1
|
Aono S, Nakajima H. Transcriptional Regulation of Gene Expression by Metalloproteins. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967400103165128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FNR and SoxR are transcriptional regulators containing an iron–sulfur cluster. The iron–sulfur cluster in FNR acts as an oxygen sensor by reacting with oxygen. The structural change of the iron–sulfur cluster takes place when FNR senses oxygen, which regulates the transcriptional regulator activity of FNR through the change of the quaternary structure. SoxR contains the [2Fe–2S] cluster that regulates the transcriptional activator activity of SoxR. Only the oxidized SoxR containing the [2Fe–2S]2+ cluster is active as the transcriptional activator. CooA is a transcriptional activator containing a protoheme that acts as a CO sensor. CO is a physiological effector of CooA and regulates the transcriptional activator activity of CooA. In this review, the biochemical and biophysical properties of FNR, SoxR, and CooA are described.
Collapse
Affiliation(s)
- Shigetoshi Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| | - Hiroshi Nakajima
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| |
Collapse
|
2
|
Moore KS, von Lindern M. RNA Binding Proteins and Regulation of mRNA Translation in Erythropoiesis. Front Physiol 2018; 9:910. [PMID: 30087616 PMCID: PMC6066521 DOI: 10.3389/fphys.2018.00910] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Control of gene expression in erythropoiesis has to respond to signals that may emerge from intracellular processes or environmental factors. Control of mRNA translation allows for relatively rapid modulation of protein synthesis from the existing transcriptome. For instance, the protein synthesis rate needs to be reduced when reactive oxygen species or unfolded proteins accumulate in the cells, but also when iron supply is low or when growth factors are lacking in the environment. In addition, regulation of mRNA translation can be important as an additional layer of control on top of gene transcription, in which RNA binding proteins (RBPs) can modify translation of a set of transcripts to the cell’s actual protein requirement. The 5′ and 3′ untranslated regions of mRNA (5′UTR, 3′UTR) contain binding sites for general and sequence specific translation factors. They also contain secondary structures that may hamper scanning of the 5′UTR by translation complexes or may help to recruit translation factors. In addition, the term 5′UTR is not fully correct because many transcripts contain small open reading frames in their 5′UTR that are translated and contribute to regulation of mRNA translation. It is becoming increasingly clear that the transcriptome only partly predicts the proteome. The aim of this review is (i) to summarize how the availability of general translation initiation factors can selectively regulate transcripts because the 5′UTR contains secondary structures or short translated sequences, (ii) to discuss mechanisms that control the length of the mRNA poly(A) tail in relation to mRNA translation, and (iii) to give examples of sequence specific RBPs and their targets. We focused on transcripts and RBPs required for erythropoiesis. Whereas differentiation of erythroblasts to erythrocytes is orchestrated by erythroid transcription factors, the production of erythrocytes needs to respond to the availability of growth factors and nutrients, particularly the availability of iron.
Collapse
Affiliation(s)
- Kat S Moore
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
3
|
Abstract
Cellular iron homeostasis is regulated by post-transcriptional feedback mechanisms, which control the expression of proteins involved in iron uptake, release and storage. Two cytoplasmic proteins with mRNA-binding properties, iron regulatory proteins 1 and 2 (IRP1 and IRP2) play a central role in this regulation. Foremost, IRPs regulate ferritin H and ferritin L translation and thus iron storage, as well as transferrin receptor 1 (TfR1) mRNA stability, thereby adjusting receptor expression and iron uptake via receptor-mediated endocytosis of iron-loaded transferrin. In addition splice variants of iron transporters for import and export at the plasma-membrane, divalent metal transporter 1 (DMT1) and ferroportin are regulated by IRPs. These mechanisms have probably evolved to maintain the cytoplasmic labile iron pool (LIP) at an appropriate level. In certain tissues, the regulation exerted by IRPs influences iron homeostasis and utilization of the entire organism. In intestine, the control of ferritin expression limits intestinal iron absorption and, thus, whole body iron levels. In bone marrow, erythroid heme biosynthesis is coordinated with iron availability through IRP-mediated translational control of erythroid 5-aminolevulinate synthase mRNA. Moreover, the translational control of HIF2α mRNA in kidney by IRP1 coordinates erythropoietin synthesis with iron and oxygen supply. Besides IRPs, body iron absorption is negatively regulated by hepcidin. This peptide hormone, synthesized and secreted by the liver in response to high serum iron, downregulates ferroportin at the protein level and thereby limits iron absorption from the diet. Hepcidin will not be discussed in further detail here.
Collapse
Affiliation(s)
- Lukas C Kühn
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ISREC - Swiss Institute for Experimental Cancer Research, EPFL_SV_ISREC, Room SV2516, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis. J Bacteriol 2013; 195:1525-37. [PMID: 23354745 DOI: 10.1128/jb.01690-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, it was shown that an aconitase (citB) null mutation results in a vast overaccumulation of citrate in the culture fluid of growing Bacillus subtilis cells, a phenotype that causes secondary effects, including the hyperexpression of the citB promoter. B. subtilis aconitase is a bifunctional protein; to determine if either or both activities of aconitase were responsible for this phenotype, two strains producing different mutant forms of aconitase were constructed, one designed to be enzymatically inactive (C450S [citB2]) and the other designed to be defective in RNA binding (R741E [citB7]). The citB2 mutant was a glutamate auxotroph and accumulated citrate, while the citB7 mutant was a glutamate prototroph. Unexpectedly, the citB7 strain also accumulated citrate. Both mutant strains exhibited overexpression of the citB promoter and accumulated high levels of aconitase protein. These strains and the citB null mutant also exhibited increased levels of citrate synthase protein and enzyme activity in cell extracts, and the major citrate synthase (citZ) transcript was present at higher-than-normal levels in the citB null mutant, due at least in part to a >3-fold increase in the stability of the citZ transcript compared to the wild type. Purified B. subtilis aconitase bound to the citZ 5' leader RNA in vitro, but the mutant proteins did not. Together, these data suggest that wild-type aconitase binds to and destabilizes the citZ transcript in order to maintain proper cell homeostasis by preventing the overaccumulation of citrate.
Collapse
|
5
|
Surdej P, Richman L, Kühn LC. Differential translational regulation of IRE-containing mRNAs in Drosophila melanogaster by endogenous IRP and a constitutive human IRP1 mutant. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:891-894. [PMID: 18675912 DOI: 10.1016/j.ibmb.2008.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 05/26/2023]
Abstract
Insects, like vertebrates, express iron regulatory proteins (IRPs) that may regulate proteins in cellular iron storage and energy metabolism. Two mRNAs, an unspliced form of ferritin H mRNA and succinate dehydrogenase subunit b (SDHb) mRNA, are known to comprise an iron responsive element (IRE) in their 5'-untranslated region making them susceptible to translational repression by IRPs at low iron levels. We have investigated the effect of wild-type human IRP1 (hIRP1) and the constitutively active mutant hIRP1-S437 in transgenic Drosophila melanogaster. Endogenous Drosophila IRE-binding activity was readily detected in gel retardation assays. However, translational repression assessed by polysome gradients was only visible for unspliced IRE-containing ferritin H mRNA, but not for SDHb mRNA. Upon expression of exogenous hIRP1-S437 both mRNAs were strongly repressed. This correlated with a diminished survival rate of adult flies with hIRP1 and complete lethality with hIRP1-S437. We conclude that constitutive IRP1 expression is deleterious to fly survival, probably due to the essential function of SDHb or proteins encoded by yet unidentified target mRNAs.
Collapse
Affiliation(s)
- Patrick Surdej
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ISREC - Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | | | | |
Collapse
|
6
|
Tang Y, Guest JR, Artymiuk PJ, Green J. Switching aconitase B between catalytic and regulatory modes involves iron-dependent dimer formation. Mol Microbiol 2005; 56:1149-58. [PMID: 15882410 DOI: 10.1111/j.1365-2958.2005.04610.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In addition to being the major citric acid cycle aconitase in Escherichia coli the aconitase B protein (AcnB) is also a post-transcriptional regulator of gene expression. The AcnB proteins represent a distinct branch of the aconitase superfamily that possess a HEAT-like domain (domain 5). The HEAT domains of other proteins are implicated in protein:protein interactions. Gel filtration analysis has now shown that cell-free extracts contain high-molecular-weight species of AcnB. Furthermore, in vitro and in vivo protein interaction experiments have shown that AcnB forms homodimers. Addition of the iron chelator bipyridyl to cultures inhibited the dimer-dependent readout from an AcnB bacterial two-hybrid system. A similar response was observed with a catalytically inactive AcnB variant, AcnB(C769S), suggesting that the monomer-dimer transition is not mediated by the state of the AcnB iron-sulphur cluster. The iron-responsive interacting unit was accordingly traced to the N-terminal region (domains 4 and 5) of the AcnB protein, and not to domain 3 that houses the iron-sulphur cluster. Thus, it was shown that a polypeptide containing AcnB N-terminal domains 5 and 4 (AcnB5-4) interacts with a second AcnB5-4 to form a homodimer. AcnB has recently been shown to initiate a regulatory cascade controlling flagella biosynthesis in Salmonella enterica by binding to the ftsH transcript and inhibiting the synthesis of the FtsH protease. A plasmid encoding AcnB5-4 complemented the flagella-deficient phenotype of a S. enterica acnB mutant, and the isolated AcnB5-4 polypeptide specifically recognized and bound to the ftsH transcript. Thus, the N-terminal region of AcnB is necessary and sufficient for promoting the formation of AcnB dimers and also for AcnB binding to target mRNA. Furthermore, the relative effects of iron on these processes provide a simple iron-mediated dimerization mechanism for switching the AcnB protein between catalytic and regulatory roles.
Collapse
Affiliation(s)
- Yue Tang
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
7
|
Abstract
Peptide dendrimers are radial or wedge-like branched macromolecules consisting of a peptidyl branching core and/or covalently attached surface functional units. The multimeric nature of these constructs, the unambiguous composition and ease of production make this type of dendrimer well suited to various biotechnological and biochemical applications. Applications include use as biomedical diagnostic reagents, protein mimetics, anticancer and antiviral agents, vaccines and drug and gene delivery vehicles. This review focuses on the different types of peptide dendrimers currently in use and the synthetic methods commonly employed to generate peptide dendrimers ranging from stepwise solid-phase synthesis to chemoselective and orthogonal ligation.
Collapse
Affiliation(s)
- Kristen Sadler
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
8
|
Abstract
Iron is vital for almost all living organisms by participating in a wide variety of metabolic processes, including oxygen transport, DNA synthesis, and electron transport. However, iron concentrations in body tissues must be tightly regulated because excessive iron leads to tissue damage, as a result of formation of free radicals. Disorders of iron metabolism are among the most common diseases of humans and encompass a broad spectrum of diseases with diverse clinical manifestations, ranging from anemia to iron overload and, possibly, to neurodegenerative diseases. The molecular understanding of iron regulation in the body is critical in identifying the underlying causes for each disease and in providing proper diagnosis and treatments. Recent advances in genetics, molecular biology and biochemistry of iron metabolism have assisted in elucidating the molecular mechanisms of iron homeostasis. The coordinate control of iron uptake and storage is tightly regulated by the feedback system of iron responsive element-containing gene products and iron regulatory proteins that modulate the expression levels of the genes involved in iron metabolism. Recent identification and characterization of the hemochromatosis protein HFE, the iron importer Nramp2, the iron exporter ferroportin1, and the second transferrin-binding and -transport protein transferrin receptor 2, have demonstrated their important roles in maintaining body's iron homeostasis. Functional studies of these gene products have expanded our knowledge at the molecular level about the pathways of iron metabolism and have provided valuable insight into the defects of iron metabolism disorders. In addition, a variety of animal models have implemented the identification of many genetic defects that lead to abnormal iron homeostasis and have provided crucial clinical information about the pathophysiology of iron disorders. In this review, we discuss the latest progress in studies of iron metabolism and our current understanding of the molecular mechanisms of iron absorption, transport, utilization, and storage. Finally, we will discuss the clinical presentations of iron metabolism disorders, including secondary iron disorders that are either associated with or the result of abnormal iron accumulation.
Collapse
Affiliation(s)
- P T Lieu
- The R.W. Johnson Pharmaceutical Research Institute, 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
9
|
Kuriyama-Matsumura K, Sato H, Suzuki M, Bannai S. Effects of hyperoxia and iron on iron regulatory protein-1 activity and the ferritin synthesis in mouse peritoneal macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1544:370-7. [PMID: 11341946 DOI: 10.1016/s0167-4838(00)00251-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ferritin is an intracellular iron storage protein and its translation is inhibited by binding of iron regulatory proteins (IRPs) to the iron-responsive element (IRE) located in the 5' untranslated region of its mRNA. In this paper, we have investigated the effect of hyperoxia and iron on the binding activity of IRP-1 and the ferritin synthesis in mouse peritoneal macrophages. The binding activity of IRP-1 was increased and the ferritin synthesis was suppressed when the macrophages were cultured under hyperoxia, and the reverse occurred under hypoxia. Iron diminished the IRP-1-binding activity and the enhanced synthesis of ferritin. However, this effect was arrested under hyperoxia. Consistently, hypoxia-induced loss of binding activity of IRP-1 and the enhanced synthesis of ferritin were blocked in the presence of an iron chelator deferoxamine. These alterations of the binding activity of IRP-1 in response to oxygen and iron were not reproduced in the cell-free extract. The data suggest that in the macrophages oxygen and iron inversely act on the binding activity of IRP-1 and the ferritin synthesis, and that intracellular mechanism(s) to sense iron and/or oxygen is required for these actions.
Collapse
Affiliation(s)
- K Kuriyama-Matsumura
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Tsukuba, Japan
| | | | | | | |
Collapse
|
10
|
Kim S, Ponka P. Effects of interferon-gamma and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide-induced degradation of iron regulatory protein 2. J Biol Chem 2000; 275:6220-6. [PMID: 10692416 DOI: 10.1074/jbc.275.9.6220] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron regulatory proteins (IRP-1 and IRP-2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements, which are located in the 3'-untranslated region and the 5'-untranslated region of their respective mRNAs. Cellular iron levels affect binding of IRPs to iron-responsive elements and consequently expression of TfR and ferritin. Moreover, NO(*), a redox species of nitric oxide that interacts primarily with iron, can activate IRP-1 RNA binding activity resulting in an increase in TfR mRNA levels. Recently we found that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA binding of IRP-2 followed by IRP-2 degradation, and these changes were associated with a decrease in TfR mRNA levels (Kim, S., and Ponka, P. (1999) J. Biol. Chem. 274, 33035-33042). In this study, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP-1 binding activity, whereas RNA binding of IRP-2 decreased and was followed by a degradation of this protein. Moreover, the decrease of IRP-2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. Furthermore, LPS/IFN-gamma-stimulated RAW 264.7 cells showed increased rates of ferritin synthesis. These results suggest that NO(+)-mediated degradation of IRP-2 plays a major role in iron metabolism during inflammation.
Collapse
Affiliation(s)
- S Kim
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital and Departments of Physiology and Medicine, McGill University, 3755 Cote Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| | | |
Collapse
|
11
|
|
12
|
Abstract
Iron is an essential nutrient, yet excess iron can be toxic to cells. The uptake of iron by mammalian cells is post-transcriptionally regulated by the interaction of iron-response proteins (IRP1 and IRP2) with iron-response elements (IREs) found in the mRNAs of genes of iron metabolism, such as ferritin, the transferrin receptor, erythroid aminolevulinic acid synthase, and mitochondrial aconitase. The IRPs are RNA binding proteins that bind to the IRE (found in the mRNAs of the regulated genes) in an iron- dependent manner. Binding of IRPs to the IREs leads to changes in the expression of the regulated genes and subsequent changes in the uptake, utilization, or storage of intracellular iron. Recent work has demonstrated that the binding of the IRPs to the IREs can also be modulated by changes in the redox state or oxidative stress level of the cell. These findings provide an important link between iron metabolism and states of oxidative stress.
Collapse
Affiliation(s)
- D J Haile
- Department of Medicine, University of Texas Health Science Center at San Antonio, 78284-7880, USA
| |
Collapse
|
13
|
Brazzolotto X, Gaillard J, Pantopoulos K, Hentze MW, Moulis JM. Human cytoplasmic aconitase (Iron regulatory protein 1) is converted into its [3Fe-4S] form by hydrogen peroxide in vitro but is not activated for iron-responsive element binding. J Biol Chem 1999; 274:21625-30. [PMID: 10419470 DOI: 10.1074/jbc.274.31.21625] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron regulatory protein 1 (IRP1) regulates the synthesis of proteins involved in iron homeostasis by binding to iron-responsive elements (IREs) of messenger RNA. IRP1 is a cytoplasmic aconitase when it contains a [4Fe-4S] cluster and an RNA-binding protein after complete removal of the metal center by an unknown mechanism. Human IRP1, obtained as the pure recombinant [4Fe-4S] form, is an enzyme as efficient toward cis-aconitate as the homologous mitochondrial aconitase. The aconitase activity of IRP1 is rapidly lost by reaction with hydrogen peroxide as the [4Fe-4S] cluster is quantitatively converted into the [3Fe-4S] form with release of a single ferrous ion per molecule. The IRE binding capacity of IRP1 is not elicited with H(2)O(2). Ferrous sulfate (but not other more tightly coordinated ferrous ions, such as the complex with ethylenediamine tetraacetic acid) counteracts the inhibitory action of hydrogen peroxide on cytoplasmic aconitase, probably by replenishing iron at the active site. These results cast doubt on the ability of reactive oxygen species to directly increase IRP1 binding to IRE and support a signaling role for hydrogen peroxide in the posttranscriptional control of proteins involved in iron homeostasis in vivo.
Collapse
Affiliation(s)
- X Brazzolotto
- Département de Biologie Moléculaire et Structurale, Laboratoire Métalloprotéines, Commissariat à l'Energie Atomique, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
14
|
Gegout V, Schlegl J, Schläger B, Hentze MW, Reinbolt J, Ehresmann B, Ehresmann C, Romby P. Ligand-induced structural alterations in human iron regulatory protein-1 revealed by protein footprinting. J Biol Chem 1999; 274:15052-8. [PMID: 10329709 DOI: 10.1074/jbc.274.21.15052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human iron regulatory protein-1 (IRP-1) is a bifunctional protein that regulates iron metabolism by binding to mRNAs encoding proteins involved in iron uptake, storage, and utilization. Intracellular iron accumulation regulates IRP-1 function by promoting the assembly of an iron-sulfur cluster, conferring aconitase activity to IRP-1, and hindering RNA binding. Using protein footprinting, we have studied the structure of the two functional forms of IRP-1 and have mapped the surface of the iron-responsive element (IRE) binding site. Binding of the ferritin IRE or of the minimal regulatory region of transferrin receptor mRNA induced strong protections against proteolysis in the region spanning amino acids 80 to 187, which are located in the putative cleft thought to be involved in RNA binding. In addition, IRE-induced protections were also found in the C-terminal domain at Arg-721 and Arg-728. These data implicate a bipartite IRE binding site located in the putative cleft of IRP-1. The aconitase form of IRP-1 adopts a more compact structure because strong reductions of cleavage were detected in two defined areas encompassing residues 149 to 187 and 721 to 735. Thus both ligands of apo-IRP-1, the IRE and the 4Fe-4S cluster, induce distinct but overlapping alterations in protease accessibility. These data provide evidences for structural changes in IRP-1 upon cluster formation that affect the accessibility of residues constituting the RNA binding site.
Collapse
Affiliation(s)
- V Gegout
- Unité Propre de Recherche 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Toth I, Yuan L, Rogers JT, Boyce H, Bridges KR. Hypoxia alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in human hepatoma and erythroleukemia cells. J Biol Chem 1999; 274:4467-73. [PMID: 9933651 DOI: 10.1074/jbc.274.7.4467] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ferritin and transferrin receptor expression is post-transcriptionally regulated by a conserved mRNA sequence termed the iron-responsive element (IRE), to which a transacting protein called the iron-regulatory protein (IRP) is bound. Our data demonstrate that hypoxia powerfully enhances IRE/IRP-1 binding in human cell lines. Using the human hepatoma cell line Hep3B as a model, we found that 16 h in a 1% oxygen atmosphere markedly increases IRE/IRP-1 binding as assessed by electromobility shift assay. Hypoxia also decreased cytosolic aconitase activity. The hypoxia-enhanced IRE/IRP-1 binding stabilized the transferrin receptor message, increased the cellular mRNA content by over 10-fold, and doubled surface receptor expression. Simultaneously, hypoxia suppressed ferritin message translation. Hypoxia's effect was most strikingly depicted by the absence of ferritin synthesis in cells challenged with inorganic iron. Our results contrast with previously reported data (Hanson, E. S., and Leibold, E. A. (1998) J. Biol. Chem. 273, 7588-7593) in which a 3% oxygen atmosphere reduced IRE/IRP-1 binding in rat hepatoma cells. We discuss some possible reasons for the differences. In aggregate with other investigations involving responses to hypoxia, iron, or nitric oxide, our data indicate that cellular iron metabolic responses are complex and that IRE/IRP-1 interactions vary between cell lines and perhaps between species.
Collapse
Affiliation(s)
- I Toth
- Joint Center for Sickle Cell and Thalassemic Disorders, Hematology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
16
|
Kühn LC. Iron and gene expression: molecular mechanisms regulating cellular iron homeostasis. Nutr Rev 1998; 56:s11-9; discussion s54-75. [PMID: 9564172 DOI: 10.1111/j.1753-4887.1998.tb01681.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In recent years, specific post-transcriptional mechanisms in the cytoplasm of vertebrate cells have been elucidated that directly affect the stability and translation of mRNAs coding for central proteins in iron metabolism. This review shall focus primarily on these mechanisms. Other levels of control, either affecting gene transcription and/ or related to the function of iron-capturing substances and transmembrane transport, are also likely to exist and to influence the iron balance and utilization. They are, however, much less clear.
Collapse
Affiliation(s)
- L C Kühn
- Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| |
Collapse
|
17
|
Richardson DR, Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1331:1-40. [PMID: 9325434 DOI: 10.1016/s0304-4157(96)00014-7] [Citation(s) in RCA: 513] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Iron uptake by mammalian cells is mediated by the binding of serum Tf to the TfR. Transferrin is then internalized within an endocytotic vesicle by receptor-mediated endocytosis and the Fe released from the protein by a decrease in endosomal pH. Apart from this process, several cell types also have other efficient mechanisms of Fe uptake from Tf that includes a process consistent with non-specific adsorptive pinocytosis and a mechanism that is stimulated by small-Mr Fe complexes. This latter mechanism appears to be initiated by hydroxyl radicals generated by the Fe complexes, and may play a role in Fe overload disease where a significant amount of serum non-Tf-bound Fe exists. Apart from Tf-bound Fe uptake, mammalian cells also possess a number of mechanisms that can transport Fe from small-Mr Fe complexes into the cell. In fact, recent studies have demonstrated that the membrane-bound Tf homologue, MTf, can bind and internalize Fe from 59Fe-citrate. However, the significance of this Fe uptake process and its pathophysiological relevance remain uncertain. Iron derived from Tf or small-Mr complexes is probably transported into mammalian cells in the Fe(II) state. Once Fe passes through the membrane, it then becomes part of the poorly characterized intracellular labile Fe pool. Iron in the labile Fe pool that is not used for immediate requirements is stored within the Fe-storage protein, ferritin. Cellular Fe uptake and storage are coordinately regulated through a feedback control mechanism mediated at the post-transcriptional level by cytoplasmic factors known as IRP1 and IRP2. These proteins bind to stem-loop structures known as IREs on the 3 UTR of the TfR mRNA and 5 UTR of ferritin and erythroid delta-aminolevulinic acid synthase mRNAs. Interestingly, recent work has suggested that the short-lived messenger molecule, NO (or its by-product, peroxynitrite), can affect cellular Fe metabolism via its interaction with IRP1. Moreover, NO can decrease Fe uptake from Tf by a mechanism separate to its effects on IRP1, and NO may also be responsible for activated macrophage-mediated Fe release from target cells. On the other hand, the expression of inducible NOS which produces NO, can be stimulated by Fe chelators and decreased by the addition of Fe salts, suggesting that Fe is involved in the control of NOS expression.
Collapse
Affiliation(s)
- D R Richardson
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada.
| | | |
Collapse
|
18
|
Muckenthaler M, Hentze MW. Mechanisms for posttranscriptional regulation by iron-responsive elements and iron regulatory proteins. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1997; 18:93-115. [PMID: 8994262 DOI: 10.1007/978-3-642-60471-3_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Muckenthaler
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
19
|
Henderson BR, Kühn LC. Interaction between iron-regulatory proteins and their RNA target sequences, iron-responsive elements. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1997; 18:117-39. [PMID: 8994263 DOI: 10.1007/978-3-642-60471-3_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this chapter, we have focused on the biochemistry of IRP-1 and the features which distinguish it from the related RNA-binding protein, IRP-2. IRP-1 is the cytoplasmic isoform of the enzyme aconitase, and, depending on iron status, may switch between enzymatic and RNA-binding activities. IRP-1 and IRP-2 are trans-acting regulators of mRNAs involved in iron uptake, storage and utilisation. The finding of an IRE in the citric acid cycle enzymes, mitochondrial aconitase and succinate dehydrogenase, suggests that the IRPs may also influence cellular energy production. These two proteins appear to bind RNAs with different but overlapping specificity, suggesting that they may regulate the stability or translation of as yet undefined mRNA targets, possibly extending their regulatory function beyond that of iron homeostasis. The interaction between the IRPs and the IRE represents one of the best characterised model systems for posttranscriptional gene control, and given that each IRP can also recognise its own unique set of RNAs, the search for new in vivo mRNA targets is expected to provide yet more surprises and insights into the fate of cytoplasmic mRNAs.
Collapse
|
20
|
Ryan TP, Krzesicki RF, Blakeman DP, Chin JE, Griffin RL, Richards IM, Aust SD, Petry TW. Pulmonary ferritin: differential effects of hyperoxic lung injury on subunit mRNA levels. Free Radic Biol Med 1997; 22:901-8. [PMID: 9119260 DOI: 10.1016/s0891-5849(96)00483-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ferritin is an iron storage protein that is regulated at the transcriptional and transcriptional levels, resulting in a complex mixture of tissue- and condition-specific isoforms. The protein shell of ferritin is composed of 24 subunits of two types (heavy or light), which are encoded by two distinct and independently regulated genes. In the present studies, the isoform profile for lung ferritin differed from other tissues (liver, spleen, and heart) as determined by isoelectric focusing (IEF) and polyacrylamide gel electrophoresis (PAGE). Lung ferritin was composed of equal amounts of heavy and light subunits. Differences in isoform profiles were the result of tissue-specific differential expression of the ferritin subunit genes as demonstrated by Northern blot analyses. Like heart ferritin, lung ferritin exhibited a low iron content that did not increase extensively in response to iron challenge, which contrasts with ferritins isolated from liver or spleen. When animals were exposed to hyperoxic conditions (95% oxygen for up to 60 h), ferritin heavy subunit mRNA levels did not markedly change at any of the investigated time points. In contrast, ferritin light subunit mRNA increased severalfold in response to hyperoxic exposure. Investigation of the cytoplasmic distribution of ferritin mRNA showed that a substantial portion was associated with the ribonucleoprotein (RNP) fraction of the cytosol, suggesting that a pool of untranslated ferritin mRNA exists in the lung. Upon hyperoxic insult, all ferritin light subunit mRNA pools (RNP, monosomal, polysomal) were elevated, although a specific shift from RNP to polysomal pools was not evident. Therefore, the increase in translatable ferritin mRNA in response to hyperoxia resulted from transcriptional rather than specific translational activation. The observed pattern of light chain-specific transcriptional induction of ferritin is consistent with the hypothesis that hyperoxic lung injury is at least partially iron mediated.
Collapse
Affiliation(s)
- T P Ryan
- Upjohn Laboratories, Kalamazoo, MI 49001, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rouault T, Klausner R. Regulation of iron metabolism in eukaryotes. CURRENT TOPICS IN CELLULAR REGULATION 1997; 35:1-19. [PMID: 9192174 DOI: 10.1016/s0070-2137(97)80001-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Iron metabolism is regulated in cells to ensure that iron supplies are adequate and nontoxic. The expression of iron metabolism is regulated primarily by posttranscriptional mechanisms. Ferritin, eALAS, SDHb of Drosophila, and mammalian mitochondrial aconitase are translationally regulated. The TfR is regulated at the level of mRNA stability. Iron regulatory proteins are regulated either by assembly or by disassembly of an iron-sulfur cluster (IRP1) or by rapid degradation in the presence of iron (IRP2). The list of targets for IRP-mediated regulation is growing longer, and a range of possibilities for versatile regulation exists, as each IRP can bind to unique targets that differ from the consensus IRE. The reactivity of iron with oxygen and the creation of toxic by-products may be the evolutionary stimulus that produced this system of tight posttranscriptional gene regulation.
Collapse
Affiliation(s)
- T Rouault
- Cell Biology and Metabolism National Institutes of Child and Human Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
22
|
Beinert H, Kennedy MC, Stout CD. Aconitase as Ironminus signSulfur Protein, Enzyme, and Iron-Regulatory Protein. Chem Rev 1996; 96:2335-2374. [PMID: 11848830 DOI: 10.1021/cr950040z] [Citation(s) in RCA: 428] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Helmut Beinert
- Institute for Enzyme Research, Graduate School, and Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53705, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|
23
|
Thöny-Meyer L, Künzler P. The Bradyrhizobium japonicum aconitase gene (acnA) is important for free-living growth but not for an effective root nodule symbiosis. J Bacteriol 1996; 178:6166-72. [PMID: 8892815 PMCID: PMC178486 DOI: 10.1128/jb.178.21.6166-6172.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Bradyrhizobium japonicum acnA gene encoding the tricarboxylic acid cycle enzyme aconitase was cloned and characterized. The gene was mapped immediately upstream of the cytochrome c biogenesis gene cycV and found to be transcribed in the opposite direction. The nucleotide sequence of acnA was determined; the derived amino acid sequence shared a significant similarity with bacterial aconitases and with the human iron-responsive-element-binding protein. The level of expression of the acnA gene under aerobic growth conditions was 10-fold higher than that under anaerobic conditions. The start of transcription was mapped by primer extension experiments, and the putative promoter was found to contain a typical -10 but no -35 consensus sequence for a sigma70-type RNA polymerase. A 5' deletion removing all but 19 nucleotides upstream of the start of transcription completely abolished gene expression. An acnA mutant was constructed by gene disruption, and the mutant phenotype was characterized. Growth of the mutant was severely affected and could not be corrected by the addition of glutamate as a supplement. Although aconitase activity in free-living cells was decreased by more than 70%, the ability of the mutant to establish an effective root nodule symbiosis with soybean plants was not affected. This suggested either the existence of a second aconitase or the compensation for the mutant defect by symbiosis-specific metabolites synthesized in the root nodules.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland.
| | | |
Collapse
|
24
|
Abstract
Despite its abundance in the earth's crust, iron deficiency is a serious health issue in many parts of the world. Although fundamental observations about iron metabolism and the significance of iron nutriture were first noted some time ago, the molecular mechanisms involved in iron metabolism are just now being defined.
Collapse
Affiliation(s)
- J L Beard
- Department of Nutrition, Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
25
|
Kim HY, LaVaute T, Iwai K, Klausner RD, Rouault TA. Identification of a conserved and functional iron-responsive element in the 5'-untranslated region of mammalian mitochondrial aconitase. J Biol Chem 1996; 271:24226-30. [PMID: 8798666 DOI: 10.1074/jbc.271.39.24226] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Iron-responsive elements (IREs) are RNA stem-loop motifs found in genes of iron metabolism. When cells are iron-depleted, iron regulatory proteins (IRPs) bind to IREs in the transcripts of ferritin, transferrin receptor, and erythroid amino-levulinic acid synthetase. Binding of IRPs to IRE motifs near the 5' end of the transcript results in attenuation of translation while binding to IREs in the 3'-untranslated region of the transferrin receptor results in protection from endonucleolytic cleavage. Iron deprivation results in activation of IRE binding activity, whereas iron replete cells lose IRE binding activation. Here, we report the identification of a conserved IRE in the 5'-untranslated region of the transcript of the citric acid cycle enzyme mitochondrial aconitase from four different mammalian species. The IRE in the transcript of mitochondrial aconitase can mediate in vitro translational repression of mitochondrial aconitase by IRPs. Furthermore, levels of mitochondrial aconitase are decreased in mice maintained on a low iron diet, whereas levels of mRNA remain unchanged. The decrease in levels of mitochondrial aconitase is likely due to activation of IRP binding and consequent attenuation of translation. Thus, expression of the iron-sulfur protein mitochondrial aconitase and function of the citric acid cycle may be regulated by iron levels in cells.
Collapse
Affiliation(s)
- H Y Kim
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
26
|
Hentze MW, Kühn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A 1996; 93:8175-82. [PMID: 8710843 PMCID: PMC38642 DOI: 10.1073/pnas.93.16.8175] [Citation(s) in RCA: 973] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the expression of mRNAs that harbor IRP-binding sites, iron-responsive elements (IREs). Nitric oxide (NO) and oxidative stress in the form of H2O2 also signal to IRPs and thereby influence cellular iron metabolism. The recent discovery of two IRE-regulated mRNAs encoding enzymes of the mitochondrial citric acid cycle may represent the beginnings of elucidating regulatory coupling between iron and energy metabolism. In addition to providing insights into the regulation of iron metabolism and its connections with other cellular pathways, the IRE/IRP system has emerged as a prime example for the understanding of translational regulation and mRNA stability control. Finally, IRP-1 has highlighted an unexpected role for iron sulfur clusters as post-translational regulatory switches.
Collapse
Affiliation(s)
- M W Hentze
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
27
|
Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1275:161-203. [PMID: 8695634 DOI: 10.1016/0005-2728(96)00022-9] [Citation(s) in RCA: 1813] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The iron storage protein, ferritin, plays a key role in iron metabolism. Its ability to sequester the element gives ferritin the dual functions of iron detoxification and iron reserve. The importance of these functions is emphasised by ferritin's ubiquitous distribution among living species. Ferritin's three-dimensional structure is highly conserved. All ferritins have 24 protein subunits arranged in 432 symmetry to give a hollow shell with an 80 A diameter cavity capable of storing up to 4500 Fe(III) atoms as an inorganic complex. Subunits are folded as 4-helix bundles each having a fifth short helix at roughly 60 degrees to the bundle axis. Structural features of ferritins from humans, horse, bullfrog and bacteria are described: all have essentially the same architecture in spite of large variations in primary structure (amino acid sequence identities can be as low as 14%) and the presence in some bacterial ferritins of haem groups. Ferritin molecules isolated from vertebrates are composed of two types of subunit (H and L), whereas those from plants and bacteria contain only H-type chains, where 'H-type' is associated with the presence of centres catalysing the oxidation of two Fe(II) atoms. The similarity between the dinuclear iron centres of ferritin H-chains and those of ribonucleotide reductase and other proteins suggests a possible wider evolutionary linkage. A great deal of research effort is now concentrated on two aspects of ferritin: its functional mechanisms and its regulation. These form the major part of the review. Steps in iron storage within ferritin molecules consist of Fe(II) oxidation, Fe(III) migration and the nucleation and growth of the iron core mineral. H-chains are important for Fe(II) oxidation and L-chains assist in core formation. Iron mobilisation, relevant to ferritin's role as iron reserve, is also discussed. Translational regulation of mammalian ferritin synthesis in response to iron and the apparent links between iron and citrate metabolism through a single molecule with dual function are described. The molecule, when binding a [4Fe-4S] cluster, is a functioning (cytoplasmic) aconitase. When cellular iron is low, loss of the [4Fe-4S] cluster allows the molecule to bind to the 5'-untranslated region (5'-UTR) of the ferritin m-RNA and thus to repress translation. In this form it is known as the iron regulatory protein (IRP) and the stem-loop RNA structure to which it binds is the iron regulatory element (IRE). IREs are found in the 3'-UTR of the transferrin receptor and in the 5'-UTR of erythroid aminolaevulinic acid synthase, enabling tight co-ordination between cellular iron uptake and the synthesis of ferritin and haem. Degradation of ferritin could potentially lead to an increase in toxicity due to uncontrolled release of iron. Degradation within membrane-encapsulated "secondary lysosomes' may avoid this problem and this seems to be the origin of another form of storage iron known as haemosiderin. However, in certain pathological states, massive deposits of "haemosiderin' are found which do not arise directly from ferritin breakdown. Understanding the numerous inter-relationships between the various intracellular iron complexes presents a major challenge.
Collapse
Affiliation(s)
- P M Harrison
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | |
Collapse
|
28
|
Pantopoulos K, Weiss G, Hentze MW. Nitric oxide and oxidative stress (H2O2) control mammalian iron metabolism by different pathways. Mol Cell Biol 1996; 16:3781-8. [PMID: 8668195 PMCID: PMC231374 DOI: 10.1128/mcb.16.7.3781] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Several cellular mRNAs are regulated posttranscriptionally by iron-responsive elements (IREs) and the cytosolic IRE-binding proteins IRP-1 and IRP-2. Three different signals are known to elicit IRP-1 activity and thus regulate IRE-containing mRNAs: iron deficiency, nitric oxide (NO), and the reactive oxygen intermediate hydrogen peroxide (H2O2). In this report, we characterize the pathways for IRP-1 regulation by NO and H2O2 and examine their effects on IRP-2. We show that the responses of IRP-1 and IRP-2 to NO remarkably resemble those elicited by iron deficiency: IRP-1 induction by NO and by iron deficiency is slow and posttranslational, while IRP-2 induction by these inductive signals is slow and requires de novo protein synthesis. In contrast, H2O2 induces a rapid posttranslational activation which is limited to IRP-1. Removal of the inductive signal H2O2 after < or = 15 min of treatment (induction phase) permits a complete IRP-1 activation within 60 min (execution phase) which is sustained for several hours. This contrasts with the IRP-1 activation pathway by NO and iron depletion, in which NO-releasing drugs or iron chelators need to be present during the entire activation phase. Finally, we demonstrate that biologically synthesized NO regulates the expression of IRE-containing mRNAs in target cells by passive diffusion and that oxidative stress endogenously generated by pharmacological modulation of the mitochondrial respiratory chain activates IRP-1, underscoring the physiological significance of NO and reactive oxygen intermediates as regulators of cellular iron metabolism. We discuss models to explain the activation pathways of IRP-1 and IRP-2. In particular, we suggest the possibility that NO affects iron availability rather than the iron-sulfur cluster of IRP-1.
Collapse
Affiliation(s)
- K Pantopoulos
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
29
|
Frishman D, Hentze MW. Conservation of aconitase residues revealed by multiple sequence analysis. Implications for structure/function relationships. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:197-200. [PMID: 8706708 DOI: 10.1111/j.1432-1033.1996.0197u.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aconitases have recently regained much attention, because one member of this family, iron regulatory protein-1 (IRP-1), has been found to play a dual role as a cytoplasmic aconitase and a regulatory RNA-binding protein. This finding has highlighted a novel role for Fe-S clusters as post-translational regulatory switches. We have aligned 28 members of the Fe-S isomerase family, identified highly conserved amino acid residues, and integrated this information with data on the crystallographic structure of mammalian mitochondrial aconitase. We propose structural and/or functional roles for the previously unrecognized conserved residues. Our findings illustrate the value of detailed protein sequence analysis when high-resolution crystallographic data are already available.
Collapse
Affiliation(s)
- D Frishman
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
30
|
Paraskeva E, Hentze MW. Iron-sulphur clusters as genetic regulatory switches: the bifunctional iron regulatory protein-1. FEBS Lett 1996; 389:40-3. [PMID: 8682202 DOI: 10.1016/0014-5793(96)00574-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the eighties, iron regulatory protein-1 (IRP-1) was identified as a cytoplasmic mRNA-binding protein that regulates vertebrate cell iron metabolism. More recently, IRP-1 was found to represent the functional cytoplasmic homologue of mitochondrial aconitase, a citric acid cycle enzyme. Its two functions are mutually exclusive and depend on the status of an Fe-S cluster: the (cluster-less) apoIRP-1 binds to RNA, while the incorporation of a cubane 4Fe-4S cluster is required for enzymatic activity. Cellular signals including iron levels, nitric oxide and oxidative stress can regulate between the two activities posttranslationally and reversibly via the Fe-S cluster. Recent reports suggest that other regulatory proteins may be controlled by similar mechanisms.
Collapse
Affiliation(s)
- E Paraskeva
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
31
|
|
32
|
Mulvey MR, Kühn LC, Scraba DG. Induction of ferritin synthesis in cells infected with Mengo virus. J Biol Chem 1996; 271:9851-7. [PMID: 8621669 DOI: 10.1074/jbc.271.16.9851] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have recently identified ferritin as a cellular protein particle whose synthesis is stimulated in mouse or human cells infected by the picornavirus Mengo. Immunoprecipitation of the particle from infected murine L929 cells showed a 4- and 6-fold increase in the intracellular concentrations of H and L apoferritin subunits, respectively. This differential expression altered the H/L subunit ratio from 3.0 in uninfected cells to 2.2 in Mengo virus-infected cells. The induction is not due to an increase in transcription of the apoferritin L and H genes, nor is it due to an increase in stability of the apoferritin mRNAs. At the level of translation, the iron regulatory protein (IRP) remained intact, with similar amounts being detected in uninfected and infected cells. The Mengo virus RNA genome does not compete with the iron regulatory element (IRE) for the binding of IRP, and sequence analysis confirmed that there are no IREs in the virus RNA. The IRE binding activity of IRP in infected cells decreased approximately 30% compared with uninfected cells. The decrease in binding activity could be overcome by the addition of Desferal (deferoxamine mesylate; CIBA) an intracellular iron chelator, which suggests that virus infection causes an increase in intracellular free iron. Electron paramagnetic resonance (EPR) studies have confirmed the increase in free iron in Mengo virus infected cells. The permeability of cells for iron does not change in virus infected cells, suggesting that the induction of ferritin by Mengo virus is due to a change in the form of intracellular iron from a bound to a free state.
Collapse
Affiliation(s)
- M R Mulvey
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
33
|
Henderson BR, Menotti E, Kühn LC. Iron regulatory proteins 1 and 2 bind distinct sets of RNA target sequences. J Biol Chem 1996; 271:4900-8. [PMID: 8617762 DOI: 10.1074/jbc.271.9.4900] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Iron regulatory proteins (IRPs) 1 and 2 bind with equally high affinity to iron-responsive element (IRE) RNA stem-loops located in mRNA untranslated regions and, thereby, post-transcriptionally regulate several genes of iron metabolism. In this study we define the RNA-binding specificities of mouse IRP-1 and IRP-2. By screening loop mutations of the ferritin H-chain IRE, we show that both IRPs bind well to a large number of IRE-like sequences. More significantly, each IRP was found to recognize a unique subset of IRE-like targets. These IRP-specific groups of IREs are distinct from one another and are characterized by changes in certain paired (IRP-1) or unpaired (IRP-2) loop nucleotides. We further demonstrate the application of such sequences as unique probes to detect and distinguish IRP-1 from IRP-2 in human cells, and observe that the IRPs are regulated similarly by iron and reducing agents in human and rodent cells. Importantly, the ability of each IRP to recognize an exclusive subset of IREs was conserved between species. These findings suggest that IRP-1 and IRP-2 may each regulate unique mRNA targets in vivo, possibly extending their function beyond the regulation of intracellular iron homeostasis.
Collapse
Affiliation(s)
- B R Henderson
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, CH-1066 Epalinges s/Lausanne, Switzerland
| | | | | |
Collapse
|
34
|
Bradbury AJ, Gruer MJ, Rudd KE, Guest JR. The second aconitase (AcnB) of Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 2):389-400. [PMID: 8932712 DOI: 10.1099/13500872-142-2-389] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The second aconitase (AcnB) of Escherichia coli was partially purified from an acnA::kanR mutant lacking AcnA, and the corresponding polypeptide identified by activity staining and weak cross-reactivity with AcnA antiserum. The acnB gene was located at 2 center dot 85 min (131 center dot 6 kb) in a region of the chromosome previously assigned to two unidentified ORFs. Aconitase specific activities were amplified up to fivefold by infection with lambdaacnB phages from the Kohara lambda-E. coli gene library, and up to 120-fold (50% of soluble protein) by inducing transformants containing a plasmid (pGS783) in which the acnB coding region is expressed from a regulated T7 promoter. The AcnB protein was purified to > or = 98% homogeneity from a genetically enriched source (JRG3171) and shown to be a monomeric protein of Mr 100 000 (SDS-PAGE) and 105 000 (gel filtration analysis) compared with Mr 93 500 predicted from the nucleotide sequence. The sequence identity between AcnA and AcnB is only 17% and the domain organization of AcnA and related proteins (1-2-3-linker-4) is rearranged in AcnB (4-1-2-3).
Collapse
Affiliation(s)
- Alan J Bradbury
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2UH, UK
| | - Megan J Gruer
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2UH, UK
| | - Kenneth E Rudd
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - John R Guest
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2UH, UK
| |
Collapse
|
35
|
Abstract
The processes of iron uptake and distribution are highly regulated in mammalian cells. Expression of the transferrin receptor is increased when cells are iron-depleted, while expression of the iron sequestration protein ferritin is increased in cells that are iron-replete. Regulation of expression of proteins of iron uptake (transferrin receptor) and iron sequestration (ferritin) presumably ensures that levels of reactive free iron are not high in cells. Formation of reactive oxygen species occurs when free iron reacts with oxygen, and tight regulation of iron metabolism may enable cells to avoid engaging in destructive chemical reactions. Levels of intracellular iron are directly sensed by two iron sensing proteins. Iron regulatory protein 1 (IRP1) is a bifunctional protein; in cells that are iron-replete, IRP1 contains an iron-sulfur cluster and functions as cytosolic aconitase. In cells that are iron-depleted, IRP1 binds stem-loop structures in RNA transcripts known as iron responsive elements (IREs). Iron regulatory protein 2 (IRP2) binds similar stem-loop structures, but the mode of regulation of IRP2 is different in that IRP2 is rapidly degraded in iron-replete cells. The post-transcriptional regulation of genes of iron metabolism in mammalian cells ensures that cells have an adequate supply of iron, and also ensures that cells do not generate excess reactive oxygen species through the interaction of free iron and oxygen.
Collapse
Affiliation(s)
- T A Rouault
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | |
Collapse
|
36
|
Seiser C, Posch M, Thompson N, Kühn LC. Effect of transcription inhibitors on the iron-dependent degradation of transferrin receptor mRNA. J Biol Chem 1995; 270:29400-6. [PMID: 7493976 DOI: 10.1074/jbc.270.49.29400] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transferrin receptor (TfR) mRNA expression is tightly linked to intracellular iron levels. Upon iron deprivation, the iron regulatory protein (IRP) stabilizes TfR mRNA by binding to stem-loop structures in its 3'-untranslated region, whereas increased iron levels result in inactivation of the mRNA-binding protein and rapid degradation of TfR mRNA. Although IRP and the regulation of its RNA binding activity have been studied intensively, little is known about the mechanism of TfR mRNA degradation. In order to get more information about factors involved in this process we investigated the in vivo IRP-RNA interaction and the effect of transcription inhibitors on the iron-dependent decay of TfR mRNA. Here we demonstrate that part of the active IRP co-localizes with TfR mRNA to the rough endoplasmic reticulum. High intracellular iron levels led to a drastic reduction of this active RNA-bound IRP in vivo, indicating that IRP dissociates prior to TfR mRNA decay. Furthermore, the transcription inhibitor actinomycin D and translation inhibitor cycloheximide suppressed TfR mRNA degradation but did not interfere with the IRP dissociation step. Other inhibitors of RNA polymerase II had no effect on iron-dependent degradation of TfR mRNA. However, high concentrations of alpha-amanitin known to block transcription by RNA polymerase III interfered with mRNA decay suggesting the involvement of polymerase III transcripts in the degradation pathway.
Collapse
Affiliation(s)
- C Seiser
- Institute of Molecular Biology, University of Vienna, Vienna Biocenter, Austria
| | | | | | | |
Collapse
|
37
|
Bennett B, Gruer MJ, Guest JR, Thomson AJ. Spectroscopic characterisation of an aconitase (AcnA) of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:317-26. [PMID: 7588761 DOI: 10.1111/j.1432-1033.1995.317_1.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A spectroscopic study of an aconitase, AcnA, from Escherichia coli is presented. The amino acid sequence of AcnA has 53% identity with mammalian cytosolic aconitase (c-aconitase) which is the translational regulator known as iron regulatory factor (IRF). In the [3Fe-4S](+)-containing, inactive state, AcnA displays an EPR signal which is not unlike the corresponding signal from mammalian mitochondrial aconitase (m-aconitase) but is even more similar to the signal from c-aconitase. This is perhaps related to the greater similarity of the AcnA amino acid sequence with c-aconitase. Magnetic circular dichroism (MCD) spectroscopy has revealed that the electronic structure of the [3Fe-4S] cluster of AcnA must be similar to, but not identical to that of m-aconitase. Whilst the [Fe-4S] clusters from both of these enzymes display some features in their MCD spectra common to [3Fe-4S] clusters in general, their spectra overall are unique and indicate that the Fea atom of the [4Fe-4S] form is not the only unusual feature of the [Fe-S] clusters of aconitases. Active [4Fe-4S]-containing AcnA can be reduced to yield an EPR signal due to a [4Fe-4S]+ cluster which is indistinguishable from the signals from the [4Fe-4S]+ cluster in the mammalian enzymes. However, in contrast to the mammalian enzymes, the EPR signals of the cluster in AcnA are not significantly perturbed upon the addition of substrate. Furthermore, the catalytic activity of [Fe-4S](2+)-containing AcnA is fivefold higher than that of m-aconitase. The mechanistic implications of these data are discussed. A novel S = 1/2 EPR signal with g approximately 2 was observed in AcnA upon treatment with EDTA. The species giving rise to this signal is proposed to be an intermediate in cluster deconstruction.
Collapse
Affiliation(s)
- B Bennett
- School of Chemical Sciences, University of East Anglia, Norwich, UK
| | | | | | | |
Collapse
|
38
|
Guo B, Phillips JD, Yu Y, Leibold EA. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem 1995; 270:21645-51. [PMID: 7665579 DOI: 10.1074/jbc.270.37.21645] [Citation(s) in RCA: 225] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Iron regulatory proteins (IRP1 and IRP2) are RNA-binding proteins that bind to specific structures, termed iron-responsive elements (IREs), that are located in the 5'- or 3'-untranslated regions of mRNAs that encode proteins involved in iron homeostasis. IRP1 and IRP2 RNA binding activities are regulated by iron; IRP1 and IRP2 bind IREs with high affinity in iron-depleted cells and with low affinity in iron-repleted cells. The decrease in IRP1 RNA binding activity occurs by a switch between apoprotein and 4Fe-4S forms, without changes in IRP1 levels, whereas the decrease in IRP2 RNA binding activity reflects a reduction in IRP2 levels. To determine the mechanism by which iron decreases IRP2 levels, we studied IRP2 regulation by iron in rat hepatoma and human HeLa cells. The iron-dependent decrease in IRP2 levels was not due to a decrease in the amount of IRP2 mRNA or to a decrease in the rate of IRP2 synthesis. Pulse-chase experiments demonstrated that iron resulted in a 3-fold increase in the degradation rate of IRP2. IRP2 degradation depends on protein synthesis, but not transcription, suggesting a requirement for a labile protein. IRP2 degradation is not prevented by lysosomal inhibitors or calpain II inhibitors, but is prevented by inhibitors that block proteasome function. These data suggest the involvement of the proteasome in iron-mediated IRP2 proteolysis.
Collapse
Affiliation(s)
- B Guo
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City 84112, USA
| | | | | | | |
Collapse
|
39
|
Henderson BR, Kühn LC. Differential modulation of the RNA-binding proteins IRP-1 and IRP-2 in response to iron. IRP-2 inactivation requires translation of another protein. J Biol Chem 1995; 270:20509-15. [PMID: 7544791 DOI: 10.1074/jbc.270.35.20509] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Iron regulatory proteins (IRPs)-1 and -2 bind specific mRNA hairpin structures known as iron-responsive elements and thereby post-transcriptionally regulate proteins involved in iron uptake, storage, and utilization. In this study, we compared modulation of the RNA-binding activities of IRP-1 and IRP-2. We show that in vitro RNA-binding can be inhibited for each IRP by the alkylation of free sulfhydryl groups with N-ethylmaleimide, or by oxidation with diamide. The in vivo iron regulation of IRP-1 and IRP-2 appeared to involve different pathways. Both proteins are activated in Ltk- cells following iron chelation. This induction, however, was distinguishable by the addition of translation inhibitors, which temporarily delayed activation of IRP-1 by up to 8 h, but fully blocked IRP-2 induction for up to 20 h. The activation of IRP-2 was also prevented by transcription inhibition with actinomycin D. Further analysis revealed that, while both IRPs are rapidly inactivated following iron treatment of iron-depleted cells, the repression of IRP-2 was again completely translation dependent. Immunoblot analysis suggests that iron modulation of IRP-1 activity is predominantly a posttranslational process. This contrasts with IRP-2, whose activation reflected the accumulation of stable IRP-2 protein by de novo synthesis. IRP-2 inactivation/degradation occurred upon readdition of iron, but it required translation of another protein. The existence of an independent regulator of IRP-2 may help explain the differential regulation and expression of the two IRP proteins in different tissues and cell lines.
Collapse
Affiliation(s)
- B R Henderson
- Swiss Institute for Experimental Cancer Research, Epalinges s/Lausanne
| | | |
Collapse
|
40
|
Toth I, Bridges KR. Ascorbic acid enhances ferritin mRNA translation by an IRP/aconitase switch. J Biol Chem 1995; 270:19540-4. [PMID: 7642638 DOI: 10.1074/jbc.270.33.19540] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Replenishment of ascorbate in cultured cells, which are almost uniformly vitamin-deficient, increases ferritin mRNA translation in response to iron by 20-fold (Toth, I., Rogers, J. T., McPhee, J. A., Elliott, S. M., Abramson, S. L., and Bridges, K. R. (1995) J. Biol. Chem. 270, 2846-2852). We now demonstrate that ascorbate increases cytosolic aconitase activity. The iron-responsive element-binding protein (IRP-1) exists in three states: bound to mRNA without aconitase activity, free in the cytosol without aconitase activity, and free in the cytosol with aconitase activity. Ascorbate converts free IRP-1 to the enzymatically active form. Enhanced ferritin synthesis with subsequent iron stimulation is due to the altered equilibrium of the free IRP-1. The cellular biology of iron is closely intertwined with that of ascorbate.
Collapse
Affiliation(s)
- I Toth
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
41
|
L'Ecuyer TJ, Tompach PC, Morris E, Fulton AB. Transdifferentiation of chicken embryonic cells into muscle cells by the 3' untranslated region of muscle tropomyosin. Proc Natl Acad Sci U S A 1995; 92:7520-4. [PMID: 7638223 PMCID: PMC41371 DOI: 10.1073/pnas.92.16.7520] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transfection with a plasmid encoding the 3' untranslated region (3' UTR) of skeletal muscle tropomyosin induces chicken embryonic fibroblasts to express skeletal tropomyosin. Such cells become spindle shaped, fuse, and express titin, a marker of striated muscle differentiation. Skeletal muscle tropomyosin and titin organize in sarcomeric arrays. When the tropomyosin 3' UTR is expressed in osteoblasts, less skeletal muscle tropomyosin is expressed, and titin expression is delayed. Some transfected osteoblasts become spindle shaped but do not fuse nor organize these proteins into sarcomeres. Transfected cells expressing muscle tropomyosin organize muscle and nonmuscle isoforms into the same structures. Thus, the skeletal muscle tropomyosin 3' UTR induces transdifferentiation into a striated muscle phenotype in a cell-type-specific context.
Collapse
Affiliation(s)
- T J L'Ecuyer
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
42
|
Neupert B, Menotti E, Kühn LC. A novel method to identify nucleic acid binding sites in proteins by scanning mutagenesis: application to iron regulatory protein. Nucleic Acids Res 1995; 23:2579-83. [PMID: 7544459 PMCID: PMC307077 DOI: 10.1093/nar/23.14.2579] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We describe a new procedure to identify RNA or DNA binding sites in proteins, based on a combination of UV cross-linking and single-hit chemical peptide cleavage. Site-directed mutagenesis is used to create a series of mutants with single Asn-Gly sequences in the protein to be analysed. Recombinant mutant proteins are incubated with their radiolabelled target sequence and UV irradiated. Covalently linked RNA- or DNA-protein complexes are digested with hydroxylamine and labelled peptides identified by SDS-PAGE and autoradiography. The analysis requires only small amounts of protein and is achieved within a relatively short time. Using this method we mapped the site at which human iron regulatory protein (IRP) is UV cross-linked to iron responsive element RNA to amino acid residues 116-151.
Collapse
Affiliation(s)
- B Neupert
- Swiss Institute for Experimental Cancer Research, Genetics Unit, Epalinges
| | | | | |
Collapse
|
43
|
Pantopoulos K, Hentze MW. Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc Natl Acad Sci U S A 1995; 92:1267-71. [PMID: 7533289 PMCID: PMC42500 DOI: 10.1073/pnas.92.5.1267] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Iron-regulatory protein (IRP) is a master regulator of cellular iron homeostasis. Expression of several genes involved in iron uptake, storage, and utilization is regulated by binding of IRP to iron-responsive elements (IREs), structural motifs within the untranslated regions of their mRNAs. IRP-binding to IREs is controlled by cellular iron availability. Recent work revealed that nitric oxide (NO) can mimic the effect of iron chelation on IRP and on ferritin mRNA translation, whereas the stabilization of transferrin receptor mRNA following NO-mediated IRP activation could not be observed in gamma-interferon/lipopolysaccharide-stimulated murine macrophages. In this study, we establish the function of NO as a signaling molecule to IRP and as a regulator of mRNA translation and stabilization. Fibroblasts with undetectable levels of endogenous NO synthase activity were stably transfected with a cDNA encoding murine macrophage inducible NO synthase. Synthesis of NO activates IRE binding, which in turn represses ferritin mRNA translation and stabilizes transferrin receptor mRNA against targeted degradation. Furthermore, iron starvation and NO release are shown to be independent signals to IRP. The posttranscriptional control of iron metabolism is thus intimately connected with the NO pathways.
Collapse
Affiliation(s)
- K Pantopoulos
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
44
|
Toth I, Rogers JT, McPhee JA, Elliott SM, Abramson SL, Bridges KR. Ascorbic acid enhances iron-induced ferritin translation in human leukemia and hepatoma cells. J Biol Chem 1995; 270:2846-52. [PMID: 7852359 DOI: 10.1074/jbc.270.6.2846] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ascorbate is an important cofactor in many cellular metabolic reactions and is intimately linked to iron homeostasis. Continuously cultured cells are ascorbate deficient due to the lability of the vitamin in solution and to the fact that daily supplementation of media with ascorbate is unusual. We found that ascorbate repletion alone did not alter ferritin synthesis. However, ascorbate-replete human hepatoma cells, Hep3B and HepG2, as well as K562 human leukemia cells achieved a substantially higher cellular ferritin content in response to a challenge with iron than did their ascorbate-deficient counterparts grown under standard culture conditions. Most of the elevation in ferritin content was due to an increase in de novo ferritin synthesis of greater than 50-fold, as shown by in vivo labeling with [35S]methionine and immunoprecipitation. RNA-blot analysis showed only minor changes in steady state levels of ferritin mRNA, suggesting that ascorbate enhances iron-induced ferritin synthesis primarily by post-transcriptional events. Transient gene expression experiments using chloramphenicol acetyltransferase reporter gene constructs showed that the ascorbate effect on ferritin translation is not mediated through the stem-loop near the translational start site that transduces ferritin synthesis in response to cytokines. The data suggest that ascorbate possibly modifies the action of the iron-responsive element on ferritin translation, although more precise structure-function studies are needed to clarify this issue. These data demonstrate a novel role of ascorbate as a signaling molecule in post-transcriptional gene regulation. The mechanism by which ascorbate modulates cellular iron metabolism is complex and requires additional detailed investigation.
Collapse
Affiliation(s)
- I Toth
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | | | | | | | | | | |
Collapse
|
45
|
These are the Moments when we Live! From Thunberg Tubes and Manometry to Phone, Fax and Fedex. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/b978-0-444-81942-0.50012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
|
47
|
Abstract
Cellular iron metabolism comprises pathways of iron-protein synthesis and degradation, iron uptake via transferrin receptor (TfR) or release to the extracellular space, as well as iron deposition into ferritin and remobilization from such stores. Different cell types, depending on their rate of proliferation and/or specific functions, show strong variations in these pathways and have to control their iron metabolism to cope with individual functions. Studies with cultured cells have revealed a specific cytoplasmic protein, called 'iron regulatory protein' (IRP) (previously known as IRE-BP or IRF), that plays a key role in iron homoeostasis by regulating coordinately the synthesis of TfR, ferritin, and erythroid 5-aminolevulinate synthase (eALAS). Present in all tissues analysed, IRP is identical with the [4Fe-4S] cluster containing cytoplasmic aconitase. Under conditions of iron chelation, IRP is an apo-protein which binds with high affinity to specific RNA stem-loop elements (IREs) located 5' of the initiation codon in ferritin and eALAS mRNA, and 3' in the untranslated region of TfR mRNA. At 5' sites IRF blocks mRNA translation, whereas 3' it inhibits TfR mRNA degradation. Both effects compensate for low intracellular iron concentrations. Under high iron conditions, IRP is converted to the holo-protein and dissociates from mRNA. This reverses the control towards less iron uptake and more iron storage. Iron can therefore be considered as a feedback regulator of its own metabolism. It has recently become evident that nitric oxide, produced by macrophages and other cell types in response to interferon-gamma, induces the IRE-binding activity of IRF. Moreover measurements of the RNA-binding activity of IRP in tissue extracts may provide valuable information on iron availability.
Collapse
Affiliation(s)
- L C Kühn
- Swiss Institute for Experimental Cancer Research (ISREC), S/Lausanne
| |
Collapse
|
48
|
Abstract
Alteration in iron metabolism is one of the proposed mechanisms underlying the anaemia of inflammation and chronic disease, the most common disorder in hospitalized patients. Iron metabolism parameters in inflammatory disease are characterized by blockage of tissue iron release, decreased serum iron and total iron binding capacity and an elevated serum ferritin level, reflecting augmented ferritin synthesis as part of the acute-phase response. The altered iron metabolism in inflammation is proposed to be a part of the host defence mechanism against invading pathogens and tumor cells and is suggested to be mediated by inflammatory cytokines and NO.
Collapse
Affiliation(s)
- A M Konijn
- Department of Human Nutrition and Metabolism, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
49
|
Samaniego F, Chin J, Iwai K, Rouault TA, Klausner RD. Molecular characterization of a second iron-responsive element binding protein, iron regulatory protein 2. Structure, function, and post-translational regulation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47367-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Philpott CC, Klausner RD, Rouault TA. The bifunctional iron-responsive element binding protein/cytosolic aconitase: the role of active-site residues in ligand binding and regulation. Proc Natl Acad Sci U S A 1994; 91:7321-5. [PMID: 8041788 PMCID: PMC44391 DOI: 10.1073/pnas.91.15.7321] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The iron-responsive element binding protein/cytosolic aconitase functions as either an RNA binding protein that regulates the uptake, sequestration, and utilization of iron or an enzyme that interconverts citrate and isocitrate. These mutually exclusive functions are regulated by changes in cellular iron levels. By site-directed mutagenesis we show that (i) ligation of a [4Fe-4S] cluster is necessary to inactivate RNA binding and activate enzyme function in vivo, (ii) three of four arginine residues of the aconitase active site participate in RNA binding, and (iii) aconitase activity is not required for iron-mediated regulation of RNA binding.
Collapse
Affiliation(s)
- C C Philpott
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|