1
|
Yan T, Weng F, Ming Y, Zhu S, Zhu M, Wang C, Guo C, Zhu K. Luminescence Probes in Bio-Applications: From Principle to Practice. BIOSENSORS 2024; 14:333. [PMID: 39056609 PMCID: PMC11274413 DOI: 10.3390/bios14070333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Bioanalysis based on optical imaging has gained significant progress in the last few decades. Luminescence probes are capable of detecting, monitoring, and tracing particular biomolecules in complex biological systems to figure out the roles of these molecules in organisms. Considering the rapid development of luminescence probes for bio-applications and their promising future, we have attempted to explore the working principles and recent advances in bio-applications of luminescence probes, in the hope of helping readers gain a detailed understanding of luminescence probes developed in recent years. In this review, we first focus on the current widely used luminescence probes, including fluorescence probes, bioluminescence probes, chemiluminescence probes, afterglow probes, photoacoustic probes, and Cerenkov luminescence probes. The working principles for each type of luminescence probe are concisely described and the bio-application of the luminescence probes is summarized by category, including metal ions detection, secretion detection, imaging, and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| | - Kai Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| |
Collapse
|
2
|
Cheah BH, Chen YL, Lo JC, Tang IC, Yeh KC, Lin YF. Divalent nutrient cations: Friend and foe during zinc stress in rice. PLANT, CELL & ENVIRONMENT 2021; 44:3358-3375. [PMID: 34278584 DOI: 10.1111/pce.14154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/27/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Zn deficiency is the most common micronutrient deficit in rice but Zn is also a widespread industrial pollutant. Zn deficiency responses in rice are well documented, but comparative responses to Zn deficiency and excess have not been reported. Therefore, we compared the physiological, transcriptional and biochemical properties of rice subjected to Zn starvation or excess at early and later treatment stages. Both forms of Zn stress inhibited root and shoot growth. Gene ontology analysis of differentially expressed genes highlighted the overrepresentation of Zn transport and antioxidative defense for both Zn stresses, whereas diterpene biosynthesis was solely induced by excess Zn. Divalent cations (Fe, Cu, Ca, Mn and Mg) accumulated in Zn-deficient shoots but Mg and Mn were depleted in the Zn excess shoots, mirroring the gene expression of non-specific Zn transporters and chelators. Ascorbate peroxidase activity was induced after 14 days of Zn starvation, scavenging H2 O2 more effectively to prevent leaf chlorosis via the Fe-dependent Fenton reaction. Conversely, excess Zn triggered the expression of genes encoding Mg/Mn-binding proteins (OsCPS2/4 and OsKSL4/7) required for antimicrobial diterpenoid biosynthesis. Our study reveals the potential role of divalent cations in the shoot, driving the unique responses of rice to each form of Zn stress.
Collapse
Affiliation(s)
- Boon Huat Cheah
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - I-Chien Tang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Fen Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Kumar MS, Ramachandran A, Hasnain SE, Bashyam MD. Octamer and heat shock elements regulate transcription from the AcMNPV polyhedrin gene promoter. Arch Virol 2009; 154:445-56. [DOI: 10.1007/s00705-009-0324-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
|
4
|
Zhang B, Georgiev O, Hagmann M, Günes C, Cramer M, Faller P, Vasák M, Schaffner W. Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Mol Cell Biol 2003; 23:8471-85. [PMID: 14612393 PMCID: PMC262672 DOI: 10.1128/mcb.23.23.8471-8485.2003] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 07/16/2003] [Accepted: 08/25/2003] [Indexed: 11/20/2022] Open
Abstract
Metallothioneins are small, cysteine-rich proteins that avidly bind heavy metals such as zinc, copper, and cadmium to reduce their concentration to a physiological or nontoxic level. Metallothionein gene transcription is induced by several stimuli, notably heavy metal load and oxidative stress. Transcriptional induction of metallothionein genes is mediated by the metal-responsive transcription factor 1 (MTF-1), an essential zinc finger protein that binds to specific DNA motifs termed metal-response elements. In cell-free DNA binding reactions with nuclear extracts, MTF-1 requires elevated zinc concentrations for efficient DNA binding but paradoxically is inactivated by other in vivo inducers such as cadmium, copper, and hydrogen peroxide. Here we have developed a cell-free, MTF-1-dependent transcription system which accurately reproduces the activation of metallothionein gene promoters not only by zinc but also by these other inducers. We found that while transcriptional induction by zinc can be achieved by elevated zinc concentration alone, induction by cadmium, copper, or H2O2 additionally requires the presence of zinc-saturated metallothionein. This is explained by the preferential binding of cadmium or copper to metallothionein or its oxidation by H2O2; the concomitant release of zinc in turn leads to the activation of transcription factor MTF-1. Conversely, thionein, the metal-free form of metallothionein, inhibits activation of MTF-1. The release of zinc from cellular components, including metallothioneins, and the sequestration of zinc by newly produced apometallothionein might be a basic mechanism to regulate MTF-1 activity upon cellular stress.
Collapse
Affiliation(s)
- Bo Zhang
- Institut für Molekularbiologie, Universität Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Gordon-Shaag A, Ben-Nun-Shaul O, Roitman V, Yosef Y, Oppenheim A. Cellular transcription factor Sp1 recruits simian virus 40 capsid proteins to the viral packaging signal, ses. J Virol 2002; 76:5915-24. [PMID: 12021324 PMCID: PMC136189 DOI: 10.1128/jvi.76.12.5915-5924.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 (SV40) capsid assembly occurs in the nucleus. All three capsid proteins bind DNA nonspecifically, raising the dilemma of how they attain specificity to the SV40 minichromosome in the presence of a large excess of genomic DNA. The SV40 packaging signal, ses, which is required for assembly, is composed of multiple DNA elements that bind transcription factor Sp1. Our previous studies showed that Sp1 participates in SV40 assembly and that it cooperates in DNA binding with VP2/3. We hypothesized that Sp1 recruits the capsid proteins to the viral minichromosome, conferring upon them specific DNA recognition. Here, we have tested the hypothesis. Computer analysis showed that the combination of six tandem GC boxes at ses is not found at cellular promoters and therefore is unique to SV40. Cooperativity in DNA binding between Sp1 and VP2/3 was not abolished at even a 1,000-fold excess of cellular DNA, providing strong support for the recruitment hypothesis. Sp1 also binds VP1 and cooperates with VP1 in DNA binding. VP1 pentamers (VP1(5)) avidly interact with VP2/3, utilizing the same VP2/3 domain as described for polyomavirus. We conclude that VP1(5)-VP2/3 building blocks are recruited by Sp1 to ses, where they form the nucleation center for capsid assembly. By this mechanism the virus ensures that capsid formation is initiated at a single site around its minichromosome. Sp1 enhances the formation of SV40 pseudovirions in vitro, providing additional support for the model. Analyses of Sp1 and VP3 deletion mutants showed that Sp1 and VP2/3 bind one another and cooperate in DNA binding through their DNA-binding domains, with additional contacts outside these domains. VP1 contacts Sp1 at residues outside the Sp1 DNA-binding domain. These and additional data allowed us to propose a molecular model for the VP1(5)-VP2/3-DNA-Sp1 complex.
Collapse
Affiliation(s)
- Ariela Gordon-Shaag
- Department of Hematology, The Hebrew University-Hadassah Medical School and Hadassah University Hospital, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
7
|
Blaise R, Guillaudeux T, Tavernier G, Daegelen D, Evrard B, Mairal A, Holm C, Jégou B, Langin D. Testis hormone-sensitive lipase expression in spermatids is governed by a short promoter in transgenic mice. J Biol Chem 2001; 276:5109-15. [PMID: 11076952 DOI: 10.1074/jbc.m009103200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A testicular form of hormone-sensitive lipase (HSL(tes)), a triacylglycerol lipase, and cholesterol esterase, is expressed in male germ cells. Northern blot analysis showed HSL(tes) mRNA expression in early spermatids. Immunolocalization of the protein in human and rodent seminiferous tubules indicated that the highest level of expression occurred in elongated spermatids. We have previously shown that 0.5 kilobase pairs of the human HSL(tes) promoter directs testis-specific expression of a chloramphenicol acetyltransferase reporter gene in transgenic mice and determined regions binding nuclear proteins expressed in testis but not in liver (Blaise, R., Grober, J., Rouet, P., Tavernier, G., Daegelen, D., and Langin, D. (1999) J. Biol. Chem. 274, 9327-9334). Mutation of a SRY/Sox-binding site in one of the regions did not impair in vivo testis-specific expression of the reporter gene. Further transgenic analyses established that 95 base pairs upstream of the transcription start site were sufficient for correct testis expression. In gel retardation assays using early spermatid nuclear extracts, a germ cell-specific DNA-protein interaction was mapped between -46 and -29 base pairs. The DNA binding nuclear protein showed properties of zinc finger transcription factors. Mutation of the region abolished reporter gene activity in transgenic mice, showing that it is necessary for testis expression of HSL(tes).
Collapse
Affiliation(s)
- R Blaise
- INSERM Unit 317, Institut Louis Bugnard, Université Paul Sabatier, Hôpital Rangueil, F-31403 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sciaudone MP, Chattopadhyay S, Freake HC. Chelation of zinc amplifies induction of growth hormone mRNA levels in cultured rat pituitary tumor cells. J Nutr 2000; 130:158-63. [PMID: 10720163 DOI: 10.1093/jn/130.2.158] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc is thought to be an integral part of nuclear receptor proteins, stabilizing them in a conformation required for binding to target genes. However, we have recently shown that restriction of zinc availability with a chelator (diethylenetriaminepenta-acetic acid, DTPA) enhances, rather than inhibits, the ability of thyroid hormone to induce growth hormone mRNA expression in GH3 rat pituitary tumor cells. In this report, we have extended these observations by showing that a prolonged (48 h) exposure to DTPA is required to see these effects. The induction by DTPA can be reversed by subsequent addition of zinc, but again, this reversal is slow. A second chelator, EDTA, can also induce growth hormone gene expression in the presence of thyroid hormone, though it is less potent than DTPA. Other agents which act via the nuclear receptor pathway, all-trans and 9-cis retinoic acid, also induce expression of growth hormone mRNA. Addition of DTPA amplifies these effects in a zinc-dependent manner. Thus chelation of zinc potentiates the action of ligands acting via nuclear receptors on growth hormone gene expression. The delayed nature of the response suggests an indirect effect.
Collapse
Affiliation(s)
- M P Sciaudone
- Department of Nutritional Sciences, University of Connecticut, Storrs 06269-4017, USA
| | | | | |
Collapse
|
9
|
Fautsch MP, Vrabel A, Subramaniam M, Hefferen TE, Spelsberg TC, Wieben ED. TGFbeta-inducible early gene (TIEG) also codes for early growth response alpha (EGRalpha): evidence of multiple transcripts from alternate promoters. Genomics 1998; 51:408-16. [PMID: 9721211 DOI: 10.1006/geno.1998.5388] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TGFbeta-inducible early gene (TIEG) and early growth response alpha (EGRalpha) are putative transcription factors based on homology to known zinc finger proteins SP1, EGR1, BTEB, and Wilm tumor. Here we report that TIEG and EGRalpha are expressed from alternative promoters of the same gene. The TIEG/EGRalpha gene spans 8 kb and contains five exons. Use of alternative first exons results in TIEG having 12 unique amino acids on its N-terminus. Computer analysis of the 5' upstream regions of either TIEG (exon 1a) or EGRalpha (exon 1b) does not identify a TATA box or initiator sequencebut shows consensus sequence similarities to binding sites for several transcription factors including SP1,JunB, and aromatic hydrocarbon/receptor-ligand complexes. Analysis of constructs containing 5'-flanking regions show that both the TIEG and the EGRalpha promoters have significant activity in human fetal osteoblast cells. Northern analysis of mRNA from various human tissues and several cell lines reveals that TIEG is the predominant transcript produced and regulated by growth factors from the TIEG/EGRalpha gene.
Collapse
Affiliation(s)
- M P Fautsch
- Department of Biochemistry and Molecular Biology, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
10
|
Primiano T, Sutter TR, Kensler TW. Redox regulation of genes that protect against carcinogens. Comp Biochem Physiol B Biochem Mol Biol 1997; 118:487-97. [PMID: 9467861 DOI: 10.1016/s0305-0491(97)00221-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most carcinogens require activation to electrophilic metabolites or species that generate reactive oxygen in order to initiate the tumorigenic process. These reactive intermediates can, in turn, be detoxified by endogenous enzyme systems that and in the protection of cells from either toxic or mutagenic product formation. The levels of many of these enzymes are elevated by numerous compounds found in the diet, or by antioxidants. Recent evidence describes the mechanism for this induction of carcinogen detoxication enzymes to be regulated at the transcriptional level. Nuclear transcription factors bound to sites common among these carcinogen detoxication genes are activated by as yet unknown signal transduction pathways. The activity of these nuclear transcription factors are modulated by pro- and antioxidant reagents, suggesting that a redox-sensitive component governs the induction of enzymes involved in carcinogen metabolism. In this review, evidence for the redox regulation of the genes encoding carcinogen detoxication enzymes is presented. Evidence is also presented suggesting the participation of nuclear factor kappa B (NF-kappa B), mitogen-activated protein (MAP) kinase, and basic leucine zipper (bZIP) proteins and their activation pathways in this induction.
Collapse
Affiliation(s)
- T Primiano
- Department of Environmental Health Sciences, Johns Hopkins School of Hygiene and Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
11
|
Narayan VA, Kriwacki RW, Caradonna JP. Structures of zinc finger domains from transcription factor Sp1. Insights into sequence-specific protein-DNA recognition. J Biol Chem 1997; 272:7801-9. [PMID: 9065444 DOI: 10.1074/jbc.272.12.7801] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The carboxyl terminus of transcription factor Sp1 contains three contiguous Cys2-His2 zinc finger domains with the consensus sequence Cys-X2-4-Cys-X12-His-X3-His. We have used standard homonuclear two-dimensional NMR techniques to solve the solution structures of synthetic peptides corresponding to the last two zinc finger domains (Sp1f2 and Sp1f3, respectively) of Sp1. Our studies indicate a classical Cys2-His2 type fold for both the domains differing from each other primarily in the conformation of Cys-X2-Cys (beta-type I turn) and Cys-X4-Cys (beta-type II turn) elements. There are, however, no significant differences in the metal binding properties between the Cys-X4-Cys (Sp1f2) and Cys-X2-Cys (Sp1f3) subclasses of zinc fingers. The free solution structures of Sp1f2 and Sp1f3 are very similar to those of the analogous fingers of Zif268 bound to DNA. There is NMR spectral evidence suggesting that the Arg-Asp buttressing interaction observed in the Zif-268.DNA complex is also preserved in unbound Sp1f2 and Sp1f3. Modeling Sp1-DNA complex by overlaying the Sp1f2 and Sp1f3 structures on Zif268 fingers 1 and 2, respectively, predicts the role of key amino acid residues, the interference/protection data, and supports the model of Sp1-DNA interaction proposed earlier.
Collapse
Affiliation(s)
- V A Narayan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | | | |
Collapse
|
12
|
Cohen HT, Bossone SA, Zhu G, McDonald GA, Sukhatme VP. Sp1 is a critical regulator of the Wilms' tumor-1 gene. J Biol Chem 1997; 272:2901-13. [PMID: 9006935 DOI: 10.1074/jbc.272.5.2901] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We performed deletion analysis of WT1-reporter constructs containing up to 24 kilobases of 5'-flanking and first intron WT1 sequence in stably transfected cultured cells as an unbiased approach to identify cis elements critical for WT1 transcription. Although not a tissue-specific element, a proximate 9-base pair CTC repeat accounted for approximately 80% of WT1 transcription in this assay. Enhancer activity of the element and mutated versions correlated completely with their ability to form a DNA-protein complex in gel shifts. Antibody supershift, oligonucleotide competition, and Southwestern studies indicated that the CTC-binding factor is the transcriptional activator Sp1. Sp1 binds the CTC repeat with an affinity, KD = 0.37 nM, at least as high as the consensus GC box. Similar CTC repeats are found in promoters of other growth-related genes. Because Sp1 is important for WT1 expression, we examined Sp1 immunohistochemistry in fetal and adult kidney. In a pattern that precedes that of WT1 message, Sp1 immunostaining was highest in uninduced mesenchyme, early tubules, developing podocytes, and mature glomeruli, but was minimal in mature proximal tubules. This work suggests abundant Sp1 may be a prerequisite for WT1 expression, and that Sp1 may have a wider role in nephrogenesis.
Collapse
Affiliation(s)
- H T Cohen
- Renal Division, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
13
|
Fischer DF, Gibbs S, van De Putte P, Backendorf C. Interdependent transcription control elements regulate the expression of the SPRR2A gene during keratinocyte terminal differentiation. Mol Cell Biol 1996; 16:5365-74. [PMID: 8816448 PMCID: PMC231535 DOI: 10.1128/mcb.16.10.5365] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Expression of the SPRR2A gene, a member of the small proline-rich family of cornified cell envelope precursor proteins, is strictly linked to keratinocyte terminal differentiation both in vivo and in vitro. In this study, we explored the molecular mechanisms underlying this regulation in transiently transfected primary keratinocytes induced to differentiate in vitro. Deletion mapping and site-directed mutagenesis of SPRR2A promoter-chloramphenicol acetyltransferase constructs indicate that four transcription control elements are essential and sufficient for promoter activity. These elements were further characterized by electrophoretic mobility shift and identified as (i) an inverted octamer doublet, bound by the POU domain factor Oct-11 (Skn-1a/i, Epoc-1), (ii) an interferon-stimulated response element recognized by interferon regulatory factors 1 and 2, (iii) an Ets binding site partially overlapping the interferon-stimulated response element, and (iv) a TG box recognized by the Sp1 family of zinc finger transcription factors. Destruction of a single terminal differentiation element is sufficient to completely abolish transcription from the SPRR2A promoter, indicating that these transcription control elements function in concert in an interdependent manner. Apparently, integration of signals transmitted by the above-mentioned transcription factors is necessary and sufficient to promote gene expression during keratinocyte terminal differentiation.
Collapse
Affiliation(s)
- D F Fischer
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
14
|
Abstract
Transcription factors/activators are a group of proteins that bind to specific consensus sequences (cis elements) in the promoter regions of downstream target/effector genes and transactivate or repress effector gene expression. The up- or downregulation of effector genes will ultimately lead to many biological changes such as proliferation, growth suppression, differentiation, or senescence. Transcription factors are subject to transcriptional and posttranslational regulation. This review will focus on the redox (reduction/oxidation) regulation of transcription factors/activators with emphasis on p53, AP-1, and NF-kappa B. The redox regulation of transcriptional activators occurs through highly conserved cysteine residues in the DNA binding domains of these proteins. In vitro studies have shown that reducing environments increase, while oxidizing conditions inhibit sequence-specific DNA binding of these transcriptional activators. When intact cells have been used for study, a more complex regulation has been observed. Reduction/oxidation can either up- or downregulate DNA binding and/or transactivation activities in transcriptional activator-dependent as well as cell type-dependent manners. In general, reductants decrease p53 and NF-kappa B activities but dramatically activate AP-1 activity. Oxidants, on the other hand, greatly activate NF-kappa B activity. Furthermore, redox-induced biochemical alterations sometimes lead to change in the biological functions of these proteins. Therefore, differential regulation of these transcriptional activators, which in turn, regulate many target/effector genes, may provide an additional mechanism by which small antioxidant molecules play protective roles in anticancer and antiaging processes. Better understanding of the mechanism of redox regulation, particularly in vivo, will have an important impact on drug discovery for chemoprevention and therapy of human disease such as cancer.
Collapse
Affiliation(s)
- Y Sun
- Department of Cancer Research, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
15
|
Radtke F, Georgiev O, Müller HP, Brugnera E, Schaffner W. Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Res 1995; 23:2277-86. [PMID: 7610056 PMCID: PMC307018 DOI: 10.1093/nar/23.12.2277] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Metallothioneins (MTs) constitute a class of low molecular weight, cysteine-rich, metal binding proteins which are regulated at the level of gene transcription in response to heavy metals and other adverse treatments. We have previously cloned a zinc finger factor (MTF-1) that binds specifically to heavy metal-responsive DNA sequence elements in metallothionein promoters and shown that this factor is essential for basal and heavy metal-induced transcription. Here we report that the C-terminal part of MTF-1 downstream of the DNA binding zinc fingers harbours three different transactivation domains, namely an acidic domain, a proline-rich domain and a domain rich in serine and threonine. When fused to the heterologous DNA binding domain of the yeast factor GAL4 these activation domains function constitutively, i.e. transcription of a GAL4-driven reporter gene is not induced by heavy metals. In search of the region(s) responsible for metal induction, external and internal deletion mutations of mouse and human MTF-1 and chimeric variants thereof were tested with a reporter gene driven by a metal-responsive promoter. The N-terminal part of MTF-1 containing the zinc fingers, which are dependent on zinc for efficient DNA binding, can indeed confer a limited (3- to 4-fold) zinc-responsive transcription when fused to the heterologous activation domain of the viral VP16 protein. Another region containing the acidic and proline-rich activation domains also contributes to metal inducibility, but only in the context of intact MTF-1. This indicates that the activity of MTF-1 results from a complex interplay of different functional domains.
Collapse
Affiliation(s)
- F Radtke
- Institut für Molekularbiologie II der Universität Zürich, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Merchant JL, Shiotani A, Mortensen ER, Shumaker DK, Abraczinskas DR. Epidermal growth factor stimulation of the human gastrin promoter requires Sp1. J Biol Chem 1995; 270:6314-9. [PMID: 7890769 DOI: 10.1074/jbc.270.11.6314] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Growth factors coordinately regulate a variety of different genes to stimulate cellular proliferation. In the stomach, gastrin, epidermal growth factor (EGF), and transforming growth factor-alpha all mediate gastric mucosal homeostasis by promoting cell renewal. We have previously shown that EGF and phorbol esters stimulate the human gastrin promoter through a novel GC-rich DNA element 5'-(68)GGGGCGGGGTGGGGGG-53 called gERE (gastrin EGF response element). In this report, we show that three factors bind to this element, the transcription factor Sp1 and two fast migrating complexes designated gastrin EGF response proteins (gERP 1 and 2). To understand how these factors bind and confer EGF responsiveness, mutations of gERE were tested in vitro for protein binding and in vivo for promoter activation. Both gel shift assays and UV cross-linking studies revealed that the factors bind to overlapping domains, Sp1 to the 5' half-site and gERP 1 and 2 to the 3' half-site. Placing either the 5' or 3' mutations upstream of a minimal gastrin promoter abolished EGF induction. Therefore both the 5' and 3' domains were required to confer EGF induction. Collectively, these results demonstrate that complex interactions between Sp1 and other factors binding to overlapping gERE half-sites confer EGF responsiveness to the gastrin promoter.
Collapse
Affiliation(s)
- J L Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | | | | | | | | |
Collapse
|
17
|
Seipel K, Georgiev O, Gerber HP, Schaffner W. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"? Mol Reprod Dev 1994; 39:215-25. [PMID: 7826625 DOI: 10.1002/mrd.1080390215] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Regions rich in serine, threonine, and proline residues can be found in transcriptional activation domains, as well as in the N-terminal parts of mammalian TATA-binding proteins, where they are interrupted by polyglutamine stretches. Likewise, the C-terminal domain of the largest subunit of RNA polymerase II contains multiple repeats of the consensus heptapeptide sequence YSPTSPS. To test directly for possible activation functions, we fused the GAL4 DNA-binding domain to the N-terminal domain of human TBP or subdomains of it, and to the C-terminal domain (CTD) of mouse RNA polymerase II or synthetic polymers of a CTD consensus repeat. We found that these chimeric proteins were able to activate transcription when bound to a GAL4 site in front of the TATA box, a function characteristic of transcription factors. However, while subdomains of TBP functioned only from a position close to the TATA box ("promoter" position), multiple repeats of the CTD consensus sequence were also able to mediate transcriptional activation from a remote ("enhancer") position. Our findings suggest that a region of TBP that is unique to mammals functionally cooperates with "proximal" activation domains of promoter-bound transcription factors. They also imply that the C-terminal domain of RNA polymerase II includes a function that is otherwise confined to remote activation domains of enhancer-bound transcription factors. We suggest that the CTD of RNA polymerase II contains a "portable" remote activation domain that may also facilitate chromatin opening within the transcription unit.
Collapse
Affiliation(s)
- K Seipel
- Institut für Molekularbiologie II, Universität Zürich, Switzerland
| | | | | | | |
Collapse
|
18
|
Flamigni F, Campana G, Carboni L, Guarnieri C, Spampinato S. Zinc is required for the expression of ornithine decarboxylase in a difluoromethylornithine-resistant cell line. Biochem J 1994; 299 ( Pt 2):515-9. [PMID: 8172613 PMCID: PMC1138301 DOI: 10.1042/bj2990515] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Dilution of quiescent L1210-DFMOr (difluoromethylornithine-resistant) cells in fresh medium containing serum led to the induction of ornithine decarboxylase (ODC) and to the expression of its mRNA, as determined by a sensitive solution-hybridization-RNase-protection assay. Addition of the chelating agent diethylenetriaminepentaacetic acid (DTPA) at seeding time caused an inhibition of the induction of ODC activity by up to 90%, and only Zn2+ of the bivalent metal ions tested was effective in reversing this effect. The inhibition of the induction of ODC activity was accompanied by a marked decrease, prevented by Zn2+ supplementation, of the accumulation of immunoreactive ODC protein and ODC mRNA. DTPA treatment also caused a slight acceleration of ODC turnover. These results indicate that a restricted Zn2+ availability in L1210-DFMOr cells impairs ODC induction remarkably, mainly by affecting the expression of the messenger.
Collapse
Affiliation(s)
- F Flamigni
- Dipartimento di Biochimica, Università di Bologna, Italy
| | | | | | | | | |
Collapse
|
19
|
Identification of functional elements and reconstitution of the alpha 1(VI) collagen promoter. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42353-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Seipel K, Georgiev O, Gerber HP, Schaffner W. C-terminal domain (CTD) of RNA-polymerase II and N-terminal segment of the human TATA binding protein (TBP) can mediate remote and proximal transcriptional activation, respectively. Nucleic Acids Res 1993; 21:5609-15. [PMID: 8284205 PMCID: PMC310524 DOI: 10.1093/nar/21.24.5609] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Activation domains of mammalian transcription factors can be subdivided into at least two functional classes. One, exemplified by the glutamine-rich activation domains of Oct and Sp1 factors, mediates transcriptional activation only from a proximal promoter position, and in response to an enhancer. The other, exemplified by the 'acidic' domain of the viral activator VP16, has the ability to activate from remote enhancer as well as from proximal promoter positions. Here we report that two proteins of the basal transcription apparatus also contain activation domains whose stimulatory effect can be detected in fusion proteins containing the GAL4 DNA binding domain. The human TATA-binding protein (TBP) contains at its N-terminus a domain with typical 'promoter' activity. We propose that the TBP N-terminal region acts as an auxiliary activation domain which reinforces the activity of other promoter-bound factors. The largest subunit of RNA polymerase II contains at its C-terminus a conserved heptad repeat structure (CTD). Both natural and synthetic CTD consensus repeats fused to GAL4 can activate transcription from remote positions like a typical enhancer-active domain. Accordingly we propose that the RNA polymerase II large subunit contains a 'portable' domain for transcriptional activation which may synergize with the activation domains of enhancer-bound transcription factors.
Collapse
Affiliation(s)
- K Seipel
- Institut für Molekularbiologie II, Universität Zürich, Switzerland
| | | | | | | |
Collapse
|
21
|
Freake HC. Molecular biological approaches to studying trace minerals: why should clinicians care? J Am Coll Nutr 1993; 12:294-302. [PMID: 8409085 DOI: 10.1080/07315724.1993.10718313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The approaches and tools of molecular biology have been enormously valuable to all branches of biological science over the last decade. Nutrition is no exception, where studies on the influence of nutrients on gene expression and of gene products on nutrient metabolism have resulted in a much more sophisticated and detailed understanding of nutritional biochemistry. An example of this as applied to trace minerals research can be seen in the area of thyroidology. Until recently, the sole link between thyroid hormones and trace minerals was iodide. Then the thyroid hormone receptor was cloned and analysis of the protein coding sequence showed it to be a member of a large family of gene activating receptor proteins. These all possess a region containing two clusters of cysteine residues, thought to chelate zinc, which is required for binding of the receptors to their target genes. Zinc appears to be necessary for the biological functioning of not only the thyroid hormone receptor but also many other nuclear proteins which regulate gene expression. The principal product of the thyroid gland is thyroxine from which the more active form of the hormone, triiodothyronine, is derived by peripheral monodeiodination. One of the two enzymes responsible, type I 5'-iodothyronine deiodinase, was recently cloned and shown to contain selenocysteine. Thus production of the active thyroid hormone is dependent on selenium status. These advances made with molecular biology have important implications for clinicians. The possibilities for understanding the clinical picture are immediately enhanced, improving both diagnosis and treatment. Molecular biology also provides the opportunity for developing more specific and sensitive tools for assessing nutritional status. Diseases with a genetic basis can be unequivocally diagnosed and perhaps even treated. A strength of nutrition is that it encompasses molecular biology and clinical practice and practitioners of each can benefit from an understanding of the complementary area.
Collapse
Affiliation(s)
- H C Freake
- Department of Nutritional Sciences, University of Connecticut, Storrs 06269-4017
| |
Collapse
|
22
|
Hoppe-Seyler F, Butz K. Activation of human papillomavirus type 18 E6-E7 oncogene expression by transcription factor Sp1. Nucleic Acids Res 1992; 20:6701-6. [PMID: 1336181 PMCID: PMC334589 DOI: 10.1093/nar/20.24.6701] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human papillomavirus 18 (HPV18) E6 and E7 proteins are considered to be primarily responsive for the transforming activity of the virus. In order to analyse the molecular mechanisms resulting in viral oncoprotein expression, it is necessary to identify the factors involved in the transcriptional regulation of the E6/E7 genes. Here we define by gel retardation experiments a sequence aberrant Sp1 binding site present in the promoter proximal part of the viral transcriptional control region (Upstream Regulatory Region, URR). Functional analyses employing transient reporter assays reveal that this Sp1 element is required for an efficient stimulation of the HPV18 E6/E7-promoter. Mutation of the Sp1 element in the natural context of the HPV18 URR leads to a strong decrease in the activity of the E6/E7-promoter in several cell lines. The magnitude of reduction varies between different cell types and is higher in cell lines of epithelial origin when compared with nonepithelial cells. Cotransfection assays using Sp1 expression vector systems further define the promoter proximal HPV18 Sp1 binding motif as a functional Sp1 element in vivo and show that its integrity is essential for the stimulation of the E6/E7-promoter by augmented levels of Sp1. These results indicate, that the cellular transcription factor Sp1 plays an important role for the stimulation of the E6/E7-promoter by the viral URR and represents a major determinant for the expression of HPV18 transforming genes E6 and E7.
Collapse
Affiliation(s)
- F Hoppe-Seyler
- Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | |
Collapse
|
23
|
Vaughan PJ, Thibault KJ, Hardwicke MA, Sandri-Goldin RM. The herpes simplex virus immediate early protein ICP27 encodes a potential metal binding domain and binds zinc in vitro. Virology 1992; 189:377-84. [PMID: 1318613 DOI: 10.1016/0042-6822(92)90720-a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The herpes simplex virus type 1 (HSV-1) immediate-early regulatory proteins ICP27 and ICP0 each encode putative zinc-finger metal-binding domains. We utilized the technique of metal chelate affinity chromatography to demonstrate that ICP27 and ICP0 were able to bind to zinc in vitro. This property was further exploited to purify ICP27 from extracts of HSV-1-infected cells. The purification procedure also revealed that ICP27 possessed single-stranded DNA-binding activity. Analysis of ICP27 truncated peptides produced by in vitro translation verified that the zinc-binding region of ICP27 resides in the carboxy terminal 105 amino acids spanning the putative metal binding motif. However, a specific configuration of cysteine and histidine residues in this region was not required for binding to occur as demonstrated by the ability of a frame-shift mutation to bind with an efficiency similar to wild type. The mutated peptide retained four histidine and cysteine residues but in a configuration different from the consensus proposed for zinc-finger motifs. Therefore, while the region spanning the metal binding domain of ICP27 is essential for both the activator and repressor functions, and ICP27 binds zinc in vitro, it is not clear whether zinc binding in vivo is necessary for function.
Collapse
Affiliation(s)
- P J Vaughan
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717
| | | | | | | |
Collapse
|
24
|
Olive MR, Peacock WJ, Dennis ES. The anaerobic responsive element contains two GC-rich sequences essential for binding a nuclear protein and hypoxic activation of the maize Adh1 promoter. Nucleic Acids Res 1991; 19:7053-60. [PMID: 1766868 PMCID: PMC332512 DOI: 10.1093/nar/19.25.7053] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have identified a protein (GCBP-1) in nuclear extracts from maize suspension cell cultures that binds to specific sequences within the Anaerobic Responsive Element (ARE) of the maize Adh1 promoter. Competition analyses show that the GCBP-1 binding activity distinguishes ARE sequence motifs from other enhancer elements or pUC19 sequences. The binding activities of several mutant ARE sequences define two regions of the ARE important for GCBP-1 binding in vitro, between nucleotides -135 to -131 and nucleotides -120 to -112 of the maize Adh1 promoter. Both regions are required for efficient GCBP-1 binding to occur in vitro. The minimum consensus binding site for GCBP-1 is 5'-GC(G/C)CC-3'. This sequence is similar to a part of the binding site of the human transcription factor Sp1 (1). We demonstrate that maize GCBP-1 and human Sp1 have similar recognition properties. Using ARE mutants in a transient assay in maize protoplasts we have shown that mutation of the GCBP-1 binding sites prevents significant hypoxic activation of the maize Adh1 promoter. These results suggest a direct role for GCBP-1 in the hypoxic activation of Adh1 gene expression. GCBP-1 is present in both uninduced and induced nuclei, indicating that inducible gene expression is not dependent upon synthesis of GCBP-1 and suggesting that post-translational modification of bound GCBP-1 may be important for enhanced transcription to occur.
Collapse
Affiliation(s)
- M R Olive
- CSIRO Division of Plant Industry, Canberra, Australia
| | | | | |
Collapse
|
25
|
Oblender M, Carpentieri U. Growth, ribonucleotide reductase and metals in murine leukemic lymphocytes. J Cancer Res Clin Oncol 1991; 117:444-8. [PMID: 1890140 DOI: 10.1007/bf01612765] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trace metals are essential for the growth and several other properties of human lymphocytes. We studied the effects of media with variable concentrations of three metals (Fe2+, Cu2+, Zn2+), a metal chelator (deferoxamine, DFX) and a cell-growth inhibitor (hydroxyurea) on the growth, intracellular metal concentration and activity of the enzyme ribonucleotide reductase in murine leukemic lymphocytes (L1210). Intracellular concentrations of Fe and Cu fluctuated within narrow limits in normal media, but decreased to very low concentrations in metal-poor media. The intracellular Zn concentration did not vary appreciably. Growth in intact cells decreased by 50%-70% when normal media were replaced by metal-poor media, but returned to control values when media were supplemented with gradually increasing concentrations of Fe and Cu. Fe and Cu had synergistic effects, while Zn had no stimulatory action. Hydroxyurea and DFX both inhibited cell growth, but only DFX inhibition was reversed by addition of metals. The addition of the above metals and inhibitors to the cell extracts produced effects on ribonucleotide reductase activity similar to those observed on the growth of whole cell preparations (stimulation by Fe and Cu, inhibition by Zn, DFX and hydroxyurea). These findings show that (a) the intracellular metal concentration is maintained in a narrow range during cell growth; (b) ribonucleotide reductase activity varies with cell growth; (c) ribonucleotide reductase activity and cell growth increase with Fe and Cu and decrease with Zn and DFX. Our data suggest that (a) Fe, Cu and Zn may have some effect on the growth and ribonucleotide reductase activity of L1210 cells, that (b) Fe, Cu and Zn may operate in a related and interdependent way and that (c) DFX inhibits cell growth probably through inhibition of the reductase activity and chelation of the Fe of its Fe-containing subunit. We conclude that any study on one of these metals should always include the other two and that manipulation of intracellular metals should be investigated as a potential therapeutic modulator of growth in leukemic lymphocytes.
Collapse
Affiliation(s)
- M Oblender
- University of Texas Medical Branch, Department of Pediatrics, Galveston 77550
| | | |
Collapse
|
26
|
Prince VE, Rigby PW. Derivatives of Moloney murine sarcoma virus capable of being transcribed in embryonal carcinoma stem cells have gained a functional Sp1 binding site. J Virol 1991; 65:1803-11. [PMID: 1848307 PMCID: PMC239988 DOI: 10.1128/jvi.65.4.1803-1811.1991] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The long terminal repeat (LTR) sequences of Moloney murine leukemia virus and its closely related derivative Moloney murine sarcoma virus (Mo-MSV) are incapable of directing transcription in embryonal carcinoma (EC) stem cells. The myeloproliferative sarcoma virus, a derivative of Mo-MSV, has several point mutations in the LTR and is transcribed more efficiently to allow productive infection of F9 EC cells. One of these mutations, at -166 with respect to the transcriptional start, creates a consensus binding site for the well-characterized mammalian transcription factor Sp1. We used gel retardation assays to demonstrate that F9 EC cell extracts form several complexes with the myeloproliferative sarcoma virus sequence around -166. One of these complexes involves a murine Sp1-like protein, which has immunoreactivity, DNA binding specificity, and electrophoretic mobility equivalent to those of purified human Sp1 protein. An equivalent complex forms on the corresponding Mo-MSV sequence but with a fivefold-lower affinity. Consistent with these observations, introduction of the single point mutation at -166 into the Mo-MSV LTR, creating a consensus Sp1 binding site, increases expression in F9 EC cells sixfold.
Collapse
Affiliation(s)
- V E Prince
- Laboratory of Eukaryotic Molecular Genetics, National Institute for Medical Research, The Ridgeway, London, England
| | | |
Collapse
|
27
|
Zeng J, Heuchel R, Schaffner W, Kägi JH. Thionein (apometallothionein) can modulate DNA binding and transcription activation by zinc finger containing factor Sp1. FEBS Lett 1991; 279:310-2. [PMID: 2001744 DOI: 10.1016/0014-5793(91)80175-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A number of transcription factors contain so-called zinc finger domains for the interaction with their cognate DNA sequence. It has been shown that removal of the zinc ions complexed in these zinc fingers abrogates DNA binding and transcription activation. Therefore we wanted to test the hypothesis that the activity of transcription factors could be regulated by physiological chelators of zinc. A prominent candidate for such a chelator is the Cys-rich protein thionein (apometallothionein) that is inducible by heavy metal loads, and by other environmental stimuli. Here we show with DNA binding and in vitro transcription assays that thionein indeed can inactivate the zinc finger-containing Sp1 in a reversible manner. By contrast, transcription factor Oct-1, which binds DNA via a homeo-domain, i.e. a helix-turn-helix motif not involving zinc ions, is refractory to thionein action. We propose that modulation of intracellular thionein concentration is used for the coordinated regulation of a large subset of genes whose transcription depends on zinc finger proteins.
Collapse
Affiliation(s)
- J Zeng
- Biochemisches Institut der Universität Zürich, Switzerland
| | | | | | | |
Collapse
|
28
|
Identification of a DNA-binding site for the transcription factor GC2 in the promoter region of the p12 gene and repression of its positive activity by upstream negative regulatory elements. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45844-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Searle PF. Zinc dependent binding of a liver nuclear factor to metal response element MRE-a of the mouse metallothionein-I gene and variant sequences. Nucleic Acids Res 1990; 18:4683-90. [PMID: 2395635 PMCID: PMC331918 DOI: 10.1093/nar/18.16.4683] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Metallothionein gene transcription is inducible by zinc and other heavy metals, and several metal response elements (MREs) have been mapped within about 200 bp upstream of the site of transcription initiation in several metallothionein genes. Comparison of a number of MREs defined a 15 bp consensus sequence containing a more highly conserved MRE core sequence TGCRCNCG. I have used the proximal MRE of the mouse metallothionein-I gene (MRE-a) in DNA fragment mobility shift assays to detect a protein in rat liver nuclear extracts which binds specifically to the MRE in a zinc-regulated manner. Use of a comprehensive series of variant MRE sequences established that the binding was strongly dependent on the MRE core sequence, whereas changes at the less highly conserved positions had minor effects on binding. This provides strong evidence that the protein detected is responsible for the zinc-responsiveness of the MT genes in liver, and provides a more detailed picture of the regulatory protein:MRE interaction than was previously available.
Collapse
Affiliation(s)
- P F Searle
- Department of Cancer Studies, University of Birmingham Medical School, U.K
| |
Collapse
|
30
|
A 36-kilodalton cellular transcription factor mediates an indirect interaction of human T-cell leukemia/lymphoma virus type I TAX1 with a responsive element in the viral long terminal repeat. Mol Cell Biol 1990. [PMID: 2370863 DOI: 10.1128/mcb.10.8.4192] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia/lymphoma virus type I (HTLV-I) trans activator, TAX1, interacts indirectly with a TAX1-responsive element, TRE-2, located at positions -117 to -163 in the viral long terminal repeat. This report describes the characterization of a 36-kilodalton (kDa) protein identified in HeLa nuclear extract which mediates the interaction of TAX1 with TRE-2. Purification of the protein was achieved by zinc chelate chromatography and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The renatured 36-kDa protein bound specifically to a TRE-2 oligonucleotide but not to nonfunctional base substitution mutant probes in a gel retardation assay. Renatured proteins of differing molecular weights were unable to form this complex. In addition, the 36-kDa protein specifically activated transcription from the HTLV-I promoter in vitro. Purified TAX1 protein formed a complex with the TRE-2 oligonucleotide in the presence of the 36-kDa protein, suggesting that indirect interaction of TAX1 with the viral long terminal repeat may be one of the mechanisms by which HTLV-I transcription is regulated.
Collapse
|
31
|
Marriott SJ, Lindholm PF, Brown KM, Gitlin SD, Duvall JF, Radonovich MF, Brady JN. A 36-kilodalton cellular transcription factor mediates an indirect interaction of human T-cell leukemia/lymphoma virus type I TAX1 with a responsive element in the viral long terminal repeat. Mol Cell Biol 1990; 10:4192-201. [PMID: 2370863 PMCID: PMC360951 DOI: 10.1128/mcb.10.8.4192-4201.1990] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human T-cell leukemia/lymphoma virus type I (HTLV-I) trans activator, TAX1, interacts indirectly with a TAX1-responsive element, TRE-2, located at positions -117 to -163 in the viral long terminal repeat. This report describes the characterization of a 36-kilodalton (kDa) protein identified in HeLa nuclear extract which mediates the interaction of TAX1 with TRE-2. Purification of the protein was achieved by zinc chelate chromatography and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The renatured 36-kDa protein bound specifically to a TRE-2 oligonucleotide but not to nonfunctional base substitution mutant probes in a gel retardation assay. Renatured proteins of differing molecular weights were unable to form this complex. In addition, the 36-kDa protein specifically activated transcription from the HTLV-I promoter in vitro. Purified TAX1 protein formed a complex with the TRE-2 oligonucleotide in the presence of the 36-kDa protein, suggesting that indirect interaction of TAX1 with the viral long terminal repeat may be one of the mechanisms by which HTLV-I transcription is regulated.
Collapse
Affiliation(s)
- S J Marriott
- Laboratory of Molecular Virology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | | | |
Collapse
|
32
|
Thiesen HJ, Bach C. Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein. Nucleic Acids Res 1990; 18:3203-9. [PMID: 2192357 PMCID: PMC330924 DOI: 10.1093/nar/18.11.3203] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We developed a rapid method designated Target Detection Assay (TDA) to determine DNA binding sites for putative DNA binding proteins. A purified, functionally active DNA binding protein and a pool of random double-stranded oligonucleotides harbouring PCR primer sites at each end are included the TDA cycle which consists of four separate steps: a DNA protein incubation step, a protein DNA complex separation step, a DNA elution step and a polymerase chain reaction (PCR) DNA amplification step. The stringency of selection can be increased in consecutive TDA cycles. Since tiny amounts of retained DNA can be rescued by PCR, buffer systems, salt concentrations and competitor DNA contents can be varied in order to determine high affinity binding sites for the protein of choice. To test the efficiency of the TDA procedure potential DNA binding sites were selected by the DNA binding protein SP1 from a pool of oligonucleotides with random nucleotides at 12 positions. Target sites selected by recombinant SP1 closely matched the SP1 consensus site. If DNA recognition sites have to be determined for known, mutated or putative DNA binding proteins, the Target Detection Assay (TDA) is a versatile and rapid technique for consideration.
Collapse
|
33
|
Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals. Mol Cell Biol 1990. [PMID: 2109185 DOI: 10.1128/mcb.10.5.1931] [Citation(s) in RCA: 216] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Egr-1 is an immediate-early response gene induced by diverse signals that initiate growth and differentiation. Its cDNA sequence predicts a protein with zinc fingers. We have generated an antiserum to the Egr-1 gene product and identified it as an 80-kilodalton short-lived protein in serum-stimulated mouse fibroblasts. The rat Egr-1 product has also been identified in nerve growth factor-induced PC12 cells. In addition, we show by cell fractionation and immunocytochemistry that the Egr-1 protein is located in the nucleus. We also demonstrate that it is phosphorylated. In vitro-generated Egr-1 protein binds with high affinity to the sequence CGCCCCCGC in a zinc-dependent manner.
Collapse
|
34
|
Bergqvist A, Nilsson M, Bondeson K, Magnusson G. Loss of DNA-binding and new transcriptional trans-activation function in polyomavirus large T-antigen with mutation of zinc finger motif. Nucleic Acids Res 1990; 18:2715-20. [PMID: 2160069 PMCID: PMC330756 DOI: 10.1093/nar/18.9.2715] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A putative zinc finger in polyomavirus large T-antigen was investigated. We were unable to demonstrate unequivocally a requirement for zinc in specific DNA-binding using the chelating agent 1, 10-phenanthroline. An involvement of the putative zinc finger in specific DNA-binding was nevertheless suggested by the properties of a mutant protein with a cys----ser replacement in the finger motif. Probably as a result of the defective DNA-binding, the mutant protein had lost its activity in initiation of viral DNA-replication and in negative regulation of viral early transcription. However, the trans-activation of the viral late promoter was normal. The analysis also revealed a previously unrecognized activity of large T-antigen. The mutant protein trans-activated the viral early promoter. In the wild-type protein this activity is probably concealed by the separate, negative regulatory function.
Collapse
Affiliation(s)
- A Bergqvist
- Department of Medical Virology, Uppsala University Biomedical Center, Sweden
| | | | | | | |
Collapse
|
35
|
Cao XM, Koski RA, Gashler A, McKiernan M, Morris CF, Gaffney R, Hay RV, Sukhatme VP. Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals. Mol Cell Biol 1990; 10:1931-9. [PMID: 2109185 PMCID: PMC360539 DOI: 10.1128/mcb.10.5.1931-1939.1990] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Egr-1 is an immediate-early response gene induced by diverse signals that initiate growth and differentiation. Its cDNA sequence predicts a protein with zinc fingers. We have generated an antiserum to the Egr-1 gene product and identified it as an 80-kilodalton short-lived protein in serum-stimulated mouse fibroblasts. The rat Egr-1 product has also been identified in nerve growth factor-induced PC12 cells. In addition, we show by cell fractionation and immunocytochemistry that the Egr-1 protein is located in the nucleus. We also demonstrate that it is phosphorylated. In vitro-generated Egr-1 protein binds with high affinity to the sequence CGCCCCCGC in a zinc-dependent manner.
Collapse
Affiliation(s)
- X M Cao
- Department of Medicine, University of Chicago, Illinois 60637
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Markose ER, Stein JL, Stein GS, Lian JB. Vitamin D-mediated modifications in protein-DNA interactions at two promoter elements of the osteocalcin gene. Proc Natl Acad Sci U S A 1990; 87:1701-5. [PMID: 2308930 PMCID: PMC53550 DOI: 10.1073/pnas.87.5.1701] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
By the combined use of DNase I footprinting, electrophoretic mobility-shift assay, and methylation interference analysis, we have identified a series of sequence-specific protein-DNA interactions in the 5' flanking region of the rat osteocalcin gene. Stimulation of osteocalcin gene expression by 1,25-dihydroxyvitamin D3, a physiologic mediator of this bone-specific gene in vitro and in vivo, is associated with modifications in the binding of ROS 17/2.8 cell nuclear factors to two promoter segments that up-regulate transcription. One segment located between -462 and -437 exhibits a vitamin D-dependent increase in sequence-specific binding of nuclear factors. This element (CTGGGTGAATGAGGACATTACTGACC), identified at single nucleotide resolution, contains a region of hyphenated dyad symmetry and shares sequence homology with consensus steroid-responsive elements and with the sequence that has been identified as the vitamin D receptor binding site in the human osteocalcin gene. We have also observed that vitamin D stimulation of osteocalcin gene expression results in a 5-fold increase in protein binding to the region of the osteocalcin box, a 24-nucleotide segment in the proximal promoter with a CCAAT motif as the central core. Our results demonstrate protein-DNA interactions in a vitamin D-responsive element and in a second sequence, the osteocalcin box, both of which are involved in the physiologic regulation of the osteocalcin gene in response to 1,25-dihydroxyvitamin D3.
Collapse
Affiliation(s)
- E R Markose
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | |
Collapse
|
37
|
Denison MS, Deal RM. The binding of transformed aromatic hydrocarbon (Ah) receptor to its DNA recognition site is not affected by metal depletion. Mol Cell Endocrinol 1990; 69:51-7. [PMID: 2157617 DOI: 10.1016/0303-7207(90)90088-p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The biological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), a potent environmental contaminant, are mediated by a soluble intracellular protein, the aromatic hydrocarbon (Ah) receptor (AhR). TCDD:AhR complexes activate gene transcription by binding to specific DNA sequences termed dioxin-responsive elements adjacent to TCDD-responsive genes. Analogies between the AhR and receptors for steroid hormones imply similarities in their mechanism of action. The presence of chelatable, protein-bound metal(s), presumably zinc, is required for DNA binding of several proteins, including steroid hormone receptors and the transcription factor SP1. Utilizing gel retardation and DNA-cellulose binding assays we have investigated the importance of metal in DNA binding of transformed TCDD:AhR complexes. Here, we report that although 1,10-phenanthroline, a metal ion chelating agent, inhibited the DNA binding of SP1 and transformed glucocorticoid receptor, no inhibition of transformed AhR was observed. EDTA was similarly ineffective in inhibiting DNA binding of transformed AhR. Our findings suggest that the AhR, although similar to steroid receptors, appears not to require metals for binding to its specific DNA recognition sequence.
Collapse
Affiliation(s)
- M S Denison
- Department of Biochemistry, Michigan State University, East Lansing 48823
| | | |
Collapse
|
38
|
The sarcomeric actin CArG-binding factor is indistinguishable from the c-fos serum response factor. Mol Cell Biol 1989. [PMID: 2710114 DOI: 10.1128/mcb.9.2.515] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-fos serum response element (SRE) and a sarcomeric actin promoter element (CArG box) are similar in sequence and are recognized, respectively, by the serum response factor (SRF) and the CArG-binding factor (CBF). Although the transcriptional controls for the c-fos and sarcomeric actin genes are rather different, SRF and CBF have been found to be indistinguishable by all criteria tested. They exhibited similar chromatographic properties, sedimentation rates, and temperature stabilities. In mobility shift assays, the SRE competed more strongly than the actin CArG box for formation of either the SRF-SRE or the CBF-CArG complex. The symmetric inverted repeat of the left side of the Xenopus cytoskeletal actin SRE also competed, even more strongly, for each complex. The site-specific binding of each protein was inhibited both by orthophenanthroline, whose effects were reversed by zinc addition, and by treatment with potato acid phosphatase. Furthermore, immune serum raised against the c-fos SRF also recognized the actin CBF. We discuss how transcriptional control of these diverse genes might be obtained with a single similar factor.
Collapse
|
39
|
Lemaigre FP, Courtois SJ, Lafontaine DA, Rousseau GG. Evidence that the upstream stimulatory factor and the Sp1 transcription factor bind in vitro to the promoter of the human-growth-hormone gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 181:555-61. [PMID: 2659342 DOI: 10.1111/j.1432-1033.1989.tb14760.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expression of the human-growth-hormone gene is restricted to pituitary somatotrophs. Two protein-DNA complexes that are specific to the pituitary, and two that are not, had been demonstrated in vitro on the promoter of this gene. The two pituitary-specific footprints had been ascribed to a single protein called growth hormone factor 1. We have now characterized the factors responsible for the two other footprints by means of deoxyribonuclease-I protection and gel-retardation experiments. The first footprint, located between -257 and -290 relative to the transcription initiation site, involves at least two factors present in pituitary cells. One of these factors binds between nucleotides -257 and -267, and is indistinguishable from the upstream stimulatory factor, also called major late transcription factor or upstream element factor, initially described in HeLa cells. Earlier work by others had shown that the activator protein 2 purified from HeLa cells can bind to nucleotides -263 and -290. Our experiments suggest that a factor different from activator protein 2 is involved in the protection of this region against deoxyribonuclease I. The second footprint, located between nucleotides -116 and -140, involves only one factor. This factor, present in pituitary cells, recognizes a GC box and is indistinguishable from transcription factor Sp1, previously described in HeLa cells. The human-growth-hormone gene is therefore a candidate for regulation by these factors in vivo.
Collapse
Affiliation(s)
- F P Lemaigre
- Hormone and Metabolic Research Unit, Louvain University Medical School, Brussels, Belgium
| | | | | | | |
Collapse
|
40
|
Boxer LM, Prywes R, Roeder RG, Kedes L. The sarcomeric actin CArG-binding factor is indistinguishable from the c-fos serum response factor. Mol Cell Biol 1989; 9:515-22. [PMID: 2710114 PMCID: PMC362627 DOI: 10.1128/mcb.9.2.515-522.1989] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The c-fos serum response element (SRE) and a sarcomeric actin promoter element (CArG box) are similar in sequence and are recognized, respectively, by the serum response factor (SRF) and the CArG-binding factor (CBF). Although the transcriptional controls for the c-fos and sarcomeric actin genes are rather different, SRF and CBF have been found to be indistinguishable by all criteria tested. They exhibited similar chromatographic properties, sedimentation rates, and temperature stabilities. In mobility shift assays, the SRE competed more strongly than the actin CArG box for formation of either the SRF-SRE or the CBF-CArG complex. The symmetric inverted repeat of the left side of the Xenopus cytoskeletal actin SRE also competed, even more strongly, for each complex. The site-specific binding of each protein was inhibited both by orthophenanthroline, whose effects were reversed by zinc addition, and by treatment with potato acid phosphatase. Furthermore, immune serum raised against the c-fos SRF also recognized the actin CBF. We discuss how transcriptional control of these diverse genes might be obtained with a single similar factor.
Collapse
Affiliation(s)
- L M Boxer
- MEDIGEN Project, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | | | | | | |
Collapse
|
41
|
Höller M, Westin G, Jiricny J, Schaffner W. Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev 1988; 2:1127-35. [PMID: 3056778 DOI: 10.1101/gad.2.9.1127] [Citation(s) in RCA: 265] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In vertebrates, a negative correlation between gene activity and CpG methylation of DNA, notably in the promoter region, is well established. Therefore, it is conceivable that differential binding of transcription factors to methylated versus unmethylated binding sites is crucial for gene activity. Since the consensus binding site of transcription factor Sp1 contains a central CpG, we have investigated the binding of Sp1 factor to unmethylated and synthetically CpG-methylated DNA. A strong Sp1 binding site was methylated on both strands at two CpG positions, located in the center and at the periphery of the recognition sequence. Our studies show that neither binding in vitro, nor transcription in vivo and in vitro are affected by methylation of the Sp1 binding site. We discuss the possibility that binding of Sp1 factor, which is often associated with promoters of housekeeping genes, prevents CpG methylation.
Collapse
Affiliation(s)
- M Höller
- Institut für Molekularbiologie II der Universität Zürich, Switzerland
| | | | | | | |
Collapse
|