1
|
Zheng H, Mei S, Li F, Wei L, Wang Y, Huang J, Zhang F, Huang J, Liu Y, Gu W, Liu H. Expansion of the mutation spectrum and phenotype of USP7-related neurodevelopmental disorder. Front Mol Neurosci 2022; 15:970649. [PMID: 36466803 PMCID: PMC9708884 DOI: 10.3389/fnmol.2022.970649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Hao-fountain syndrome (HAFOUS) is a neurodevelopmental syndrome characterized by global developmental and severe language delays, behavioral abnormalities (including autism), and mild dysmorphic impairment of intellectual development. It is a dominant genetic disease caused by USP7 gene (*602519) mutations on chromosome 16p13.2. So far, only 15 cases with 14 deleterious variants in the USP7 gene have been reported. MATERIALS AND METHODS This study describes three unrelated patients with USP7 variants. Besides, we identified novel de novo heterozygous USP7 variants using trio-whole exome sequencing and verified by Sanger sequencing. Furthermore, clinical characteristics were evaluated by reviewing the medical records. RESULTS The three identified variants, i.e., one frameshift variant (c.247_250del, p.Glu83Argfs × 18) and two missense variants (c.992A > G, p.Tyr331Cys; c.835T > G, p.Leu279Val) are unreported. The predominant clinical manifestations of the three patients included: DD/ID; language impairment; abnormal behavior; abnormal brain magnetic resonance (dilation of lateral ventricles, dilation of Virchow-Robin spaces, dilated the third ventricle, abnormal cerebral white matter morphology in bilateral occipital lobes, hypodysplasia of the corpus callosum, arachnoid cyst, delayed myelination, and widened subarachnoid space); some also had facial abnormalities. CONCLUSION In summary, DD/ID is the most prevalent clinical phenotype of HAFOUS, although some patients also exhibit language and behavioral abnormalities. For the first time in China, we identified three variants of the USP7 gene using whole-genome sequence data. This work expands the USP7 gene mutation spectrum and provides additional clinical data on the clinical phenotype of HAFOUS.
Collapse
Affiliation(s)
- Hong Zheng
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shiyue Mei
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Fuwei Li
- Beijing Chigene Translational Medical Research Center Co., Ltd., Beijing, China
| | - Liwan Wei
- Beijing Chigene Translational Medical Research Center Co., Ltd., Beijing, China
| | | | - Jinrong Huang
- Ganzhou Women and Children’s Health Care Hospital, Ganzhou, China
| | - Feng Zhang
- Ganzhou Women and Children’s Health Care Hospital, Ganzhou, China
| | - Jia Huang
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Yanping Liu
- Department of Pediatrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Weiyue Gu
- Beijing Chigene Translational Medical Research Center Co., Ltd., Beijing, China
| | - Hongyan Liu
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
2
|
Ranjit M, Hirano M, Aoki K, Okuno Y, Ohka F, Yamamichi A, Kato A, Maeda S, Motomura K, Matsuo K, Enomoto A, Ino Y, Todo T, Takahashi M, Wakabayashi T, Kato T, Natsume A. Aberrant Active cis-Regulatory Elements Associated with Downregulation of RET Finger Protein Overcome Chemoresistance in Glioblastoma. Cell Rep 2020; 26:2274-2281.e5. [PMID: 30811978 DOI: 10.1016/j.celrep.2019.01.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/06/2019] [Accepted: 01/29/2019] [Indexed: 11/18/2022] Open
Abstract
RET finger protein (RFP) forms a complex with histone deacetylase 1, resulting in aberrant deacetylation of H3K27ac and dysregulation of cis-regulatory elements. We evaluated the modulatory effects of RFP knockdown on cis-regulatory elements, gene expression, and chemosensitivity to temozolomide both in glioblastoma cells and in an intracranial glioblastoma model. The combination of RFP knockdown and temozolomide treatment markedly suppressed the glioblastoma cell growth due to oxidative stress and aberrant cell cycle and increased survival time in mice with glioblastoma. ChIP-seq and RNA-seq revealed that RFP knockdown increased or decreased activity of numerous cis-regulatory elements that lie adjacent to genes that control functions such as apoptosis, mitosis, DNA replication, and cell cycle: FOXO1, TBP2, and PARPBP. This study suggests that RFP contributes to chemoresistance via aberrant deacetylation of histone H3 at K27, whereas dysregulation of RFP-associated cis-regulatory elements in glioma and RFP knockdown combined with temozolomide is an effective treatment strategy for lethal glioma.
Collapse
Affiliation(s)
- Melissa Ranjit
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Masaki Hirano
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Akane Yamamichi
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Akira Kato
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan; Department of Epidemiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University School of Medicine, Nagoya, Japan
| | | | - Takuya Kato
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan.
| |
Collapse
|
3
|
Natsume A, Hirano M, Ranjit M, Aoki K, Wakabayashi T. Aberrant Transcriptional Regulation of Super-enhancers by RET Finger Protein-histone Deacetylase 1 Complex in Glioblastoma: Chemoresistance to Temozolomide. Neurol Med Chir (Tokyo) 2019; 59:293-298. [PMID: 31178471 PMCID: PMC6694022 DOI: 10.2176/nmc.ra.2019-0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM), the most common primary brain tumor, is the most aggressive human cancers, with a median survival rate of only 14.6 months. Temozolomide (TMZ) is the frontline chemotherapeutic drug in GBM. Drug resistance is the predominant obstacle in TMZ therapy. Drug resistance occurs via multiple pathways such as DNA mismatch repair and base excision repair systems, by which glioma cells acquire chemoresistance to some extent (5% and 95%, respectively). Histone3 Lysin27 residue-acetylation (H3K27ac) status regulates cis-regulatory elements, which increases the likelihood of gene transcription. Histone deacetylase (HDAC) complex deacetylate lysine residues on core histones, leading to a decrease in gene transcription. In cis-regulatory element regions, complexes with HDAC repress histones by H3K27ac deacetylation. The cis-regulating and three-dimensional transcriptional mechanism is called "super-enhancer". RET finger protein (RFP) is a protein that is expressed in many kinds of cancer. RFP forms a protein complex with HDAC1. The disruption of the RFP-HDAC1 complex has resulted in increased drug sensitivity in other cancers. We conclude that the downregulation of RFP or the disruption of the RFP/HDAC1 complex leads to an increase in TMZ efficacy in glioblastoma by changing histone modifications which lead to changes in cell division, cell cycle and apoptosis.
Collapse
Affiliation(s)
- Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine
| | - Masaki Hirano
- Department of Neurosurgery, Nagoya University School of Medicine
| | - Melissa Ranjit
- Department of Neurosurgery, Nagoya University School of Medicine
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University School of Medicine
| | | |
Collapse
|
4
|
Wang T, Xia C, Dong Y, Chen X, Wang J, Du J. Trim27 confers myeloid hematopoiesis competitiveness by up-regulating myeloid master genes. J Leukoc Biol 2018; 104:799-809. [PMID: 29897614 DOI: 10.1002/jlb.1a1217-480r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
Trim27 (Zinc finger protein RFP) is a potential regulator of hematopoietic stem cells (HSC), yet its role in hematopoiesis remains elusive. Here, we investigated the roles of Trim27 in hematopoiesis by enforcing its expression in mouse and human hematopoietic stem and progenitor cells (HSPC). Ectopic expression of Trim27 in mouse fetal liver (FL) HSPC confers repopulating advantage with myeloid dominance. However, the number of HSC from Trim27 group was comparable with empty vector control group, indicating that overexpression of Trim27 unlikely expanded HSC. Transcriptome analysis of Trim27-overexpressing myeloid progenitor cells (MP) indicated that Trim27 up-regulated essential regulators of myelopoiesis, including Spi1 and Cebpg, up-regulated myeloid proliferation-related signaling genes Nras, Runx1, and Cbfb, up-regulated JAK/STAT signaling inhibitors Socs2, Socs3, and Cish, and up-regulated myeloid maturation-related genes Adam8 and Dek. Moreover, the myeloproliferative advantage caused by overexpressing Trim27/TRIM27 is conserved between mouse and human hematopoiesis. To our knowledge, this is the first study showing that Trim27 confers competitive hematopoiesis by promoting myeloid bias differentiation of HSPC, but not by expanding HSC.
Collapse
Affiliation(s)
- Tongjie Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengxiang Xia
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Yong Dong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiaoli Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Jinyong Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Juan Du
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| |
Collapse
|
5
|
Tan BH, Suzuki Y, Takahashi H, Ying PHR, Takahashi C, Han Q, Chin WX, Chao SH, Sawasaki T, Yamamoto N, Suzuki Y. Identification of RFPL3 protein as a novel E3 ubiquitin ligase modulating the integration activity of human immunodeficiency virus, type 1 preintegration complex using a microtiter plate-based assay. J Biol Chem 2014; 289:26368-26382. [PMID: 25107902 DOI: 10.1074/jbc.m114.561662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integration, one of the hallmarks of retrovirus replication, is mediated by a nucleoprotein complex called the preintegration complex (PIC), in which viral DNA is associated with many protein components that are required for completion of the early phase of infection. A striking feature of the PIC is its powerful integration activity in vitro. The PICs from a freshly isolated cytoplasmic extract of infected cells are able to insert viral DNA into exogenously added target DNA in vitro. Therefore, a PIC-based in vitro assay is a reliable system for assessing protein factors influencing retroviral integration. In this study, we applied a microtiter plate-based in vitro assay to a screening study using a protein library that was produced by the wheat germ cell-free protein synthesis system. Using a library of human E3 ubiquitin ligases, we identified RFPL3 as a potential stimulator of human immunodeficiency virus, type 1 (HIV-1) PIC integration activity in vitro. This enhancement of PIC activity by RFPL3 was likely to be attributed to its N-terminal RING domain. To further understand the functional role of RFPL3 in HIV infection, we created a human cell line overexpressing RFPL3. Immunoprecipitation analysis revealed that RFPL3 was associated with the human immunodeficiency virus, type 1 PICs in infected cells. More importantly, single-round HIV-1 infection was enhanced significantly by RFPL3 expression. Our proteomic approach displays an advantage in the identification of new cellular proteins affecting the integration activity of the PIC and, therefore, contributes to the understanding of functional interaction between retroviral integration complexes and host factors.
Collapse
Affiliation(s)
- Beng Hui Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Yasutsugu Suzuki
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Hirotaka Takahashi
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Pamela Ho Rui Ying
- Veterinary Bioscience, Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore
| | - Chikako Takahashi
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Qi'En Han
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Wei Xin Chin
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Sheng-Hao Chao
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan, and
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore,.
| | - Youichi Suzuki
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore,; Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
6
|
Qin L, Xia H, Shi H, Zhou Y, Chen L, Yao Q, Liu X, Feng F, Yuan Y, Chen K. Comparative proteomic analysis reveals that caspase-1 and serine protease may be involved in silkworm resistance to Bombyx mori nuclear polyhedrosis virus. J Proteomics 2012; 75:3630-8. [PMID: 22546490 DOI: 10.1016/j.jprot.2012.04.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/30/2012] [Accepted: 04/11/2012] [Indexed: 11/17/2022]
Abstract
The silkworm Bombyx mori is of great economic value. The B. mori nuclear polyhedrosis virus (BmNPV) is one of the most common and severe pathogens for silkworm. Although certain immune mechanisms exist in silkworms, most silkworms are still susceptible to BmNPV infection. Interestingly, BmNPV infection resistance in some silkworm strains is varied and naturally existing. We have previously established a silkworm strain NB by genetic cross, which is highly resistant to BmNPV invasion. To investigate the molecular mechanism of silkworm resistance to BmNPV infection, we employed proteomic approach and genetic cross to globally identify proteins differentially expressed in parental silkworms NB and 306, a BmNPV-susceptible strain, and their F(1) hybrids. In all, 53 different proteins were found in direct cross group (NB♀, 306♂, F(1) hybrid) and 21 in reciprocal cross group (306♀, NB♂, F(1) hybrid). Gene ontology and KEGG pathway analyses showed that most of these different proteins are located in cytoplasm and are involved in many important metabolisms. Caspase-1 and serine protease expressed only in BmNPV-resistant silkworms, but not in BmNPV-susceptible silkworms, which was further confirmed by Western blot. Taken together, our data suggests that both caspase-1 and serine protease play a critical role in silkworm resistance against BmNPV infection.
Collapse
Affiliation(s)
- Lvgao Qin
- School of Food and Biological Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ret Finger Protein: An E3 Ubiquitin Ligase Juxtaposed to the XY Body in Meiosis. Int J Cell Biol 2010; 2009:524858. [PMID: 20145714 PMCID: PMC2817382 DOI: 10.1155/2009/524858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/15/2009] [Indexed: 11/28/2022] Open
Abstract
During prophase I of male meiosis, the sex chromosomes form a compact structure called XY body that associates with the nuclear membrane of pachytene spermatocytes. Ret Finger Protein is a transcriptional repressor, able to interact with both nuclear matrix-associated proteins and double-stranded DNA. We report the precise and unique localization of Ret Finger Protein in pachytene spermatocytes, in which Ret Finger Protein takes place of lamin B1, between the XY body and the inner nuclear membrane. This localization of Ret Finger Protein does not seem to be associated with O-glycosylation or sumoylation. In addition, we demonstrate that Ret Finger Protein contains an E3 ubiquitin ligase activity. These observations lead to an attractive hypothesis in which Ret Finger Protein would be involved in the positioning and the attachment of XY body to the nuclear lamina of pachytene spermatocytes.
Collapse
|
8
|
Lott ST, Chen N, Chandler DS, Yang Q, Wang L, Rodriguez M, Xie H, Balasenthil S, Buchholz TA, Sahin AA, Chaung K, Zhang B, Olufemi SE, Chen J, Adams H, Band V, El-Naggar AK, Frazier ML, Keyomarsi K, Hunt KK, Sen S, Haffty B, Hewitt SM, Krahe R, Killary AM. DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer. PLoS Med 2009; 6:e1000068. [PMID: 19536326 PMCID: PMC2673042 DOI: 10.1371/journal.pmed.1000068] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 03/17/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium-associated RING Chromosome 1), a novel gene encoding a member of the TRIM (tripartite motif) subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer. METHODS AND FINDINGS Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH) in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS), an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD) were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D) basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs) recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue microarray from a cohort of 123 young female breast cancer patients with a 20-year follow-up indicated that in early-onset breast cancer, DEAR1 expression serves as an independent predictor of local recurrence-free survival and correlates significantly with strong family history of breast cancer and the triple-negative phenotype (ER(-), PR(-), HER-2(-)) of breast cancers with poor prognosis. CONCLUSIONS Our data provide compelling evidence for the genetic alteration and loss of expression of DEAR1 in breast cancer, for the functional role of DEAR1 in the dominant regulation of acinar morphogenesis in 3D culture, and for the potential utility of an immunohistochemical assay for DEAR1 expression as an independent prognostic marker for stratification of early-onset disease.
Collapse
Affiliation(s)
- Steven T. Lott
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Nanyue Chen
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Dawn S. Chandler
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Qifeng Yang
- Department of Radiation Oncology, University of Medicine & Dentistry of New Jersey–Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Luo Wang
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Marivonne Rodriguez
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Hongyan Xie
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Seetharaman Balasenthil
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Thomas A. Buchholz
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Aysegul A. Sahin
- Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Katrina Chaung
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Baili Zhang
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Shodimu-Emmanu Olufemi
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jinyun Chen
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Henry Adams
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, The University of Nebraska Medical Center, Eppley Cancer Center, Omaha, Nebraska, United States of America
| | - Adel K. El-Naggar
- Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Marsha L. Frazier
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kelly K. Hunt
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Subrata Sen
- Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Bruce Haffty
- Department of Radiation Oncology, University of Medicine & Dentistry of New Jersey–Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Stephen M. Hewitt
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ralf Krahe
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ann McNeill Killary
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Masumoto J, Hasegawa M, Inohara N. [The molecular mechanism of autoinflammatory disease--lessons from the function of NOD protein families]. ACTA ACUST UNITED AC 2007; 30:68-77. [PMID: 17473508 DOI: 10.2177/jsci.30.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The latest decade, our understanding of pattern-recognizing receptors involved in innate immune system has been accumulated. One class of the pattern recognizing receptors, the toll-like receptors (TLRs) are well known to detect extracellular pathogens on the cell surface membrane. On the other hand, recently discovered the nucleotide-binding oligomerization domain proteins (NODs) are involved in recognizing intracellular pathogens. Since Nod2, one of the NODs, mutations were found to associate with susceptibility of Crohn's disease, the NODs have been highlighted. For example, cryopyrin mutations have been reported to associate with Familial cold urticaria (FCU)/Familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS), Neonatal onset multisystem inflammatory disease (NOMID)/Chronic infantile neurologic cutaneous and articular syndrome (CINCA). Here, we summarize the discovery of the NODs and related molecules, and also discuss the function of the NODs and molecular mechanisms of the autoinflammatory diseases.
Collapse
Affiliation(s)
- Junya Masumoto
- Department of Pathology, Shinshu University School of Medicine
| | | | | |
Collapse
|
10
|
Townson SM, Kang K, Lee AV, Oesterreich S. Novel role of the RET finger protein in estrogen receptor-mediated transcription in MCF-7 cells. Biochem Biophys Res Commun 2006; 349:540-8. [PMID: 16945332 PMCID: PMC1950156 DOI: 10.1016/j.bbrc.2006.08.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 08/11/2006] [Indexed: 01/17/2023]
Abstract
The Scaffold attachment factor B1 (SAFB1) is an estrogen receptor (ESR1) repressor that has been proposed to inhibit breast tumorigenesis. To obtain insight into the functions of SAFB1 we utilized a yeast two-hybrid screen and identified the Ret finger protein (RFP) as interacting with the SAFB1 C-terminus. RFP is a member of the trimotif (TRIM) family of proteins, which we found widely expressed in a series of breast cancer cell lines. We confirmed the interaction between SAFB1 and RFP through in vitro (GST-pull-down) and in vivo (coimmunoprecipitations) assays. We hypothesized that SAFB1 functions as a scaffolding protein to recruit proteins such as RFP into proximity with ESR1. Consequently, we asked whether RFP would modulate ESR1 activity and we discovered that RFP was important for the ESR1-dependent expression of cyclin D1 (CCND1) and the progesterone receptor (PR), but not IRS1 or MYC. Although RFP did not interact with ESR1 directly, it does coimmunoprecipitate with ESR1, demonstrating that RFP is found within the same protein complex. Chromatin immunoprecipitation assays (ChIP) located RFP to the TFF1 promoter, a known ESR1-regulated gene. Taken together, our study provides further evidence that coactivation and corepression are integrally linked processes and that RFP is a component of an ESR1 regulatory complex.
Collapse
Affiliation(s)
- Steven M Townson
- Department of Human Genetics, Virginia Commonwealth University and Massey Cancer Center, Sanger Hall, Richmond, VA 23219, USA.
| | | | | | | |
Collapse
|
11
|
Tanaka M, Fukuda Y, Mashima K, Hanai R. Intracellular localization and domain organization of human TRIM41 proteins. Mol Biol Rep 2005; 32:87-93. [PMID: 16022281 DOI: 10.1007/s11033-004-6613-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A human gene previously identified as a partial cDNA homologous to the gene of RET finger protein was characterized. Northern hybridization detected three messages of 3.3, 4.2, and 7.5 kb. The coding sequences of the more abundant of the three messages, the 4.2 and the 3.3 kb, were determined. The former encodes a 630 amino acid protein (TRIM41alpha) and the latter a 518 amino acid protein (TRIM41beta). Green fluorescent protein (GFP) fusions of full-length TRIM41alpha and TRIM41beta were both observed as speckles in the cytoplasm and the nucleus. The result was corroborated by Western analysis of cellular fractions. Results with GFP fusions of various segments of the TRIM41 proteins indicated that the nuclear transport of the proteins is mediated by an N-terminal segment common to both isoforms, but independent of a classical nuclear localization signal sequence.
Collapse
Affiliation(s)
- Mayumi Tanaka
- Department of Life Science and Frontier Project "Life's Adaptation Strategies to Environmental Changes", Rikkyo (St. Paul's) University, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|
12
|
Harbers M, Nomura T, Ohno S, Ishii S. Intracellular localization of the Ret finger protein depends on a functional nuclear export signal and protein kinase C activation. J Biol Chem 2001; 276:48596-607. [PMID: 11591718 DOI: 10.1074/jbc.m108077200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Ret finger protein (RFP) was identified initially as an oncogene product and belongs to a family of proteins that contain a tripartite motif consisting of a RING finger, a B box, and a coiled-coil domain. RFP represses transcription by interacting with Enhancer of Polycomb and is localized to the cytoplasm or nucleus depending on the cell type. Here, we have identified the nuclear export signal (NES) located in the coiled-coil region of RFP. Mutation of this NES or treatment with leptomycin B abrogated the nuclear export of RFP in NIH3T3 cells. In addition, fusion of this NES to other nuclear proteins, such as yeast transcription factor Gal4, resulted in their release into the cytoplasm of NIH3T3 cells. Although the NES function of RFP in HepG2 cells is masked by another domain in RFP or by another protein, 12-O-tetradecanoylphorbol-13-acetate treatment or overexpression of constitutively active protein kinase Calpha (PKCalpha) abrogated masking, leading to the cytoplasmic localization of RFP. Furthermore, treatment of NIH3T3 cells with PKC inhibitors blocked the function of NES, resulting in nuclear localization of RFP. Thus, the nuclear export of RFP is regulated positively by PKC activation. However, RFP was not a direct substrate of PKC, and additional signaling pathways may be involved in the regulation of nuclear export of RFP.
Collapse
Affiliation(s)
- M Harbers
- RIKEN Tsukuba Institute and Core Research for Evolutionary Science and Technology (CREST) Project of Japan Science and Technology Corporation, 3-1-1 Koyadai, Tsukuba, Ibaraki
| | | | | | | |
Collapse
|
13
|
Wang D, Buyon JP, Yang Z, Di Donato F, Miranda-Carus ME, Chan EK. Leucine zipper domain of 52 kDa SS-A/Ro promotes protein dimer formation and inhibits in vitro transcription activity. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1568:155-61. [PMID: 11750763 DOI: 10.1016/s0304-4165(01)00212-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two forms of the human 52 kDa SS-A/Ro protein autoantigen, 52alpha and 52beta, are products of alternative mRNA splicing. The 52alpha form is ubiquitously expressed whereas 52beta, lacking the central leucine zipper domain, has been detected at higher levels than 52alpha during certain stages of fetal development. Because 52alpha has sequence similarity with macromolecules associated with transcriptional regulation and the two forms differ only in that 52beta does not contain the leucine zipper, their roles in protein dimer formation and in transcriptional activity were examined. Employing the yeast two-hybrid system, 52alpha was shown to interact with itself but not 52beta. The homodimerization of 52alpha was independently confirmed in gel filtration chromatography using in vitro cDNA template derived translation products and in HL-60 cell extracts; two peaks were observed corresponding to dimer and monomer of 52alpha, while in vitro the translation product of 52beta exhibited only a single monomer peak. In addition, dimer formation was also demonstrated in a chemical cross-linking experiment using HeLa cells transfected with 52alpha. To evaluate effects on transcription, eukaryotic expression plasmids encoding 52alpha or 52beta fused with the GAL4 DNA binding (DB) domain were co-transfected into 293 cells together with a luciferase reporter vector. A 6-fold increase in transcription activity of the reporter was detected with the GAL4-DB-52beta fusion constructs compared to GAL4-DB-52alpha or the empty vector control. We speculate that the ratio of cellular 52alpha and 52beta may play an important role in regulating gene expression as potential repressor and activator respectively.
Collapse
Affiliation(s)
- D Wang
- Department of Molecular and Experimental Medicine, DNA Core Laboratory for Structural Analysis, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
14
|
Matsuo R, Asada A, Fujitani K, Inokuchi K. LIRF, a gene induced during hippocampal long-term potentiation as an immediate-early gene, encodes a novel RING finger protein. Biochem Biophys Res Commun 2001; 289:479-84. [PMID: 11716498 DOI: 10.1006/bbrc.2001.5975] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe here an LTP-induced gene, LIRF, which encodes a novel protein with RING finger and B30.2 domains in its N- and C-terminal portions, respectively. Each domain is encoded by one exon, suggesting that the organization of the gene was generated by exon shuffling. The amino acid sequences of the mouse, rat, and human LIRF proteins are highly conserved and contain a putative PEST sequence. LIRF is an immediate-early gene in hippocampal granule cells, and its expression is upregulated immediately after the induction of long-lasting long-term potentiation at perforant pathway-dentate gyrus synapses and returns to the basal level within 150 min. A heterologously expressed LIRF protein fused to EGFP localizes specifically to the cytoplasm in COS-7 cells. These findings suggest a possible involvement of LIRF in a limited, early phase of synaptic plasticity.
Collapse
Affiliation(s)
- R Matsuo
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | |
Collapse
|
15
|
Shyu HW, Hsu SH, Hsieh-Li HM, Li H. A novel member of the RBCC family, Trif, expressed specifically in the spermatids of mouse testis. Mech Dev 2001; 108:213-6. [PMID: 11578878 DOI: 10.1016/s0925-4773(01)00485-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the RING finger family are implicated in a variety of functions such as signal transduction, transcriptional regulation and other developmental processes. Using degenerate oligonucleotide primers corresponding to the RING domain, we isolated a novel RING finger gene from the mouse testis cDNA library, which was about 1.8 kb and was termed Trif (testis-specific ring finger). This deduced protein contains an N-terminal RING-finger, a B-box, and a C-terminal B-30.2-like domain, which make the Trif protein a member of the RING finger-B-box-coil-coil family. Northern blot analysis of adult multiple tissues indicated that Trif is expressed predominantly in the testis. Further analysis detected Trif transcripts in the testis from day 20 of the postnatal stage. In situ hybridization indicated that Trif is expressed in the round spermatids of the seminiferous tubules. These expression data suggest that Trif may play an important role in the regulation of spermatogenesis.
Collapse
Affiliation(s)
- H W Shyu
- Institute of Life Science, National Defense University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
16
|
Shimono Y, Murakami H, Hasegawa Y, Takahashi M. RET finger protein is a transcriptional repressor and interacts with enhancer of polycomb that has dual transcriptional functions. J Biol Chem 2000; 275:39411-9. [PMID: 10976108 DOI: 10.1074/jbc.m006585200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RET finger protein (RFP) belongs to the large B-box RING finger protein family and is known to become oncogenic by fusion with RET tyrosine kinase. Although RFP is reported to be a nuclear protein that is present in the nuclear matrix, its function is largely unknown. Here we show that RFP interacts with Enhancer of Polycomb (EPC) and strongly represses the gene transcription. Yeast two-hybrid assays revealed that the coiled-coil domain of RFP was associated with the EPcA domain and the carboxyl-terminal region of EPC. In addition, both proteins were co-precipitated from the lysates of human cells and mostly colocalized in the nucleus. Using the luciferase reporter-gene assay, we found that they repress the gene transcription activity independent of the differences of enhancers and promoters used, although the repressive activity of RFP was much stronger than that of EPC. The coiled-coil domain of RFP and the carboxyl-terminal region of EPC were most important for the repressive activity of each protein, whereas the EPcA domain had the transcription activating ability that is unique as the Polycomb group protein function. These results suggested that RFP may be involved in the epigenetic gene silencing mechanism cooperating with Polycomb group proteins and that EPC is a unique molecule with both repressive and transactivating activities.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Line
- Cell Nucleus/metabolism
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins
- Fungal Proteins/metabolism
- Genes, Reporter
- Humans
- Luciferases/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Biological
- Molecular Sequence Data
- Nuclear Proteins/chemistry
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins
- Saccharomyces cerevisiae Proteins
- Transcription Factors/metabolism
- Transcription, Genetic
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Y Shimono
- Departments of Pathology and Internal Medicine I, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | |
Collapse
|
17
|
Cao T, Shannon M, Handel MA, Etkin LD. Mouse ret finger protein (rfp) proto-oncogene is expressed at specific stages of mouse spermatogenesis. DEVELOPMENTAL GENETICS 2000; 19:309-20. [PMID: 9023983 DOI: 10.1002/(sici)1520-6408(1996)19:4<309::aid-dvg4>3.0.co;2-d] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many proteins involved in the regulation of cell growth and differentiation possess structural motifs that participate in specific molecular interactions. The human rfp (ret finger protein) has a tripartite motif, consisting of two novel zinc fingers (the RING linger and the B box) and a coiled-coil domain, and belongs to the B box zinc finger protein family. Rfp becomes oncogenic when its tripartite motif is recombined with the tyrosine kinase domain from the c-ret proto-oncogene. To further understand the function of rfp during normal development and cellular differentiation, we cloned the mouse rfp cDNA and analyzed its pattern of expression and subcellular distribution. We found that the mouse rfp cDNA shared a 98.4% homology with the human sequence. The gene mapped to human chromosome 6 and mouse chromosome 13 indicating that it was linked to a several other genes encoding proteins that possess common domains. rfp transcripts and protein were ubiquitous in day 10.5-13.5 mouse embryos, however, they were restricted in adult mice, with the highest level of expression in pachytene spermatocytes and round spermatids of differentiating sperm. The rfp protein was detected within cell nuclei as nuclear bodies similar to the PODs (PML oncogenic domains) observed with another B box family member, PML (promyelocytic leukemia protein). These results suggest that rfp may function in the regulation of cell growth and differentiation during mouse embryogenesis and sperm differentiation.
Collapse
Affiliation(s)
- T Cao
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | |
Collapse
|
18
|
Tezel G, Nagasaka T, Iwahashi N, Asai N, Iwashita T, Sakata K, Takahashi M. Different nuclear/cytoplasmic distributions of RET finger protein in different cell types. Pathol Int 1999; 49:881-6. [PMID: 10571821 DOI: 10.1046/j.1440-1827.1999.00957.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RET finger protein (RFP), which belongs to the B box zinc finger protein family, has a tripartite motif consisting of a Ring finger, a B box finger and a coiled-coil domain. The RET finger protein becomes oncogenic when its tripartite motif is fused with the tyrosine kinase domain of the RET protein. This study examined the RFP expression in normal and tumor tissues by immunohistochemistry. RFP was detected in the nuclei of various cells, including peripheral and central neurones, hepatocytes, adrenal chromaffin cells and male germ cells. Among them, RFP was expressed at high levels in male germ cells such as primary spermatocytes and round spermatids, and formed a perinuclear cap structure in primary spermatocytes. On the other hand, high levels of cytoplasmic expression of RFP were observed in some plasma cells as well as solitary plasmacytoma and multiple myeloma. These results suggested that different nuclear/cytoplasmic distributions of RFP might play a role in the regulation of growth or differentiation of different cell types.
Collapse
Affiliation(s)
- G Tezel
- Department of Pathology, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Iwata Y, Nakayama A, Murakami H, Iida K, Iwashita T, Asai N, Takahashi M. Characterization of the promoter region of the human RFP gene. Biochem Biophys Res Commun 1999; 261:381-4. [PMID: 10425194 DOI: 10.1006/bbrc.1999.1037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RFP gene encodes a Ring finger protein that has a tripartite motif consisting of a Ring finger, a B-box finger and a coiled-coil domain. In the present study, we cloned and characterized the promoter region of the human RFP gene. The nucleotide sequence of the promoter was GC-rich and had no typical TATA and CAAT boxes. Instead, it contained one AP2 and two Sp1 binding sites within 100 base pairs upstream of the transcription initiation site. Analysis by the luciferase assay revealed that the activity of this promoter region is very strong in both human and mouse cell lines, although the activity in human cells was approximately 10-15 fold higher than that in mouse cells. In addition, the AP2 and Sp1 binding sites appeared to synergistically function for the promoter activity. Thus, the promoter of the RFP gene could be useful for high levels of expression of various genes in culture cells.
Collapse
Affiliation(s)
- Y Iwata
- Department of Pathology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Harada H, Harada Y, O'Brien DP, Rice DS, Naeve CW, Downing JR. HERF1, a novel hematopoiesis-specific RING finger protein, is required for terminal differentiation of erythroid cells. Mol Cell Biol 1999; 19:3808-15. [PMID: 10207104 PMCID: PMC84222 DOI: 10.1128/mcb.19.5.3808] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AML1/core binding factor beta (CBFbeta) transcription factor is essential for definitive hematopoiesis; however, the downstream pathways through which it functions remain incompletely defined. Using a differential cloning approach to define components of this pathway, we have identified a novel gene designated HERF1 (for hematopoietic RING finger 1), whose expression during development is dependent on the presence of functional AML1/CBFbeta. HERF1 contains a tripartite RING finger-B box-alpha-helical coiled-coil domain and a C-terminal region homologous to the ret proto-oncogene-encoded finger protein. Expression of HERF1 during embryogenesis coincides with the appearance of definitive erythropoiesis and in adult mice is restricted to erythroid cells, increasing 30-fold during terminal differentiation. Importantly, inhibition of HERF1 expression blocked terminal erythroid differentiation of the murine erythroleukemia cell line MEL, whereas its overexpression induced erythroid maturation. These results suggest an important role for this protein in erythropoiesis.
Collapse
Affiliation(s)
- H Harada
- Departments of Pathology and Laboratory Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
21
|
Schweiger S, Foerster J, Lehmann T, Suckow V, Muller YA, Walter G, Davies T, Porter H, van Bokhoven H, Lunt PW, Traub P, Ropers HH. The Opitz syndrome gene product, MID1, associates with microtubules. Proc Natl Acad Sci U S A 1999; 96:2794-9. [PMID: 10077590 PMCID: PMC15848 DOI: 10.1073/pnas.96.6.2794] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1998] [Indexed: 11/18/2022] Open
Abstract
Opitz syndrome (OS) is a genetically heterogeneous disorder characterized by defects of the ventral midline, including hypertelorism, cleft lip and palate, heart defects, and mental retardation. We recently identified the gene responsible for X-linked OS. The ubiquitously expressed gene product, MID1, is a member of the RING finger family. These proteins are characterized by an N-terminal tripartite protein-protein interaction domain and a conserved C terminus of unknown function. Unlike other RING finger proteins for which diverse cellular functions have been proposed, the function of MID1 is as yet undefined. By using the green fluorescent protein as a tag, we show here that MID1 is a microtubule-associated protein that influences microtubule dynamics in MID1-overexpressing cells. We confirm this observation by demonstrating a colocalization of MID1 and tubulin in subcellular fractions and the association of endogenous MID1 with microtubules after in vitro assembly. Furthermore, overexpressed MID1 proteins harboring mutations described in OS patients lack the capability to associate with microtubules, forming cytoplasmic clumps instead. These data give an idea of the possible molecular pathomechanism underlying the OS phenotype.
Collapse
Affiliation(s)
- S Schweiger
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tokunaga C, Tatematsu K, Kuroda S, Nakagawa N, Kikkawa U. Molecular cloning and characterization of RBCK2, a splicing variant of a RBCC family protein, RBCK1. FEBS Lett 1998; 435:11-5. [PMID: 9755849 DOI: 10.1016/s0014-5793(98)01029-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RBCK1 (RBCC protein interacting with PKC 1) has two coiled-coil regions, a RING finger, a B-box and a B-box-like motif. RBCK2, a cDNA fragment related to RBCK1 was obtained, that lacks the 161-bp sequence of RBCK1 and encodes 260 amino acid residues. The 240-amino acid sequence in the NH2-terminal of RBCK2 is identical with RBCK1 and contains two coiled-coil regions but no other structural motifs, whereas the 20-amino acid sequence in the COOH-terminal is distinct from RBCK1. The analysis of genomic DNA revealed that RBCK1 and RBCK2 are generated from a single gene by alternative splicing. The RBCK1 protein interacted with the RBCK1 and RBCK2 proteins, but the RBCK2 protein did not interact with itself, in vitro. The RBCK2 protein fused with the DNA-binding domain of yeast GAL4 (GAL4DBD) did not show a transcriptional activity, but the RBCK2 protein inhibited the transcriptional activity of the RBCK1 protein fused with GAL4DBD. These results suggest that RBCK2 may inhibit the transcriptional activity of RBCK1 probably through complex formation with RBCK1.
Collapse
Affiliation(s)
- C Tokunaga
- Biosignal Research Center, Kobe University, Japan
| | | | | | | | | |
Collapse
|
23
|
Zhao Q, Chen KS, Bejjani BA, Lupski JR. Cloning, genomic structure, and expression of mouse ring finger protein gene Znf179. Genomics 1998; 49:394-400. [PMID: 9615224 DOI: 10.1006/geno.1998.5285] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ZNF179, a RING finger protein encoding gene, has been mapped within the critical deletion region for Smith-Magenis syndrome (SMS), a disorder characterized by mental retardation and multiple congenital anomalies associated with del(17)(p11.2). Here we report the cloning of Znf179, the mouse homologue of ZNF179, and characterization of its gene structure. The 3028-bp cDNA has a 1.9-kb open reading frame that contains a RING finger domain at its N-terminus and an alanine-rich and glycine-rich domain at its C-terminus. Znf179 genomic sequence includes 15 introns and spans about 10 kb on mouse chromosome 11, which maintains conserved synteny with human 17p. Northern analysis indicates that Znf179 is predominantly expressed in brain and testis. Although contained within the SMS common deletion interval, FISH experiments show that ZNF179 is not deleted in two SMS patients with smaller deletions.
Collapse
Affiliation(s)
- Q Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
24
|
Tokunaga C, Kuroda S, Tatematsu K, Nakagawa N, Ono Y, Kikkawa U. Molecular cloning and characterization of a novel protein kinase C-interacting protein with structural motifs related to RBCC family proteins. Biochem Biophys Res Commun 1998; 244:353-9. [PMID: 9514928 DOI: 10.1006/bbrc.1998.8270] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel protein kinase C (PKC)-interacting protein was identified by the yeast two-hybrid screening using the regulatory domain of PKC beta I as a bait. The protein contained several structural motifs such as two putative coiled-coil regions, a RING-finger, a B-box, and a B-box-like motif in the order from NH2- to COOH-terminals. The molecular organization of the protein resembles the structure of the RBCC protein family proteins which usually have a RING-finger, a B-box, and a coiled-coil region. Therefore, the protein identified was designated as RBCK1 (RBCC protein interacting with PKC 1). Northern blot analysis showed that RBCK1 gene is expressed ubiquitously among rat tissues. RBCK1 protein associated with PKC beta I and PKC zeta when coexpressed in cultured mammalian cells. By the polymerase chain reaction-assisted DNA-binding site selection and the electrophoretic mobility shift assay, RBCK1 protein was shown to bind to several DNA fragments containing TGG-rich sequences. When the yeast GAL4 DNA-binding domain fused RBCK1 protein was expressed in COS-7 cells harboring the luciferase gene placed under a synthetic promoter containing GAL4-binding sites, the fusion protein showed enhanced transcriptional activity comparing with the GAL4 DNA-binding domain. These results suggest that RBCK1 protein might be a transcription factor that has a role in the signaling pathway through PKC.
Collapse
Affiliation(s)
- C Tokunaga
- Biosignal Research Center, Faculty of Science, Kobe University, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Leclerc S, Eskild W, Guérin SL. The rat growth hormone and human cellular retinol binding protein 1 genes share homologous NF1-like binding sites that exert either positive or negative influences on gene expression in vitro. DNA Cell Biol 1997; 16:951-67. [PMID: 9303437 DOI: 10.1089/dna.1997.16.951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
High levels of expression for the rat growth hormone (rGH) gene are restricted to the somatotroph cells of the anterior pituitary. Previously, we have shown that rGH cell-specific repression results in part from the recognition of negatively acting silencers by a number of nuclear proteins that repress basal promoter activity. Examination of these silencers revealed the presence of binding sites for proteins that belong to the NF1 family of transcription factors. Indeed, proteins from this family were shown to bind the rGH proximal silencer (designated silencer-1) in in vitro assays. Furthermore, this silencer site is capable of repressing chloramphenicol acetyltransferase (CAT) gene expression driven by an heterologous promoter (that of the mouse p12 gene), even in pituitary cells. Recently, we identified in the 5' untranslated region of the gene encoding human cellular retinol binding protein 1 (hCRBP1) a negative regulatory element (Fp1) that also bears an NF1 binding site very similar to that of rGH silencer-1. However, although deletion of Fp1 in the hCRBP1 gene yielded increased CAT activity, pointing toward a negative regulatory function exerted by this element, its insertion upstream of the p12 basal promoter results in an impressive positive stimulation of CAT gene expression. By exploiting NaDodSO4 gel protein fractionation and renaturation, we identified a 40-kD nuclear protein (designated Bp1) present in GH4C1 cells that binds very strongly to rGH silencer-1 but only weakly to hCRBP1 Fp1. Similarly, we also detected a 29-kD nuclear factor (designated Bp2) that recognizes exclusively the Fp1 element as its target site, therefore suggesting that different, but likely related, proteins bind these homologous elements to either activate or repress gene transcription. Although they bind DNA through the recognition of the NF1-like target sequence contained on these elements, competition and supershift experiments in electrophoretic mobility shift assays provided evidence that neither of these proteins belong to the NF1 family.
Collapse
Affiliation(s)
- S Leclerc
- Laboratory of Molecular Endocrinology, CHUL Research Center, Ste-Foy, Québec, Canada
| | | | | |
Collapse
|
26
|
Abstract
The nuclear matrix, the RNA-protein skeleton of the nucleus, has a role in the organization and function of nuclear DNA. Nuclear processes associated with the nuclear matrix include transcription, replication and dynamic histone acetylation. Nuclear matrix proteins, which are tissue and cell type specific, are altered with transformation and state of differentiation. Transcription factors are associated with the nuclear matrix, with the spectra of nuclear matrix bound factors being cell type specific. There is compelling evidence that the transcription machinery is anchored to the nuclear matrix, and the chromatin fiber is spooled through this complex. Transcriptionally active chromatin domains are associated with dynamically acetylated histones. The energy exhaustive process of dynamic histone acetylation has several functions. Acetylation of the N-terminal tails of the core histones alters nucleosome and higher order chromatin structure, aiding transcriptional elongation and facilitating the binding of transcription factors to nucleosomes associated with regulatory DNA sequences. Histone acetylation can manipulate the interactions of regulatory proteins that bind to the N-terminal tails of the core histones. Lastly, dynamic acetylation may contribute to the transient attachment of transcriptionally active chromatin to the nuclear matrix. Reversible histone acetylation is catalyzed by histone acetyltransferase and deacetylase, enzymes associated with the nuclear matrix. The recent isolation and characterization of histone acetyltransferase and deacetylase reveals that these enzymes are related to transcriptional regulators, providing us with new insights about how these enzymes are targeted to nuclear matrix sites engaged in transcription.
Collapse
Affiliation(s)
- J R Davie
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
27
|
Ruddy DA, Kronmal GS, Lee VK, Mintier GA, Quintana L, Domingo R, Meyer NC, Irrinki A, McClelland EE, Fullan A, Mapa FA, Moore T, Thomas W, Loeb DB, Harmon C, Tsuchihashi Z, Wolff RK, Schatzman RC, Feder JN. A 1.1-Mb transcript map of the hereditary hemochromatosis locus. Genome Res 1997; 7:441-56. [PMID: 9149941 DOI: 10.1101/gr.7.5.441] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the process of positionally cloning a candidate gene responsible for hereditary hemochromatosis (HH), we constructed a 1.1-Mb transcript map of the region of human chromosome 6p that lies 4.5 Mb telomeric to HLA-A. A combination of three gene-finding techniques, direct cDNA selection, exon trapping, and sample sequencing, were used initially for a saturation screening of the 1.1-Mb region for expressed sequence fragments. As genetic analysis further narrowed the HH candidate locus, we sequenced completely 0.25 Mb of genomic DNA as a final measure to identify all genes. Besides the novel MHC class 1-like HH candidate gene HLA-H, we identified a family of five butyrophilin-related sequences, two genes with structural similarity to a type 1 sodium phosphate transporter, 12 novel histone genes, and a gene we named RoRet based on its strong similarity to the 52-kD Ro/SSA lupus and Sjogren's syndrome auto-antigen and the RET finger protein. Several members of the butyrophilin family and the RoRet gene share an exon of common evolutionary origin called B30-2. The B30-2 exon was originally isolated from the HLA class 1 region, yet has apparently "shuffled" into several genes along the chromosome telomeric to the MHC. The conservation of the B30-2 exon in several novel genes and the previously described amino acid homology of HLA-H to MHC class 1 molecules provide further support that this gene-rich region of 6p21.3 is related to the MHC. Finally, we performed an analysis of the four approaches for gene finding and conclude that direct selection provides the most effective probes for cDNA screening, and that as much as 30% of ESTs in this 1.1-Mb region may be derived from noncoding genomic DNA.
Collapse
MESH Headings
- Amino Acid Sequence
- Autoantigens/genetics
- Bacteria/genetics
- Binding Sites
- Blotting, Northern
- Butyrophilins
- Carrier Proteins/genetics
- Chromosome Mapping/methods
- Chromosomes, Human, Pair 6
- Cloning, Molecular
- Conserved Sequence
- DNA, Complementary
- HLA Antigens/genetics
- Hemochromatosis/genetics
- Hemochromatosis Protein
- Histocompatibility Antigens Class I/genetics
- Histones/genetics
- Humans
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Proteins
- Molecular Sequence Data
- Nuclear Proteins
- Proteins/genetics
- Proteins/metabolism
- RNA, Small Cytoplasmic
- Ribonucleoproteins/genetics
- Sequence Analysis, DNA/methods
- Sequence Homology, Amino Acid
- Sequence Tagged Sites
- Sodium-Phosphate Cotransporter Proteins
- Sodium-Phosphate Cotransporter Proteins, Type I
- Symporters
- Tissue Distribution
- Transcription Factors
- Transcription, Genetic
- Tripartite Motif Proteins
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
- D A Ruddy
- Mercator Genetics, Menlo Park, California 94025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Edman CF, Prigent SA, Schipper A, Feramisco JR. Identification of ErbB3-stimulated genes using modified representational difference analysis. Biochem J 1997; 323 ( Pt 1):113-8. [PMID: 9173868 PMCID: PMC1218281 DOI: 10.1042/bj3230113] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The epidermal growth factor receptor (EGFR) family of tyrosine kinases is involved in the growth of normal and tumour cells. The specific contribution of each of the four family members to these processes remains unclear. In the present study we have used a PCR-based subtractive approach to identify differences in messages induced in response to activation of ErbB3 and EGFR. The approach described is a modification of the representational difference analysis technique adapted for analysis of cDNA, which we have modified to permit identification of differential gene expression using as little as 20 microg of total RNA as the starting material. The mRNA obtained from EGF-stimulated NIH-3T3 cells expressing chimaeric EGFR-ErbB3 receptors provided the tester amplicons (small PCR-amplified fragments) which were subtracted against driver amplicons derived from unstimulated NIH-3T3 cells expressing the EGFR-ErbB3 chimaera or EGF-stimulated NIH-3T3 cells overexpressing the EGFR. A total of 22 different clones were isolated, 90% of which showed increased expression in the tester amplicons. Six of these, corresponding to known DNA sequences, were selected for further Northern blot analysis against total RNA prepared from the starting cell lines. Of these, the gene encoding the protein dlk (or a closely related protein, Pref-1) was identified as being regulated by ErbB3 but not by the EGFR. Other genes appeared to be elevated by both ErbB3 and EGFR, including those encoding c-jun, Ret finger protein (RFP), neuroleukin and amyloid protein precursor. One gene product, TIS11, was identified as being regulated by EGFR but not by ErbB3.
Collapse
Affiliation(s)
- C F Edman
- Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA 92093-0684, U.S.A
| | | | | | | |
Collapse
|
29
|
Aoki N, Ishii T, Ohira S, Yamaguchi Y, Negi M, Adachi T, Nakamura R, Matsuda T. Stage specific expression of milk fat globule membrane glycoproteins in mouse mammary gland: comparison of MFG-E8, butyrophilin, and CD36 with a major milk protein, beta-casein. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1334:182-90. [PMID: 9101712 DOI: 10.1016/s0304-4165(96)00091-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression of mouse milk fat globule membrane (MFGM) glycoproteins, MFG-E8, butyrophilin, CD36 was analyzed by Northern blot analyses. MFG-E8 and butyrophilin mRNAs were specifically detected in the mammary gland of lactating mice, whereas CD36 mRNA was detected in the heart and lung as well as in the mammary gland of lactating mice. The mRNAs of the three MFGM glycoproteins accumulated at mid-lactation were about 2-10-times as much as those of the early and late gestation stages, whereas beta-casein mRNA accumulation was dramatically increased; the mRNA at mid-lactation was no less than 40-times as much as that before lactation. In mouse mammary epithelial cell lines, HC11 and COMMA-1D, only a slight or almost no enhancement for the expression of MFG-E8, butyrophilin and CD36 mRNAs was induced simply by the treatment with the lactogenic hormones such as prolactin, insulin and dexamethasone, whereas the beta-casein mRNA expression was remarkably enhanced only by that treatment. Furthermore, while the beta-casein protein was constantly detected in milk throughout the lactation stage, the content of MFG-E8 and butyrophilin proteins increased during the lactation with an increase in the milk fat content. These results suggest that the stage-specific expression of milk fat globule membrane glycoproteins in mammary epithelial cells is regulated in a similar but not necessarily identical mechanism to that of a major milk protein, beta-casein.
Collapse
Affiliation(s)
- N Aoki
- Department of Applied Biological Sciences, School of Agricultural Sciences, Nagoya University, Chikusa-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mu ZM, Le XF, Glassman AB, Chang KS. The biologic function of PML and its role in acute promyelocytic leukemia. Leuk Lymphoma 1996; 23:277-85. [PMID: 9031108 DOI: 10.3109/10428199609054830] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Patients with acute promyelocytic leukemia (APL) are characterized by the presence of a t(15;17) chromosomal translocation. The fusion protein PML-RAR alpha encoded from the breakpoint can form a heterodimer and acts as a dominant negative inhibitor against the normal function of PML. Recently we demonstrated that PML is a growth suppressor and transcription suppressor expressed in all cell lines tested. We also found that PML suppresses the clonogenicity and tumorigenicity of APL-derived NB4 cells, as well as the transformation of rat embryo fibroblasts by cooperative oncogenes and NIH/3T3 by neu. Overexpression of PML in human tumor cell lines induces a remarkable reduction in growth rate in vitro and in vivo. More recently, we have shown that PML is a phosphoprotein associated with the nuclear matrix and that its expression is cell cycle related. PML expression is altered during human oncogenesis, implying that PML may be an anti-oncogene involved not only in APL but also in other oncogenic events. Mutation analysis of the functional domains of PML demonstrated that its ability to form PML nuclear bodies or PODs (PML oncogenic domains) is essential for suppressing growth and transformation. In light of the above studies it appears that disruption of the normal function of PML plays a critical role in the pathogenesis of APL.
Collapse
Affiliation(s)
- Z M Mu
- Division of Laboratory Medicine, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | |
Collapse
|
31
|
Sun JM, Chen HY, Litchfield DW, Davie JR. Developmental changes in transcription factors associated with the nuclear matrix of chicken erythrocytes. J Cell Biochem 1996; 62:454-66. [PMID: 8891891 DOI: 10.1002/(sici)1097-4644(19960915)62:4<454::aid-jcb3>3.0.co;2-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nuclear matrix has roles in organizing nuclear DNA and in controlling transcription. Transcription factors are associated with the nuclear matrix, with the spectra of transcription factors differing from one cell type to another. In this study we identified the transcription factors and enzymes functioning in the regulation of gene expression that were associated with nuclear matrix and nonmatrix nuclear fractions in erythrocytes isolated from chick embryos at different stages of development, anemic and normal adult birds. We found that the primitive erythroid nuclear matrix had the greatest histone deacetylase activity and highest levels of several transcription factors, including GATA-1, CACCC-binding proteins, and NF1. These transcription factors have key roles in erythroid-specific gene expression. The levels of these transcription factors were lower in the nonmatrix and matrix fractions isolated from definitive erythrocytes. For primitive and definitive erythrocytes, the level of CACCC-binding proteins in the nuclear matrix fraction was greater than that of Sp1. The relative levels of these transcription factors were reversed in the nonmatrix fraction. Casein kinase II was not found in erythroid nuclear matrices. The observed erythroid lineage specific alterations in erythroid nuclear matrix transcription factor composition and abundance may be involved in erythroid-specific gene expression.
Collapse
Affiliation(s)
- J M Sun
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
32
|
|
33
|
Boulikas T. Chromatin domains and prediction of MAR sequences. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:279-388. [PMID: 8575883 DOI: 10.1016/s0074-7696(08)61234-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Polynuceosomes are constrained into loops or domains and are insulated from the effects of chromatin structure and torsional strain from flanking domains by the cross-complexation of matrix-attached regions (MARs) and matrix proteins. MARs or SARs have an average size of 500 bp, are spaced about every 30 kb, and are control elements maintaining independent realms of gene activity. A fraction of MARs may cohabit with core origin replication (ORIs) and another fraction might cohabit with transcriptional enhancers. DNA replication, transcription, repair, splicing, and recombination seem to take place on the nuclear matrix. Classical AT-rich MARs have been proposed to anchor the core enhancers and core origins complexed with low abundancy transcription factors to the nuclear matrix via the cooperative binding to MARs of abundant classical matrix proteins (topoisomerase II, histone H1, lamins, SP120, ARBP, SATB1); this creates a unique nuclear microenvironment rich in regulatory proteins able to sustain transcription, replication, repair, and recombination. Theoretical searches and experimental data strongly support a model of activation of MARs and ORIs by transcription factors. A set of 21 characteristics are deduced or proposed for MAR/ORI sequences including their enrichment in inverted repeats, AT tracts, DNA unwinding elements, replication initiator protein sites, homooligonucleotide repeats (i.e., AAA, TTT, CCC), curved DNA, DNase I-hypersensitive sites, nucleosome-free stretches, polypurine stretches, and motifs with a potential for left-handed and triplex structures. We are establishing Banks of ORI and MAR sequences and have undertaken a large project of sequencing a large number of MARs in an effort to determine classes of DNA sequences in these regulatory elements and to understand their role at the origins of replication and transcriptional enhancers.
Collapse
Affiliation(s)
- T Boulikas
- Institute of Molecular Medical Sciences, Palo Alto, California 94306, USA
| |
Collapse
|
34
|
Davie JR. The nuclear matrix and the regulation of chromatin organization and function. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:191-250. [PMID: 8575881 DOI: 10.1016/s0074-7696(08)61232-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nuclear DNA is organized into loop domains, with the base of the loop being bound to the nuclear matrix. Loops with transcriptionally active and/or potentially active genes have a DNase I-sensitive chromatin structure, while repressed chromatin loops have a condensed configuration that is essentially invisible to the transcription machinery. Core histone acetylation and torsional stress appear to be responsible for the generation and/or maintenance of the open potentially active chromatin loops. The transcriptionally active region of the loop makes several dynamic attachments with the nuclear matrix and is associated with core histones that are dynamically acetylated. Histone acetyltransferase and deacetylase, which catalyze this rapid acetylation and deacetylation, are bound to the nuclear matrix. Several transcription factors are components of the nuclear matrix. Histone acetyltransferase, deacetylase, and transcription factors may contribute to the dynamic attachment of the active chromatin domains with the nuclear matrix at sites of ongoing transcription.
Collapse
Affiliation(s)
- J R Davie
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
35
|
Ishii T, Aoki N, Noda A, Adachi T, Nakamura R, Matsuda T. Carboxy-terminal cytoplasmic domain of mouse butyrophilin specifically associates with a 150-kDa protein of mammary epithelial cells and milk fat globule membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1245:285-92. [PMID: 8541302 DOI: 10.1016/0304-4165(95)00102-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A cDNA encoding mouse butyrophilin was obtained by reverse transcriptase-coupled polymerase chain reaction (RT-PCR) using poly (A)+ RNA from lactating mouse mammary gland as a template and screening a cDNA library with the RT-PCR-amplified fragment as a probe. DNA sequencing and computer analysis revealed that it has a rather long 3'-untranslated sequence and that the carboxy-terminal cytoplasmic domain was well conserved between mouse and bovine butyrophilins. To elucidate the biological function of butyrophilin, the cytoplasmic region expressed as fusion protein with glutathione S-transferase (GST) was purified and incubated with the cell lysate of mouse mammary epithelial cell lines, COMMA-ID and HC11. A 150-kDa protein was shown to specifically associate with the cytoplasmic domain and the protein increased in amount when the cells were treated with basal medium supplemented with lactogenic hormones such as prolactin, insulin and glucocorticoid. N-terminal amino acid sequencing indicated that the protein is xanthine dehydrogenase/oxidase which has been cloned from mouse liver. Further, the cytoplasmic domain also bound xanthine dehydrogenase/oxidase from bovine milk fat globule membrane. These results suggest that butyrophilin might be physiologically associated with xanthine dehydrogenase/oxidase and might function in a complex form in milk fat secretion.
Collapse
Affiliation(s)
- T Ishii
- Department of Applied Biological Sciences, School of Agricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The second intron of the human beta globin gene (beta IVS2) has been previously identified as a region required for proper expression of beta globin. To further characterize this region, we have footprinted the entire beta IVS2 and have analyzed regions of interest by electrophoretic mobility shift assay. Through these studies we have identified four utilized binding sites for the erythroid regulatory factor GATA-1, two sites bound by general transcription factor Oct-1, two sites bound by the nuclear matrix attachment DNA binding protein special A-T-rich binding protein 1, and a site bound by a potential homeobox protein. Additionally, we have found several factors displaying temporal or tissue specificity by electrophoretic mobility shift assay, which may be potentially involved in the regulation of beta globin expression. These proteins are not supershifted by antibodies to factors important in erythroid regulation such as GATA-1, NFE-2, or YY1, or by antibodies against more general transcription factors.
Collapse
Affiliation(s)
- C E Jackson
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
37
|
Guo B, Odgren PR, van Wijnen AJ, Last TJ, Nickerson J, Penman S, Lian JB, Stein JL, Stein GS. The nuclear matrix protein NMP-1 is the transcription factor YY1. Proc Natl Acad Sci U S A 1995; 92:10526-30. [PMID: 7479833 PMCID: PMC40644 DOI: 10.1073/pnas.92.23.10526] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
NMP-1 was initially identified as a nuclear matrix-associated DNA-binding factor that exhibits sequence-specific recognition for the site IV regulatory element of a histone H4 gene. This distal promoter domain is a nuclear matrix interaction site. In the present study, we show that NMP-1 is the multifunctional transcription factor YY1. Gel-shift and Western blot analyses demonstrate that NMP-1 is immunoreactive with YY1 antibody. Furthermore, purified YY1 protein specifically recognizes site IV and reconstitutes the NMP-1 complex. Western blot and gel-shift analyses indicate that YY1 is present within the nuclear matrix. In situ immunofluorescence studies show that a significant fraction of YY1 is localized in the nuclear matrix, principally but not exclusively associated with residual nucleoli. Our results confirm that NMP-1/YY1 is a ubiquitous protein that is present in both human cells and in rat osteosarcoma ROS 17/2.8 cells. The finding that NMP-1 is identical to YY1 suggests that this transcriptional regulator may mediate gene-matrix interactions. Our results are consistent with the concept that the nuclear matrix may functionally compartmentalize the eukaryotic nucleus to support regulation of gene expression.
Collapse
Affiliation(s)
- B Guo
- Department of Cell Biology, University of Masachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Le Douarin B, Zechel C, Garnier JM, Lutz Y, Tora L, Pierrat P, Heery D, Gronemeyer H, Chambon P, Losson R. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 1995; 14:2020-33. [PMID: 7744009 PMCID: PMC398302 DOI: 10.1002/j.1460-2075.1995.tb07194.x] [Citation(s) in RCA: 434] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptors (NRs) bound to response elements mediate the effects of cognate ligands on gene expression. Their ligand-dependent activation function, AF-2, presumably acts on the basal transcription machinery through intermediary proteins/mediators. We have isolated a mouse nuclear protein, TIF1, which enhances RXR and RAR AF-2 in yeast and interacts in a ligand-dependent manner with several NRs in yeast and mammalian cells, as well as in vitro. Remarkably, these interactions require the amino acids constituting the AF-2 activating domain conserved in all active NRs. Moreover, the oestrogen receptor (ER) AF-2 antagonist hydroxytamoxifen cannot promote ER-TIF1 interaction. We propose that TIF1, which contains several conserved domains found in transcriptional regulatory proteins, is a mediator of ligand-dependent AF-2. Interestingly, the TIF1 N-terminal moiety is fused to B-raf in the mouse oncoprotein T18.
Collapse
Affiliation(s)
- B Le Douarin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, Illkirch, Strasbourg
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Amadou C, Ribouchon MT, Mattei MG, Jenkins NA, Gilbert DJ, Copeland NG, Avoustin P, Pontarotti P. Localization of new genes and markers to the distal part of the human major histocompatibility complex (MHC) region and comparison with the mouse: new insights into the evolution of mammalian genomes. Genomics 1995; 26:9-20. [PMID: 7782091 DOI: 10.1016/0888-7543(95)80077-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have refined and extended the map of the distal half of the human major histocompatibility complex. The map is continuous from HLA-E to 1000 kb telomeric of HLA-F and includes six new markers and genes. In addition, the corresponding sequences that were not previously mapped in the mouse genome have been located. The human and the mouse organizations have therefore been compared. This comparison allows us to demonstrate that the structure of the distal part of the MHC is similar in the two species. In addition, this comparison shows the presence of a breakpoint of synteny telomeric of the distal part of the H-2 region. Indeed, the region telomeric of HLA in human is found on a chromosome different from that carrying H-2 in mouse. The mapping analysis of paralogous genes (structurally related genes) around the breakpoint shows that the human organization probably represents the putative human/mouse ancestral one. This evolutionary breakpoint was precisely mapped in human, and the surrounding region was cloned into yeast artificial chromosomes. Finally, we show that the region found around the breakpoint was involved several times in chromosome recombinations in the mouse lineage, as it seems to correspond also to the t-complex distal inversion point.
Collapse
MESH Headings
- Animals
- Base Sequence
- Biological Evolution
- Blotting, Southern
- Chromosome Mapping/methods
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 6/genetics
- Crosses, Genetic
- Electrophoresis, Gel, Pulsed-Field
- Genes, MHC Class I
- Genetic Markers
- Humans
- In Situ Hybridization
- Mice
- Molecular Sequence Data
- Translocation, Genetic
Collapse
Affiliation(s)
- C Amadou
- CNRS UPR 8291, CHU de Purpan, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
von Arnim AG, Deng XW. Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 1994; 79:1035-45. [PMID: 8001131 DOI: 10.1016/0092-8674(94)90034-5] [Citation(s) in RCA: 298] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Arabidopsis COP1 acts as a repressor of photomorphogenesis in darkness, and light stimuli abrogate this suppressive action. COP1, when fused to beta-glucuronidase (GUS), is enriched in the nucleus in darkness, but not in the light, in hypocotyl cells of Arabidopsis seedlings and epidermal cells of onion bulbs. In Arabidopsis hypocotyl cells, the nuclear GUS-COP1 level changes in response to dark-light transitions and quantitatively correlates with the extent of repression of photomorphogenic development. In root cells, GUS-COP1 is constitutively nuclear, consistent with an established role of COP1 in suppressing root chloroplast development in both light and darkness. We conclude that COP1 acts inside the nucleus to suppress photomorphogenesis and that light inactivation of COP1 involves a cell type-specific control of its nucleocytoplasmic partitioning.
Collapse
Affiliation(s)
- A G von Arnim
- Department of Biology, Yale University, New Haven, Connecticut 06520-8104
| | | |
Collapse
|
41
|
Boulikas T. Transcription factor binding sites in the matrix attachment region (MAR) of the chicken alpha-globin gene. J Cell Biochem 1994; 55:513-29. [PMID: 7962181 DOI: 10.1002/jcb.240550411] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nuclear matrix is a nuclear protein-DNA superstructure believed to be the exclusive site of DNA replication, transcription, repair, and recombination. The attachment regions of chromatin loops to the nuclear matrix, called MARs, nest origins of replication, have transcriptional enhancer activity, and via their interaction with protein transcription factors may govern gene switch during development and tissue-specific gene expression. In this study the 967 bp MAR of the chicken alpha-globin gene is analyzed for the presence of hexanucleotides from a number (83 in total) of vertebrate protein transcription factors and core origins of replication. A total number of 760 hexanucleotides from factor sites or origins of replication were used for this search. We found that: (1) The occurrence of protein transcription factor binding sites overall on the MAR fragment as well as on the enhancer and promoter regions of other genes is only about 1.2-1.5 times higher than in random DNA, something consistent for all MAR and enhancer sequences examined. However, a high concentration (up to 2.7 times over random sequences) of hexanucleotide factor sites is observed on small stretches of the alpha-globin gene MAR. (2) Some regulatory protein binding sites are underrepresented whereas others are overrepresented, giving to an MAR a particular transcription factor flavor. (3) The DNA curvature map of the MAR sequence and the potential sites of positioned nucleosomes suggest the sites where a competition between core histone octamers and protein transcription factors for DNA might be found. This approach might provide a novel technique to diagnose for the regulatory or nonregulatory function of a stretch of DNA. Furthermore, MARs are proposed to constitute important regulatory elements of genes in addition to enhancers, promoters, silencers, locus control regions, and origins of replication. Additional parameters such as interaction of a transcription factor with other transcription factors fixed at vicinal sites, DNA methylation, intrinsic DNA curvature torsional strain, and nucleosome positioning might also determine the high-affinity binding of a transcription factor to its functional sites and its exclusion from or low affinity binding to other nonregulatory regions.
Collapse
Affiliation(s)
- T Boulikas
- Institute of Molecular Medical Sciences, Palo Alto, California 94306
| |
Collapse
|
42
|
Abstract
Chicken histone H5 is an H1-like linker histone that is expressed only in nucleated erythrocytes. The histone H5 promoter has binding sites for Sp1 (a high affinity site) and UPE-binding protein, while the 3' erythroid-specific enhancer has binding sites for Sp1 (one moderate and three weak affinity), GATA-1, and NF1. In this study we investigated whether trans-acting factors that bind to the chicken histone H5 promoter or enhancer are associated with adult chicken immature and mature erythrocyte nuclear matrices. We show that NF1, but not Sp1, GATA-1, or UPE-binding protein, is associated with the internal nuclear matrices of these erythroid cells. Further, we found that a subset of the NF1 family of proteins is bound to the mature erythrocyte nuclear matrix. These results suggest that in chicken erythrocytes NF1 may mediate an interaction between the histone H5 enhancer and the erythroid internal nuclear matrix. NF1 was also present in the internal nuclear matrices of chicken liver and trout liver. The observations of this study provide evidence that NF1 may have a role in a variety of cell types in targeting specific DNA sequences to the nuclear matrix.
Collapse
Affiliation(s)
- J M Sun
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
43
|
Abstract
Tissue specific regulation of gene expression by a single transcription factor or group of transcription factors cannot be explained simply by DNA sequence alone. For example, in the same animal a particular transcription factor is capable of interacting with DNA in the nucleus of many different cell types, resulting in unique gene expressions despite the presence of a similar genome in all cells. Historically, these differences in response to a single type of factor within target tissues in the same animal have been suggested to occur through different alterations in chromatin structure. Recent, data has demonstrated that combinations of hormones and transcription factors working together may cooperatively play a role in the regulation of gene expression [Pearce and Yamamoto (1993): Science 259:1161-1165]. However, the molecular mechanisms of this tissue specific regulation of gene expression still remains largely unexplained. Current evidence suggests that in different cell types the interplay between the specific three-dimensional organization of the genome and the structural components of the nucleus, the nuclear matrix, may accomplish the regulation of specific gene expression.
Collapse
Affiliation(s)
- R H Getzenberg
- Pittsburgh Cancer Institute, University of Pittsburgh Medical Center, Pennsylvania 15213-2582
| |
Collapse
|
44
|
Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, de Jong L, Szostecki C, Calvo F, Chomienne C. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 1994; 13:1073-83. [PMID: 8131741 PMCID: PMC394915 DOI: 10.1002/j.1460-2075.1994.tb06356.x] [Citation(s) in RCA: 331] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Nuclear bodies (NBs) are ultrastructurally defined granules predominantly found in dividing cells. Here we show that PML, a protein involved in the t(15;17) translocation of acute promyelocytic leukaemia (APL), is specifically bound to a NB. PML and several NB-associated proteins, found as auto-antigens in primary biliary cirrhosis (PBC), are co-localized and co-regulated. The APL-derived PML-RAR alpha fusion protein is shown to be predominantly localized in the cytoplasm, whereas a fraction is nuclear and delocalizes the NB antigens to multiple smaller nuclear clusters devoid of ultrastructural organization. RA administration (which in APL patients induces blast differentiation and consequently complete remissions) causes the re-aggregation of PML and PBC auto-antigens onto the NB, while PML-RAR alpha remains mainly cytoplasmic. Thus, PML-RAR alpha expression leads to a RA-reversible alteration of a nuclear domain. These results shed a new light on the pathogenesis of APL and provide a molecular link between NBs and oncogenesis.
Collapse
MESH Headings
- Animals
- CHO Cells
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 17
- Cricetinae
- Cytoplasmic Granules/drug effects
- Cytoplasmic Granules/physiology
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Microscopy, Immunoelectron
- Neoplasm Proteins
- Nuclear Proteins
- Promyelocytic Leukemia Protein
- Receptors, Retinoic Acid/analysis
- Receptors, Retinoic Acid/biosynthesis
- Receptors, Retinoic Acid/metabolism
- Recombinant Fusion Proteins/analysis
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/metabolism
- Transcription Factors/analysis
- Transcription Factors/biosynthesis
- Transcription Factors/metabolism
- Transfection
- Translocation, Genetic
- Tretinoin/pharmacology
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- M H Koken
- CNRS UPR 43, Centre Hayem, Hôpital St Louis, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vernet C, Boretto J, Mattéi MG, Takahashi M, Jack LJ, Mather IH, Rouquier S, Pontarotti P. Evolutionary study of multigenic families mapping close to the human MHC class I region. J Mol Evol 1993; 37:600-12. [PMID: 8114113 DOI: 10.1007/bf00182746] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During a search for novel coding sequences within the human MHC class I region (chromosome 6p21.3), we found an exon (named B30-2) coding for a 166-amino-acid peptide which is very similar to the C-terminal domain of several coding sequences: human 52-kD Sjögren's syndrome nuclear antigen A/Ro (SS-A/Ro) and ret finger protein (RFP), Xenopus nuclear factor 7 (XNF7), and bovine butyrophilin. The first three of these proteins share similarities over the whole length of the molecule whereas butyrophilin is similar in the C-terminal domain. The N-terminal domain of butyrophilin is similar to rat myelin/oligodendrocyte glycoprotein (MOG) and chicken B blood group system (B-G) protein. These domains are components of a new subfamily of the immunoglobulin superfamily (IgSF). Butyrophilin is thus a mosaic protein composed of the MOG/B-G Ig-like domain and the C-terminal domain of 52-kD SS-A/Ro, RFP, and XNF7 (B30-2-like domain). Moreover, in situ hybridization shows that RFP, butyrophilin, and MOG map to the human chromosome 6p21.3-6p22 region and are thus close to the MHC class I genes. It is therefore possible that the butyrophilin gene is the product of an exon shuffling event which occurred between ancestors of the RFP and MOG genes. To our knowledge, this is the first example of the colocalization of a chimeric gene and its putative progenitors. Finally, regulatory protein T-lymphocyte 1 (Rpt-1) shares similarities with the N-terminal halves of RFP, 52-kD SS-A/Ro, and XNF7, but not with the B30-2-like domain. We show that the ancestral Rpt-1 gene evolved by overprinting.
Collapse
Affiliation(s)
- C Vernet
- CRPG-CNRS, CHR Purpan, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|