1
|
Sur S, Pujari S, Ranjan N, Azankia Temgoua L, Wicks SL, Conner A, Arya DP. Enhanced Sequence-Specific DNA Recognition Using Oligodeoxynucleotide-Benzimidazole Conjugates. ACS BIO & MED CHEM AU 2024; 4:154-164. [PMID: 38911908 PMCID: PMC11191566 DOI: 10.1021/acsbiomedchemau.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/25/2024]
Abstract
Synthetic modification of oligodeoxynucleotides (ODNs) via conjugation to nucleic acid binding small molecules can improve hybridization and pharmacokinetic properties. In the present study, five Hoechst 33258 derived benzimidazoles were conjugated to T rich ODNs and their hybridization effectiveness was tested. Thermal denaturation studies revealed significant stabilization of complementary duplexes by ODN-benzimidazole conjugates, with the extent of stabilization being highly dependent on the length of the linker between DNA and benzimidazole. The increases in thermal stability were determined to be due to the binding of the benzimidazole moiety to the duplex. Circular dichroism and molecular modeling studies provided insights toward the influence of conjugation on duplex structure and how linker length impacts placement of the benzimidazole moiety in the minor groove. Furthermore, thermal denaturation studies with the complementary strand containing a single base mismatch or being RNA revealed that covalent conjugation of benzimidazoles to an ODN also enhances the sequence specificity. The fundamental studies reported herein provide a strategy to improve the stability and specificity properties of the ODN probes, which can be of use for targeting and diagnostics applications.
Collapse
Affiliation(s)
- Souvik Sur
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Suresh Pujari
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Nihar Ranjan
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Lidivine Azankia Temgoua
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sarah L. Wicks
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Andrea Conner
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
2
|
Arteaga S, Dolenz BJ, Znosko BM. Competitive Influence of Alkali Metals in the Ion Atmosphere on Nucleic Acid Duplex Stability. ACS OMEGA 2024; 9:1287-1297. [PMID: 38222622 PMCID: PMC10785066 DOI: 10.1021/acsomega.3c07563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
The nonspecific atmosphere around nucleic acids, often termed the ion atmosphere, encompasses a collection of weak ion-nucleic acid interactions. Although nonspecific, the ion atmosphere has been shown to influence nucleic acid folding and structural stability. Studies investigating the composition of the ion atmosphere have shown competitive occupancy of the atmosphere between metal ions in the same solution. Many studies have investigated single ion effects on nucleic acid secondary structure stability; however, no comprehensive studies have investigated how the competitive occupancy of mixed ions in the ion atmosphere influences nucleic acid secondary structure stability. Here, six oligonucleotides were optically melted in buffers containing molar quantities, or mixtures, of either XCl (X = Li, K, Rb, or Cs) or NaCl. A correction factor was developed to better predict RNA duplex stability in solutions containing mixed XCl/NaCl. For solutions containing a 1:1 mixture of XCl/NaCl, one alkali metal chloride contributed more to duplex stability than the other. Overall, there was a 54% improvement in predictive capabilities with the correction factor compared with the standard 1.0 M NaCl nearest-neighbor models. This correction factor can be used in models to better predict RNA secondary structure in solutions containing mixed XCl/NaCl.
Collapse
Affiliation(s)
- Sebastian
J. Arteaga
- Department of Chemistry, Saint Louis University, Saint
Louis, Missouri 63103, United States
| | - Bruce J. Dolenz
- Department of Chemistry, Saint Louis University, Saint
Louis, Missouri 63103, United States
| | - Brent M. Znosko
- Department of Chemistry, Saint Louis University, Saint
Louis, Missouri 63103, United States
| |
Collapse
|
3
|
Ferreira I, Amarante TD, Weber G. Salt dependent mesoscopic model for RNA at multiple strand concentrations. Biophys Chem 2021; 271:106551. [PMID: 33662903 DOI: 10.1016/j.bpc.2021.106551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Mesoscopic models can be used for the description of the thermodynamic properties of RNA duplexes. With the use of experimental melting temperatures, its parametrization can provide important insights into its hydrogen bonds and stacking interactions as has been done for high sodium concentrations. However, the RNA parametrization for lower salt concentrations is still missing due to the limited amount of published melting temperature data. While the Peyrard-Bishop (PB) parametrization was found to be largely independent of strand concentrations, it requires that all temperatures are provided at the same strand concentrations. Here we adapted the PB model to handle multiple strand concentrations and in this way we were able to make use of an experimental set of temperatures to model the hydrogen bond and stacking interactions at low and intermediate sodium concentrations. For the parametrizations we make a distinction between terminal and internal base pairs, and the resulting potentials were qualitatively similar as we obtained previously for DNA. The main difference from DNA parameters, was the Morse potentials at low sodium concentrations for terminal r(AU) which is stronger than d(AT), suggesting higher hydrogen bond strength.
Collapse
Affiliation(s)
- Izabela Ferreira
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tauanne D Amarante
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Banerjee D, Tateishi-Karimata H, Ohyama T, Ghosh S, Endoh T, Takahashi S, Sugimoto N. Improved nearest-neighbor parameters for the stability of RNA/DNA hybrids under a physiological condition. Nucleic Acids Res 2020; 48:12042-12054. [PMID: 32663294 PMCID: PMC7708073 DOI: 10.1093/nar/gkaa572] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
The stability of Watson–Crick paired RNA/DNA hybrids is important for designing optimal oligonucleotides for ASO (Antisense Oligonucleotide) and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas9 techniques. Previous nearest-neighbour (NN) parameters for predicting hybrid stability in a 1 M NaCl solution, however, may not be applicable for predicting stability at salt concentrations closer to physiological condition (e.g. ∼100 mM Na+ or K+ in the presence or absence of Mg2+). Herein, we report measured thermodynamic parameters of 38 RNA/DNA hybrids at 100 mM NaCl and derive new NN parameters to predict duplex stability. Predicted ΔG°37 and Tm values based on the established NN parameters agreed well with the measured values with 2.9% and 1.1°C deviations, respectively. The new results can also be used to make precise predictions for duplexes formed in 100 mM KCl or 100 mM NaCl in the presence of 1 mM Mg2+, which can mimic an intracellular and extracellular salt condition, respectively. Comparisons of the predicted thermodynamic parameters with published data using ASO and CRISPR–Cas9 may allow designing shorter oligonucleotides for these techniques that will diminish the probability of non-specific binding and also improve the efficiency of target gene regulation.
Collapse
Affiliation(s)
- Dipanwita Banerjee
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hisae Tateishi-Karimata
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tatsuya Ohyama
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Saptarshi Ghosh
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tamaki Endoh
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shuntaro Takahashi
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.,FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
5
|
Langner HK, Jastrzebska K, Caruthers MH. Synthesis and Characterization of Thiophosphoramidate Morpholino Oligonucleotides and Chimeras. J Am Chem Soc 2020; 142:16240-16253. [PMID: 32866014 DOI: 10.1021/jacs.0c04335] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This Article outlines the optimized chemical synthesis and preliminary biochemical characterization of a new oligonucleotide analogue called thiophosphoramidate morpholinos (TMOs). Their rational design hinges upon integrating two well-studied pharmacophores, namely, phosphorothioates (pS) and morpholinos, to create morpholino-pS hybrid oligonucleotides. Our simple synthesis strategy enables the easy incorporation of morpholino-pS moieties and therapeutically relevant sugar modifications in tandem to create novel oligonucleotide (ON) analogues that are hitherto unexplored in the oligotherapeutics arena. Exclusively TMO-modified ONs demonstrate high stability toward 3'-exonuclease. Hybridization studies show that TMO chimeras consisting of alternating TMO and DNA-pS subunits exhibit higher binding affinity toward complementary RNA relative to the canonical DNA/RNA duplex (∼10 °C). Oligonucleotides that consist entirely of TMO linkages also show higher RNA binding affinity but do not recruit ribonuclease H1 (RNase H1). Chimeric TMO analogues demonstrate high gene silencing efficacy, comparable to that of a chimeric 2'-OMe-pS/pO control, during in vitro bioassay screens designed to evaluate their potential as microRNA inhibitors of hsa-miR-15b-5p in HeLa cells.
Collapse
Affiliation(s)
- Heera K Langner
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Katarzyna Jastrzebska
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Marvin H Caruthers
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
|
7
|
de Oliveira Martins E, Basílio Barbosa V, Weber G. DNA/RNA hybrid mesoscopic model shows strong stability dependence with deoxypyrimidine content and stacking interactions similar to RNA/RNA. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Gavette JV, Stoop M, Hud NV, Krishnamurthy R. RNA-DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jesse V. Gavette
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Matthias Stoop
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| |
Collapse
|
9
|
Gavette JV, Stoop M, Hud NV, Krishnamurthy R. RNA-DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World. Angew Chem Int Ed Engl 2016; 55:13204-13209. [DOI: 10.1002/anie.201607919] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jesse V. Gavette
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Matthias Stoop
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| |
Collapse
|
10
|
Barnaby SN, Thaner RV, Ross MB, Brown KA, Schatz GC, Mirkin CA. Modular and Chemically Responsive Oligonucleotide "Bonds" in Nanoparticle Superlattices. J Am Chem Soc 2015; 137:13566-71. [PMID: 26465067 PMCID: PMC5490073 DOI: 10.1021/jacs.5b07908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical bonds are a key determinant of the structure and properties of a material. Thus, rationally designing arbitrary materials requires complete control over the bond. While atomic bonding is dictated by the identity of the atoms, nanoparticle superlattice engineering, where nanoparticle "atoms" are held together by DNA "bonds", offers a route to design crystal lattices in a way that nature cannot: through altering the oligonucleotide bond. Herein, the use of RNA, as opposed to DNA, is explored by synthesizing superlattices in which nanoparticles are bonded by DNA/DNA, RNA/RNA, and DNA/RNA duplexes. By moving beyond nanoparticle superlattices assembled only with DNA, a new degree of freedom is introduced, providing programmed responsiveness to enzymes and greater bond versatility. Therefore, the oligonucleotide bond can have programmable function beyond dictating the structure of the material and moves nanoparticle superlattices closer to naturally occurring biomaterials, where the line between structural and functional elements is blurred.
Collapse
Affiliation(s)
- Stacey N Barnaby
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan V Thaner
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael B Ross
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Keith A Brown
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Skilandat M, Sigel RKO. The role of Mg(II) in DNA cleavage site recognition in group II intron ribozymes: solution structure and metal ion binding sites of the RNA-DNA complex. J Biol Chem 2015; 289:20650-63. [PMID: 24895129 DOI: 10.1074/jbc.m113.542381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Group II intron ribozymes catalyze the cleavage of (and their reinsertion into) DNA and RNA targets using a Mg2(+)-dependent reaction. The target is cleaved 3' to the last nucleotide of intron binding site 1 (IBS1), one of three regions that form base pairs with the intron's exon binding sites (EBS1 to -3).We solved the NMR solution structure of the d3' hairpin of the Sc.ai5γ intron containing EBS1 in its 11-nucleotide loop in complex with the dIBS1 DNA 7-mer and compare it with the analogous RNA-RNA contact. The EBS1-dIBS1 helix is slightly flexible and non-symmetric. NMR data reveal two major groove binding sites for divalent metal ions at the EBS1-dIBS1 helix, and surface plasmon resonance experiments show that low concentrations of Mg2(+) considerably enhance the affinity of dIBS1 for EBS1. Our results indicate that identification of both RNA and DNA IBS1 targets, presentation of the scissile bond, and stabilization of the structure by metal ions are governed by the overall structure of EBS1-dIBS1 and the surrounding loop nucleotides but are irrespective of different EBS1-(d)IBS1 geometries and interstrand affinities.
Collapse
|
12
|
R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc Natl Acad Sci U S A 2013; 110:13938-43. [PMID: 23918391 DOI: 10.1073/pnas.1305426110] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are oppositely imprinted autism-spectrum disorders with known genetic bases, but complex epigenetic mechanisms underlie their pathogenesis. The PWS/AS locus on 15q11-q13 is regulated by an imprinting control region that is maternally methylated and silenced. The PWS imprinting control region is the promoter for a one megabase paternal transcript encoding the ubiquitous protein-coding Snrpn gene and multiple neuron-specific noncoding RNAs, including the PWS-related Snord116 repetitive locus of small nucleolar RNAs and host genes, and the antisense transcript to AS-causing ubiquitin ligase encoding Ube3a (Ube3a-ATS). Neuron-specific transcriptional progression through Ube3a-ATS correlates with paternal Ube3a silencing and chromatin decondensation. Interestingly, topoisomerase inhibitors, including topotecan, were recently identified in an unbiased drug screen for compounds that could reverse the silent paternal allele of Ube3a in neurons, but the mechanism of topotecan action on the PWS/AS locus is unknown. Here, we demonstrate that topotecan treatment stabilizes the formation of RNA:DNA hybrids (R loops) at G-skewed repeat elements within paternal Snord116, corresponding to increased chromatin decondensation and inhibition of Ube3a-ATS expression. Neural precursor cells from paternal Snord116 deletion mice exhibit increased Ube3a-ATS levels in differentiated neurons and show a reduced effect of topotecan compared with wild-type neurons. These results demonstrate that the AS candidate drug topotecan acts predominantly through stabilizing R loops and chromatin decondensation at the paternally expressed PWS Snord116 locus. Our study holds promise for targeted therapies to the Snord116 locus for both AS and PWS.
Collapse
|
13
|
Diez-García F, Chakrabartty A, González C, Laurents DV. An Arg-rich putative prebiotic protein is as stable as its Lys-rich variant. Arch Biochem Biophys 2012; 528:118-26. [DOI: 10.1016/j.abb.2012.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
|
14
|
Lai YT, DeStefano JJ. DNA aptamers to human immunodeficiency virus reverse transcriptase selected by a primer-free SELEX method: characterization and comparison with other aptamers. Nucleic Acid Ther 2012; 22:162-76. [PMID: 22554064 PMCID: PMC3423876 DOI: 10.1089/nat.2011.0327] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/24/2012] [Indexed: 12/17/2022] Open
Abstract
A 30-nucleotide DNA aptamer (5'-AGGAAGGCTTTAGGTCTGAGATCTCGGAAT-3', denoted PF1) selected for high affinity to human immunodeficiency virus reverse transcriptase (HIV RT) using a primer-free SELEX (systematic evolution of ligands by exponential enrichment) method was characterized to determine features promoting tight binding. PF1's equilibrium dissociation constant for RT was ∼80 nM, over 10-fold lower than a random 30-mer. Changing the 2 terminal diguanosine repeats (underlined above) to diadenosine or dithymidine modestly decreased binding. Any changes to the 2 central diguanosines dramatically decreased binding. Binding was highly sensitive to length, with any truncations that deleted part of the 4 diguanosine motifs resulting in a 6-fold or more decrease in affinity. Even a construct with all the diguanosine motifs but lacking the 5' terminal A and 3 nucleotides at the 3' end showed ∼3-fold binding decrease. Changes to the nucleotides between the diguanosines, even those that did not alter PF1's low secondary structure (free energy of folding ΔG=-0.61 kcal/mol), dramatically decreased binding, suggesting sequence specificity. Despite the diguanosine motifs, circular dichroism (CD) spectra indicated that PF1 did not form a G-quartet. PF1 inhibited HIV RT synthesis with a half-maximal inhibitory value (IC(50)) of ∼60 nM. Larger, more structured RT DNA aptamers based on the HIV polypurine tract and those that formed G-quartets (denoted S4 and R1T) were more potent inhibitors, with IC(50) values of ∼4 and ∼1 nM, respectively. An RNA pseudoknot aptamer (denoted 1.1) showed an IC(50) near 4 nM. Competition binding assays with PF1 and several previously characterized RT aptamers indicated that they all bound at or near the primer-template pocket. These other more structured and typically larger aptamers bound more tightly than PF1 to RT based on filter binding assays. Results indicate that PF1 represents a new class of RT aptamers that are relatively small and have very low secondary structure, attributes that could be advantageous for further development as HIV inhibitors.
Collapse
Affiliation(s)
- Yi-Tak Lai
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | |
Collapse
|
15
|
Pramanik S, Nagatoishi S, Saxena S, Bhattacharyya J, Sugimoto N. Conformational flexibility influences degree of hydration of nucleic acid hybrids. J Phys Chem B 2011; 115:13862-72. [PMID: 21992117 DOI: 10.1021/jp207856p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Four nucleic acid duplexes-DNA/RNA hybrid, RNA/DNA hybrid, RNA duplex, and DNA duplex-were studied under molecular crowding conditions of osmolytes. Destabilization of duplexes (ΔΔG°(25)) indicated that the ΔΔG°(25) values of hybrids were intermediate between those of DNA and RNA duplexes. In the presence of polyethylene glycol 200, the ΔΔG°(25) values were estimated to be +3.0, +3.5, +3.5, and +4.1 kcal mol(-1) for the DNA duplex, DNA/RNA hybrid, RNA/DNA hybrid, and RNA duplex, respectively. Differences in the number of water molecules taken up (-Δn(w)) upon duplex formations between 0 and 37 °C (Δ(-Δn(w))) were estimated to be 44.8 and 59.7 per duplex structure for the DNA/RNA and RNA/DNA hybrids, respectively. While the Δ(-Δn(w)) value for the DNA/RNA hybrid was intermediate between those of the DNA (26.1) and RNA (59.2) duplexes, the value for RNA/DNA hybrid was close to that of RNA duplex. These differences in the thermodynamic parameters and hydration are probably a consequence of the enhanced global flexibility of the RNA/DNA hybrid structure relative to the DNA/RNA hybrid structure observed in molecular dynamics simulations. This molecular crowding study provides information not only on hydration but also on the flexibility of the conformation of nucleic acid duplexes.
Collapse
Affiliation(s)
- Smritimoy Pramanik
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
16
|
Xi H, Davis E, Ranjan N, Xue L, Hyde-Volpe D, Arya DP. Thermodynamics of nucleic acid "shape readout" by an aminosugar. Biochemistry 2011; 50:9088-113. [PMID: 21863895 PMCID: PMC3673541 DOI: 10.1021/bi201077h] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized as playing an equally important role in DNA recognition. Competition dialysis, UV, flourescent intercalator displacement (FID), computational docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, the results suggest the following. (1) Neomycin binds three RNA structures [16S A site rRNA, poly(rA)·poly(rA), and poly(rA)·poly(rU)] with high affinities (K(a) ~ 10(7) M(-1)). (2) The binding of neomycin to A-form GC-rich oligomer d(A(2)G(15)C(15)T(2))(2) has an affinity comparable to those of RNA structures. (3) The binding of neomycin to DNA·RNA hybrids shows a 3-fold variance that can be attributed to their structural differences [for poly(dA)·poly(rU), K(a) = 9.4 × 10(6) M(-1), and for poly(rA)·poly(dT), K(a) = 3.1 × 10(6) M(-1)]. (4) The interaction of neomycin with DNA triplex poly(dA)·2poly(dT) yields a binding affinity (K(a)) of 2.4 × 10(5) M(-1). (5) Poly(dA-dT)(2) shows the lowest association constant for all nucleic acids studied (K(a) < 10(5)). (6) Neomycin binds to G-quadruplexes with K(a) values of ~10(4)-10(5) M(-1). (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin's affinity for various nucleic acid structures can be ranked as follows: RNAs and GC-rich d(A(2)G(15)C(15)T(2))(2) structures > poly(dA)·poly(rU) > poly(rA)·poly(dT) > T·A-T triplex, G-quadruplex, B-form AT-rich, or GC-rich DNA sequences. The results illustrate the first example of a small molecule-based "shape readout" of different nucleic acid conformations.
Collapse
Affiliation(s)
- Hongjuan Xi
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Erik Davis
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Liang Xue
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - David Hyde-Volpe
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
17
|
Das S, Kundu S, Suresh Kumar G. Quinacrine and 9-Amino Acridine Inhibit B-Z and B-HL Form DNA Conformational Transitions. DNA Cell Biol 2011; 30:525-35. [PMID: 21395448 DOI: 10.1089/dna.2010.1206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Suman Das
- Department of Chemistry, Jadavpur University, Kolkata, India
| | - Suprabhat Kundu
- Department of Chemistry, Jadavpur University, Kolkata, India
| | | |
Collapse
|
18
|
Saxena S, Miyoshi D, Sugimoto N. Sole and stable RNA duplexes of G-rich sequences located in the 5'-untranslated region of protooncogenes. Biochemistry 2010; 49:7190-201. [PMID: 20672842 DOI: 10.1021/bi101093a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Guanine- (G-) rich nucleic acid sequences can form four-stranded structures called G-quadruplexes. It is widely held that the formation of a G-quadruplex in RNA is more feasible than in DNA because of the lack of a complementary strand in mRNA. Here, we analyzed sequences of 5'-untranslated regions of protooncogenes and surprisingly found that these regions showed an enrichment of not only guanine (G) but also cytosine (C) nucleotides. Since neighboring cytosine- (C-) rich regions can affect the formation and stability of a G-quadruplex structure, we further investigated the properties of DNA and RNA structures of G-rich and GC-rich regions. We selected typical GC-rich RNA sequences from protooncogenes and corresponding DNA sequences and investigated their structures. It was found that the GC-rich RNA sequences formed stable A-form duplexes as their major structure independent of the surrounding conditions, including the presence of different cations (Na(+), K(+), or Li(+)) or molecular crowding with 40 wt % poly(ethylene glycol) with an average molecular mass of 200 Da although there are a few exceptions in which only a combination of K(+) and molecular crowding induced a G-quadruplex structure of an extremely G-rich RNA sequence. In contrast, structural polymorphisms involving duplexes, G-quadruplexes, and i-motifs were observed for GC-rich DNA sequences depending on the surrounding factors. These results demonstrate the considerable structural and functional differences in GC-rich sequences of the genome (DNA) and transcriptosome (mRNA) with respect to the nucleic acid backbone. Moreover, it was suggested that structural study for a G-rich RNA sequence should be carried out under cell-mimicking condition where K(+) and crowding cosolutes exist.
Collapse
Affiliation(s)
- Sarika Saxena
- Frontier Institute for Biomolecular Engineering Research (FIBER), 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
19
|
Krishnan R, Oh DH. Structural determinants of photoreactivity of triplex forming oligonucleotides conjugated to psoralens. J Nucleic Acids 2010; 2010:523498. [PMID: 20725628 PMCID: PMC2915845 DOI: 10.4061/2010/523498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 06/03/2010] [Indexed: 11/23/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) with both DNA and 2'-O-methyl RNA backbones can direct psoralen photoadducts to specific DNA sequences. However, the functional consequences of these differing structures on psoralen photoreactivity are unknown. We designed TFO sequences with DNA and 2'-O-methyl RNA backbones conjugated to psoralen by 2-carbon linkers and examined their ability to bind and target damage to model DNA duplexes corresponding to sequences within the human HPRT gene. While TFO binding affinity was not dramatically affected by the type of backbone, psoralen photoreactivity was completely abrogated by the 2'-O-methyl RNA backbone. Photoreactivity was restored when the psoralen was conjugated to the RNA TFO via a 6-carbon linker. In contrast to the B-form DNA of triplexes formed by DNA TFOs, the CD spectra of triplexes formed with 2'-O-methyl RNA TFOs exhibited features of A-form DNA. These results indicate that 2'-O-methyl RNA TFOs induce a partial B-to-A transition in their target DNA sequences which may impair the photoreactivity of a conjugated psoralen and suggest that optimal design of TFOs to target DNA damage may require a balance between binding ability and drug reactivity.
Collapse
Affiliation(s)
- Rajagopal Krishnan
- Department of Dermatology, University of California at San Francisco, San Francisco, CA 94121, USA
- Dermatology Research Unit, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Dennis H. Oh
- Department of Dermatology, University of California at San Francisco, San Francisco, CA 94121, USA
- Dermatology Research Unit, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| |
Collapse
|
20
|
Onizuka K, Taniguchi Y, Sasaki S. A new usage of functionalized oligodeoxynucleotide probe for site-specific modification of a guanine base within RNA. Nucleic Acids Res 2010; 38:1760-6. [PMID: 20123727 PMCID: PMC2836579 DOI: 10.1093/nar/gkp930] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Site-specific modification of RNA is of great significance to investigate RNA structure, function and dynamics. Recently, we reported a new method for sequence- and cytosine-selective chemical modification of RNA based on the functional group transfer reaction of the 1-phenyl-2-methylydene-1,3-diketone unit of the 6-thioguanosine base incorporated in the oligodeoxynucleotide probe. In this study, we describe that the functionality transfer rate is greatly enhanced and the selectivity is shifted to the guanine base when the reaction is performed under alkaline conditions. Detailed investigation indicated that the 2-amino group of the enolate form of rG is the reactant of the functionality transfer reaction. As a potential application of this efficient functionality transfer reaction, a pyrene group as a relatively large fluorescent group was successfully transferred to the target guanine base of RNA with a high guanine and site selectivity. This functionality transfer reaction with high efficiency and high site-selectivity would provide a new opportunity as a unique tool for the study of RNA.
Collapse
Affiliation(s)
- Kazumitsu Onizuka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
21
|
Taylor SD, Solem A, Kawaoka J, Pyle AM. The NPH-II helicase displays efficient DNA x RNA helicase activity and a pronounced purine sequence bias. J Biol Chem 2010; 285:11692-703. [PMID: 20110368 PMCID: PMC2857044 DOI: 10.1074/jbc.m109.088559] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The superfamily 2 vaccinia viral helicase nucleoside triphosphate phosphohydrolase-II (NPH-II) exhibits robust RNA helicase activity but typically displays little activity on DNA substrates. NPH-II is thus believed to make primary contacts with backbone residues of an RNA substrate. We report an unusual nucleobase bias, previously unreported in any superfamily 1 or 2 helicase, whereby purines are heavily preferred as components of both RNA and DNA tracking strands. The observed sequence bias allows NPH-II to efficiently unwind a DNA x RNA hybrid containing a purine-rich DNA track derived from the 3'-untranslated region of an early vaccinia gene. These results provide insight into potential biological functions of NPH-II and the role of sequence in targeting NPH-II to appropriate substrates. Furthermore, they demonstrate that in addition to backbone contacts, nucleotide bases play an important role in modulating the behavior of NPH-II. They also establish that processive helicase enzymes can display sequence selectivity.
Collapse
Affiliation(s)
- Sean David Taylor
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
22
|
Revisiting plus-strand DNA synthesis in retroviruses and long terminal repeat retrotransposons: dynamics of enzyme: substrate interactions. Viruses 2009; 1:657-77. [PMID: 21994564 PMCID: PMC3185511 DOI: 10.3390/v1030657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/28/2009] [Accepted: 11/04/2009] [Indexed: 11/16/2022] Open
Abstract
Although polypurine tract (PPT)-primed initiation of plus-strand DNA synthesis in retroviruses and LTR-containing retrotransposons can be accurately duplicated, the molecular details underlying this concerted series of events remain largely unknown. Importantly, the PPT 3' terminus must be accommodated by ribonuclease H (RNase H) and DNA polymerase catalytic centers situated at either terminus of the cognate reverse transcriptase (RT), and in the case of the HIV-1 enzyme, ∼70Å apart. Communication between RT and the RNA/DNA hybrid therefore appears necessary to promote these events. The crystal structure of the HIV-1 RT/PPT complex, while informative, positions the RNase H active site several bases pairs from the PPT/U3 junction, and thus provides limited information on cleavage specificity. To fill the gap between biochemical and crystallographic approaches, we review a multidisciplinary approach combining chemical probing, mass spectrometry, NMR spectroscopy and single molecule spectroscopy. Our studies also indicate that nonnucleoside RT inhibitors affect enzyme orientation, suggesting initiation of plus-strand DNA synthesis as a potential therapeutic target.
Collapse
|
23
|
Onizuka K, Taniguchi Y, Sasaki S. Site-specific covalent modification of RNA guided by functionality-transfer oligodeoxynucleotides. Bioconjug Chem 2009; 20:799-803. [PMID: 19267460 DOI: 10.1021/bc900009p] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient methods for the covalent modification of large RNA molecules should find significance utility as innovative biological tools as well as therapeutic methods. In this study, the development of a general method for site-specific RNA modification guided by the functional ODN template has been investigated. The ODN probe containing 6-thioguanosine was modified by the methylenediketone derivative to form the S-functionalized ODN. Site-specific and cytosine-selective RNA modifications were achieved by the functionality-transfer reaction from the sulfur atom of the functionalized probe to the amino group of the cytosine base of the target strand. It was shown that the base and site selectivity were due to the close proximity of the reactants in the DNA-RNA duplexes.
Collapse
|
24
|
Post K, Kankia B, Gopalakrishnan S, Yang V, Cramer E, Saladores P, Gorelick RJ, Guo J, Musier-Forsyth K, Levin JG. Fidelity of plus-strand priming requires the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Res 2009; 37:1755-66. [PMID: 19158189 PMCID: PMC2665208 DOI: 10.1093/nar/gkn1045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During minus-strand DNA synthesis, RNase H degrades viral RNA sequences, generating potential plus-strand DNA primers. However, selection of the 3' polypurine tract (PPT) as the exclusive primer is required for formation of viral DNA with the correct 5'-end and for subsequent integration. Here we show a new function for the nucleic acid chaperone activity of HIV-1 nucleocapsid protein (NC) in reverse transcription: blocking mispriming by non-PPT RNAs. Three representative 20-nt RNAs from the PPT region were tested for primer extension. Each primer had activity in the absence of NC, but less than the PPT. NC reduced priming by these RNAs to essentially base-line level, whereas PPT priming was unaffected. RNase H cleavage and zinc coordination by NC were required for maximal inhibition of mispriming. Biophysical properties, including thermal stability, helical structure and reverse transcriptase (RT) binding affinity, showed significant differences between PPT and non-PPT duplexes and the trends were generally correlated with the biochemical data. Binding studies in reactions with both NC and RT ruled out a competition binding model to explain NC's observed effects on mispriming efficiency. Taken together, these results demonstrate that NC chaperone activity has a major role in ensuring the fidelity of plus-strand priming.
Collapse
Affiliation(s)
- Klara Post
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lewis DEA, Komissarova N, Le P, Kashlev M, Adhya S. DNA sequences in gal operon override transcription elongation blocks. J Mol Biol 2008; 382:843-58. [PMID: 18691599 DOI: 10.1016/j.jmb.2008.07.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/12/2008] [Accepted: 07/23/2008] [Indexed: 12/01/2022]
Abstract
The DNA loop that represses transcription from galactose (gal) promoters is infrequently formed in stationary-phase cells because the concentration of the loop architectural protein HU is significantly low at that state, resulting in expression of the operon in the absence of the gal inducer D-galactose. Unexpectedly, transcription from the gal promoters under these conditions overrides physical block because of the presence of the Gal repressor bound to an internal operator (O(I)) located downstream of the promoters. We have shown here that although a stretch of pyrimidine residues (UUCU) in the RNA:DNA hybrid located immediately upstream of O(I) weakens the RNA:DNA hybrid and favors RNA polymerase (RNAP) pausing and backtracking, a stretch of purines (GAGAG) in the RNA present immediately upstream of the pause sequence in the hybrid acts as an antipause element by stabilizing the RNA:DNA duplex and preventing backtracking. This facilitates forward translocation of RNAP, including overriding of the DNA-bound Gal repressor barrier at O(I). When the GAGAG sequence is separated from the pyrimidine sequence by a 5-bp DNA insertion, RNAP backtracking is favored from a weak hybrid to a more stable hybrid. RNAP backtracking is sensitive to Gre factors, D-galactose, and antisense oligonucleotides. The ability of a native DNA sequence to override transcription elongation blocks in the gal operon uncovers a previously unknown way of regulating gal metabolism in Escherichia coli. It also explains the synthesis of gal enzymes in the absence of inducer for biosynthetic reactions.
Collapse
Affiliation(s)
- Dale E A Lewis
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA.
| | | | | | | | | |
Collapse
|
26
|
Jacob DT, DeStefano JJ. A new role for HIV nucleocapsid protein in modulating the specificity of plus strand priming. Virology 2008; 378:385-96. [PMID: 18632127 DOI: 10.1016/j.virol.2008.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/26/2008] [Accepted: 06/05/2008] [Indexed: 11/28/2022]
Abstract
The current study indicates a new role for HIV nucleocapsid protein (NC) in modulating the specificity of plus strand priming. RNase H cleavage by reverse transcriptase (RT) during minus strand synthesis gives rise to RNA fragments that could potentially be used as primers for synthesis of the plus strand, leading to the initiation of priming from multiple points as has been observed for other retroviruses. For HIV, the central and 3' polypurine tracts (PPTs) are the major sites of plus strand initiation. Using reconstituted in vitro assays, results showed that NC greatly reduced the efficiency of extension of non-PPT RNA primers, but not PPT. Experiments mimicking HIV replication showed that RT generated and used both PPT and non-PPT RNAs to initiate "plus strand" synthesis, but non-PPT usage was strongly inhibited by NC. The results support a role for NC in specifying primer usage during plus strand synthesis.
Collapse
Affiliation(s)
- Deena T Jacob
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
27
|
Recognition of the unique structure of DNA:RNA hybrids. Biochimie 2008; 90:1026-39. [DOI: 10.1016/j.biochi.2008.04.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 04/18/2008] [Indexed: 11/23/2022]
|
28
|
Warf MB, Berglund JA. MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T. RNA (NEW YORK, N.Y.) 2007; 13:2238-51. [PMID: 17942744 PMCID: PMC2080590 DOI: 10.1261/rna.610607] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Myotonic dystrophy (DM) is a genetic disorder with multisystemic symptoms that is caused by expression (as RNA) of expanded repeats of CTG or CCTG in the genome. It is hypothesized that the RNA splicing factor muscleblind-like (MBNL) is sequestered to the expanded CUG or CCUG RNAs. Mislocalization of MBNL results in missplicing of a subset of pre-mRNAs that are linked to the symptoms found in DM patients. We demonstrate that MBNL can bind short structured CUG and CCUG repeats with high affinity and specificity. Only 6 base pairs are necessary for MBNL binding: two pyrimidine mismatches and four guanosine-cytosine base pairs in a stem. MBNL also has a preference for pyrimidine mismatches, but many other mismatches are tolerated with decreased affinity. We also demonstrate that MBNL binds the helical region of a stem-loop in the endogenous pre-mRNA target, the cardiac troponin T (cTNT) pre-mRNA. The stem-loop contains two mismatches and resembles both CUG and CCUG repeats. In vivo splicing results indicate that MBNL-regulated splicing is dependent upon the formation of stem-loops recognized by MBNL. These results suggest that MBNL may bind all of its RNA substrates, both normal and pathogenic, as structured stem-loops containing pyrimidine mismatches.
Collapse
Affiliation(s)
- M Bryan Warf
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
29
|
Puri N, Chattopadhyaya J. Physico-Chemical Properties of 5′-Polyarene Tethered DNA-Conjugates, and Their Duplexes with Complementary RNA. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319908044641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nitin Puri
- a Department of Bioorganic Chemistry, Box 581, Biomedical Center , University of Uppsala , S-751 23, Uppsala , Sweden Fax: E-mail:
| | - Jyoti Chattopadhyaya
- a Department of Bioorganic Chemistry, Box 581, Biomedical Center , University of Uppsala , S-751 23, Uppsala , Sweden Fax: E-mail:
| |
Collapse
|
30
|
Competition between Polysaccharide/Polynucleotide Complexation vs. Polynucleotide Hybridization; Salt Concentration Dependence of the Reaction Direction. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2005. [DOI: 10.1380/ejssnt.2005.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Hannoush RN, Min KL, Damha MJ. Diversity-oriented solid-phase synthesis and biological evaluation of oligonucleotide hairpins as HIV-1 RT RNase H inhibitors. Nucleic Acids Res 2004; 32:6164-75. [PMID: 15570067 PMCID: PMC535663 DOI: 10.1093/nar/gkh948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 10/29/2004] [Accepted: 10/29/2004] [Indexed: 11/13/2022] Open
Abstract
The inhibitory potencies of several hairpins comprising DNA, RNA and 2',5'-linked RNA segments were assessed against the RNase H activity of the human immunodeficiency virus reverse transcriptase (HIV-1 RT), an indispensable enzyme for HIV genomic replication. The hairpin library was constructed via diversity-oriented nucleic-acid synthesis (DONAS), an approach inspired from traditional split-pool synthesis. DONAS provided access to an array of oligonucleotide hairpins possessing distinct conformational, structural and biological properties. The inhibitory potency of these compounds was highly specific towards HIV-1 RT RNase H and strongly depended on the structure of both the stem and tetraloop. Hairpins that have an overall A-type geometry are better inhibitors of RNase H activity than hairpins with 'intermediate' or B-type conformations, although interestingly, the inhibitory activity is quite sensitive to the nucleotide sequence in both the stem and loop regions of the hairpin. The most potent hairpins bear a 3',5'-linked rather than 2',5'-linked RNA loop, but the latter is necessary for activity of hairpins consisting of DNA stems. Inhibitory activity was essentially independent of hairpin thermal stability. The potent hairpins also demonstrated high nuclease resistance in biological media, particularly those bearing a 2',5'-linked tetraloop. These studies collectively bring into light a new class of nucleic acid aptamers that act exclusively upon the retroviral RNase H domain in vitro, and thus represent novel lead compounds for the development of specific and potent HIV-1 RT inhibitors.
Collapse
Affiliation(s)
- Rami N Hannoush
- Department of Chemistry, Otto Maass Chemistry Building, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada
| | | | | |
Collapse
|
32
|
Dash C, Yi-Brunozzi HY, Le Grice SFJ. Two modes of HIV-1 polypurine tract cleavage are affected by introducing locked nucleic acid analogs into the (-) DNA template. J Biol Chem 2004; 279:37095-102. [PMID: 15220330 DOI: 10.1074/jbc.m403306200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Unusual base-pairing in a co-crystal of reverse transcriptase (RT) and a human immunodeficiency virus type 1 (HIV-1) polypurine tract (PPT)-containing RNA/DNA hybrid suggests local nucleic acid flexibility mediates selection of the plus-strand primer. Structural elements of HIV-1 RT potentially participating in recognition of this duplex include the thumb subdomain and the ribonuclease H (RNase H) primer grip, the latter comprising elements of the connection subdomain and RNase H domain. To investigate how stabilizing HIV-1 PPT structure influences its recognition, we modified the (-) DNA template by inserting overlapping locked nucleic acid (LNA) doublets and triplets. Modified RNA/DNA hybrids were evaluated for cleavage at the PPT/U3 junction. Altered specificity was observed when the homopolymeric dA.rU tract immediately 5' of the PPT was modified, whereas PPT/U3 cleavage was lost after substitutions in the adjacent dT.rA tract. In contrast, the "unzipped" portion of the PPT was moderately insensitive to LNA insertions. Although a portion of the dC.rG and neighboring dT.rA tract were minimally affected by LNA insertion, RNase H activity was highly sensitive to altering the junction between these structural elements. Using 3'-end-labeled PPT RNA primers, we also identified novel cleavage sites ahead (+5/+6) of the PPT/U3 junction. Differential cleavage at the PPT/U3 junction and U3 + 5/+6 site in response to LNA-induced template modification suggests two binding modes for HIV-1 RT, both of which may be controlled by the interaction of its thumb subdomain (potentially via the minor groove binding track) at either site of the unzipped region.
Collapse
Affiliation(s)
- Chandravanu Dash
- Resistance Mechanisms Laboratory, HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | |
Collapse
|
33
|
Yoo BH, Bochkareva E, Bochkarev A, Mou TC, Gray DM. 2'-O-methyl-modified phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro. Nucleic Acids Res 2004; 32:2008-16. [PMID: 15064360 PMCID: PMC390367 DOI: 10.1093/nar/gkh516] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antisense oligodeoxynucleotides (ODNs) have biological activity in treating various forms of cancer. The antisense effects of two types of 20mer ODNs, phosphorothioate-modified ODNs (S-ODNs) and S-ODNs with 12 2'-O-methyl groups (Me-S-ODNs), targeted to sites 109 and 277 of bcl-2 mRNA, were compared. Both types were at least as effective as G3139 (Genta, Inc.) in reducing the level of Bcl-2 protein in T24 cells following a 4 h transfection at a dose of 0.1 micro M. Circular dichroism spectra showed that both types formed A-form duplexes with the complementary RNA, and the melting temperatures were in the order of Me-S-ODN.RNA > normal DNA.RNA > S-ODN.RNA. In comparison with the S-ODN, the Me-S-ODN had reduced toxic growth inhibitory effects, was less prone to bind the DNA-binding domain A of human replication protein A, and was as resistant to serum nucleases. Neither type of oligomer induced apoptosis, according to a PARP-cleavage assay. Hybrids formed with Me-S-ODN sequences were less sensitive to RNase H degradation than those formed with S-ODN sequences. Despite this latter disadvantage, the addition of 2'-O-methyl groups to a phosphorothioate-modified ODN is advantageous because of increased stability of binding and reduced non-specific effects.
Collapse
Affiliation(s)
- Byong Hoon Yoo
- Department of Molecular and Cell Biology, Mail Stop FO31, The University of Texas at Dallas, PO Box 830688, Richardson, TX 75083-0688, USA
| | | | | | | | | |
Collapse
|
34
|
Johnson NP, Baase WA, Von Hippel PH. Low-energy circular dichroism of 2-aminopurine dinucleotide as a probe of local conformation of DNA and RNA. Proc Natl Acad Sci U S A 2004; 101:3426-31. [PMID: 14993592 PMCID: PMC373478 DOI: 10.1073/pnas.0400591101] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circular dichroism is commonly used to investigate the conformations of nucleic acids. However, many biochemical processes implicate conformational changes of particular nucleotide residues within DNA or RNA that cannot be studied by this method, because the CD of these residues is buried in the total signal of the polynucleotide. Here, we report a method to study local conformations of DNA or RNA that is based on the use of the CD of 2-aminopurine (AP) residues as a probe. AP is readily incorporated into DNA in place of adenine and does not significantly alter DNA structure. Unlike adenine, AP is fluorescent and this property has been used for many years to investigate local nucleic acid structure. We show here that the CD spectrum of AP dinucleotide, (AP)(2), exhibits a positive CD band at 326 nm, a spectral region in which nucleic acids (and proteins) do not absorb. Our results show that the bases of (AP)(2) are stacked in a right-handed helical conformation. A low-energy CD band is also observed when this nucleotide dimer is incorporated into double-stranded DNA. Control experiments show that this signal comes from the stacking of adjacent AP residues. We have used this CD signal to provide information about the conformation of the AP dinucleotide at a defined position within single- and double-stranded nucleic acids.
Collapse
Affiliation(s)
- Neil P Johnson
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA.
| | | | | |
Collapse
|
35
|
Lener D, Kvaratskhelia M, Le Grice SFJ. Nonpolar thymine isosteres in the Ty3 polypurine tract DNA template modulate processing and provide a model for its recognition by Ty3 reverse transcriptase. J Biol Chem 2003; 278:26526-32. [PMID: 12730227 DOI: 10.1074/jbc.m302374200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite diverging in sequence and size, the polypurine tract (PPT) primers of retroviruses and long terminal repeat-containing retrotransposons are accurately processed from (+) U3 RNA and DNA by their cognate reverse transcriptases (RTs). In this paper, we demonstrate that misalignment of the Ty3 retrotransposon RT on the human immunodeficiency virus-1 PPT induces imprecise removal of adjacent (+)-RNA and failure to release (+)-DNA from the primer. Based on these observations, we explored the structural basis of Ty3 PPT recognition by chemically synthesizing RNA/DNA hybrids whose (-)-DNA template was substituted with the non-hydrogen-bonding thymine isostere 2,4-difluoro-5-methylbenzene (F). We observed a consistent spatial correlation between the site of T --> F substitution and enhanced ribonuclease H (RNase H) activity approximately 12-13 bp downstream. In the most pronounced case, dual T --> F substitution at PPT positions -1/-2 redirects RNase H cleavage almost exclusively to the novel site. The structural features of this unusual base suggest that its insertion into the Ty3 PPT (-)-DNA template weakens the duplex, inducing a destabilization that is recognized by a structural element of Ty3 RT approximately 12-13 bp from its RNase H catalytic center. A likely candidate for this interaction is the thumb subdomain, whose minor groove binding tract most likely contacts the duplex. The spatial relationship derived from T --> F substitution also infers that Ty3 PPT processing requires recognition of sequences in its immediate 5' vicinity, thereby locating the RNase H catalytic center over the PPT-U3 junction, a notion strengthened by additional mutagenesis studies of this paper.
Collapse
MESH Headings
- Catalytic Domain
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- HIV Reverse Transcriptase/metabolism
- HIV-1/genetics
- HIV-1/metabolism
- Models, Biological
- Mutagenesis, Site-Directed
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Directed DNA Polymerase/chemistry
- RNA-Directed DNA Polymerase/metabolism
- Retroelements/genetics
- Ribonuclease H/chemistry
- Ribonuclease H/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Thymine/chemistry
Collapse
Affiliation(s)
- Daniela Lener
- Resistance Mechanisms Laboratory, HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
36
|
Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A. Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 2003; 5:566-82. [PMID: 12823189 DOI: 10.1046/j.1462-2920.2003.00450.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The potential of DNA microarray technology in high-throughput detection of bacteria and quantitative assessment of their community structures is widely acknowledged but has not been fully realised yet. A generally applicable set of techniques, based on readily available technologies and materials, was developed for the design, production and application of diagnostic microbial microarrays. A microarray targeting the particulate methane monooxygenase (pmoA) gene was developed for the detection and quantification of methanotrophs and functionally related bacteria. A microarray consisting of a set of 59 probes that covers the whole known diversity of these bacteria was validated with a representative set of extant strains and environmental clones. The potential of the pmoA microarray was tested with environmental samples. The results were in good agreement with those of clone library sequence analyses. The approach can currently detect less dominant bacteria down to 5% of the total community targeted. Initial tests assessing the quantification potential of this system with artificial PCR mixtures showed very good correlation with the expected results with standard deviations in the range of 0.4-17.2%. Quantification of environmental samples with this method requires the design of a reference mixture consisting of very close relatives of the strains within the sample and is currently limited by biases inherent in environmental DNA extraction and universal PCR amplification.
Collapse
Affiliation(s)
- Levente Bodrossy
- Department of Biotechnology, Division of Life and Environmental Sciences, ARC Seibersdorf research GmbH, A-2444 Seibersdorf, Austria.
| | | | | | | | | | | |
Collapse
|
37
|
Hantz E, Larue V, Ladam P, Le Moyec L, Gouyette C, Huynh Dinh T. Solution conformation of an RNA--DNA hybrid duplex containing a pyrimidine RNA strand and a purine DNA strand. Int J Biol Macromol 2001; 28:273-84. [PMID: 11311717 DOI: 10.1016/s0141-8130(01)00123-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
RNA--DNA hybrid duplexes are involved in transcription, replication and reverse transcription of nucleic acids. Information on such duplexes may shed some light on the mechanism of these processes. For this purpose, the influence of base composition on the structure of a polypyrimidine--polypurine RNA--DNA duplex r(cucuccuucucuu). d(GAGAGGAAGAGAA) has been studied using 1H, 31P and 13C NMR experiments, molecular modeling (JUMNA program) and NOE back-calculation methods. The resulting structure of the 13-mer hybrid duplex shows that the RNA strand is in the expected A-type conformation while the DNA strand is in a very flexible conformation. In the DNA strand, the desoxyribose sugars retain the C2'-endo B-type conformation. The duplex helical parameters (such as inclination, twist and displacement of the bases) are close to the A-type conformation. No bending was observed for the global axis curvature. The major groove width is close to the B-form value and the minor groove width is intermediate between standard values for A and B-forms. These results are in favour of the independence of minor groove size (where RNase H interacts) and the base composition of the hybrid duplexes.
Collapse
Affiliation(s)
- E Hantz
- Laboratoire de Chimie Structurale et Spectroscopie Biomoléculaire CSSB, UFR SMBH, 74 rue Marcel Cachin, 93017 Bobigny Cedex, France.
| | | | | | | | | | | |
Collapse
|
38
|
Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 2001; 19:342-7. [PMID: 11283592 DOI: 10.1038/86730] [Citation(s) in RCA: 832] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a flexible system for gene expression profiling using arrays of tens of thousands of oligonucleotides synthesized in situ by an ink-jet printing method employing standard phosphoramidite chemistry. We have characterized the dependence of hybridization specificity and sensitivity on parameters including oligonucleotide length, hybridization stringency, sequence identity, sample abundance, and sample preparation method. We find that 60-mer oligonucleotides reliably detect transcript ratios at one copy per cell in complex biological samples, and that ink-jet arrays are compatible with several different sample amplification and labeling techniques. Furthermore, results using only a single carefully selected oligonucleotide per gene correlate closely with those obtained using complementary DNA (cDNA) arrays. Most of the genes for which measurements differ are members of gene families that can only be distinguished by oligonucleotides. Because different oligonucleotide sequences can be specified for each array, we anticipate that ink-jet oligonucleotide array technology will be useful in a wide variety of DNA microarray applications.
Collapse
Affiliation(s)
- T R Hughes
- Rosetta Inpharmatics, Inc., 12040 115th Avenue NE, Kirkland, WA 98034, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wilds CJ, Minasov G, Natt F, von Matt P, Altmann KH, Egli M. Studies of a chemically modified oligodeoxynucleotide containing a 5-atom amide backbone which exhibits improved binding to RNA. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:991-4. [PMID: 11563161 DOI: 10.1081/ncn-100002475] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chimeric oligodeoxyribonucleotides where the phosphodiester linkage -C3'-O-PO2--O-CH2-C4'- of DNA is substituted by the amide linkage -C3'-CH2-CH*(CH3)-CO-NH-CH2-C4' (*either R or S stereochemistry) have been prepared and their binding to RNA targets have been investigated. Incorporation of a single amide unit increases the Tm by approximately 1.4-1.9 degrees C. Circular dichroic spectra of these modified duplexes are similar to the wildtype DNA/RNA.
Collapse
Affiliation(s)
- C J Wilds
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
40
|
Chen YZ, Mohan V, Griffey RH. Base opening in RNA and DNA duplexes: implication for RNA stability. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 61:5640-5. [PMID: 11031620 DOI: 10.1103/physreve.61.5640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/1999] [Indexed: 11/07/2022]
Abstract
The energetics of a low-energy single base opening in several RNA duplex crystal structures has been calculated and compared to DNA duplexes. Base opening in RNA appears to have an overall preference towards the major groove, similar to results previously reported for B-DNA. Movement of each of the adenine, uracil, and cytosine bases into the minor groove is blocked by a high-energy barrier due to severe close contact with neighboring bases. Guanine bases are able to open towards both grooves because of the unique orientation of the base that avoids steric clash along the opening pathway. RNA bases are found to have a substantially smaller major groove opening extent than that of their B-DNA counterparts. A comparison with base opening behavior of A-DNA duplexes suggests that this difference results from helix constraint associated with A-form backbone conformation. The reduced opening extent correlates with the RNA duplex stability and is consistent with observed slower imino proton exchange rates in RNA duplexes.
Collapse
Affiliation(s)
- Y Z Chen
- ISIS Pharmaceuticals, Carlsbad, California 92008, USA
| | | | | |
Collapse
|
41
|
Hashem GM, Wen JD, Do Q, Gray DM. Evidence from CD spectra and melting temperatures for stable Hoogsteen-paired oligomer duplexes derived from DNA and hybrid triplexes. Nucleic Acids Res 1999; 27:3371-9. [PMID: 10454646 PMCID: PMC148572 DOI: 10.1093/nar/27.16.3371] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The pyr*pur.pyr type of nucleic acid triplex has a purine strand that is Hoogsteen-paired with a parallel pyrimidine strand (pyr*pur pair) and that is Watson-Crick-paired with an antiparallel pyrimidine strand (pur.pyr pair). In most cases, the Watson-Crick pair is more stable than the Hoogsteen pair, although stable formation of DNA Hoogsteen-paired duplexes has been reported. Using oligomer triplexes of repeating d(AG)12 and d(CT)12 or r(CU)12 sequences that were 24 nt long, we found that hybrid RNA*DNA as well as DNA*DNA Hoogsteen-paired strands of triplexes can be more stable than the Watson-Crick-paired strands at low pH. The structures and relative stabilities of these duplexes and triplexes were evaluated by circular dichroism (CD) spectroscopy and UV absorption melting studies of triplexes as a function of pH. The CD contributions of Hoogsteen-paired RNA*DNA and DNA*DNA duplexes were found to dominate the CD spectra of the corresponding pyr*pur.pyr triplexes.
Collapse
Affiliation(s)
- G M Hashem
- Department of Molecular and Cell Biology, Mail Stop FO31, The University of Texas at Dallas, Box 830688, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
42
|
Barciszewski J, Jurczak J, Porowski S, Specht T, Erdmann VA. The role of water structure in conformational changes of nucleic acids in ambient and high-pressure conditions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:293-307. [PMID: 10095763 DOI: 10.1046/j.1432-1327.1999.00184.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review describes and summarizes data on the structure and properties of water under normal conditions, at high salt concentration and under high pressure. We correlate the observed conformational changes in nucleic acids with changes in water structure and activity, and suggest a mechanism of conformational transitions of nucleic acids which accounts for changes in the water structure. From the biophysical, biochemical and crystallographic data we conclude that the Z-DNA form can be induced only at low water activity produced by high salt concentrations or high pressure, and accompanied by the stabilizing conjugative effect of the cytidine O4' electrons of the CG base pairs.
Collapse
Affiliation(s)
- J Barciszewski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego, Poznan, Poland.
| | | | | | | | | |
Collapse
|
43
|
Conn GL, Brown T, Leonard GA. The crystal structure of the RNA/DNA hybrid r(GAAGAGAAGC). d(GCTTCTCTTC) shows significant differences to that found in solution. Nucleic Acids Res 1999; 27:555-61. [PMID: 9862980 PMCID: PMC148215 DOI: 10.1093/nar/27.2.555] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The crystal structure of the RNA/DNA hybrid r(GAAGAGAAGC). d(GCTTCTCTTC) has been solved and refined at 2.5 A resolution. The refinement procedure converged at R = 0.181 for all reflections in the range 20.0-2.5 A. In the crystal, the RNA/DNA hybrid duplex has an A' conformation with all but one of the nucleotide sugar moieties adopting a C3'- endo (N) conformation. Both strands in the double helix adopt a global conformation close to the A-form and the width of the minor groove is typical of that found in the crystal structures of other A-form duplexes. However, differences are observed between the RNA and DNA strands that make up the hybrid at the local level. In the central portion of the duplex, the RNA strand has backbone alpha, beta and gamma torsion angles that alternate between the normal gauche -/ trans / gauche + conformation and an unusual trans / trans / trans conformation. Coupled with this so-called 'alpha/gamma flipping' of the backbone torsion angles, the distance between adjacent phosphorous atoms on the RNA strand systematically varies. Neither of these phenomena are observed on the DNA strand. The structure of the RNA/DNA hybrid presented here differs significantly from that found in solution for this and other sequences. Possible reasons for these differences and their implications for the current model of RNase H activity are discussed.
Collapse
Affiliation(s)
- G L Conn
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK and Joint ESRF/EMBLStructural Biology Group, European Synchrotron Radiation Facility, BP 200, F-38034 Grenoble Cedex, France
| | | | | |
Collapse
|
44
|
Xiong Y, Sundaralingam M. Crystal structure and conformation of a DNA-RNA hybrid duplex with a polypurine RNA strand: d(TTCTTBr5CTTC)-r(GAAGAAGAA). Structure 1998; 6:1493-501. [PMID: 9862803 DOI: 10.1016/s0969-2126(98)00148-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND . DNA-RNA hybrids are substrates for RNase H. This enzyme catalyzes the hydrolysis of the RNA strand in the hybrid form. The polypurine tract (PPT) in human immunodeficiency virus 1 (HIV-1) is a short stretch of purines ( approximately 15 bases) located at the 3'-end of the U3 region of the RNA genome. The PPT has the unique ability to resist digestion by RNase H and serves as a primer for plus-strand DNA synthesis. RESULTS . The crystal structure of a DNA-RNA hybrid duplex containing a polypurine RNA strand, d(TTCTTBr5CTTC)-r(GAAGAAGAA), has been determined at 1.8 A resolution. The structure was solved by molecular replacement methods and refined to a final R factor of 20.1% (R free 23.7%). The hybrid duplex adopts a standard A-form conformation. All of the sugar rings and glycosidic torsion angles are found in the standard C3'-endo/anti conformation, as seen in A-RNA or A-DNA. The crystal packing is dominated by the DNA strand, where the terminal base pairs of the hybrid abut the neighboring A-DNA sugar-phosphate backbone on the minor groove side. CONCLUSIONS . The present DNA-RNA hybrid duplex containing a polypurine RNA strand exhibits standard A-form geometry. This observation might suggest that the RNA PPT resists the RNase H activity of HIV reverse transcriptase as a result of its A-form conformation. In addition, there appears to be a correlation between the percentage purine content of the RNA and the DNA backbone conformation.
Collapse
Affiliation(s)
- Y Xiong
- The Ohio State University Biological Macromolecular Structure Center Departments of Chemistry, Biochemistry and Biophysics Program 012 Rightmire Hall 1060 Carmack Road Columbus Ohio 43210 USA
| | | |
Collapse
|
45
|
Damha MJ, Noronha A. Recognition of nucleic acid double helices by homopyrimidine 2', 5'-linked RNA. Nucleic Acids Res 1998; 26:5152-6. [PMID: 9813104 PMCID: PMC147972 DOI: 10.1093/nar/26.22.5152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have studied the effect of a 2',5'-RNA third strand backbone on the stability of triple helices with a 'pyrimidine motif' targeting the polypurine strand of duplex DNA, duplex RNA and DNA/RNA hybrids. Comparative experiments were run in parallel with DNA and the regioisomeric RNA as third strands adopting the experimental design of Roberts and Crothers. The results reveal that 2',5'-RNA is indeed able to recognize double helical DNA (DD) and DNA (purine):RNA (pyrimidine) hybrids (DR). However, when the duplex purine strand is RNA and the duplex pyrimidine strand is DNA or RNA (i.e. RD or RR), triplex formation is not observed. These results exactly parallel what is observed for DNA third strands. Based on T m data, the affinities of 2',5'-RNA and DNA third strands towards DD and DR duplexes were similar. The RNA third strand formed triplexes with all four hairpins, as previously demonstrated. In analogy to the arabinose and 2'-deoxyribose third strands, the possible C2'- endo pucker of 2',5'-linked riboses together with the lack of an alpha-2'-OH group are believed to be responsible for the selective binding of 2',5'-RNA to DD and DR duplexes, over RR and RD duplexes. These studies indicate that the use of other oligonucleotide analogues will prove extremely useful in dissecting the contributions of backbone and/or sugar puckering to the recognition of nucleic acid duplexes.
Collapse
Affiliation(s)
- M J Damha
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 2K6, Canada.
| | | |
Collapse
|
46
|
Ota N, Warashina M, Hirano K, Hatanaka K, Taira K. Effects of helical structures formed by the binding arms of DNAzymes and their substrates on catalytic activity. Nucleic Acids Res 1998; 26:3385-91. [PMID: 9649623 PMCID: PMC147707 DOI: 10.1093/nar/26.14.3385] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As a part of our efforts to clarify structure-function relationships in reactions catalyzed by deoxyribozymes (DNAzymes), which were recently selected in vitro , we synthesized various chimeras and analyzed the kinetics of the corresponding cleavage reactions. We focused on the binding arms and generated helices composed of binding arms and substrates that consisted of RNA and RNA, of RNA and DNA or of DNA and DNA. As expected for the rate limiting chemical cleavage step in reactions catalyzed by DNAzymes, a linear relationship between log( k cat) and pH was observed. In all cases examined, introduction of DNA into the binding helix enhanced the rate of chemical cleavage. Comparison of CD spectra of DNAzyme. substrate complexes suggested that higher levels of B-form-like helix were associated with higher rates of cleavage of the substrate within the complex. To our surprise, the enhancement of catalytic activity that followed introduction of DNA into the binding helix (enhancement by the presence of more B-form-like helix) was very similar to that observed in the case of the hammerhead ribozymes that we had investigated previously. These data, together with other observations, strongly suggest that the reaction mechanism of metal-ion-dependent DNAzymes is almost identical to that of hammerhead ribozymes.
Collapse
Affiliation(s)
- N Ota
- National Institute for Advanced Interdisciplinary Research, Agency of Industrial Science and Technology, MITI, Tsukuba Science City 305-8562, Japan
| | | | | | | | | |
Collapse
|
47
|
Gray DM. Derivation of nearest-neighbor properties from data on nucleic acid oligomers. II. Thermodynamic parameters of DNA.RNA hybrids and DNA duplexes. Biopolymers 1997; 42:795-810. [PMID: 10904551 DOI: 10.1002/(sici)1097-0282(199712)42:7<795::aid-bip5>3.0.co;2-o] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using nearest-neighbor models consisting of independent short sequence combinations of nearest neighbors (ISS models), values of thermodynamic parameters for sets of independent sequences are derived from published oligomer data for DNA.RNA hybrids [N. Sugimoto, S. Nakano, M. Katoh, A. Matsumura, H. Nakamuta, T. Ohmichi, M. Yoneyama, and M. Sasaki (1995) Biochemistry, Vol. 34, pp. 11211-11216] and dsDNA duplexes [J. SantaLucia, Jr., H. T. Allawi, and P. A. Seneviratne (1996) Biochemistry, Vol. 35, pp. 3555-3562]. The results are compared with those from models that assign values of thermodynamic parameters to individual nearest neighbors (INN models). Differences in the use of ISS and INN models are also illustrated in an appendix, which shows examples of analyses for values of a fictitious nearest-neighbor property. INN models that include an initiation parameter contain an implicit assumption that combinations of end neighbors have the same value of a property. It is found that combinations of end neighbors (e.g., base pairs neighboring solvent) in oligomers can have significant and different apparent values of thermodynamic properties, so that the assumption inherent in INN models is not always correct. Even though ISS models do not allow the assignment of values to individual nearest neighbors, except for the like neighbors [such as d(AA)/r(UU), etc., for hybrids and d(AA)/d(TT) and d(GG)/d(CC) for DNA duplexes], they do provide physically meaningful values for the like neighbors, for sequence combinations, and for specified combinations of end neighbors.
Collapse
Affiliation(s)
- D M Gray
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson 75083-0688, USA
| |
Collapse
|
48
|
Clark CL, Cecil PK, Singh D, Gray DM. CD, absorption and thermodynamic analysis of repeating dinucleotide DNA, RNA and hybrid duplexes [d/r(AC)]12.[d/r(GT/U)]12 and the influence of phosphorothioate substitution. Nucleic Acids Res 1997; 25:4098-105. [PMID: 9321664 PMCID: PMC147004 DOI: 10.1093/nar/25.20.4098] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Circular dichroism (CD) spectra and melting temperature (Tm) data for five duplexes containing phosphorothioate linkages were compared with data for four unmodified duplexes to assess the effect of phosphorothioate modification on the structure and stability of DNA. DNA and DNA.RNA duplexes. Nine duplexes were formed by mixing oligomers 24 nt long in 0.15 M K+(phosphate buffer), pH 7.0. Unmodified DNA.DNA and RNA.RNA duplexes were used as reference B-form and A-form structures. The CD spectra of the modified hybrids S-d(AC)12.r(GU)12 and r(AC)12.S-d(GT)12 differed from each other but were essentially the same as the spectra of the respective unmodified hybrids. They were more A-form than B-form in character. CD spectra of duplexes S-d(AC)12.d(GT)12 and d(AC)12.S-d(GT)12 were similar to that of d(AC)12.d(GT)12, except for a reduced long wavelength CD band. Sulfur modifications on both strands of the DNA duplex caused a pronounced effect on its CD spectrum. The order of thermal stability was: RNA.RNA > DNA.DNA > DNA.RNA > S-DNA.DNA > S-DNA. RNA > S-DNA.S-DNA. Phosphorothioation of one strand decreased the melting temperature by 7.8+/-0.6 degrees C, regardless of whether the substitution was in a hybrid or DNA duplex. Thermodynamic parameters were obtained from a multistate analysis of the thermal melting profiles. Interestingly, the destabilizing effect of the phosphorothioate substitution appears to arise from a difference in the entropy upon forming the DNA.DNA duplexes, while the destabilizing effect in the DNA.RNA hybrids appears to come from a difference in enthalpy.
Collapse
Affiliation(s)
- C L Clark
- The University of Texas at Dallas, Box 830688, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
49
|
Fedoroff OY, Ge Y, Reid BR. Solution structure of r(gaggacug):d(CAGTCCTC) hybrid: implications for the initiation of HIV-1 (+)-strand synthesis. J Mol Biol 1997; 269:225-39. [PMID: 9191067 DOI: 10.1006/jmbi.1997.1024] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The three-dimensional solution structure of the hybrid duplex r(gaggacug):d(CAGTCCTC) has been determined by two-dimensional NMR, distance geometry (DG), restrained molecular dynamics (rMD) and NOE back-calculation methods. This hybrid, consisting of a purine-rich RNA strand and a pyrimidine-rich DNA strand, is related to the polypurine (+)-strand primer formed after (-)-strand DNA synthesis and RNase H degradation of the viral RNA strand and contains the site of a specific cleavage by reverse transcription (RT) RNase H at the end of the HIV-1 polypurine tract. This polypurine primer is an important intermediate in the formation of virally encoded double-stranded DNA prior to HIV-1 retrovirus integration. The correct processing of this primer is vital in the life cycle of the human immunodeficiency virus type (HIV-1) retrovirus. The structure of the r(gaggacug):d(CAGTCCTC) hybrid, as determined in solution by NMR, is intermediate between canonical A-type and B-type double helices, and has mixed structural characteristics. It is quantitatively different from the previously determined solution structures of other RNA-DNA hybrids, particularly in the width and shape of the major groove, which is wider than the major groove of other hybrids and is close to the dimension of the major groove of B-type DNA duplexes. The structure of this hybrid duplex contains a prominent bend in the double helix with a magnitude and direction similar to the bend in Okazaki fragments. The structural features of the present duplex may explain the unique interactions of this sequence with HIV-1 RT during both (-)-strand and (+)-strand DNA synthesis.
Collapse
Affiliation(s)
- O Y Fedoroff
- Chemistry Department, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
50
|
Rausch JW, Le Grice SF. Substituting a conserved residue of the ribonuclease H domain alters substrate hydrolysis by retroviral reverse transcriptase. J Biol Chem 1997; 272:8602-10. [PMID: 9079691 DOI: 10.1074/jbc.272.13.8602] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alterations to the highly conserved Asp549 of the retroviral ribonuclease H (RNase H) domain were evaluated in the heterodimeric (p66/p51) reverse transcriptases of human immunodeficiency and equine infectious anemia viruses. In addition to the polymerization-dependent and -independent modes of template hydrolysis, mutants were evaluated via their ability to select and extend the 3' polypurine tract (PPT) primers of these two lentiviruses into (+) strand DNA. Concerted and two-step reactions were designed to evaluate (+) strand priming, the latter of which allows discrimination between selection end extension events. In contrast to enzyme mutated at the highly conserved Glu478, substitution of Asp549 with Asn or Ala reduces, rather than completely eliminates, RNase H activity. When the requirement for RNase H function becomes more stringent, differences in activity are readily evident, most notably in the cleavage events liberating the 5' terminus of the PPT primer. PPT selection thus appears to represent a specialized form of RNase H activity that is more sensitive to minor structural alterations within this domain and may provide a novel therapeutic target.
Collapse
Affiliation(s)
- J W Rausch
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4984, USA
| | | |
Collapse
|