of rubella challenge virus in an unnatural host, such as the mouse, was monitored by RT-PCR. The mice immunized with the RA27/3 rubella vaccine were the only ones able to inhibit the challenge virus replication, E2 and C proteins, which alone are not sufficient to protect animals against RV, served as a negative control for a protective vaccine against RV that expresses E1 protein of RV.
Collapse
Affiliation(s)
- M G Cusi
- Department of Molecular Biology, Section of Microbiology, Siena, Italy
| | | | | | | | | |
Collapse
|
28
|
Gros C, Wengler G. Large scale purification of rubella virus and the isolation of native viral core protein. Arch Virol 1995; 140:757-64. [PMID: 7794116 DOI: 10.1007/bf01309963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A number of structural analyses of viruses are dependent on the availability of purified virus and of pure viral components in milligram amounts. In order to allow such analyses of the Rubella togavirus we have identified a virus-cell-system which produces large amounts of Rubella virus in tissue culture and we have developed a rapid and efficient procedure of Rubella virus purification which involves adsorption and elution of virus to fixed erythrocytes. Furthermore, we describe a procedure which allows the extraction of native core protein from viral cores and its chromatographic purification.
Collapse
Affiliation(s)
- C Gros
- Institut für Virologie, Justus-Liebig-Universität Giessen, Federal Republic of Germany
| | | |
Collapse
|
29
|
Seto NO, Ou D, Gillam S. Expression and characterization of secreted forms of rubella virus E2 glycoprotein in insect cells. Virology 1995; 206:736-41. [PMID: 7831834 DOI: 10.1016/s0042-6822(95)80098-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two different forms of rubella virus E2 glycoproteins were expressed in insect cells: intact wild-type E2 and a soluble form of E2 (E2 delta Tm) glycoprotein, in which the C-terminal membrane-anchor domain was deleted. E2 delta Tm behaved as a secretory protein and was secreted abundantly (5 mg/liter) from insect cells. In contrast to wild-type E2 (36 kDa), E2 delta Tm was secreted into the media and was detected as two species (33 and 30 kDa). Lectin binding assays in conjunction with glycosidase analyses revealed that both intracellular wild-type E2 and E2 delta Tm contained only N-linked glycans, while the two secreted forms of E2 delta Tm were found to differ in their glycosylation, with the 30-kDa form having only N-linked glycans while the 33-kDa species had both N-linked and O-linked glycans. The secreted E2 delta Tm species were purified by precipitation between 20 and 40% saturation with (NH4)2SO4 and retained full antigenicity. The levels of antibodies elicited in mice immunized with purified E2 delta Tm showed that the immunogenicity of secreted E2 delta Tm compared favorably to that of natural virion E2.
Collapse
Affiliation(s)
- N O Seto
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
30
|
Oker-Blom C, Blomster M, Osterblad M, Schmidt M, Akerman K, Lindqvist C. Synthesis and processing of the rubella virus p110 polyprotein precursor in baculovirus-infected Spodoptera frugiperda cells. Virus Res 1995; 35:71-9. [PMID: 7754676 DOI: 10.1016/0168-1702(94)00079-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to study the processing of rubella virus (RV) structural proteins (capsid protein, of 33 kDa; E2 of 42-47 kDa; and E1 of 58 kDa) in Spodoptera frugiperda (fall armyworm) cells, a 24S cDNA encoding the polyprotein precursor, p110, was inserted under the transcriptional regulation of the polyhedrin gene promoter of the Autographa californica nuclear polyhedrosis virus (AcNPV) and expressed during viral infection. By immunoblot analysis using antibodies directed against whole RV and the individual structural proteins, evidence is presented that polypeptides similar to those synthesized in RV-infected B-Vero cells are expressed in this lepidopteran insect cell line infected with the recombinant baculovirus, VL1392-RV24S. The identity of the recombinant proteins was further confirmed using human convalescent sera. By expressing the recombinant proteins in the presence and absence of tunicamycin, we have further demonstrated that the 24S transcription-translation unit of RV, is expressed and proteolytically cleaved similarly, if not identically, in Sf9 cells as compared to B-Vero cells.
Collapse
Affiliation(s)
- C Oker-Blom
- Abo Akademi University, Department of Biochemistry and Pharmacy, Turku, Finland
| | | | | | | | | | | |
Collapse
|
31
|
Singh NK, Atreya CD, Nakhasi HL. Identification of calreticulin as a rubella virus RNA binding protein. Proc Natl Acad Sci U S A 1994; 91:12770-4. [PMID: 7809119 PMCID: PMC45521 DOI: 10.1073/pnas.91.26.12770] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previously, we observed that sequences at the 3' end of rubella virus (RV) genomic RNA that form a stable stem-loop structure are necessary for initiation of RNA replication. A cytosolic protein found in Vero 76 cells (simian origin) specifically bound to the 3' (+)-stem-loop sequence. In the present study, we have purified the RNA binding protein and identified it as a simian homologue of human calreticulin. The purified calreticulin binds to the RV RNA with specificity similar to the protein present in cytosolic extracts. Human calreticulin antibodies recognize several forms of simian calreticulin, one of which is phosphorylated in vivo. A 2-fold increase in phosphorylation of this form of calreticulin is observed in RV-infected cells. Recombinant human calreticulin can bind RV 3' (+)-stem-loop RNA only after undergoing in vitro phosphorylation. This binding activity is abrogated by pretreatment of phosphorylated recombinant human calreticulin with alkaline phosphatase. The RV RNA was also immunoprecipitated from RV-infected UV-crosslinked Vero 76 cells by using calreticulin antibodies. Our results show that phosphorylated calreticulin is an RNA binding protein and phosphorylation is necessary for this activity. Specific binding of calreticulin to the cis-acting element of RV RNA in vivo suggests a possible role for this interaction in viral replication.
Collapse
Affiliation(s)
- N K Singh
- Laboratory of Molecular Pharmacology, Food and Drug Administration, Bethesda, MD 20892
| | | | | |
Collapse
|
32
|
Seto NO, Gillam S. Expression and characterization of a soluble rubella virus E1 envelope protein. J Med Virol 1994; 44:192-9. [PMID: 7852960 DOI: 10.1002/jmv.1890440214] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Individual specific antigenic rubella virus (RV) structural proteins are required for accurate serological diagnosis of acute and congenital rubella infections as well as rubella immune status. The RV envelope glycoprotein E1 is the major target antigen and plays an important role in viral-specific immune responses. The native virion is difficult to produce in large quantities and the protein subunits are also difficult to isolate without loss of antigenicity. The production of a soluble RV E1 (designated E1 delta Tm) using the baculovirus-insect cell expression system is described. In contrast to wild-type RV E1, the genetically engineered E1 delta Tm protein lacks a transmembrane anchor. It behaved as a secretory protein and was secreted abundantly from insect cells. Pulse-chase studies were used to examine the synthesis, glycosylation, and secretion of E1 delta Tm by the insect cells. The secreted E1 delta Tm protein was purified from serum-free medium by one-step immunochromatography. The purified E1 delta Tm protein retained full antigenicity and may be a convenient source of E1 protein for use in diagnostic assay and rubella vaccine development.
Collapse
Affiliation(s)
- N O Seto
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
33
|
Qiu Z, Ou D, Hobman TC, Gillam S. Expression and characterization of virus-like particles containing rubella virus structural proteins. J Virol 1994; 68:4086-91. [PMID: 8189549 PMCID: PMC236923 DOI: 10.1128/jvi.68.6.4086-4091.1994] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rubella virus (RV) virions contain two envelope glycoproteins (E1 and E2) and a capsid protein (C). Noninfectious RV-like particles (VLPs) containing three structural proteins were expressed in a BHK cell line (BHK-24S) by using an inducible promoter. These VLPs were found to resemble RV virons in terms of their size, their morphology, and some biological activities. In immunoblotting studies, VLPs were found to bind similarly to native RV virions with 10 of a panel of 12 RV-specific murine monoclonal antibodies. Immunization of mice with VLPs induced specific antibody responses against RV structural proteins as well as virus-neutralizing and hemagglutination-inhibiting antibodies. After immunization of mice with VLPs, in vitro challenge of isolated lymphocytes with inactivated RV and individual RV structural proteins stimulated proliferation. Our data suggest the possibility of using VLPs as immunogens for serodiagnostic assays and RV vaccines.
Collapse
Affiliation(s)
- Z Qiu
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
34
|
Newcombe J, Starkey W, Al-Mumin S, Knight AI, Best JM, Sanders PG. Recombinant rubella E1 fusion proteins for antibody screening and diagnosis. ACTA ACUST UNITED AC 1994; 2:149-63. [PMID: 15566762 DOI: 10.1016/0928-0197(94)90019-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/1993] [Revised: 11/10/1993] [Accepted: 11/19/1993] [Indexed: 11/23/2022]
Abstract
BACKGROUND Until rubella is eradicated there will be a continuing need for rubella antibody surveillance. Antigen production using recombinant DNA technology may be a viable alternative to traditional techniques of producing antigens for enzyme immunoassays (EIAs). OBJECTIVES To investigate the potential of bacterial fusion proteins containing rubella E1 protein sequences for use in EIAs to detect rubella antibodies. STUDY DESIGN Purified bacterial fusion proteins containing rubella E1 sequences to be used as antigens in EIAs and compared to 'traditional' assays using virus derived antigens for rubella antibody screening. RESULTS cDNA clones coding for the complete rubella E1 protein sequence and subfragments of E1 were modified for expression as carboxy terminal fusions with either beta-galactosidase or glutathione-S-transferase. beta-galactosidase fusions with the complete E1 coding sequence or amino acids 201 to 307, which contain known epitopes, resulted in the production of predominantly insoluble fusion proteins unsuitable for use in EIA. Nine glutathione-S-transferase-E1 fusion proteins were produced with individual fusion proteins exhibiting varying properties with regard to the levels of protein produced, apparent stability, solubility and the potential for affinity purification using glutathione agarose. Reduction of the E1 component to only 44 amino acids containing three B-cell epitopes (Terry et al., 1988) produced an abundant soluble GST-E1 fusion protein (3.5 mug/ml), which could be affinity purified using glutathione agarose. This fusion protein has been successfully used in EIA to detect rubella antibodies. CONCLUSIONS We have shown that GST-E1 fusions have potential as antigens in tests for rubella antibodies.
Collapse
Affiliation(s)
- J Newcombe
- Molecular Microbiology Group, University of Surrey, Guildford, GU2 5XH, UK
| | | | | | | | | | | |
Collapse
|
35
|
Mitchell LA, Décarie D, Tingle AJ, Lacroix M, Zrein M. Use of synthetic peptides to map regions of rubella virus capsid protein recognized by human T lymphocytes. Vaccine 1994; 12:639-45. [PMID: 8085383 DOI: 10.1016/0264-410x(94)90270-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Synthetic peptides (SPs), 18-29 amino acids long, representing selected sequences of rubella virus (RV) capsid (C) protein were used in lymphocyte proliferation assays to identify antigenic regions recognized by T lymphocytes from healthy RV-reactive adults. Four SPs, C(1-29), C(90-114), C(108-134) and C(255-300), stimulated proliferation of peripheral blood mononuclear cells and RV-specific T-cell lines from the same donors. C(1-29V), an SP analogue containing an RA27/3 RV vaccine strain sequence, stimulated higher levels of proliferation in T cells obtained from RV-vaccinated subjects than did the comparable wild-type (M33 strain) RV sequence.
Collapse
Affiliation(s)
- L A Mitchell
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
36
|
Abstract
Rubella virus (RV) virions contain two envelope glycoproteins, E1 and E2. Removal of hydrophobic regions in their carboxyl termini by genetic engineering caused them to be secreted rather than maintained in cell membranes of transfected COS cells. Truncated E2 was secreted in the absence of E1, whereas E1 lacking its transmembrane domain required coexpression of E2 for export from the cell. Secreted E2 was found to contain both O-linked and N-linked complex glycans, whereas secreted E1 retained virus neutralization and hemagglutination epitopes, suggesting the possibility of using soluble RV antigens as subunit vaccines and for serodiagnostic purposes. Stable Chinese hamster ovary cell lines secreting RV E1 were constructed for large scale preparation of recombinant E1.
Collapse
Affiliation(s)
- T C Hobman
- Department of Pathology University of British Columbia Research Centre Vancouver, Canada
| | | | | |
Collapse
|
37
|
Ou D, Mitchell LA, Ho M, Dćarie D, Tingle AJ, Nepom GT, Lacroix M, Zrein M. Analysis of overlapping T- and B-cell antigenic sites on rubella virus E1 envelope protein. Influence of HLA-DR4 polymorphism on T-cell clonal recognition. Hum Immunol 1994; 39:177-87. [PMID: 7517931 PMCID: PMC7135096 DOI: 10.1016/0198-8859(94)90258-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1993] [Accepted: 08/26/1993] [Indexed: 01/25/2023]
Abstract
A CTL antigenic site located between residues 273 and 291 of the E1 envelope protein of RV was identified by 51Cr-release assays employing SPs. Two E1-specific CTL clones were examined for immune recognition of RV wild-type and attenuated vaccine strains and recombinant E1 protein. The exact sequence (273-284) recognized by both clones was delineated by using truncated and overlapping SPs covering these residues. The defined T-cell site overlapped almost completely with a virus neutralizing antibody-binding site previously identified with mouse monoclonal and human antibodies. A series of single aa-substituted SP analogues of E1(273-284) was used to define residues critical for T-cell recognition. Using EBV-BL displaying different HLA-DR haplotypes and -DR4 subtypes as targets to determine MHC class II restriction elements, immune recognition by both T-cell clones was shown to be associated with HLA-DR4. Three HLA-DR4 subtypes (DR4Dw13A, DR4Dw13B, and DR4KT2) sharing a common residue, glutamic acid at position 74 in their beta 1 chains, were able to present SP E1(273-284) to the T-cell clones.
Collapse
Affiliation(s)
- D Ou
- Department of Paediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
This chapter summarizes the present medical significance of rubella virus. Rubella virus infection is systemic in nature and the accompanying symptoms are generally benign, the most pronounced being a mild rash of short duration. The most common complication of rubella virus infection is transient joint involvement such as polyarthralgia and arthritis. The primary health impact of rubella virus is that it is a teratogenic agent. The vaccination strategy is aimed at elimination of rubella and includes both universal vaccination of infants at 15 months of age with the trivalent measles, mumps, rubella (MMR) vaccine and specific targeting with the rubella vaccine of seronegative women planning pregnancy and seronegative adults who could come in contact with women of childbearing age, although it is recommended that any individual over the age of 12 months without evidence of natural infection or vaccination be vaccinated. Medically, the current challenge posed by rubella virus is to achieve complete vaccination coverage to prevent resurgences.
Collapse
Affiliation(s)
- T K Frey
- Department of Biology, Georgia State University, Atlanta 30303
| |
Collapse
|
39
|
Ou D, Chong P, Gillam S. Immunogenicity study of a synthetic T-cell epitope of rubella virus capsid protein recognized by human T cells in different strains of mice. Viral Immunol 1994; 7:41-5. [PMID: 7986336 DOI: 10.1089/vim.1994.7.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The immunogenicity of a human immunodominant T-cell epitope C9 (residues 205-233) of rubella virus capsid protein was studied in three strains of mice using C9 lipopeptide. This peptide induced strong T-cell responses in all three strains of mice. The minimal T-cell epitope C9B (residues 205-216) recognized by human T cells with HLA-DR4 phenotype did not specifically stimulate proliferation of T cells from mice in vitro. T cells specific for C9 from immunized mice were shown to be CD4+, in agreement with results of similar studies in RV-seropositive humans.
Collapse
Affiliation(s)
- D Ou
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
40
|
Mitchell LA, Décarie D, Shukin R, Tingle AJ, Ford DK, Lacroix M, Zrein M. Cellular hyperimmunoreactivity to rubella virus synthetic peptides in chronic rubella associated arthritis. Ann Rheum Dis 1993; 52:590-4. [PMID: 8215622 PMCID: PMC1005117 DOI: 10.1136/ard.52.8.590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Immune recognition of the major structural proteins of rubella virus by peripheral blood mononuclear cells and synovial inflammatory infiltrates of a patient with documented chronic rubella associated arthritis was compared with responses of normal healthy rubella virus immunoreactive subjects to establish if there were unusual response patterns associated with rubella associated arthritis in this subject. METHODS Synthetic peptides (16-33 amino acids in length) representing selected amino acid sequences of the rubella virus envelope (E1 and E2) and capsid (C) proteins were used in lymphocyte stimulation assays with peripheral blood mononuclear cells or synovial inflammatory infiltrates to determine T lymphocyte recognition of antigenic sites within the synthetic peptides. A rubella virus specific polymerase chain reaction was used to determine the persistence of rubella virus in the patient's cells. RESULTS The patient's peripheral blood mononuclear cells showed abnormally increased lymphoproliferative responses to three E1 synthetic peptides encompassing residues 219-234, 389-411, and 462-481, and one E2 synthetic peptide containing the sequence 50-72, of which the last three were predicted to contain T cell antigenic sites. Although the patient's peripheral blood mononuclear cells showed positive proliferative responses to C synthetic peptides, these were not unusual. The number of synthetic peptides within the E1, E2, and C panels recognised by the patient's peripheral blood mononuclear cells was greater than was previously observed in normal healthy subjects. The recognition of synthetic peptides by synovial inflammatory infiltrates was similar to peripheral blood mononuclear cells but the responses measured were lower. The polymerase chain reaction was negative for rubella virus detection in peripheral blood mononuclear cells and synovial inflammatory infiltrates. CONCLUSIONS Abnormally increased T cell recognition of antigenic sites within rubella virus E1 and E2 proteins observed in this patient with rubella associated arthritis suggests chronic antigenaemia due to persistent rubella virus in tissue sites other than peripheral blood mononuclear cells or synovial inflammatory infiltrates.
Collapse
Affiliation(s)
- L A Mitchell
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Mitchell LA, Décarie D, Tingle AJ, Zrein M, Lacroix M. Identification of immunoreactive regions of rubella virus E1 and E2 envelope proteins by using synthetic peptides. Virus Res 1993; 29:33-57. [PMID: 7692685 DOI: 10.1016/0168-1702(93)90124-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Relatively large (16-33 aa) synthetic peptides (SPs) representing defined sequences of rubella virus (RV) E1 and E2 envelope proteins were used in lymphocyte stimulation and enzyme immunoassays to map immunoreactive regions recognized by peripheral blood mononuclear cells (PBMNC) and serum antibodies from healthy RV-seropositive, RV-seronegative, and RV-vaccinated adults. Five distinct immunoreactive regions were identified in RV E1 protein, spanning residues (11-39), (154-179), (199-239), (226-277), and (389-412), which stimulated cellular responses in 29-83% of the subjects tested. Two SPs, E1(213-239) and E1(258-277) containing previously-identified virus neutralizing antibody domains, reacted with serum antibodies and also stimulated lymphoproliferation suggesting that these E1 sequences contain linked or overlapping B-and T-cell antigenic sites. The frequency and magnitude of cellular responses to E2 SPs were somewhat lower. SPs encompassing E2 residues (50-72), (140-199), and (244-263) stimulated lymphocyte responses in 28-64% of the subjects tested, while to a lesser degree, SPs within residues (1-36) were also stimulatory. E2 SPs within the regions (1-36), (151-170), and (244-263) also showed low levels of antibody reactivity with sera from RV-seropositive subjects. E2(244-263) which induced the highest level of response among the E2 SPs tested, was of interest due to previous reports of sequence homology of this RV region with human myelin and its potential immunopathogenic role in demyelinating autoimmune diseases. Identification of these potentially immunodominant regions of RV envelope proteins is an important first step in the rational design of new RV vaccines.
Collapse
Affiliation(s)
- L A Mitchell
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
42
|
Ou D, Chong P, Tingle AJ, Gillam S. Mapping T-cell epitopes of rubella virus structural proteins E1, E2, and C recognized by T-cell lines and clones derived from infected and immunized populations. J Med Virol 1993; 40:175-83. [PMID: 7689090 DOI: 10.1002/jmv.1890400302] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To design a safe and effective synthetic peptide vaccine against rubella virus (RV) infection, it is necessary to identify immunodominant T-cell epitopes of RV structural proteins. To define such epitopes, 49 overlapping synthetic peptides (17-34 residues in length) corresponding to more than 95% of the amino acid sequence of RV virion proteins E1 (23 peptides) and C (11 peptides) and all of E2 (15 peptides) were synthesized and tested for their capacities to induce proliferative responses of rubella-specific T-cell lines and T-cell clones derived from 4 study groups (5 women infected with RV in pregnancy, 5 patients with congenital rubella syndrome, 5 seropositive healthy donors, and 5 RV vaccine recipients). The most frequently recognized epitopes were E1-21 (residues 358-377) with 11/20 responders, E2-4 (residues 54-74) with 6/20 responders, and C11 (residues 255-280) with 11/20 responders, respectively. E1-10 (residues 174-193), E1-16 (residues 272-291) and E1-18 (residues 307-326) were responded to strongly by corresponding T-cell clones, and were recognized by 4 or 5 T-cell lines. T-cell lines derived from three congenital rubella syndrome patients did not respond to any of the synthetic peptides. The results showed that more T-cell epitopes were present in E1 (19/23) and C (10/11) than in E2 (8/15). The identification of T cell sites recognized frequently by RV-infected or -immunized populations could provide the basis for selecting candidate T-cell epitopes for the development of an effective synthetic vaccine against rubella.
Collapse
Affiliation(s)
- D Ou
- Department of Pathology, University of British Columbia, Canada
| | | | | | | |
Collapse
|
43
|
Hobman TC, Woodward L, Farquhar MG. The rubella virus E2 and E1 spike glycoproteins are targeted to the Golgi complex. J Biophys Biochem Cytol 1993; 121:269-81. [PMID: 8468347 PMCID: PMC2200098 DOI: 10.1083/jcb.121.2.269] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rubella virus (RV) has been reported to bud from intracellular membranes in certain cell types. In this study the intracellular site of targeting of RV envelope E2 and E1 glycoproteins has been investigated in three different cell types (CHO, BHK-21 and Vero cells) transfected with a cDNA encoding the two glycoproteins. By indirect immunofluorescence, E2 and E1 were localized to the Golgi region of all three cell types, and their distribution was disrupted by treatment with BFA or nocodazole. Immunogold labeling demonstrated that E2 and E1 were localized to Golgi cisternae and indicated that the glycoproteins were distributed across the Golgi stack. Analysis of immunoprecipitates obtained from stably transfected CHO cells revealed that E2 and E1 become endo H resistant and undergo sialylation without being transported to the cell surface. Transport of RV glycoproteins to the Golgi complex was relatively slow (t1/2 = 60-90 min). Coprecipitation experiments indicated that E2 and E1 form a heterodimer in the RER. E1 was found to fold much more slowly than E2, suggesting that the delay in transport of the heterodimer to the Golgi may be due to the slow maturation of E1 in the ER. These results indicate that RV glycoproteins behave as integral membrane proteins of the Golgi complex and thus provide a useful model to study targeting and turnover of type I membrane proteins in this organelle.
Collapse
Affiliation(s)
- T C Hobman
- Division of Cellular and Molecular Medicine, University of California, San Diego, La Jolla 92093-0651
| | | | | |
Collapse
|
44
|
Chaye H, Ou D, Chong P, Gillam S. Human T- and B-cell epitopes of E1 glycoprotein of rubella virus. J Clin Immunol 1993; 13:93-100. [PMID: 8320313 DOI: 10.1007/bf00919265] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The identification of T- and B-cell sites recognized frequently by human populations could provide the basis for selecting the candidate T- and B-cell epitopes for the development of an effective synthetic vaccine against rubella. Rubella virus E1 glycoprotein has been shown to be the predominant antigen to which the majority of human populations develop lymphocyte proliferative and antibody responses. To define the T- and B-cell epitopes of E1 glycoprotein of rubella virus, 23 overlapping synthetic peptides corresponding to more than 90% of the amino acid sequence of E1 were synthesized and tested for their capacities to induce proliferative and antibody responses of 10 seropositive individuals. The most frequently recognized T-cell epitopes were EP19 (residues 324-343), with 7 of 10 responders, and both EP12 (residues 207-226) and EP17 (residues 289-308), with 6 of 10 responders, respectively. Two immunodominant linear B-cell epitopes were mapped to residues 157 to 176 (EP9, 8/10) and 374 to 390 (EP22, 6/10) by using peptide-specific enzyme linked immunosorbent assay.
Collapse
Affiliation(s)
- H Chaye
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
45
|
Wolinsky JS, Sukholutsky E, Moore WT, Lovett A, McCarthy M, Adame B. An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain. J Virol 1993; 67:961-8. [PMID: 7678312 PMCID: PMC237450 DOI: 10.1128/jvi.67.2.961-968.1993] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously described a monoclonal antibody (MAb) library generated by infecting BALB/c mice with rubella virus (RV) and selected by an enzyme-linked immunosorbent assay (ELISA) using purified virion targets. Plasmid pARV02-01, which expresses the fusion protein RecA1-35-GIGDLGSP-E1(202)-E1(283)-GDP-LacZ9-1015 in Escherichia coli, was shown to be a ligand for MAbs E1-18 and E1-20 (J. S. Wolinsky, M. McCarthy, O. Allen-Cannady, W. T. Moore, R. Jin, S. N. Cao, A. Lovett, and D. Simmons, J. Virol. 65:3986-3994, 1991). Both of these MAbs neutralize RV infectivity. A series of five overlapping synthetic peptides was made to further explore the requirements of this MAb binding domain. One of these peptides (SP15; E1(208) to E1(239)) proved an effective ligand for both MAbs in the ELISA. Stepwise synthesis of SP15 defined the minimal amino-terminal requirement for binding MAb E1-18 as E1(221) and that of MAb E1-20 as E1(223); the minimal carboxyl-terminal requirement is uncertain but does not exceed E1(239). Immunization of mice and rabbits with SP15 induced polyvalent antibody reactive with SP15, with other overlapped and related but not unrelated synthetic peptides, and with RV. The rabbit anti-SP15 antibody showed neutralization activity to RV similar to that of MAbs E1-18 and E1-20 but lacked hemagglutination inhibition activity. These data define a neutralization domain on E1 and suggest that the RV epitopes conserved by SP15 may be critical for protective host humoral immune responses.
Collapse
Affiliation(s)
- J S Wolinsky
- Department of Neurology, University of Texas Health Science Center, Houston 77225
| | | | | | | | | | | |
Collapse
|
46
|
Ou D, Chong P, McVeish P, Jefferies WA, Gillam S. Characterization of the specificity and genetic restriction of human CD4+ cytotoxic T cell clones reactive to capsid antigen of rubella virus. Virology 1992; 191:680-6. [PMID: 1280381 PMCID: PMC7131658 DOI: 10.1016/0042-6822(92)90243-i] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1992] [Accepted: 08/19/1992] [Indexed: 12/26/2022]
Abstract
Using 11 overlapping synthetic peptides covering more than 95% of the amino acid sequence of capsid protein of rubella virus, 7 CD4+ T cell clones (R10, R11, R18, A2, A10, A11, and A12) isolated from 2 rubella seropositive donors reacted strongly to rubella capsid peptides C6 (residues 119-152), C9 (residues 205-233), or C11 (residues 255-280), respectively, in both proliferation and cytotoxicity assay. Truncated peptides C6E (residues 125-139), C9B (residues 205-216), and C11E (residues 260-272) were shown to be involved directly to the T cell determinants of C6, C9, and C11, respectively. Genetic restriction of these T cell clones was analyzed by using human cell lines with various HLA-DR phenotypes as targets and/or antigen-presenting cells in cytotoxicity assay and/or proliferation assays. The results indicated that the recognition of peptide C6 by T cell clones (R11 and R18) was associated with DRw9 molecule, while the HLA restriction element of the responses of other T cell clones (A2 and A11, A10, and A12) that reacted with peptide C9 or C11 was DR4 molecule. However, there may be a cross-recognition by the T cell clone (A12) between DR1 and DR4 subtypes.
Collapse
Affiliation(s)
- D Ou
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
47
|
Ou D, Chong P, Choi Y, McVeigh P, Jefferies WA, Koloitis G, Tingle AJ, Gillam S. Identification of T-cell epitopes on E2 protein of rubella virus, as recognized by human T-cell lines and clones. J Virol 1992; 66:6788-93. [PMID: 1383570 PMCID: PMC240179 DOI: 10.1128/jvi.66.11.6788-6793.1992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
T-cell epitopes on the E2 protein of rubella virus were studied by using 15 overlapping synthetic peptides covering the E2 protein sequence. The most frequently recognized epitopes on E2 were E2-4 (residues 54 to 74), with 5 of 10 tested T-cell lines responding to it. Two CD4+ cytotoxic T-cell cloned isolated from one T-cell line responded strongly in proliferation assays with peptide E2-4 and were cytotoxic to target cells presenting the E2-4 determinant. Truncated peptides contained within the E2-4 peptide sequence were used to define the T-cell determinants. Results indicated that amino acid residues 54 to 65 were directly involved. Human cell lines with different HLA phenotypes were tested for the capacity to present the antigenic determinants. The results suggested that recognition of peptide E2-4 by T-cell clones was associated with HLA DR7.
Collapse
Affiliation(s)
- D Ou
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Qiu Z, Tufaro F, Gillam S. The influence of N-linked glycosylation on the antigenicity and immunogenicity of rubella virus E1 glycoprotein. Virology 1992; 190:876-81. [PMID: 1381541 DOI: 10.1016/0042-6822(92)90929-j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rubella virus E1 glycoprotein contains three functional N-linked glycosylation sites. The role of N-linked glycosylation on the antigenicity and immunogenicity of E1 glycoprotein was studied using vaccinia recombinants expressing E1 glycosylation mutants. Expressed E1 glycosylation mutant proteins were recognized by a panel of E1-specific monoclonal antibodies in radioimmunoprecipitation, immunofluorescence, and immunoblotting, indicating that carbohydrate side chains on E1 are not involved in the constitution of epitopes recognized by these monoclonal antibodies. This observation was further supported by the fact that removal of oligosaccharides on E1 by glycosidase digestion did not significantly change the antigenicity of E1. All the glycosylation mutants were capable of eliciting anti-RV E1 antibodies. The single glycosylation mutants (G1, G2, and G3), but not the double mutant (G23) or the triple mutant (G123), were found to be capable of inducing virus neutralizing antibodies. Among the single glycosylation mutants, only G2 and G3 were active in producing hemagglutination inhibition antibodies in mice. Our findings suggest that although carbohydrate on E1 is not directly involved in the antigenic structures of E1, it is important in maintaining proper protein folding and stable conformation for expression of immunological epitopes on E1.
Collapse
Affiliation(s)
- Z Qiu
- Department of Pathology, University of British Columbia, Research Centre, Vancouver, Canada
| | | | | |
Collapse
|
49
|
Londesborough P, Terry G, Ho-Terry L. Reactivity of a recombinant rubella E1 antigen expressed in E. coli. Arch Virol 1992; 122:391-7. [PMID: 1731700 DOI: 10.1007/bf01317201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The E1 nucleic acid sequence of rubella virus strain Judith (RJ) has been cloned into an E. coli expression vector LB03. The reactivity of the expressed unglycosylated antigen (E1J) was compared with its glycosylated counterpart in native virus (RJ) using rabbit and human sera. Rabbit antisera raised against RJ and E1J reacted differently with wild type, RJ (laboratory strain) and RA27/3 (vaccine virus) strains in a kinetic neutralisation test. Reciprocally, human post RA27/3 vaccination sera were also found to differ from post infection or post re-infection sera in their reactivity with RJ and E1J antigens. Our observations suggest that E1, in the conformation adopted in the RA27/3 virion may have unique antigenic properties.
Collapse
Affiliation(s)
- P Londesborough
- Department of Medical Microbiology, University College London, U.K
| | | | | |
Collapse
|
50
|
Hobman TC, Woodward L, Farquhar MG. The rubella virus E1 glycoprotein is arrested in a novel post-ER, pre-Golgi compartment. J Biophys Biochem Cytol 1992; 118:795-811. [PMID: 1500424 PMCID: PMC2289574 DOI: 10.1083/jcb.118.4.795] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Evidence is accumulating that a distinct compartment(s) exists in the secretory pathway interposed between the rough ER (RER) and the Golgi stack. In this study we have defined a novel post-RER, pre-Golgi compartment where unassembled subunits of rubella virus (RV) E1 glycoprotein accumulate. When RV E1 is expressed in CHO cells in the absence of E2 glycoprotein, transport of E1 to the Golgi complex is arrested. The compartment in which E1 accumulates consists of a tubular network of smooth membranes which is in continuity with the RER but has distinctive properties from either the RER, Golgi, or previously characterized intermediate compartments. It lacks RER and Golgi membrane proteins and is not disrupted by agents which disrupt either the RER (thapsigargin, ionomycin) or Golgi (nocodazole and brefeldin A). However, luminal ER proteins bearing the KDEL signal have access to this compartment. Kinetically the site of E1 arrest lies distal to or at the site where palmitylation occurs and proximal to the low temperature 15 degrees C block. Taken together the findings suggest that the site of E1 arrest corresponds to, or is located close to the exit site from the ER. This compartment could be identified morphologically because it is highly amplified in cells overexpressing unassembled E1 subunits, but it may have its counterpart among the transitional elements of non-transfected cells. We conclude that the site of E1 arrest may represent a new compartment or a differentiated proximal moiety of the intermediate compartment.
Collapse
Affiliation(s)
- T C Hobman
- Division of Cellular and Molecular Medicine, University of California, San Diego 92093-0651
| | | | | |
Collapse
|