1
|
Benedito Oliveira D, Engelberto Kundlastsch G, Daniel Cruz R, Batista B, Perencin de Arruda Ribeiro M, Teresa Marques Novo-Mansur M, José da Silva A. Xanthan gum production in Xanthomonas campestris is increased by favoring the biosynthesis of its monomers. BIORESOURCE TECHNOLOGY 2024:131808. [PMID: 39536881 DOI: 10.1016/j.biortech.2024.131808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Current efforts to improve xanthan gum (XG) production by Xanthomonas have focused on the growth medium, operating parameters, and downstream steps. However, a key aspect is the development of optimal strains. The present work aimed to investigate the formation of XG monomers, using kinetic and stoichiometric models to identify possible bottlenecks, and to engineer a recombinant strain to overcome such limitations. The galU and ugd genes involved in thebiosynthesis of the UDP-glucose and UDP-glucuronic acid monomers were overexpressed in Xanthomonas campestris pv. campestris. The strains were cultivated in shake flasks and bioreactor. As predicted by in silico analysis, overexpression of the ugd gene resulted in a significant increase in gum synthesis, up to 50% higher volumetric productivity in thebioreactor. To a lesser extent, galU overexpression was also shown to improve product formation. These findings validated the hypothesis that metabolic engineering of the monomer biosynthesis can enhance XG production.
Collapse
Affiliation(s)
- Davi Benedito Oliveira
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Guilherme Engelberto Kundlastsch
- Biochemistry and Applied Molecular Biology Laboratory, Department of Genetics and Evolution, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Richard Daniel Cruz
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Bruno Batista
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | | | - Maria Teresa Marques Novo-Mansur
- Biochemistry and Applied Molecular Biology Laboratory, Department of Genetics and Evolution, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| | - Adilson José da Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Schubert C, Unden G. Regulation of Aerobic Succinate Transporter dctA of E. coli by cAMP-CRP, DcuS-DcuR, and EIIAGlc: Succinate as a Carbon Substrate and Signaling Molecule. Microb Physiol 2024; 34:108-120. [PMID: 38432210 DOI: 10.1159/000538095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION C4-dicarboxylates (C4-DC) have emerged as significant growth substrates and signaling molecules for various Enterobacteriaceae during their colonization of mammalian hosts. Particularly noteworthy is the essential role of fumarate respiration during colonization of pathogenic bacteria. To investigate the regulation of aerobic C4-DC metabolism, the study explored the transcriptional control of the main aerobic C4-DC transporter, dctA, under different carbohydrate conditions. In addition, mutants related to carbon catabolite repression (CCR) and C4-DC regulation (DcuS-DcuR) were examined to better understand the regulatory integration of aerobic C4-DC metabolism into CCR. For initial insight into posttranslational regulation, the interaction between the aerobic C4-DC transporter DctA and EIIAGlc from the glucose-specific phosphotransferase system was investigated. METHODS The expression of dctA was characterized in the presence of various carbohydrates and regulatory mutants affecting CCR. This was accomplished by fusing the dctA promoter (PdctA) to the lacZ reporter gene. Additionally, the interaction between DctA and EIIAGlc of the glucose-specific phosphotransferase system was examined in vivo using a bacterial two-hybrid system. RESULTS The dctA promoter region contains a class I cAMP-CRP-binding site at position -81.5 and a DcuR-binding site at position -105.5. DcuR, the response regulator of the C4-DC-activated DcuS-DcuR two-component system, and cAMP-CRP stimulate dctA expression. The expression of dctA is subject to the influence of various carbohydrates via cAMP-CRP, which differently modulate cAMP levels. Here we show that EIIAGlc of the glucose-specific phosphotransferase system strongly interacts with DctA, potentially resulting in the exclusion of C4-DCs when preferred carbon substrates, such as sugars, are present. In contrast to the classical inducer exclusion known for lactose permease LacY, inhibition of C4-DC uptake into the cytoplasm affects only its role as a substrate, but not as an inducer since DcuS detects C4-DCs in the periplasmic space ("substrate exclusion"). The work shows an interplay between cAMP-CRP and the DcuS-DcuR regulatory system for the regulation of dctA at both transcriptional and posttranslational levels. CONCLUSION The study highlights a hierarchical interplay between global (cAMP-CRP) and specific (DcuS-DcuR) regulation of dctA at the transcriptional and posttranslational levels. The integration of global and specific transcriptional regulation of dctA, along with the influence of EIIAGlc on DctA, fine-tunes C4-DC catabolism in response to the availability of other preferred carbon sources. It attributes DctA a central role in the control of aerobic C4-DC catabolism and suggests a new role to EIIAGlc on transporters (control of substrate uptake by substrate exclusion).
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany,
| |
Collapse
|
3
|
cAMP Activation of the cAMP Receptor Protein, a Model Bacterial Transcription Factor. J Microbiol 2023; 61:277-287. [PMID: 36892777 DOI: 10.1007/s12275-023-00028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
The active and inactive structures of the Escherichia coli cAMP receptor protein (CRP), a model bacterial transcription factor, are compared to generate a paradigm in the cAMP-induced activation of CRP. The resulting paradigm is shown to be consistent with numerous biochemical studies of CRP and CRP*, a group of CRP mutants displaying cAMP-free activity. The cAMP affinity of CRP is dictated by two factors: (i) the effectiveness of the cAMP pocket and (ii) the protein equilibrium of apo-CRP. How these two factors interplay in determining the cAMP affinity and cAMP specificity of CRP and CRP* mutants are discussed. Both the current understanding and knowledge gaps of CRP-DNA interactions are also described. This review ends with a list of several important CRP issues that need to be addressed in the future.
Collapse
|
4
|
Gibson JA, Gebhardt MJ, Santos RERS, Dove SL, Watnick PI. Sequestration of a dual function DNA-binding protein by Vibrio cholerae CRP. Proc Natl Acad Sci U S A 2022; 119:e2210115119. [PMID: 36343262 PMCID: PMC9674212 DOI: 10.1073/pnas.2210115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Although the mechanism by which the cyclic AMP receptor protein (CRP) regulates global gene transcription has been intensively studied for decades, new discoveries remain to be made. Here, we report that, during rapid growth, CRP associates with both the well-conserved, dual-function DNA-binding protein peptidase A (PepA) and the cell membrane. These interactions are not present under nutrient-limited growth conditions, due to post-translational modification of three lysines on a single face of CRP. Although coincident DNA binding is rare, dissociation from CRP results in increased PepA occupancy at many chromosomal binding sites and differential regulation of hundreds of genes, including several encoding cyclic dinucleotide phosphodiesterases. We show that PepA represses biofilm formation and activates motility/chemotaxis. We propose a model in which membrane-bound CRP interferes with PepA DNA binding. Under nutrient limitation, PepA is released. Together, CRP and free PepA activate a transcriptional response that impels the bacterium to seek a more hospitable environment. This work uncovers a function for CRP in the sequestration of a regulatory protein. More broadly, it describes a paradigm of bacterial transcriptome modulation through metabolically regulated association of transcription factors with the cell membrane.
Collapse
Affiliation(s)
- Jacob A. Gibson
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115
| | - Michael J. Gebhardt
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Renato E. R. S. Santos
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Paula I. Watnick
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
5
|
Schubert C, Unden G. C 4-Dicarboxylates as Growth Substrates and Signaling Molecules for Commensal and Pathogenic Enteric Bacteria in Mammalian Intestine. J Bacteriol 2022; 204:e0054521. [PMID: 34978458 PMCID: PMC9017328 DOI: 10.1128/jb.00545-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C4-dicarboxylates (C4-DC) l-aspartate and l-malate have been identified as playing an important role in the colonization of mammalian intestine by enteric bacteria, such as Escherichia coli and Salmonella enterica serovar Typhimurium, and succinate as a signaling molecule for host-enteric bacterium interaction. Thus, endogenous and exogenous fumarate respiration and related functions are required for efficient initial growth of the bacteria. l-Aspartate represents a major substrate for fumarate respiration in the intestine and a high-quality substrate for nitrogen assimilation. During nitrogen assimilation, DcuA catalyzes an l-aspartate/fumarate antiport and serves as a nitrogen shuttle for the net uptake of ammonium only, whereas DcuB acts as a redox shuttle that catalyzes the l-malate/succinate antiport during fumarate respiration. The C4-DC two-component system DcuS-DcuR is active in the intestine and responds to intestinal C4-DC levels. Moreover, in macrophages and in mice, succinate is a signal that promotes virulence and survival of S. Typhimurium and pathogenic E. coli. On the other hand, intestinal succinate is an important signaling molecule for the host and activates response and protective programs. Therefore, C4-DCs play a major role in supporting colonization of enteric bacteria and as signaling molecules for the adaptation of host physiology.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Germany
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
6
|
Discovering the DNA-Binding Consensus of the Thermus thermophilus HB8 Transcriptional Regulator TTHA1359. Int J Mol Sci 2021; 22:ijms221810042. [PMID: 34576207 PMCID: PMC8465061 DOI: 10.3390/ijms221810042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription regulatory proteins, also known as transcription factors, function as molecular switches modulating the first step in gene expression, transcription initiation. Cyclic-AMP receptor proteins (CRPs) and fumarate and nitrate reduction regulators (FNRs) compose the CRP/FNR superfamily of transcription factors, regulating gene expression in response to a spectrum of stimuli. In the present work, a reverse-genetic methodology was applied to the study of TTHA1359, one of four CRP/FNR superfamily transcription factors in the model organism Thermus thermophilus HB8. Restriction Endonuclease Protection, Selection, and Amplification (REPSA) followed by next-generation sequencing techniques and bioinformatic motif discovery allowed identification of a DNA-binding consensus for TTHA1359, 5'-AWTGTRA(N)6TYACAWT-3', which TTHA1359 binds to with high affinity. By bioinformatically mapping the consensus to the T. thermophilus HB8 genome, several potential regulatory TTHA1359-binding sites were identified and validated in vitro. The findings contribute to the knowledge of TTHA1359 regulatory activity within T. thermophilus HB8 and demonstrate the effectiveness of a reverse-genetic methodology in the study of putative transcription factors.
Collapse
|
7
|
Écija-Conesa A, Gallego-Jara J, Lozano Terol G, Browning DF, Busby SJW, Wolfe AJ, Cánovas Díaz M, de Diego Puente T. An ideal spacing is required for the control of Class II CRP-dependent promoters by the status of CRP K100. FEMS Microbiol Lett 2020; 367:5936555. [PMID: 33095239 DOI: 10.1093/femsle/fnaa164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 11/14/2022] Open
Abstract
Transcription activation by the Escherichia coli CRP at Class II promoters is dependent on direct interactions between RNA polymerase and CRP, therefore the spatial proximity between both proteins plays a significant role in the ability of CRP to activate transcription. Using both in vivo and in vitro techniques, here we demonstrate that the CRP K100 positive charge, adjacent to AR2, is required for full promoter activity when CRP is optimally positioned. Accordingly, K100 mediated activation is very position-dependent and our data confirm that the largest impact of the K100 status on transcription activation occurs when the spacing between the CRP binding site and the A2 of the -10 element is 22 bp. From the results of this study and the progress in the understanding about open complex DNA scrunching, we propose that CRP-dependent promoters should now be numbered by the distance from the center of the DNA site for CRP and the most highly conserved base at position 2 of the -10 hexamer in bacterial promoters.
Collapse
Affiliation(s)
- Ana Écija-Conesa
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", P.O. Box 4021, Murcia E-30100, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", P.O. Box 4021, Murcia E-30100, Spain
| | - Gema Lozano Terol
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", P.O. Box 4021, Murcia E-30100, Spain
| | - Douglas F Browning
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Steve J W Busby
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", P.O. Box 4021, Murcia E-30100, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", P.O. Box 4021, Murcia E-30100, Spain
| |
Collapse
|
8
|
Ranganathan S, Cheung J, Cassidy M, Ginter C, Pata JD, McDonough KA. Novel structural features drive DNA binding properties of Cmr, a CRP family protein in TB complex mycobacteria. Nucleic Acids Res 2019; 46:403-420. [PMID: 29165665 PMCID: PMC5758884 DOI: 10.1093/nar/gkx1148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) encodes two CRP/FNR family transcription factors (TF) that contribute to virulence, Cmr (Rv1675c) and CRPMt (Rv3676). Prior studies identified distinct chromosomal binding profiles for each TF despite their recognizing overlapping DNA motifs. The present study shows that Cmr binding specificity is determined by discriminator nucleotides at motif positions 4 and 13. X-ray crystallography and targeted mutational analyses identified an arginine-rich loop that expands Cmr’s DNA interactions beyond the classical helix-turn-helix contacts common to all CRP/FNR family members and facilitates binding to imperfect DNA sequences. Cmr binding to DNA results in a pronounced asymmetric bending of the DNA and its high level of cooperativity is consistent with DNA-facilitated dimerization. A unique N-terminal extension inserts between the DNA binding and dimerization domains, partially occluding the site where the canonical cAMP binding pocket is found. However, an unstructured region of this N-terminus may help modulate Cmr activity in response to cellular signals. Cmr’s multiple levels of DNA interaction likely enhance its ability to integrate diverse gene regulatory signals, while its novel structural features establish Cmr as an atypical CRP/FNR family member.
Collapse
Affiliation(s)
- Sridevi Ranganathan
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201, USA
| | - Jonah Cheung
- New York Structural Biology Center, New York, NY 10027, USA
| | | | | | - Janice D Pata
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201, USA.,Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201, USA.,Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| |
Collapse
|
9
|
Forcier TL, Ayaz A, Gill MS, Jones D, Phillips R, Kinney JB. Measuring cis-regulatory energetics in living cells using allelic manifolds. eLife 2018; 7:40618. [PMID: 30570483 PMCID: PMC6301791 DOI: 10.7554/elife.40618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/27/2018] [Indexed: 12/04/2022] Open
Abstract
Gene expression in all organisms is controlled by cooperative interactions between DNA-bound transcription factors (TFs), but quantitatively measuring TF-DNA and TF-TF interactions remains difficult. Here we introduce a strategy for precisely measuring the Gibbs free energy of such interactions in living cells. This strategy centers on the measurement and modeling of ‘allelic manifolds’, a multidimensional generalization of the classical genetics concept of allelic series. Allelic manifolds are measured using reporter assays performed on strategically designed cis-regulatory sequences. Quantitative biophysical models are then fit to the resulting data. We used this strategy to study regulation by two Escherichia coli TFs, CRP and σ70 RNA polymerase. Doing so, we consistently obtained energetic measurements precise to ∼0.1 kcal/mol. We also obtained multiple results that deviate from the prior literature. Our strategy is compatible with massively parallel reporter assays in both prokaryotes and eukaryotes, and should therefore be highly scalable and broadly applicable. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that minor issues remain unresolved (see decision letter).
Collapse
Affiliation(s)
- Talitha L Forcier
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Andalus Ayaz
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Manraj S Gill
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Daniel Jones
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States.,Department of Applied Physics, California Institute of Technology, Pasadena, United States
| | - Rob Phillips
- Department of Applied Physics, California Institute of Technology, Pasadena, United States
| | - Justin B Kinney
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
10
|
A Putative Acetylation System in Vibrio cholerae Modulates Virulence in Arthropod Hosts. Appl Environ Microbiol 2018; 84:AEM.01113-18. [PMID: 30143508 DOI: 10.1128/aem.01113-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/19/2018] [Indexed: 12/16/2022] Open
Abstract
Acetylation is a broadly conserved mechanism of covalently modifying the proteome to precisely control protein activity. In bacteria, central metabolic enzymes and regulatory proteins, including those involved in virulence, can be targeted for acetylation. In this study, we directly link a putative acetylation system to metabolite-dependent virulence in the pathogen Vibrio cholerae We demonstrate that the cobB and yfiQ genes, which encode homologs of a deacetylase and an acetyltransferase, respectively, modulate V. cholerae metabolism of acetate, a bacterially derived short-chain fatty acid with important physiological roles in a diversity of host organisms. In Drosophila melanogaster, a model arthropod host for V. cholerae infection, the pathogen consumes acetate within the gastrointestinal tract, which contributes to fly mortality. We show that deletion of cobB impairs growth on acetate minimal medium, delays the consumption of acetate from rich medium, and reduces virulence of V. cholerae toward Drosophila These impacts can be reversed by complementing cobB or by introducing a deletion of yfiQ into the ΔcobB background. We further show that cobB controls the accumulation of triglycerides in the Drosophila midgut, which suggests that cobB directly modulates metabolite levels in vivo In Escherichia coli K-12, yfiQ is upregulated by cAMP-cAMP receptor protein (CRP), and we identified a similar pattern of regulation in V. cholerae, arguing that the system is activated in response to similar environmental cues. In summary, we demonstrate that proteins likely involved in acetylation can modulate the outcome of infection by regulating metabolite exchange between pathogens and their colonized hosts.IMPORTANCE The bacterium Vibrio cholerae causes severe disease in humans, and strains can persist in the environment in association with a wide diversity of host species. By investigating the molecular mechanisms that underlie these interactions, we can better understand constraints affecting the ecology and evolution of this global pathogen. The Drosophila model of Vibrio cholerae infection has revealed that bacterial regulation of acetate and other small metabolites from within the fly gastrointestinal tract is crucial for its virulence. Here, we demonstrate that genes that may modify the proteome of V. cholerae affect virulence toward Drosophila, most likely by modulating central metabolic pathways that control the consumption of acetate as well as other small molecules. These findings further highlight the many layers of regulation that tune bacterial metabolism to alter the trajectory of interactions between bacteria and their hosts.
Collapse
|
11
|
Engstrom MD, Pfleger BF. Transcription control engineering and applications in synthetic biology. Synth Syst Biotechnol 2017; 2:176-191. [PMID: 29318198 PMCID: PMC5655343 DOI: 10.1016/j.synbio.2017.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors), giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.
Collapse
Affiliation(s)
- Michael D. Engstrom
- Genetics-Biotechnology Center, University of Wisconsin-Madison School of Medicine and Public Health, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, USA
| |
Collapse
|
12
|
Luo M, Yang S, Li X, Liu P, Xue J, Zhou X, Su K, Xu X, Qing Y, Qiu J, Li Y. The KP1_4563 gene is regulated by the cAMP receptor protein and controls type 3 fimbrial function in Klebsiella pneumoniae NTUH-K2044. PLoS One 2017; 12:e0180666. [PMID: 28732013 PMCID: PMC5521740 DOI: 10.1371/journal.pone.0180666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/19/2017] [Indexed: 11/28/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen that can adhere to host cells or extracellular matrix via type 1 and type 3 fimbriae. KP1_4563 is a gene encoding a hypothetical protein in K. pneumoniae NTUH-K2044. KP1_4563 is located between the type 1 and type 3 fimbrial gene clusters and is likely associated with fimbrial function given its putative conserved domains of unknown function (DUF1471). Cyclic AMP receptor protein (CRP) regulates virulence-related gene expression and is a crucial transcriptional regulator in many bacteria. The predicted DNA recognition motif of CRP is present in the KP1_4563 promoter region. This study aimed to investigate the function of KP1_4563 in fimbriae and its transcriptional regulation mechanism by CRP. We generated Kp-Δ4563 mutant and complementation strains. We utilized phenotype and adhesion assays to evaluate the role of KP1_4563 in fimbriae. We conducted quantitative RT-PCR (qRT-PCR), LacZ fusion, electrophoretic mobility shift, and DNase I footprinting assays to study the transcriptional regulation of KP1_4563 gene by CRP. We found that KP1_4563 negatively regulates the function of type 3 fimbriae. Compared with NTUH-K2044, the absence of KP1_4563 enhanced the ability of Kp-Δ4563 to adhere to A549 cells. CRP negatively regulates KP1_4563 by directly binding to its promoter region. KP1_4563 plays an important role in type 3 fimbrial function. This novel insight will assist in the development of strategies for preventing K. pneumoniae infection.
Collapse
Affiliation(s)
- Mei Luo
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Shiya Yang
- Dianjiang center for disease control and prevention, Chongqing, China
| | - Xuan Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Pin Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jian Xue
- Zunyi Medical and Pharmaceutical College, Zunyi City, China
| | - Xipeng Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Kewen Su
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xuan Xu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ying Qing
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
- * E-mail: (JQ); (YL)
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
- * E-mail: (JQ); (YL)
| |
Collapse
|
13
|
Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat Biotechnol 2016; 35:48-55. [PMID: 27941803 DOI: 10.1038/nbt.3718] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 10/05/2016] [Indexed: 01/20/2023]
Abstract
Improvements in DNA synthesis and sequencing have underpinned comprehensive assessment of gene function in bacteria and eukaryotes. Genome-wide analyses require high-throughput methods to generate mutations and analyze their phenotypes, but approaches to date have been unable to efficiently link the effects of mutations in coding regions or promoter elements in a highly parallel fashion. We report that CRISPR-Cas9 gene editing in combination with massively parallel oligomer synthesis can enable trackable editing on a genome-wide scale. Our method, CRISPR-enabled trackable genome engineering (CREATE), links each guide RNA to homologous repair cassettes that both edit loci and function as barcodes to track genotype-phenotype relationships. We apply CREATE to site saturation mutagenesis for protein engineering, reconstruction of adaptive laboratory evolution experiments, and identification of stress tolerance and antibiotic resistance genes in bacteria. We provide preliminary evidence that CREATE will work in yeast. We also provide a webtool to design multiplex CREATE libraries.
Collapse
|
14
|
Yang S, Xu H, Wang J, Liu C, Lu H, Liu M, Zhao Y, Tian B, Wang L, Hua Y. Cyclic AMP Receptor Protein Acts as a Transcription Regulator in Response to Stresses in Deinococcus radiodurans. PLoS One 2016; 11:e0155010. [PMID: 27182600 PMCID: PMC4868304 DOI: 10.1371/journal.pone.0155010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/22/2016] [Indexed: 11/24/2022] Open
Abstract
The cyclic AMP receptor protein family of transcription factors regulates various metabolic pathways in bacteria, and also play roles in response to environmental changes. Here, we identify four homologs of the CRP family in Deinococcus radiodurans, one of which tolerates extremely high levels of oxidative stress and DNA-damaging reagents. Transcriptional levels of CRP were increased under hydrogen peroxide (H2O2) treatment during the stationary growth phase, indicating that CRPs function in response to oxidative stress. By constructing all CRP single knockout mutants, we found that the dr0997 mutant showed the lowest tolerance toward H2O2, ultraviolet radiation, ionizing radiation, and mitomycin C, while the phenotypes of the dr2362, dr0834, and dr1646 mutants showed slight or no significant differences from those of the wild-type strain. Taking advantage of the conservation of the CRP-binding site in many bacteria, we found that transcription of 18 genes, including genes encoding chromosome-partitioning protein (dr0998), Lon proteases (dr0349 and dr1974), NADH-quinone oxidoreductase (dr1506), thiosulfate sulfurtransferase (dr2531), the DNA repair protein UvsE (dr1819), PprA (dra0346), and RecN (dr1447), are directly regulated by DR0997. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses showed that certain genes involved in anti-oxidative responses, DNA repair, and various cellular pathways are transcriptionally attenuated in the dr0997 mutant. Interestingly, DR0997 also regulate the transcriptional levels of all CRP genes in this bacterium. These data suggest that DR0997 contributes to the extreme stress resistance of D. radiodurans via its regulatory role in multiple cellular pathways, such as anti-oxidation and DNA repair pathways.
Collapse
Affiliation(s)
- Su Yang
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Hong Xu
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jiali Wang
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Chengzhi Liu
- Laboratory of Microbiology and Genomics, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Huizhi Lu
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Mengjia Liu
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Ye Zhao
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Bing Tian
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Liangyan Wang
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
- * E-mail: (YH); (LW)
| | - Yuejin Hua
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
- * E-mail: (YH); (LW)
| |
Collapse
|
15
|
Molecular Mechanisms of Transcription Initiation at gal Promoters and their Multi-Level Regulation by GalR, CRP and DNA Loop. Biomolecules 2015; 5:2782-807. [PMID: 26501343 PMCID: PMC4693257 DOI: 10.3390/biom5042782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022] Open
Abstract
Studying the regulation of transcription of the gal operon that encodes the amphibolic pathway of d-galactose metabolism in Escherichia coli discerned a plethora of principles that operate in prokaryotic gene regulatory processes. In this chapter, we have reviewed some of the more recent findings in gal that continues to reveal unexpected but important mechanistic details. Since the operon is transcribed from two overlapping promoters, P1 and P2, regulated by common regulatory factors, each genetic or biochemical experiment allowed simultaneous discernment of two promoters. Recent studies range from genetic, biochemical through biophysical experiments providing explanations at physiological, mechanistic and single molecule levels. The salient observations highlighted here are: the axiom of determining transcription start points, discovery of a new promoter element different from the known ones that influences promoter strength, occurrence of an intrinsic DNA sequence element that overrides the transcription elongation pause created by a DNA-bound protein roadblock, first observation of a DNA loop and determination its trajectory, and piggybacking proteins and delivering to their DNA target.
Collapse
|
16
|
Cyclic AMP (cAMP) Receptor Protein-cAMP Complex Regulates Heparosan Production in Escherichia coli Strain Nissle 1917. Appl Environ Microbiol 2015; 81:7687-96. [PMID: 26319872 DOI: 10.1128/aem.01814-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/20/2015] [Indexed: 11/20/2022] Open
Abstract
Heparosan serves as the starting carbon backbone for the chemoenzymatic synthesis of heparin, a widely used clinical anticoagulant drug. The availability of heparosan is a significant concern for the cost-effective synthesis of bioengineered heparin. The carbon source is known as the pivotal factor affecting heparosan production. However, the mechanism by which carbon sources control the biosynthesis of heparosan is unclear. In this study, we found that the biosynthesis of heparosan was influenced by different carbon sources. Glucose inhibits the biosynthesis of heparosan, while the addition of either fructose or mannose increases the yield of heparosan. Further study demonstrated that the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex binds to the upstream region of the region 3 promoter and stimulates the transcription of the gene cluster for heparosan biosynthesis. Site-directed mutagenesis of the CRP binding site abolished its capability of binding CRP and eliminated the stimulative effect on transcription. (1)H nuclear magnetic resonance (NMR) analysis was further performed to determine the Escherichia coli strain Nissle 1917 (EcN) heparosan structure and quantify extracellular heparosan production. Our results add to the understanding of the regulation of heparosan biosynthesis and may contribute to the study of other exopolysaccharide-producing strains.
Collapse
|
17
|
Kim JA, Park JH, Lee MA, Lee HJ, Park SJ, Kim KS, Choi SH, Lee KH. Stationary-phase induction of vvpS expression by three transcription factors: repression by LeuO and activation by SmcR and CRP. Mol Microbiol 2015; 97:330-46. [PMID: 25869813 DOI: 10.1111/mmi.13028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2015] [Indexed: 11/27/2022]
Abstract
An exoprotease of Vibrio vulnificus, VvpS, exhibits an autolytic function during the stationary phase. To understand how vvpS expression is controlled, the regulators involved in vvpS transcription and their regulatory mechanisms were investigated. LeuO was isolated in a ligand-fishing experiment, and experiments using a leuO-deletion mutant revealed that LeuO represses vvpS transcription. LeuO bound the extended region including LeuO-binding site (LBS)-I and LBS-II. Further screening of additional regulators revealed that SmcR and cyclic adenosine monophosphate-receptor protein (CRP) play activating roles in vvpS transcription. SmcR and CRP bound the regions overlapping LBS-I and -II, respectively. In addition, the LeuO occupancy of LBS-I and LBS-II was competitively exchanged by SmcR and CRP, respectively. To examine the mechanism of stationary-phase induction of vvpS expression, in vivo levels of three transcription factors were monitored. Cellular level of LeuO was maximal at exponential phase, while those of SmcR and CRP were maximal at stationary phase and relatively constant after the early-exponential phase, respectively. Thus, vvpS transcription was not induced during the exponential phase by high cellular content of LeuO. When entering the stationary phase, however, LeuO content was significantly reduced and repression by LeuO was relieved through simultaneous binding of SmcR and CRP to LBS-I and -II, respectively.
Collapse
Affiliation(s)
- Jeong-A Kim
- Department of Life Science, Sogang University, Seoul, 121-742, South Korea
| | - Jin Hwan Park
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, South Korea
| | - Mi-Ae Lee
- Department of Life Science, Sogang University, Seoul, 121-742, South Korea
| | - Hyun-Jung Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Soon-Jung Park
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Kun-Soo Kim
- Department of Life Science, Sogang University, Seoul, 121-742, South Korea
| | - Sang-Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, South Korea
| | - Kyu-Ho Lee
- Department of Life Science, Sogang University, Seoul, 121-742, South Korea
| |
Collapse
|
18
|
Sanchez D, Boudes M, van Tilbeurgh H, Durand D, Quevillon-Cheruel S. Modeling the ComD/ComE/comcdeinteraction network using small angle X-ray scattering. FEBS J 2015; 282:1538-53. [DOI: 10.1111/febs.13240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/12/2015] [Accepted: 02/16/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Dyana Sanchez
- Institute for Integrative Biology of the Cell; Université Paris-Sud; Orsay France
| | - Marion Boudes
- Institute for Integrative Biology of the Cell; Université Paris-Sud; Orsay France
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell; Université Paris-Sud; Orsay France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell; Université Paris-Sud; Orsay France
| | | |
Collapse
|
19
|
Sharma R, Zaveri A, Gopalakrishnapai J, Srinath T, Thiruneelakantan S, Varshney U, Visweswariah SS. Paralogous cAMP receptor proteins in Mycobacterium smegmatis show biochemical and functional divergence. Biochemistry 2014; 53:7765-76. [PMID: 25434596 DOI: 10.1021/bi500924v] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclic AMP receptor protein (CRP) family of transcription factors consists of global regulators of bacterial gene expression. Here, we identify two paralogous CRPs in the genome of Mycobacterium smegmatis that have 78% identical sequences and characterize them biochemically and functionally. The two proteins (MSMEG_0539 and MSMEG_6189) show differences in cAMP binding affinity, trypsin sensitivity, and binding to a CRP site that we have identified upstream of the msmeg_3781 gene. MSMEG_6189 binds to the CRP site readily in the absence of cAMP, while MSMEG_0539 binds in the presence of cAMP, albeit weakly. msmeg_6189 appears to be an essential gene, while the Δmsmeg_0539 strain was readily obtained. Using promoter-reporter constructs, we show that msmeg_3781 is regulated by CRP binding, and its transcription is repressed by MSMEG_6189. Our results are the first to characterize two paralogous and functional CRPs in a single bacterial genome. This gene duplication event has subsequently led to the evolution of two proteins whose biochemical differences translate to differential gene regulation, thus catering to the specific needs of the organism.
Collapse
Affiliation(s)
- Ritu Sharma
- Department of Molecular Reproduction, Development and Genetics and ‡Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore 560012, India
| | | | | | | | | | | | | |
Collapse
|
20
|
Takano H, Agari Y, Hagiwara K, Watanabe R, Yamazaki R, Beppu T, Shinkai A, Ueda K. LdrP, a cAMP receptor protein/FNR family transcriptional regulator, serves as a positive regulator for the light-inducible gene cluster in the megaplasmid of Thermus thermophilus. Microbiology (Reading) 2014; 160:2650-2660. [DOI: 10.1099/mic.0.082263-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LdrP (TT_P0055) (LitR-dependent regulatory protein) is one of the four cAMP receptor protein (CRP)/FNR family transcriptional regulators retained by the extremely thermophilic bacterium Thermus thermophilus. Previously, we reported that LdrP served as a positive regulator for the light-induced transcription of crtB, a carotenoid biosynthesis gene encoded on the megaplasmid of this organism. Here, we showed that LdrP also functions as an activator of the expression of genes clustered around the crtB gene under the control of LitR, an adenosyl B12-bound light-sensitive regulator. Transcriptome analysis revealed the existence of 19 LitR-dependent genes on the megaplasmid. S1 nuclease protection assay confirmed that the promoters preceding TT_P0044 (P44), TT_P0049 (P49) and TT_P0070 (P70) were activated upon illumination in the WT strain. An ldrP mutant lost the ability to activate P44, P49 and P70, whilst disruption of litR resulted in constitutive transcription from these promoters irrespective of illumination, indicating that these genes were photo-dependently regulated by LdrP and LitR. An in vitro transcription experiment demonstrated that LdrP directly activated mRNA synthesis from P44 and P70 by the Thermus RNA polymerase holocomplex. The present evidence indicated that LdrP was the positive regulator essential for the transcription of the T. thermophilus light-inducible cluster encoded on the megaplasmid.
Collapse
Affiliation(s)
- Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Yoshihiro Agari
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kenta Hagiwara
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Ren Watanabe
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Ryuta Yamazaki
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Teruhiko Beppu
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Akeo Shinkai
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
21
|
Abstract
UNLABELLED Bacterial cells monitor their environment by sensing a set of signals. Typically, these environmental signals affect promoter activities by altering the activity of transcription regulatory proteins. Promoters are often regulated by more than one regulatory protein, and in these cases the relevant signals are integrated by certain logic. In this work, we study how single amino acid substitutions in a regulatory protein (GalR) affect transcriptional regulation and signal integration logic at a set of engineered promoters. Our results suggest that point mutations in regulatory genes allow independent evolution of regulatory logic at different promoters. IMPORTANCE Gene regulatory networks are built from simple building blocks, such as promoters, transcription regulatory proteins, and their binding sites on DNA. Many promoters are regulated by more than one regulatory input. In these cases, the inputs are integrated and allow transcription only in certain combinations of input signals. Gene regulatory networks can be easily rewired, because the function of cis-regulatory elements and promoters can be altered by point mutations. In this work, we tested how point mutations in transcription regulatory proteins can affect signal integration logic. We found that such mutations allow context-dependent engineering of signal integration logic at promoters, further contributing to the plasticity of gene regulatory networks.
Collapse
|
22
|
Lindemose S, Nielsen PE, Valentin-Hansen P, Møllegaard NE. A novel indirect sequence readout component in the E. coli cyclic AMP receptor protein operator. ACS Chem Biol 2014; 9:752-60. [PMID: 24387622 DOI: 10.1021/cb4008309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cyclic AMP receptor protein (CRP) from Escherichia coli has been extensively studied for several decades. In particular, a detailed characterization of CRP interaction with DNA has been obtained. The CRP dimer recognizes a consensus sequence AANTGTGANNNNNNTCACANTT through direct amino acid nucleobase interactions in the major groove of the two operator half-sites. Crystal structure analyses have revealed that the interaction results in two strong kinks at the TG/CA steps closest to the 6-base-pair spacer (N6). This spacer exhibits high sequence variability among the more than 100 natural binding sites in the E. coli genome, but the exact role of the N6 region in CRP interaction has not previously been systematic examined. Here we employ an in vitro selection system based on a randomized N6 spacer region to demonstrate that CRP binding to the lacP1 site may be enhanced up to 14-fold or abolished by varying the N6 spacer sequences. Furthermore, on the basis of sequence analysis and uranyl (UO2(2+)) probing data, we propose that the underlying mechanism relies on N6 deformability.
Collapse
Affiliation(s)
- Søren Lindemose
- Department
of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Peter Eigil Nielsen
- Department
of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Poul Valentin-Hansen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Niels Erik Møllegaard
- Department
of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
23
|
Crawford R, Erben CM, Periz J, Hall LM, Brown T, Turberfield AJ, Kapanidis AN. Non-covalent Single Transcription Factor Encapsulation Inside a DNA Cage. Angew Chem Int Ed Engl 2013; 52:2284-8. [DOI: 10.1002/anie.201207914] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/27/2012] [Indexed: 12/20/2022]
|
24
|
Crawford R, Erben CM, Periz J, Hall LM, Brown T, Turberfield AJ, Kapanidis AN. Non-covalent Single Transcription Factor Encapsulation Inside a DNA Cage. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Affiliation(s)
- Dietmar Porschke
- Max Planck Institut für biophysikalische Chemie, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Porschke D. Structures during binding of cAMP receptor to promoter DNA: promoter search slowed by non-specific sites. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:415-24. [PMID: 22361785 DOI: 10.1007/s00249-012-0791-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/31/2011] [Accepted: 01/16/2012] [Indexed: 11/28/2022]
Abstract
The kinetics of cAMP receptor (CAP) binding to promoter DNA has been studied by stopped-flow electric-dichroism at a reduced salt concentration, where the coupling of non-specific and specific binding can be observed directly. Amplitudes, rise and decay times of dichroism transients provide detailed information about the reaction and the structure of intermediates over more than six orders of magnitude on the time scale. CAP binding during the first milliseconds after mixing is indicated by an increase of both rise- and decay-time constants. A particularly large increase of rise times reflects initial formation of non-symmetric complexes by protein binding to non-specific sites at DNA ends. The increase of the hydrodynamic dimensions continues up to ~1 s, before a decrease of time constants reflects transition to compact states with bent DNA up to the time range of ~10(3) s. The slow approach to CAP-induced DNA bending is due to non-specific complexes, which are formed initially and are converted slowly to the specific complex. At the salt concentration of 13.5 mM, conversion to specific complexes with bent DNA is completed after ~40 s at pH 8 compared to >10(3) s at pH 7, resulting from a higher affinity of CAP to non-specific sites at pH 7 than 8 by a factor of ~100. Thus, under the given conditions non-specific sites delay rather than facilitate formation of the specific complex with bent DNA. Experimental data obtained for a non-specific DNA clearly indicate the impact of pseudo-sites. The different electro-optical parameters have been combined in global fits.
Collapse
Affiliation(s)
- Dietmar Porschke
- AG Biomolecular Dynamics, Max Planck Institut für biophysikalische Chemie, Göttingen, Germany.
| |
Collapse
|
27
|
Crawford R, Kelly DJ, Kapanidis AN. A Protein Biosensor That Relies on Bending of Single DNA Molecules. Chemphyschem 2012; 13:918-22. [DOI: 10.1002/cphc.201100881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/13/2012] [Indexed: 11/11/2022]
|
28
|
Donaldson GP, Roelofs KG, Luo Y, Sintim HO, Lee VT. A rapid assay for affinity and kinetics of molecular interactions with nucleic acids. Nucleic Acids Res 2011; 40:e48. [PMID: 22210888 PMCID: PMC3326337 DOI: 10.1093/nar/gkr1299] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Differential Radial Capillary Action of Ligand Assay (DRaCALA) allows detection of protein interactions with low-molecular weight ligands based on separation of the protein–ligand complex by differential capillary action. Here, we present an application of DRaCALA to the study of nucleic acid–protein interactions using the Escherichia coli cyclic AMP receptor protein (CRP). CRP bound in DRaCALA specifically to 32P-labeled oligonucleotides containing the consensus CRP binding site, but not to oligonucleotides with point mutations known to abrogate binding. Affinity and kinetic studies using DRaCALA yielded a dissociation constant and dissociation rate similar to previously reported values. Because DRaCALA is not subject to ligand size restrictions, whole plasmids with a single CRP-binding site were used as probes, yielding similar results. DNA can also function as an easily labeled carrier molecule for a conjugated ligand. Sequestration of biotinylated nucleic acids by streptavidin allowed nucleic acids to take the place of the protein as the immobile binding partner. Therefore, any molecular interactions involving nucleic acids can be tested. We demonstrate this principle utilizing a bacterial riboswitch that binds cyclic-di-guanosine monophosphate. DRaCALA is a flexible and complementary approach to other biochemical methods for rapid and accurate measurements of affinity and kinetics at near-equilibrium conditions.
Collapse
Affiliation(s)
- Gregory P Donaldson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
29
|
Tian L, Wang RE, Fei Y, Chang YH. A Homogeneous Fluorescent Assay for cAMP-Phosphodiesterase Enzyme Activity. ACTA ACUST UNITED AC 2011; 17:409-14. [DOI: 10.1177/1087057111426901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cyclic adenosine monophosphate–phosphodiesterases (cAMP-PDEs) regulate the cellular level of cAMP by selectively catalyzing the hydrolysis of the phosphodiester bond in the cAMP molecule. They play important roles in modulating cellular and physiological functions. There is a growing interest in the study of cAMP-PDEs as therapeutic targets. We describe a novel method for measuring the enzyme activity of cAMP-PDEs that is based on a homogeneous fluorescence assay employing a cAMP-dependent DNA-binding protein (CAP). We demonstrate that the assay is quick and robust compared to traditional methods and is expected to be cost-effective for high-throughput screening of cAMP-PDE inhibitors. The usefulness of the assay is demonstrated by measuring IC50 values of three nonselective PDE inhibitors and by kinetic measurements of cAMP-PDEs from various rat tissues.
Collapse
Affiliation(s)
| | | | - Ying Fei
- Mediomics, LLC, St. Louis, MO, USA
| | | |
Collapse
|
30
|
Rossiter AE, Browning DF, Leyton DL, Johnson MD, Godfrey RE, Wardius CA, Desvaux M, Cunningham AF, Ruiz-Perez F, Nataro JP, Busby SJW, Henderson IR. Transcription of the plasmid-encoded toxin gene from enteroaggregative Escherichia coli is regulated by a novel co-activation mechanism involving CRP and Fis. Mol Microbiol 2011; 81:179-91. [PMID: 21542864 DOI: 10.1111/j.1365-2958.2011.07685.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC) is a major cause of diarrhoea in developing countries. EAEC 042 is the prototypical strain. EAEC 042 secretes the functionally well-characterized Pet autotransporter toxin that contributes to virulence through its cytotoxic effects on intestinal epithelial cells. Following a global transposon mutagenesis screen of EAEC 042, the transcription factors, CRP and Fis, were identified as essential for transcription of the pet gene. Using both in vivo and in vitro techniques, we show that the pet promoter is co-dependent on CRP and Fis. We present a novel co-activation mechanism whereby CRP is placed at a non-optimal position for transcription initiation, creating dependence on Fis for full activation of pet. This study complements previous findings that establish Fis as a key virulence regulator in EAEC 042.
Collapse
Affiliation(s)
- Amanda E Rossiter
- School of Immunity and Infection School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tsodikov OV, Biswas T. Structural and thermodynamic signatures of DNA recognition by Mycobacterium tuberculosis DnaA. J Mol Biol 2011; 410:461-76. [PMID: 21620858 DOI: 10.1016/j.jmb.2011.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/27/2011] [Accepted: 05/05/2011] [Indexed: 10/24/2022]
Abstract
An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 Å resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 Å). These structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.
Collapse
Affiliation(s)
- Oleg V Tsodikov
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
32
|
Holmquist PC, Holmquist GP, Summers ML. Comparing binding site information to binding affinity reveals that Crp/DNA complexes have several distinct binding conformers. Nucleic Acids Res 2011; 39:6813-24. [PMID: 21586590 PMCID: PMC3159480 DOI: 10.1093/nar/gkr369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We show that the cAMP receptor protein (Crp) binds to DNA as several different conformers. This situation has precluded discovering a high correlation between any sequence property and binding affinity for proteins that bend DNA. Experimentally quantified affinities of Synechocystis sp. PCC 6803 cAMP receptor protein (SyCrp1), the Escherichia coli Crp (EcCrp, also CAP) and DNA were analyzed to mathematically describe, and make human-readable, the relationship of DNA sequence and binding affinity in a given system. Here, sequence logos and weight matrices were built to model SyCrp1 binding sequences. Comparing the weight matrix model to binding affinity revealed several distinct binding conformations. These Crp/DNA conformations were asymmetrical (non-palindromic).
Collapse
Affiliation(s)
- Peter C Holmquist
- Department of Biology, California State University Northridge, 18111 Nordhoff St. Northridge, CA 91330, USA.
| | | | | |
Collapse
|
33
|
Bais AS, Kaminski N, Benos PV. Finding subtypes of transcription factor motif pairs with distinct regulatory roles. Nucleic Acids Res 2011; 39:e76. [PMID: 21486752 PMCID: PMC3113591 DOI: 10.1093/nar/gkr205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA sequences bound by a transcription factor (TF) are presumed to contain sequence elements that reflect its DNA binding preferences and its downstream-regulatory effects. Experimentally identified TF binding sites (TFBSs) are usually similar enough to be summarized by a ‘consensus’ motif, representative of the TF DNA binding specificity. Studies have shown that groups of nucleotide TFBS variants (subtypes) can contribute to distinct modes of downstream regulation by the TF via differential recruitment of cofactors. A TFA may bind to TFBS subtypes a1 or a2 depending on whether it associates with cofactors TFB or TFC, respectively. While some approaches can discover motif pairs (dyads), none address the problem of identifying ‘variants’ of dyads. TFs are key components of multiple regulatory pathways targeting different sets of genes perhaps with different binding preferences. Identifying the discriminating TF–DNA associations that lead to the differential downstream regulation is thus essential. We present DiSCo (Discovery of Subtypes and Cofactors), a novel approach for identifying variants of dyad motifs (and their respective target sequence sets) that are instrumental for differential downstream regulation. Using both simulated and experimental datasets, we demonstrate how current motif discovery can be successfully leveraged to address this question.
Collapse
Affiliation(s)
- Abha Singh Bais
- Department of Computational and Systems Biology, Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine and Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
34
|
Genome-wide identification of transcription start sites yields a novel thermosensing RNA and new cyclic AMP receptor protein-regulated genes in Escherichia coli. J Bacteriol 2011; 193:2871-4. [PMID: 21460078 DOI: 10.1128/jb.00398-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intergenic regions often contain regulatory elements that control the expression of flanking genes. Using a deep-sequencing approach, we identified numerous new transcription start sites in Escherichia coli, yielding a new thermosensing regulatory RNA and seven genes previously unknown to be under the control of the global regulator CRP.
Collapse
|
35
|
Porschke D. Allosteric control of promoter DNA bending by cyclic AMP receptor and cyclic AMP. Biochemistry 2010; 49:5553-9. [PMID: 20545361 DOI: 10.1021/bi100542f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of the cyclic AMP receptor-promoter complex in solution was studied in the range of 0.2-50 microM cAMP by measurements of the electric birefringence at 0.1 M salt using a lac promoter DNA with 121 bp and with the CAP binding site at its center. An excess of protein required for complete conversion of the promoter DNA into the specific complex seems to be partly due to nonspecific binding. The specific complex is associated with a decay time constant of 1.36 micros at 3 degrees C, a positive birefringence, and a permanent dipole moment demonstrated by pulse reversal. These attributes were observed at cAMP concentrations between 3 and 50 muM and are characteristic of the specific complex. Model calculations demonstrate that the DNA bending angle under these conditions is 92 degrees . The observed positive birefringence does not result from the combination of the calculated quasi-permanent dipole and the orientation of the helix axes alone but is due to coupling of translational and rotational diffusion. When the cAMP concentration is decreased below 3 microM, the positive birefringence turns to a negative one with a transition center at 1.5 microM. The transition is too narrow for a model with induction of the specific cyclic AMP receptor-promoter complex after binding of a single cAMP to the cyclic AMP receptor dimer but is consistent with induction of this complex after binding of two cAMP molecules. The cyclic AMP receptor-promoter complex is driven into its specific bent form in vitro in the range of cAMP concentrations corresponding to that required for gene regulation in vivo.
Collapse
Affiliation(s)
- Dietmar Porschke
- Max Planck Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| |
Collapse
|
36
|
Abstract
Gene regulatory networks are based on simple building blocks such as promoters, transcription factors (TFs) and their binding sites on DNA. But how diverse are the functions that can be obtained by different arrangements of promoters and TF binding sites? In this work we constructed synthetic regulatory regions using promoter elements and binding sites of two noninteracting TFs, each sensing a single environmental input signal. We show that simply by combining these three kinds of elements, we can obtain 11 of the 16 Boolean logic gates that integrate two environmental signals in vivo. Further, we demonstrate how combination of logic gates can result in new logic functions. Our results suggest that simple elements of transcription regulation form a highly flexible toolbox that can generate diverse functions under natural selection.
Collapse
|
37
|
Lymperopoulos K, Crawford R, Torella JP, Heilemann M, Hwang LC, Holden SJ, Kapanidis AN. Single-molecule DNA biosensors for protein and ligand detection. Angew Chem Int Ed Engl 2010; 49:1316-20. [PMID: 20077444 DOI: 10.1002/anie.200904597] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Konstantinos Lymperopoulos
- Biological Physics Research Group, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Lymperopoulos K, Crawford R, Torella J, Heilemann M, Hwang L, Holden S, Kapanidis A. Einzelmolekül-DNA-Biosensoren zur Detektion von Proteinen und Liganden. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Temiz AN, Benos PV, Camacho CJ. Electrostatic hot spot on DNA-binding domains mediates phosphate desolvation and the pre-organization of specificity determinant side chains. Nucleic Acids Res 2010; 38:2134-44. [PMID: 20047959 PMCID: PMC2853105 DOI: 10.1093/nar/gkp1132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major obstacle towards elucidating the molecular basis of transcriptional regulation is the lack of a detailed understanding of the interplay between non-specific and specific protein–DNA interactions. Based on molecular dynamics simulations of C2H2 zinc fingers (ZFs) and engrailed homeodomain transcription factors (TFs), we show that each of the studied DNA-binding domains has a set of highly constrained side chains in preset configurations ready to form hydrogen bonds with the DNA backbone. Interestingly, those domains that bury their recognition helix into the major groove are found to have an electrostatic hot spot for Cl− ions located on the same binding cavity as the most buried DNA phosphate. The spot is characterized by three protein hydrogen bond donors, often including two basic side chains. If bound, Cl− ions, likely mimicking phosphates, steer side chains that end up forming specific contacts with bases into bound-like conformations. These findings are consistent with a multi-step DNA-binding mechanism in which a pre-organized set of TF side chains assist in the desolvation of phosphates into well defined sites, prompting the re-organization of specificity determining side chains into conformations suitable for the recognition of their cognate sequence.
Collapse
Affiliation(s)
- Alpay N Temiz
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
40
|
Ebenstein Y, Gassman N, Kim S, Weiss S. Combining atomic force and fluorescence microscopy for analysis of quantum-dot labeled protein-DNA complexes. J Mol Recognit 2009; 22:397-402. [PMID: 19452448 DOI: 10.1002/jmr.956] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Atomic force microscopy (AFM) and fluorescence microscopy are widely used for the study of protein-DNA interactions. While AFM excels in its ability to elucidate structural detail and spatial arrangement, it lacks the ability to distinguish between similarly sized objects in a complex system. This information is readily accessible to optical imaging techniques via site-specific fluorescent labels, which enable the direct detection and identification of multiple components simultaneously. Here, we show how the utilization of semiconductor quantum dots (QDs), serving as contrast agents for both AFM topography and fluorescence imaging, facilitates the combination of both imaging techniques, and with the addition of a flow based DNA extension method for sample deposition, results in a powerful tool for the study of protein-DNA complexes. We demonstrate the inherent advantages of this novel combination of techniques by imaging individual RNA polymerases (RNAP) on T7 genomic DNA.
Collapse
Affiliation(s)
- Yuval Ebenstein
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
41
|
Naryshkin N, Druzhinin S, Revyakin A, Kim Y, Mekler V, Ebright RH. Static and kinetic site-specific protein-DNA photocrosslinking: analysis of bacterial transcription initiation complexes. Methods Mol Biol 2009; 543:403-437. [PMID: 19378179 PMCID: PMC2733221 DOI: 10.1007/978-1-60327-015-1_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking - involving rapid-quench-flow mixing and pulsed-laser irradiation - permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard H. Ebright
- To whom correspondence should be addressed [mailing address: HHMI, Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway NJ 08854; telephone: (732) 445-5179; telefax: (732) 445-5735; ]
| |
Collapse
|
42
|
The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol 2008; 191:461-76. [PMID: 18978044 DOI: 10.1128/jb.01157-08] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small noncoding regulatory RNAs (sRNAs) play a key role in regulating the expression of many genes in Escherichia coli and other bacteria. Many of the sRNAs identified in E. coli bind to mRNAs in an Hfq-dependent manner and stimulate or inhibit translation of the mRNAs. Several sRNAs are regulated by well-studied global regulators. Here, we report characterization of the CyaR (RyeE) sRNA, which was previously identified in a global search for sRNAs in E. coli. We demonstrated that CyaR is positively regulated by the global regulator Crp under conditions in which cyclic AMP levels are high. We showed by using microarray analysis and Northern blotting that several genes are negatively regulated by CyaR, including ompX, encoding a major outer membrane protein; luxS, encoding the autoinducer-2 synthase; nadE, encoding an essential NAD synthetase; and yqaE, encoding a predicted membrane protein with an unknown function. Using translational lacZ fusions to yqaE, ompX, nadE, and luxS, we demonstrated that the negative regulation of these genes by CyaR occurs at the posttranscriptional level and is direct. Different portions of a highly conserved 3' region of CyaR are predicted to pair with sequences near the ribosome binding site of each of these targets; mutations in this sequence affected regulation, and compensatory mutations in the target mRNA restored regulation, confirming that there is direct regulation by the sRNA. These results provide insight into the mechanisms by which Crp negatively regulates genes such as luxS and ompX and provide a link between catabolite repression, quorum sensing, and nitrogen assimilation in E. coli.
Collapse
|
43
|
The transcriptional factors MurR and catabolite activator protein regulate N-acetylmuramic acid catabolism in Escherichia coli. J Bacteriol 2008; 190:6598-608. [PMID: 18723630 DOI: 10.1128/jb.00642-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MurNAc etherase MurQ of Escherichia coli is essential for the catabolism of the bacterial cell wall sugar N-acetylmuramic acid (MurNAc) obtained either from the environment or from the endogenous cell wall (i.e., recycling). High-level expression of murQ is required for growth on MurNAc as the sole source of carbon and energy, whereas constitutive low-level expression of murQ is sufficient for the recycling of peptidoglycan fragments continuously released from the cell wall during growth of the bacteria. Here we characterize for the first time the expression of murQ and its regulation by MurR, a member of the poorly characterized RpiR/AlsR family of transcriptional regulators. Deleting murR abolished the extensive lag phase observed for E. coli grown on MurNAc and enhanced murQ transcription some 20-fold. MurR forms a stable multimer (most likely a tetramer) and binds to two adjacent inverted repeats within an operator region. In this way MurR represses transcription from the murQ promoter and also interferes with its own transcription. MurNAc-6-phosphate, the substrate of MurQ, was identified as a specific inducer that weakens binding of MurR to the operator. Moreover, murQ transcription depends on the activation by cyclic AMP (cAMP)-catabolite activator protein (CAP) bound to a class I site upstream of the murQ promoter. murR and murQ are divergently orientated and expressed from nonoverlapping face-to-face (convergent) promoters, yielding transcripts that are complementary at their 5' ends. As a consequence of this unusual promoter arrangement, cAMP-CAP also affects murR transcription, presumably by acting as a roadblock for RNA polymerase.
Collapse
|
44
|
CRP binding and transcription activation at CRP-S sites. J Mol Biol 2008; 383:313-23. [PMID: 18761017 DOI: 10.1016/j.jmb.2008.08.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/11/2008] [Accepted: 08/13/2008] [Indexed: 12/27/2022]
Abstract
In Haemophilus influenzae, as in Escherichia coli, the cAMP receptor protein (CRP) activates transcription from hundreds of promoters by binding symmetrical DNA sites with the consensus half-site 5'-A(1)A(2)A(3)T(4)G(5)T(6)G(7)A(8)T(9)C(10)T(11). We have previously identified 13 H. influenzae CRP sites that differ from canonical (CRP-N) sites in the following features: (1) Both half-sites of these noncanonical (CRP-S) sites have C(6) instead of T(6), although they otherwise have an unusually high level of identity with the binding site consensus. (2) Only promoters with CRP-S sites require both the CRP and Sxy proteins for transcription activation. To study the functional significance of CRP-S site sequences, we purified H. influenzae (Hi)CRP and compared its DNA binding properties to those of the well-characterized E. coli (Ec)CRP. All EcCRP residues that contact DNA are conserved in HiCRP, and both proteins demonstrated a similar high affinity for the CRP-N consensus sequence. However, whereas EcCRP bound specifically to CRP-S sites in vitro, HiCRP did not. By systematically substituting base pairs in native promoters and in the CRP-N consensus sequence, we confirmed that HiCRP is highly specific for the perfect core sequence T(4)G(5)T(6)G(7)A(8) and is more selective than EcCRP at other positions in CRP sites. Even though converting C(6)-->T(6) greatly enhanced HiCRP binding to a CRP-S site, this had the unexpected effect of nearly abolishing promoter activity. A+T-rich sequences upstream of CRP-S sites were also found to be required for promoter activation, raising the possibility that Sxy binds these A+T sequences to simultaneously enable CRP-DNA binding and assist in RNA polymerase recruitment.
Collapse
|
45
|
Agari Y, Kashihara A, Yokoyama S, Kuramitsu S, Shinkai A. Global gene expression mediated by Thermus thermophilus SdrP, a CRP/FNR family transcriptional regulator. Mol Microbiol 2008; 70:60-75. [PMID: 18699868 DOI: 10.1111/j.1365-2958.2008.06388.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermus thermophilus SdrP is one of four cyclic AMP receptor protein (CRP)/fumarate and nitrate reduction regulator (FNR) family proteins from the extremely thermophilic bacterium T. thermophilus HB8. Expression of sdrP mRNA increased in the stationary phase during cultivation at 70 degrees C. Although the sdrP gene was non-essential, an sdrP-deficient strain showed growth defects, particularly when grown in a synthetic medium, and increased sensitivity to disulphide stress. The expression of several genes was altered in the sdrP disruptant. Among them, we found eight SdrP-dependent promoters using in vitro transcription assays. A predicted SdrP binding site similar to that recognized by Escherichia coli CRP was found upstream of each SdrP-dependent promoter. In the wild-type strain, expression of these eight genes tended to increase upon entry into the stationary phase. Transcriptional activation in vitro was independent of any added effector molecule. The hypothesis that apo-SdrP is the active form of the protein was supported by the observation that the three-dimensional structure of apo-SdrP is similar to that of the DNA-binding form of E. coli CRP. Based on the properties of the SdrP-regulated genes found in this study, it is speculated that SdrP is involved in nutrient and energy supply, redox control, and polyadenylation of mRNA.
Collapse
Affiliation(s)
- Yoshihiro Agari
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | |
Collapse
|
46
|
Lindemose S, Nielsen PE, Møllegaard NE. Dissecting direct and indirect readout of cAMP receptor protein DNA binding using an inosine and 2,6-diaminopurine in vitro selection system. Nucleic Acids Res 2008; 36:4797-807. [PMID: 18653536 PMCID: PMC2504297 DOI: 10.1093/nar/gkn452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DNA interaction of the Escherichia coli cyclic AMP receptor protein (CRP) represents a typical example of a dual recognition mechanism exhibiting both direct and indirect readout. We have dissected the direct and indirect components of DNA recognition by CRP employing in vitro selection of a random library of DNA-binding sites containing inosine (I) and 2,6-diaminopurine (D) instead of guanine and adenine, respectively. Accordingly, the DNA helix minor groove is structurally altered due to the ‘transfer’ of the 2-amino group of guanine (now I) to adenine (now D), whereas the major groove is functionally intact. The majority of the selected sites contain the natural consensus sequence TGTGAN6TCACA (i.e. TITIDN6TCDCD). Thus, direct readout of the consensus sequence is independent of minor groove conformation. Consequently, the indirect readout known to occur in the TG/CA base pair step (primary kink site) in the consensus sequence is not affected by I–D substitutions. In contrast, the flanking regions are selected as I/C rich sequences (mostly I-tracts) instead of A/T rich sequences which are known to strongly increase CRP binding, thereby demonstrating almost exclusive indirect readout of helix structure/flexibility in this region through (anisotropic) flexibility of I-tracts.
Collapse
Affiliation(s)
- Søren Lindemose
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | | | | |
Collapse
|
47
|
Fic E, Górecki A, Wasylewski Z. Fluorescence quenching studies of conformational changes induced by cAMP and DNA binding to heterodimer of cyclic AMP receptor protein from Escherichia coli. Protein J 2008; 26:457-66. [PMID: 17505875 DOI: 10.1007/s10930-007-9085-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In Escherichia coli, cyclic AMP receptor protein (CRP) is known to regulate the transcription of about 100 genes. The signal to activate CRP is the binding of cyclic AMP. In this study the fluorescence quenching measurements were used to observe conformational changes in the structure of CRP after binding of cAMP and DNA. We used the constructed CRP heterodimer, which contains only a single Trp13 residue localized in the N-terminal domain of one CRP subunit. We propose that apo-CRP subunits exist in a solution in one conformational state and it changes after the ligand binding. We also suggest that the signal transmission upon binding of cAMP is possible not only from the N-terminal domain to C-terminal domain but also in the opposite direction after binding of specific DNA sequence, both with and without cAMP. Thereby it can influence on the CRP's interaction with RNA polymerase and the genes expression.
Collapse
Affiliation(s)
- Ewelina Fic
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 str, Krakow, 30-387, Poland.
| | | | | |
Collapse
|
48
|
Wegerer A, Sun T, Altenbuchner J. Optimization of an E. coli L-rhamnose-inducible expression vector: test of various genetic module combinations. BMC Biotechnol 2008; 8:2. [PMID: 18194555 PMCID: PMC2254391 DOI: 10.1186/1472-6750-8-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 01/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A capable expression vector is mainly characterized by its production efficiency, stability and induction response. These features can be influenced by a variation of modifications and versatile genetic modules. RESULTS We examined miscellaneous variations of a rhaPBAD expression vector. The introduction of a stem loop into the translation initiation region of the rhaPBAD promoter resulted in the most significant improvement of eGFP expression. Starting from this plasmid, we constructed a set of expression vectors bearing different genetic modules like rop, ccdAB, cer and combinations thereof, and tested the efficiency of expression and plasmid stability. The plasmid pWA21, containing the stem loop, one cer site and rop, attained high expression levels accompanied by a good stability, and on that score seems to be a well-balanced choice. CONCLUSION We report the generation of variations of the rhaPBAD expression vector and characterization hereof. The genetic modules showed a complex interplay, therefore two positive effects combined sometimes resulted in a disadvantage.
Collapse
Affiliation(s)
- Angelika Wegerer
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | | | | |
Collapse
|
49
|
Sclavi B, Beatty CM, Thach DS, Fredericks CE, Buckle M, Wolfe AJ. The multiple roles of CRP at the complex acs promoter depend on activation region 2 and IHF. Mol Microbiol 2007; 65:425-40. [PMID: 17630973 DOI: 10.1111/j.1365-2958.2007.05797.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
acs encodes a high-affinity enzyme that permits survival during carbon starvation. As befits a survival gene, its transcription is subject to complex regulation. Previously, we reported that cAMP receptor protein (CRP) activates acs transcription by binding tandem DNA sites located upstream of the major acsP2 promoter and that the nucleoid protein IHF (integration host factor) binds three specific sites located just upstream. In vivo, the sequence that includes these IHF sites exerts a positive effect on CRP-dependent transcription, while a construct containing only the most proximal site exhibits reduced transcription compared with the full-length promoter or with a construct lacking all three IHF sites. Here, we defined the minimal system required for this IHF-dependent inhibition, showing it requires the promoter-distal CRP site and an amino acid residue located within activation region 2 (AR2), a surface determinant of CRP that interacts with RNA polymerase (RNAP). Surprisingly, for a Class III promoter, disruption of AR2 caused significant changes in the activity and structure of both the full-length promoter and the construct with the single proximal IHF site. We propose that AR2, together with IHF, mediates formation of a multi-protein complex, in which RNAP is stabilized in an open complex that remains poised on the promoter ready to respond rapidly to environmental changes.
Collapse
Affiliation(s)
- Bianca Sclavi
- LBPA, UMR8113, CNRS/Ecole Normale Supérieure de Cachan, 94230 Cachan, France
| | | | | | | | | | | |
Collapse
|
50
|
Janczarek M, Skorupska A. The Rhizobium leguminosarum bv. trifolii RosR: transcriptional regulator involved in exopolysaccharide production. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:867-81. [PMID: 17601173 DOI: 10.1094/mpmi-20-7-0867] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The acidic exopolysaccharide is required for the establishment of symbiosis between the nitrogen-fixing bacterium Rhizobium leguminosarum bv. trifolii and clover. Here, we describe RosR protein from R. leguminosarum bv. trifolii 24.2, a homolog of transcriptional regulators belonging to the family of Ros/MucR proteins. R. leguminosarum bv. trifolii RosR possesses a characteristic Cys2His2 type zinc-finger motif in its C-terminal domain. Recombinant (His)6RosR binds to an RosR-box sequence located up-stream of rosR. Deletion analysis of the rosR upstream region resulted in identification of two -35 to -10 promoter sequences, two conserved inverted palindromic pentamers that resemble the cAMP-CRP binding site of Escherichia coli, inverted repeats identified as a RosR binding site, and other regulatory sequence motifs. When assayed in E. coli, a transcriptional fusion of the cAMP-CRP binding site containing the rosR upstream region and lacZ gene was moderately responsive to glucose. The sensitivity of the rosR promoter to glucose was not observed in E. coli deltacyaA. A rosR frame-shift mutant of R. leguminosarum bv. trifolii formed dry, wrinkled colonies and induced nodules on clover, but did not fix nitrogen. In the rosR mutant, transcription of pssA-lacZ fusion was decreased, indicating positive regulation of the pssA gene by RosR. Multiple copies of rosR in R. leguminosarum bv. trifolii 24.2 increased exopolysaccharide production.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19, 20-033 Lublin, Poland
| | | |
Collapse
|