1
|
Miskey C, Kesselring L, Querques I, Abrusán G, Barabas O, Ivics Z. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2807-2825. [PMID: 35188569 PMCID: PMC8934666 DOI: 10.1093/nar/gkac092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/14/2022] Open
Abstract
The Sleeping Beauty (SB) transposon system is a popular tool for genome engineering, but random integration into the genome carries a certain genotoxic risk in therapeutic applications. Here we investigate the role of amino acids H187, P247 and K248 in target site selection of the SB transposase. Structural modeling implicates these three amino acids located in positions analogous to amino acids with established functions in target site selection in retroviral integrases and transposases. Saturation mutagenesis of these residues in the SB transposase yielded variants with altered target site selection properties. Transposon integration profiling of several mutants reveals increased specificity of integrations into palindromic AT repeat target sequences in genomic regions characterized by high DNA bendability. The H187V and K248R mutants redirect integrations away from exons, transcriptional regulatory elements and nucleosomal DNA in the human genome, suggesting enhanced safety and thus utility of these SB variants in gene therapy applications.
Collapse
Affiliation(s)
| | | | - Irma Querques
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - György Abrusán
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Zoltán Ivics
- To whom correspondence should be addressed. Tel: +49 6103 77 6000; Fax: +49 6103 77 1280;
| |
Collapse
|
2
|
Kurhanewicz NA, Dinwiddie D, Bush ZD, Libuda DE. Elevated Temperatures Cause Transposon-Associated DNA Damage in C. elegans Spermatocytes. Curr Biol 2020; 30:5007-5017.e4. [DOI: 10.1016/j.cub.2020.09.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
|
3
|
Horizontal Plasmid Transfer Promotes the Dissemination of Asian Acute Hepatopancreatic Necrosis Disease and Provides a Novel Mechanism for Genetic Exchange and Environmental Adaptation. mSystems 2020; 5:5/2/e00799-19. [PMID: 32184363 PMCID: PMC7380584 DOI: 10.1128/msystems.00799-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Global outbreaks of shrimp acute hepatopancreatic necrosis disease (AHPND) caused by V. parahaemolyticus represent an urgent issue for the shrimp industry. This study revealed that the transmission mode of AHPND consists of two steps, the transregional dissemination of V. parahaemolyticus and the horizontal transfer of an AHPND-associated plasmid. Surprisingly, the introduction of the AHPND-associated plasmid also offers a novel mechanism of genetic exchange mediated by insertion sequences, and it improved the fitness of V. parahaemolyticus in a harsh environment. The results presented herein suggest that current shrimp farming practices promote genetic mixture between endemic and oceanic V. parahaemolyticus populations, which introduced the plasmid and accelerated bacterial adaptation by the acquisition of ecologically important functions. This entails a risk of the emergence of new virulent populations both for shrimp and humans. This study improves our understanding of the global dissemination of the AHPND-associated plasmid and highlights the urgent need to improve biosecurity for shrimp farming. Vibrio parahaemolyticus is an important foodborne pathogen and has recently gained particular notoriety because it causes acute hepatopancreatic necrosis disease (AHPND) in shrimp, which has caused significant economic loss in the shrimp industry. Here, we report a whole-genome analysis of 233 V. parahaemolyticus strains isolated from humans, diseased shrimp, and environmental samples collected between 2008 and 2017, providing unprecedented insight into the historical spread of AHPND. The results show that V. parahaemolyticus is genetically diverse and can be divided into 84 sequence types (STs). However, genomic analysis of three STs of V. parahaemolyticus identified seven transmission routes in Asia since 1996, which promoted the transfer of an AHPND-associated plasmid. Notably, the insertion sequence (ISVal1) from the plasmid subsequently mediated the genetic exchange among V. parahaemolyticus STs and resulted in the deletion of an 11-kb region regulating cell mobility and the production of capsular polysaccharides. Phenotype assays confirmed that this deletion enhanced biofilm formation, providing a novel mechanism for environmental adaptation. We conclude that the transmission mode of AHPND consists of two steps, the transmission of V. parahaemolyticus and the subsequent horizontal transfer of the AHPND-associated plasmid. This plasmid allows ISVal1 to mediate genetic exchange and improve pathogen fitness in shrimp ponds. Current shrimp farming practices promoted such genetic exchanges, which highlighted a risk of the emergence of new virulent populations, with potentially devastating consequences for both aquaculture and human health. This study addressed the basic questions regarding the transmission mechanism of AHPND and provided novel insights into shrimp and human disease management. IMPORTANCE Global outbreaks of shrimp acute hepatopancreatic necrosis disease (AHPND) caused by V. parahaemolyticus represent an urgent issue for the shrimp industry. This study revealed that the transmission mode of AHPND consists of two steps, the transregional dissemination of V. parahaemolyticus and the horizontal transfer of an AHPND-associated plasmid. Surprisingly, the introduction of the AHPND-associated plasmid also offers a novel mechanism of genetic exchange mediated by insertion sequences, and it improved the fitness of V. parahaemolyticus in a harsh environment. The results presented herein suggest that current shrimp farming practices promote genetic mixture between endemic and oceanic V. parahaemolyticus populations, which introduced the plasmid and accelerated bacterial adaptation by the acquisition of ecologically important functions. This entails a risk of the emergence of new virulent populations both for shrimp and humans. This study improves our understanding of the global dissemination of the AHPND-associated plasmid and highlights the urgent need to improve biosecurity for shrimp farming.
Collapse
|
4
|
The Tc1-like elements with the spliceosomal introns in mollusk genomes. Mol Genet Genomics 2020; 295:621-633. [DOI: 10.1007/s00438-020-01645-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022]
|
5
|
Puzakov MV, Puzakova LV. leidyi Is a New Group of DD41D Transposons in Mnemiopsis leidyi Genome. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419070123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Metivier SL, Kim J, Addison JA. Genotype by sequencing identifies natural selection as a driver of intraspecific divergence in Atlantic populations of the high dispersal marine invertebrate, Macoma petalum. Ecol Evol 2017; 7:8058-8072. [PMID: 29043056 PMCID: PMC5632645 DOI: 10.1002/ece3.3332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial DNA analyses indicate that the Bay of Fundy population of the intertidal tellinid bivalve Macoma petalum is genetically divergent from coastal populations in the Gulf of Maine and Nova Scotia. To further examine the evolutionary forces driving this genetic break, we performed double digest genotype by sequencing (GBS) to survey the nuclear genome for evidence of both neutral and selective processes shaping this pattern. The resulting reads were mapped to a partial transcriptome of its sister species, M. balthica, to identify single nucleotide polymorphisms (SNPs) in protein-coding genes. Population assignment tests, principle components analyses, analysis of molecular variance, and outlier tests all support differentiation between the Bay of Fundy genotype and the genotypes of the Gulf of Maine, Gulf of St. Lawrence, and Nova Scotia. Although both neutral and non-neutral patterns of genetic subdivision were significant, genetic structure among the regions was nearly 20 times higher for loci putatively under selection, suggesting a strong role for natural selection as a driver of genetic diversity in this species. Genetic differences were the greatest between the Bay of Fundy and all other population samples, and some outlier proteins were involved in immunity-related processes. Our results suggest that in combination with limited gene flow across the mouth of the Bay of Fundy, local adaptation is an important driver of intraspecific genetic variation in this marine species with high dispersal potential.
Collapse
Affiliation(s)
| | - Jin‐Hong Kim
- Department of BiologyUniversity of New BrunswickFrederictonNBCanada
| | - Jason A. Addison
- Department of BiologyUniversity of New BrunswickFrederictonNBCanada
| |
Collapse
|
7
|
Voigt F, Wiedemann L, Zuliani C, Querques I, Sebe A, Mátés L, Izsvák Z, Ivics Z, Barabas O. Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering. Nat Commun 2016; 7:11126. [PMID: 27025571 PMCID: PMC4820933 DOI: 10.1038/ncomms11126] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 02/22/2016] [Indexed: 01/11/2023] Open
Abstract
Sleeping Beauty (SB) is a prominent Tc1/mariner superfamily DNA transposon that provides a popular genome engineering tool in a broad range of organisms. It is mobilized by a transposase enzyme that catalyses DNA cleavage and integration at short specific sequences at the transposon ends. To facilitate SB's applications, here we determine the crystal structure of the transposase catalytic domain and use it to model the SB transposase/transposon end/target DNA complex. Together with biochemical and cell-based transposition assays, our structure reveals mechanistic insights into SB transposition and rationalizes previous hyperactive transposase mutations. Moreover, our data enables us to design two additional hyperactive transposase variants. Our work provides a useful resource and proof-of-concept for structure-based engineering of tailored SB transposases. Sleeping Beauty is used as a genome engineering tool in a range of organisms. Here, the authors solve an atomic structure of Sleeping Beauty (SB) transposase and model the target DNA into the active site, elucidating details that may enable the rational design of novel transposases.
Collapse
Affiliation(s)
- Franka Voigt
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Lisa Wiedemann
- Paul Ehrlich Institute, Division of Medical Biotechnology, Paul Ehrlich Strasse 51-59, Langen 63225, Germany
| | - Cecilia Zuliani
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Irma Querques
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Attila Sebe
- Paul Ehrlich Institute, Division of Medical Biotechnology, Paul Ehrlich Strasse 51-59, Langen 63225, Germany
| | - Lajos Mátés
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin 13092, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin 13092, Germany
| | - Zoltán Ivics
- Paul Ehrlich Institute, Division of Medical Biotechnology, Paul Ehrlich Strasse 51-59, Langen 63225, Germany
| | - Orsolya Barabas
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| |
Collapse
|
8
|
Abstract
Sleeping Beauty (SB) is a synthetic transposon that was constructed based on sequences of transpositionally inactive elements isolated from fish genomes. SB is a Tc1/mariner superfamily transposon following a cut-and-paste transpositional reaction, during which the element-encoded transposase interacts with its binding sites in the terminal inverted repeats of the transposon, promotes the assembly of a synaptic complex, catalyzes excision of the element out of its donor site, and integrates the excised transposon into a new location in target DNA. SB transposition is dependent on cellular host factors. Transcriptional control of transposase expression is regulated by the HMG2L1 transcription factor. Synaptic complex assembly is promoted by the HMGB1 protein and regulated by chromatin structure. SB transposition is highly dependent on the nonhomologous end joining (NHEJ) pathway of double-strand DNA break repair that generates a transposon footprint at the excision site. Through its association with the Miz-1 transcription factor, the SB transposase downregulates cyclin D1 expression that results in a slowdown of the cell-cycle in the G1 phase, where NHEJ is preferentially active. Transposon integration occurs at TA dinucleotides in the target DNA, which are duplicated at the flanks of the integrated transposon. SB shows a random genome-wide insertion profile in mammalian cells when launched from episomal vectors and "local hopping" when launched from chromosomal donor sites. Some of the excised transposons undergo a self-destructive autointegration reaction, which can partially explain why longer elements transpose less efficiently. SB became an important molecular tool for transgenesis, insertional mutagenesis, and gene therapy.
Collapse
|
9
|
AlQuraishi M, Tang S, Xia X. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system. BMC Bioinformatics 2015; 16:390. [PMID: 26586237 PMCID: PMC4653904 DOI: 10.1186/s12859-015-0819-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 11/11/2015] [Indexed: 11/28/2022] Open
Abstract
Background Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. Description We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Conclusions This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.
Collapse
Affiliation(s)
- Mohammed AlQuraishi
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA. .,HMS Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA.
| | - Shengdong Tang
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.,HMS Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Xide Xia
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.,HMS Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Wheeler BS. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res 2014; 21:587-600. [PMID: 24254230 DOI: 10.1007/s10577-013-9394-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transposons are mobile genetic elements that are a major constituent of most genomes. Organisms regulate transposable element expression, transposition, and insertion site preference, mitigating the genome instability caused by uncontrolled transposition. A recent burst of research has demonstrated the critical role of small non-coding RNAs in regulating transposition in fungi, plants, and animals. While mechanistically distinct, these pathways work through a conserved paradigm. The presence of a transposon is communicated by the presence of its RNA or by its integration into specific genomic loci. These signals are then translated into small non-coding RNAs that guide epigenetic modifications and gene silencing back to the transposon. In addition to being regulated by the host, transposable elements are themselves capable of influencing host gene expression. Transposon expression is responsive to environmental signals, and many transposons are activated by various cellular stresses. TEs can confer local gene regulation by acting as enhancers and can also confer global gene regulation through their non-coding RNAs. Thus, transposable elements can act as stress-responsive regulators that control host gene expression in cis and trans.
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA,
| |
Collapse
|
11
|
Skipper KA, Andersen PR, Sharma N, Mikkelsen JG. DNA transposon-based gene vehicles - scenes from an evolutionary drive. J Biomed Sci 2013; 20:92. [PMID: 24320156 PMCID: PMC3878927 DOI: 10.1186/1423-0127-20-92] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022] Open
Abstract
DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation.
Collapse
Affiliation(s)
| | | | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Wilh, Meyers Allé 4, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
12
|
Claeys Bouuaert C, Chalmers R. Hsmar1 transposition is sensitive to the topology of the transposon donor and the target. PLoS One 2013; 8:e53690. [PMID: 23341977 PMCID: PMC3544897 DOI: 10.1371/journal.pone.0053690] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/04/2012] [Indexed: 01/08/2023] Open
Abstract
Hsmar1 is a member of the Tc1-mariner superfamily of DNA transposons. These elements mobilize within the genome of their host by a cut-and-paste mechanism. We have exploited the in vitro reaction provided by Hsmar1 to investigate the effect of DNA supercoiling on transposon integration. We found that the topology of both the transposon and the target affect integration. Relaxed transposons have an integration defect that can be partially restored in the presence of elevated levels of negatively supercoiled target DNA. Negatively supercoiled DNA is a better target than nicked or positively supercoiled DNA, suggesting that underwinding of the DNA helix promotes target interactions. Like other Tc1-mariner elements, Hsmar1 integrates into 5′-TA dinucleotides. The direct vicinity of the target TA provides little sequence specificity for target interactions. However, transposition within a plasmid substrate was not random and some TA dinucleotides were targeted preferentially. The distribution of intramolecular target sites was not affected by DNA topology.
Collapse
|
13
|
AlQuraishi M, McAdams HH. Three enhancements to the inference of statistical protein-DNA potentials. Proteins 2012; 81:426-42. [PMID: 23042633 DOI: 10.1002/prot.24201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/17/2012] [Accepted: 10/02/2012] [Indexed: 12/28/2022]
Abstract
The energetics of protein-DNA interactions are often modeled using so-called statistical potentials, that is, energy models derived from the atomic structures of protein-DNA complexes. Many statistical protein-DNA potentials based on differing theoretical assumptions have been investigated, but little attention has been paid to the types of data and the parameter estimation process used in deriving the statistical potentials. We describe three enhancements to statistical potential inference that significantly improve the accuracy of predicted protein-DNA interactions: (i) incorporation of binding energy data of protein-DNA complexes, in conjunction with their X-ray crystal structures, (ii) use of spatially-aware parameter fitting, and (iii) use of ensemble-based parameter fitting. We apply these enhancements to three widely-used statistical potentials and use the resulting enhanced potentials in a structure-based prediction of the DNA binding sites of proteins. These enhancements are directly applicable to all statistical potentials used in protein-DNA modeling, and we show that they can improve the accuracy of predicted DNA binding sites by up to 21%.
Collapse
Affiliation(s)
- Mohammed AlQuraishi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
14
|
Wu J, Du H, Liao X, Zhao Y, Li L, Yang L. Tn5 transposase-assisted transformation of indica rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:186-200. [PMID: 21635585 DOI: 10.1111/j.1365-313x.2011.04663.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Here, we describe experiments on Tn5 transposase-assisted transformation of indica rice. Transposomes were formed in vitro as a result of hyperactive Tn5 transposase complexing with a transposon that contained a 19-bp tetracycline operator (tetO) sequence. To form modified projectiles for transformation, the Tn10-derived prokaryotic tetracycline repressor (TetR) proteins, which can bind transposomes via the high affinity of TetR for tetO, were immobilized onto the surface of bare gold microscopic particles. These projectiles were introduced into cells of the indica rice cultivar Zhuxian B by particle bombardment. Once projectiles were inside the cell, tetracycline induced an allosteric conformational change in TetR that resulted in the dissociation of TetR from tetO, and thus generated free transposomes. Molecular evidence of transposition was obtained by the cloning of insertion sites from many transgenic plants. We also demonstrated that the introduced foreign DNA was inherited stably over several generations. This technique is a promising transformation method for other plant species as it is species independent.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | | | | | | | | | | |
Collapse
|
15
|
Crénès G, Moundras C, Demattei MV, Bigot Y, Petit A, Renault S. Target site selection by the mariner-like element, Mos1. Genetica 2009; 138:509-17. [PMID: 19629719 DOI: 10.1007/s10709-009-9387-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/07/2009] [Indexed: 12/18/2022]
Abstract
The eukaryotic transposon Mos1 is a class-II transposable element that moves using a "cut-and-paste" mechanism in which the transposase is the only protein factor required. The formation of the excision complex is well documented, but the integration step has so far received less investigation. Like all mariner-like elements, Mos1 was thought to integrate into a TA dinucleotide without displaying any other target selection preferences. We set out to synthesize what is currently known about Mos1 insertion sites, and to define the characteristics of Mos1 insertion sequences in vitro and in vivo. Statistical analysis can be used to identify the TA dinucleotides that are non-randomly targeted for transposon integration. In vitro, no specific feature determining target choice other than the requirement for a TA dinucleotide has been identified. In vivo, data were obtained from two previously reported integration hotspots: the bacterial cat gene and the Caenorhabditis elegans rDNA locus. Analysis of these insertion sites revealed a preference for TA dinucleotides that are included in TATA or TA x TA motifs, or located within AT-rich regions. Analysis of the physical properties of sequences obtained in vitro and in vivo do not help to explain Mos1 integration preferences, suggesting that other characteristics must be involved in Mos1 target choice.
Collapse
Affiliation(s)
- Gwénaelle Crénès
- Université François Rabelais de Tours, GICC, Parc de Grandmont, 37200 Tours, France
| | | | | | | | | | | |
Collapse
|
16
|
Crénès G, Ivo D, Hérisson J, Dion S, Renault S, Bigot Y, Petit A. The bacterial Tn9 chloramphenicol resistance gene: an attractive DNA segment for Mos1 mariner insertions. Mol Genet Genomics 2008; 281:315-28. [PMID: 19112581 DOI: 10.1007/s00438-008-0414-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 12/04/2008] [Indexed: 11/26/2022]
Abstract
The eukaryotic mariner transposons are currently thought to have no sequence specificity for integration other than to insert within a TA contained in a degenerated [TA](1-4) tract, either in vitro or in vivo. We have investigated the properties of a suspected hotspot for the integration of the mariner Mos1 element, namely the Tn9 cat gene that encodes a chloramphenicol acetyl transferase. Using in vitro and bacterial transposition assays, we confirmed that the cat gene is a preferential target for MOS1 integration, whatever its sequence environment, copy number or chromosomal locus. We also observed that its presence increases transposition rates both in vitro and in bacterial assays. The structural and sequence features that constitute the attractiveness of cat were also investigated. We first demonstrated that supercoiling is essential for the cat gene to be a hot spot. In contrast to the situation for Tc1-like elements, DNA curvature and bendability were not found to affect integration target preferences. We found that Mos1 integrations do not occur randomly along the cat gene. All TA dinucleotides that are preferred for integration were found within either TATA or TA x TA motifs. However, these motifs are not sufficient to constitute an attractive dinucleotide, since four TATA and TA x TA sites are cold spots.
Collapse
Affiliation(s)
- Gwénaëlle Crénès
- GICC, UMR CNRS 6239, Université François Rabelais de Tours, UFR des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Linheiro RS, Bergman CM. Testing the palindromic target site model for DNA transposon insertion using the Drosophila melanogaster P-element. Nucleic Acids Res 2008; 36:6199-208. [PMID: 18829720 PMCID: PMC2577343 DOI: 10.1093/nar/gkn563] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the molecular mechanisms that influence transposable element target site preferences is a fundamental challenge in functional and evolutionary genomics. Large-scale transposon insertion projects provide excellent material to study target site preferences in the absence of confounding effects of post-insertion evolutionary change. Growing evidence from a wide variety of prokaryotes and eukaryotes indicates that DNA transposons recognize staggered-cut palindromic target site motifs (TSMs). Here, we use over 10 000 accurately mapped P-element insertions in the Drosophila melanogaster genome to test predictions of the staggered-cut palindromic target site model for DNA transposon insertion. We provide evidence that the P-element targets a 14-bp palindromic motif that can be identified at the primary sequence level, which predicts the local spacing, hotspots and strand orientation of P-element insertions. Intriguingly, we find that the although P-element destroys the complete 14-bp target site upon insertion, the terminal three nucleotides of the P-element inverted repeats complement and restore the original TSM, suggesting a mechanistic link between transposon target sites and their terminal inverted repeats. Finally, we discuss how the staggered-cut palindromic target site model can be used to assess the accuracy of genome mappings for annotated P-element insertions.
Collapse
Affiliation(s)
- Raquel S Linheiro
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | |
Collapse
|
18
|
Transposon–Host Cell Interactions in the Regulation of Sleeping Beauty Transposition. TRANSPOSONS AND THE DYNAMIC GENOME 2008. [DOI: 10.1007/7050_2008_042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
19
|
Mátés L, Izsvák Z, Ivics Z. Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol 2007; 8 Suppl 1:S1. [PMID: 18047686 PMCID: PMC2106849 DOI: 10.1186/gb-2007-8-s1-s1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To meet the increasing demand of linking sequence information to gene function in vertebrate models, genetic modifications must be introduced and their effects analyzed in an easy, controlled, and scalable manner. In the mouse, only about 10% (estimate) of all genes have been knocked out, despite continuous methodologic improvement and extensive effort. Moreover, a large proportion of inactivated genes exhibit no obvious phenotypic alterations. Thus, in order to facilitate analysis of gene function, new genetic tools and strategies are currently under development in these model organisms. Loss of function and gain of function mutagenesis screens based on transposable elements have numerous advantages because they can be applied in vivo and are therefore phenotype driven, and molecular analysis of the mutations is straightforward. At present, laboratory harnessing of transposable elements is more extensive in invertebrate models, mostly because of their earlier discovery in these organisms. Transposons have already been found to facilitate functional genetics research greatly in lower metazoan models, and have been applied most comprehensively in Drosophila. However, transposon based genetic strategies were recently established in vertebrates, and current progress in this field indicates that transposable elements will indeed serve as indispensable tools in the genetic toolkit for vertebrate models. In this review we provide an overview of transposon based genetic modification techniques used in higher and lower metazoan model organisms, and we highlight some of the important general considerations concerning genetic applications of transposon systems.
Collapse
Affiliation(s)
- Lajos Mátés
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str, 13092 Berlin, Germany
| | | | | |
Collapse
|
20
|
Gradman RJ, Ptacin JL, Bhasin A, Reznikoff WS, Goryshin IY. A bifunctional DNA binding region in Tn5 transposase. Mol Microbiol 2007; 67:528-40. [PMID: 18086215 PMCID: PMC2229646 DOI: 10.1111/j.1365-2958.2007.06056.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tn5 transposition is a complicated process that requires the formation of a highly ordered protein-DNA structure, a synaptic complex, to catalyse the movement of a sequence of DNA (transposon) into a target DNA. Much is known about the structure of the synaptic complex and the positioning of protein-DNA contacts, although many protein-DNA contacts remain largely unstudied. In particular, there is little evidence for the positioning of donor DNA and target DNA. In this communication, we describe the isolation and analysis of mutant transposases that have, for the first time, provided genetic and biochemical evidence for the stage-specific positioning of both donor and target DNAs within the synaptic complex. Furthermore, we have provided evidence that some of the amino acids that contact donor DNA also contact target DNA, and therefore suggest that these amino acids help define a bifunctional DNA binding region responsible for these two transposase-DNA binding events.
Collapse
Affiliation(s)
- Richard J Gradman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
21
|
Sasakura Y. Germline transgenesis and insertional mutagenesis in the ascidianCiona intestinalis. Dev Dyn 2007; 236:1758-67. [PMID: 17342755 DOI: 10.1002/dvdy.21111] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stable transgenesis is a splendid technique that is applicable to the creation of useful marker lines, enhancer/gene traps, and insertional mutagenesis. Recently, transposon-mediated transformation using a Tc1/mariner transposable element Minos has been reported in two ascidians: Ciona intestinalis and C. savignyi. The transposon derived from an insect, Drosophila hydei, has high activity for excision in Ciona embryos and transposition in their genome. As much as 37% of Minos-injected C. intestinalis transmitted transposon insertions to the subsequent generation. Minos-mediated germline transgenesis has also been achieved by means of electroporation method. Minos techniques have been applied to enhancer traps and insertional mutagenesis in Ciona. For those reasons, Minos offers the high potential for use as a powerful tool for future genetic studies. This review specifically addresses recent achievements of transformation techniques in Ciona, as exemplified using the Minos system.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan.
| |
Collapse
|
22
|
Geurts AM, Hackett CS, Bell JB, Bergemann TL, Collier LS, Carlson CM, Largaespada DA, Hackett PB. Structure-based prediction of insertion-site preferences of transposons into chromosomes. Nucleic Acids Res 2006; 34:2803-11. [PMID: 16717285 PMCID: PMC1464413 DOI: 10.1093/nar/gkl301] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mobile genetic elements with the ability to integrate genetic information into chromosomes can cause disease over short periods of time and shape genomes over eons. These elements can be used for functional genomics, gene transfer and human gene therapy. However, their integration-site preferences, which are critically important for these uses, are poorly understood. We analyzed the insertion sites of several transposons and retroviruses to detect patterns of integration that might be useful for prediction of preferred integration sites. Initially we found that a mathematical description of DNA-deformability, called Vstep, could be used to distinguish preferential integration sites for Sleeping Beauty (SB) transposons into a particular 100 bp region of a plasmid [G. Liu, A. M. Geurts, K. Yae, A. R. Srinivassan, S. C. Fahrenkrug, D. A. Largaespada,J. Takeda, K. Horie, W. K. Olson and P. B. Hackett (2005) J. Mol. Biol., 346, 161–173 ]. Based on these findings, we extended our examination of integration of SB transposons into whole plasmids and chromosomal DNA. To accommodate sequences up to 3 Mb for these analyses, we developed an automated method, ProTIS©, that can generate profiles of predicted integration events. However, a similar approach did not reveal any structural pattern of DNA that could be used to predict favored integration sites for other transposons as well as retroviruses and lentiviruses due to a limitation of available data sets. Nonetheless, ProTIS© has the utility for predicting likely SB transposon integration sites in investigator-selected regions of genomes and our general strategy may be useful for other mobile elements once a sufficiently high density of sites in a single region are obtained. ProTIS analysis can be useful for functional genomic, gene transfer and human gene therapy applications using the SB system.
Collapse
Affiliation(s)
- Aron M. Geurts
- Department of Genetics, Cell Biology and Development, The Arnold and Mabel Beckman Center for Transposon Research, University of MinnesotaMinneapolis, MN 55455, USA
| | - Christopher S. Hackett
- Biomedical Sciences Graduate Program, University of California San FranciscoSan Francisco, CA 94143-0452, USA
| | - Jason B. Bell
- Department of Genetics, Cell Biology and Development, The Arnold and Mabel Beckman Center for Transposon Research, University of MinnesotaMinneapolis, MN 55455, USA
| | - Tracy L. Bergemann
- Biostatistics Core, University of Minnesota Cancer CenterMinneapolis, MN 55455, USA
| | - Lara S. Collier
- University of Minnesota Cancer CenterMinneapolis, MN 55455, USA
| | | | - David A. Largaespada
- Department of Genetics, Cell Biology and Development, The Arnold and Mabel Beckman Center for Transposon Research, University of MinnesotaMinneapolis, MN 55455, USA
- University of Minnesota Cancer CenterMinneapolis, MN 55455, USA
| | - Perry B. Hackett
- Department of Genetics, Cell Biology and Development, The Arnold and Mabel Beckman Center for Transposon Research, University of MinnesotaMinneapolis, MN 55455, USA
- University of Minnesota Cancer CenterMinneapolis, MN 55455, USA
- To whom correspondence should be addressed at Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA. Tel: +1 612 624 6736; Fax: +1 612 625 6140;
| |
Collapse
|
23
|
Brownlie JC, Johnson NM, Whyard S. The Caenorhabditis briggsae genome contains active CbmaT1 and Tcb1 transposons. Mol Genet Genomics 2005; 273:92-101. [PMID: 15702348 DOI: 10.1007/s00438-005-1110-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.
Collapse
Affiliation(s)
- J C Brownlie
- CSIRO Division of Entomology, GPO Box 1700, Canberra, ACT, 2601, Australia.
| | | | | |
Collapse
|
24
|
Brownlie JC, Whyard S. CemaT1 is an active transposon within the Caenorhabditis elegans genome. Gene 2004; 338:55-64. [PMID: 15302406 DOI: 10.1016/j.gene.2004.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 04/13/2004] [Accepted: 05/17/2004] [Indexed: 11/30/2022]
Abstract
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. In the nematode Caenorhabditis elegans, there are eight copies of CemaT1 that are predicted to encode a functional transposase, with five copies being >99% identical. We present evidence, based on searches of publicly available databases and on PCR-based mobility assays, that the CemaT1 transposase is expressed in C. elegans and that the CemaT transposons are capable of excising in both somatic and germline tissues. We also show that the frequency of CemaT1 excisions within the genome of the N2 strain of C. elegans is comparable to that of the Tc1 transposon. However, unlike Tc transposons in mutator strains of C. elegans, maT transposons do not exhibit increased frequencies of mobility, suggesting that maT is not regulated by the same factors that control Tc activity in these strains. Finally, we show that CemaT1 transposons are capable of precise transpositions as well as orientation inversions at some loci, and thereby become members of an increasing number of identified active transposons within the C. elegans genome.
Collapse
Affiliation(s)
- J C Brownlie
- Division of Entomology, CSIRO GPO Box 1700, Canberra ACT 2601, Australia.
| | | |
Collapse
|
25
|
Chowdhury MH, Julian AM, Coates CJ, Coté GL. Detection of differences in oligonucleotide-influenced aggregation of colloidal gold nanoparticles using absorption spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2004; 9:1347-1357. [PMID: 15568957 DOI: 10.1117/1.1803847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A rapid, simple, and reproducible assay is described that can be used to detect differences in the ability of oligonucleotides to influence the aggregation of colloidal gold nanoparticles. The aggregation reaction of the gold colloid was monitored through UV-visible absorption spectroscopy. Single isolated colloidal gold particles have a surface plasmon resonance manifested as a single absorbance peak at approximately 520 nm, and aggregated gold complexes develop new red-shifted peaks/shoulders depending on the nature and extent of the aggregated complex. A simple ratiometric study of the area under the single and aggregated plasmon resonance peaks thus gives information about the extent of the aggregation. It is postulated that differences in dynamic flexibility of the oligonucleotides affect their influence on the aggregation state of the gold nanoparticles. The results of this study provide new clues toward unraveling the causes behind the preferential affinity of the Hermes transposable element for certain insertion sites compared to other sequences that also contain recognizable target sites. The technique is robust and thus can potentially be used to study similar questions for numerous transposable elements and target sequences.
Collapse
Affiliation(s)
- Mustafa H Chowdhury
- Texas A&M University, Department of Biomedical Engineering, 233 Zachry Engineering Center, College Station, Texas 77843-3120, USA.
| | | | | | | |
Collapse
|
26
|
Izsvák Z, Ivics Z. Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther 2004; 9:147-56. [PMID: 14759798 DOI: 10.1016/j.ymthe.2003.11.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 11/20/2003] [Indexed: 11/24/2022] Open
Abstract
Transposable elements can be considered as natural, nonviral gene-delivery vehicles and are valuable and widely used tools for germ-line transgenesis and insertional mutagenesis in invertebrate systems such as flies and worms. Such tools were not available for genome manipulations in vertebrates until recently, when an active element was resurrected from transposon fossils found in fish genomes. This element, the Sleeping Beauty transposon, shows efficient transposition in cells of a wide range of vertebrates, including humans. Sleeping Beauty transposition is a cut-and-paste process, during which the element "jumps" from one DNA molecule to another. Transposon integration into chromosomes provides the basis for long-term, or possibly permanent, transgene expression in transgenic cells and organisms. Thus, the reconstruction of the Sleeping Beauty element generated considerable interest in developing efficient and safe vectors for vertebrate transgenesis as well as for human gene therapy. In this review we summarize our current knowledge of Sleeping Beauty biology and describe the strengths and current limitations of transposon technology for gene therapeutic applications.
Collapse
Affiliation(s)
- Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany
| | | |
Collapse
|
27
|
Rizzon C, Martin E, Marais G, Duret L, Ségalat L, Biémont C. Patterns of Selection Against Transposons Inferred From the Distribution of Tc1, Tc3 and Tc5 Insertions in the mut-7 Line of the Nematode Caenorhabditis elegans. Genetics 2003; 165:1127-35. [PMID: 14668370 PMCID: PMC1462815 DOI: 10.1093/genetics/165.3.1127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
To identify the factors (selective or mutational) that affect the distribution of transposable elements (TEs) within a genome, it is necessary to compare the pattern of newly arising element insertions to the pattern of element insertions that have been fixed in a population. To do this, we analyzed the distribution of recent mutant insertions of the Tc1, Tc3, and Tc5 elements in a mut-7 background of the nematode Caenorhabditis elegans and compared it to the distribution of element insertions (presumably fixed) within the sequenced genome. Tc1 elements preferentially insert in regions with high recombination rates, whereas Tc3 and Tc5 do not. Although Tc1 and Tc3 both insert in TA dinucleotides, there is no clear relationship between the frequency of insertions and the TA dinucleotide density. There is a strong selection against TE insertions within coding regions: the probability that a TE will be fixed is at least 31 times lower in coding regions than in noncoding regions. Contrary to the prediction of theoretical models, we found that the selective pressure against TE insertions does not increase with the recombination rate. These findings indicate that the distribution of these three transposon families in the genome of C. elegans is determined essentially by just two factors: the pattern of insertions, which is a characteristic of each family, and the selection against insertions within coding regions.
Collapse
Affiliation(s)
- Carène Rizzon
- Biométrie, Biologie Evolutive, UMR 5558, Université Lyon 1, 69622 Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
28
|
Carlson CM, Dupuy AJ, Fritz S, Roberg-Perez KJ, Fletcher CF, Largaespada DA. Transposon Mutagenesis of the Mouse Germline. Genetics 2003; 165:243-56. [PMID: 14504232 PMCID: PMC1462753 DOI: 10.1093/genetics/165.1.243] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Sleeping Beauty is a synthetic “cut-and-paste” transposon of the Tc1/mariner class. The Sleeping Beauty transposase (SB) was constructed on the basis of a consensus sequence obtained from an alignment of 12 remnant elements cloned from the genomes of eight different fish species. Transposition of Sleeping Beauty elements has been observed in cultured cells, hepatocytes of adult mice, one-cell mouse embryos, and the germline of mice. SB has potential as a random germline insertional mutagen useful for in vivo gene trapping in mice. Previous work in our lab has demonstrated transposition in the male germline of mice and transmission of novel inserted transposons in offspring. To determine sequence preferences and mutagenicity of SB-mediated transposition, we cloned and analyzed 44 gene-trap transposon insertion sites from a panel of 30 mice. The distribution and sequence content flanking these cloned insertion sites was compared to 44 mock insertion sites randomly selected from the genome. We find that germline SB transposon insertion sites are AT-rich and the sequence ANNTANNT is favored compared to other TA dinucleotides. Local transposition occurs with insertions closely linked to the donor site roughly one-third of the time. We find that ∼27% of the transposon insertions are in transcription units. Finally, we characterize an embryonic lethal mutation caused by endogenous splicing disruption in mice carrying a particular intron-inserted gene-trap transposon.
Collapse
Affiliation(s)
- Corey M Carlson
- The Arnold and Mabel Beckman Center for Transposon Research, Institute of Human Genetics, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ladendorf O, Brachmann A, Kämper J. Heterologous transposition in Ustilago maydis. Mol Genet Genomics 2003; 269:395-405. [PMID: 12734750 DOI: 10.1007/s00438-003-0848-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2002] [Accepted: 03/31/2003] [Indexed: 11/25/2022]
Abstract
The phytopathogenic basidiomycete Ustilago maydis has become a model system for the analysis of plant-pathogen interactions. The genome sequence of this organism will soon be available, increasing the need for techniques to analyse gene function on a broad basis. We describe a heterologous transposition system for U. maydis that is based on the Caenorhabditis transposon Tc1, which is known to function independently of host factors and to be active in evolutionarily distant species. We have established a nitrate reductase based two-component counterselection system to screen for Tc1 transposition. The element was shown to be functional and transposed to several different locations in the genome of U. maydis. The insertion pattern observed was consistent with the proposed general mechanism of Tc1/mariner integration and constitutes a proof of principle for the first heterologous transposition system in a basidiomycete species. By mapping the insertion site context to known genomic sequences, Tc1 insertion events were shown to occur on different chromosomes, but exhibit a preference for non-coding regions. Only 20% of the insertions were found in putative open reading frames. The establishment of this system will permit efficient gene tagging in U. maydis and possibly also in other fungi.
Collapse
Affiliation(s)
- O Ladendorf
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch Str., 35043 Marburg, Germany
| | | | | |
Collapse
|
30
|
von Sternberg R. On the roles of repetitive DNA elements in the context of a unified genomic-epigenetic system. Ann N Y Acad Sci 2002; 981:154-88. [PMID: 12547679 DOI: 10.1111/j.1749-6632.2002.tb04917.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Repetitive DNA sequences comprise a substantial portion of most eukaryotic and some prokaryotic chromosomes. Despite nearly forty years of research, the functions of various sequence families as a whole and their monomer units remain largely unknown. The inability to map specific functional roles onto many repetitive DNA elements (REs), coupled with the taxon-specificity of sequence families, have led many to speculate that these genomic components are "selfish" replicators generating genomic "junk." The purpose of this paper is to critically examine the selfishness, evolutionary effects, and functionality of REs. First, a brief overview of the range of ideas pertaining to RE function is presented. Second, the argument is presented that the selfish DNA "hypothesis" is actually a narrative scheme, that it serves to protect neo-Darwinian assumptions from criticism, and that this story is untestable and therefore not a hypothesis. Third, attempts to synthesize the selfish DNA concept with complex systems models of the genome and RE functionality are critiqued. Fourth, the supposed connection between RE-induced mutations and macroevolutionary events are stated to be at variance with empirical evidence and theoretical considerations. Hypotheses that base phylogenetic transitions in repetitive sequence changes thus remain speculative. Fifth and finally, the case is made for viewing REs as integrally functional components of chromosomes, genomes, and cells. It is argued throughout that a new conceptual framework is needed for understanding the roles of repetitive DNA in genomic/epigenetic systems, and that neo-Darwinian "narratives" have been the primary obstacle to elucidating the effects of these enigmatic components of chromosomes.
Collapse
Affiliation(s)
- Richard von Sternberg
- Department of Systematic Biology, NHB-163, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| |
Collapse
|
31
|
Vigdal TJ, Kaufman CD, Izsvák Z, Voytas DF, Ivics Z. Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol 2002; 323:441-52. [PMID: 12381300 DOI: 10.1016/s0022-2836(02)00991-9] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sleeping Beauty (SB) is the most active Tc1/mariner-type transposable element in vertebrates, and is therefore a valuable vector for transposon mutagenesis in vertebrate models and for human gene therapy. We have analyzed factors affecting target site selection of SB in mammalian cells, by generating transposition events from extrachromosomal plasmids to chromosomes. In contrast to the local hopping observed when transposition is induced from a chromosomal context, mapping of 138 unique SB insertions on human chromosomes showed a fairly random genomic distribution, and a 35% occurrence of transposition into genes. Inspection of the DNA flanking the sites of element integration revealed significant differences from random DNA in both primary sequence and physical properties. The consensus sequence of SB target sites was found to be a palindromic AT-repeat, ATATATAT, in which the central TA is the canonical target site. We found however, that target site selection is determined primarily on the level of DNA structure, and not by specific base-pair interactions. Computational analyses revealed that insertion sites tend to have a bendable structure and a palindromic pattern of potential hydrogen-bonding sites in the major groove of the DNA. These features appear conserved in the Tc1/mariner family of transposons and in other, distantly related elements that share a common catalytic domain of the transposase, and integrate fairly randomly. No similar target site preference was found for non-randomly integrating elements. Our results suggest common factors influencing target site selection of a wide range of transposable elements.
Collapse
Affiliation(s)
- Thomas J Vigdal
- Department of Zoology and Genetics, Iowa State University, Ames, IA, USA
| | | | | | | | | |
Collapse
|
32
|
Urasaki A, Sekine Y, Ohtsubo E. Transposition of cyanobacterium insertion element ISY100 in Escherichia coli. J Bacteriol 2002; 184:5104-12. [PMID: 12193627 PMCID: PMC135329 DOI: 10.1128/jb.184.18.5104-5112.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the cyanobacterium Synechocystis sp. strain PCC6803 has nine kinds of insertion sequence (IS) elements, of which ISY100 in 22 copies is the most abundant. A typical ISY100 member is 947 bp long and has imperfect terminal inverted repeat sequences. It has an open reading frame encoding a 282-amino-acid protein that appears to have partial homology with the transposase encoded by a bacterial IS, IS630, indicating that ISY100 belongs to the IS630 family. To determine whether ISY100 has transposition ability, we constructed a plasmid carrying the IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible transposase gene at one site and mini-ISY100 with the chloramphenicol resistance gene, substituted for the transposase gene of ISY100, at another site and introduced the plasmid into an Escherichia coli strain already harboring a target plasmid. Mini-ISY100 transposed to the target plasmid in the presence of IPTG at a very high frequency. Mini-ISY100 was inserted into the TA sequence and duplicated it upon transposition, as do IS630 family elements. Moreover, the mini-ISY100-carrying plasmid produced linear molecules of mini-ISY100 with the exact 3' ends of ISY100 and 5' ends lacking two nucleotides of the ISY100 sequence. No bacterial insertion elements have been shown to generate such molecules, whereas the eukaryotic Tc1/mariner family elements, Tc1 and Tc3, which transpose to the TA sequence, have. These findings suggest that ISY100 transposes to a new site through the formation of linear molecules, such as Tc1 and Tc3, by excision. Some Tc1/mariner family elements leave a footprint with an extra sequence at the site of excision. No footprints, however, were detected in the case of ISY100, suggesting that eukaryotes have a system that repairs a double strand break at the site of excision by an end-joining reaction, in which the gap is filled with a sequence of several base pairs, whereas prokaryotes do not have such a system. ISY100 transposes in E. coli, indicating that it transposes without any host factor other than the transposase encoded by itself. Therefore, it may be able to transpose in other biological systems.
Collapse
Affiliation(s)
- Akihiro Urasaki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
33
|
Haapa-Paananen S, Rita H, Savilahti H. DNA transposition of bacteriophage Mu. A quantitative analysis of target site selection in vitro. J Biol Chem 2002; 277:2843-51. [PMID: 11700310 DOI: 10.1074/jbc.m108044200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mu transpositional DNA recombination machinery selects target sites by assembling a protein-DNA complex that interacts with the target DNA and reacts whenever it locates a favorable sequence composition. Splicing of a transposon into the target generates a 5-bp duplication that reflects the original target site. Preferential usage of different target pentamers was examined with a minimal Mu in vitro system and quantitatively compiled consensus sequences for the most preferred and the least preferred sites were generated. When analyzed as base steps, preferences toward certain steps along the 5-bp target site were detected. We further show that insertion sites can be predicted on the basis of additively calculated base step values. Also surrounding sequences influence the preference of a given pentamer; a symmetrical structural component was revealed, suggesting potential hinges at and around the target site.
Collapse
Affiliation(s)
- Saija Haapa-Paananen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, PO Box 56, Viikinkaari 9, 00014 University of Helsinki, Finland
| | | | | |
Collapse
|
34
|
Klinakis AG, Loukeris TG, Pavlopoulos A, Savakis C. Mobility assays confirm the broad host-range activity of the Minos transposable element and validate new transformation tools. INSECT MOLECULAR BIOLOGY 2000; 9:269-275. [PMID: 10886410 DOI: 10.1046/j.1365-2583.2000.00183.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fast and reliable methods for assessing the mobility of the transposable element Minos have been developed. These methods are based on the detection of excision and insertion of Minos transposons from and into plasmids which are co-introduced into cells. Excision is detected by polymerase chain reaction (PCR) with appropriate primers. Transposition is assayed by marker rescue in Escherichia coli, using a transposon plasmid that carries a tetracycline resistance gene and a target plasmid carrying a gene that can be selected against in E. coli. Using both assays, Minos was shown to transpose in Drosophila melanogaster cells and embryos, and in cultured cells of a mosquito, Aedes aegypti, and a lepidopteran, Spodoptera frugiperda. In all cases, mobility was dependent on the presence of exogenously supplied transposase, and both excision and transposition were precise. The results indicate that Minos can transpose in heterologous insect species with comparable efficiencies and therefore has the potential to be used as a transgenesis vector for diverse species.
Collapse
Affiliation(s)
- A G Klinakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
35
|
Tosi LR, Beverley SM. cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res 2000; 28:784-90. [PMID: 10637331 PMCID: PMC102556 DOI: 10.1093/nar/28.3.784] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/1999] [Revised: 12/04/1999] [Accepted: 12/04/1999] [Indexed: 11/13/2022] Open
Abstract
Mos1 and other mariner / Tc1 transposons move horizon-tally during evolution, and when transplanted into heterologous species can transpose in organisms ranging from prokaryotes to protozoans and vertebrates. To further develop the Drosophila Mos1 mariner system as a genetic tool and to probe mechanisms affecting the regulation of transposition activity, we developed an in vitro system for Mos1 transposition using purified transposase and selectable Mos1 derivatives. Transposition frequencies of nearly 10(-3)/target DNA molecule were obtained, and insertions occurred at TA dinucleotides with little other sequence specificity. Mos1 elements containing only the 28 bp terminal inverted repeats were inactive in vitro, while elements containing a few additional internal bases were fully active, establishing the minimal cis -acting requirements for transposition. With increasing transposase the transposition frequency increased to a plateau value, in contrast to the predictions of the protein over-expression inhibition model and to that found recently with a reconstructed Himar1 transposase. This difference between the 'natural' Mos1 and 'reconstructed' Himar1 transposases suggests an evolutionary path for down-regulation of mariner transposition following its introduction into a naïve population. The establishment of the cis and trans requirements for optimal mariner transposition in vitro provides key data for the creation of vectors for in vitro mutagenesis, and will facilitate the development of in vivo systems for mariner transposition.
Collapse
MESH Headings
- Animals
- DNA Transposable Elements/genetics
- DNA Transposable Elements/physiology
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/genetics
- Drosophila/enzymology
- Drosophila/genetics
- Evolution, Molecular
- Genome
- Magnesium/metabolism
- Manganese/metabolism
- Mutagenesis, Insertional/methods
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Protein Folding
- Protein Renaturation
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Recombination, Genetic/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Deletion/genetics
- Substrate Specificity
- Terminal Repeat Sequences/genetics
- Trans-Activators/physiology
- Transposases/chemistry
- Transposases/genetics
- Transposases/isolation & purification
- Transposases/metabolism
Collapse
Affiliation(s)
- L R Tosi
- Department of Molecular Microbiology, Washington University Medical School, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
36
|
Abstract
Transgenic technology is currently applied to several animal species of agricultural or medical importance, such as fish, cattle, mosquitos and parasitic worms. However, the repertoire of genetic tools used for molecular analyses of mice and Drosophila is not always applicable to other species. For example, while retroviral enhancer-trap experiments in mice can be based on embryonic stem (ES) cell technology, this is not currently an option with other animals. Similarly, the germline transformation of Drosophila depends on the use of the P-element transposon, which does not jump in other genera. This article analyses the main characteristics of Tc1/mariner transposable elements, examines some of the factors that have contributed to their evolutionary success, and describes their potential, as well as their limitations, for transgenesis and insertional mutagenesis in diverse animals.
Collapse
Affiliation(s)
- R H Plasterk
- Division of Molecular Biology, Netherlands Cancer Institute and Center for Biomedical Genetics, Division of Molecular Biology, Plesmanlaan 121, Amsterdam 1066CX, The Netherlands.
| | | | | |
Collapse
|
37
|
Hoekstra R, Otsen M, Lenstra JA, Roos MH. Characterisation of a polymorphic Tc1-like transposable element of the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol 1999; 102:157-66. [PMID: 10477184 DOI: 10.1016/s0166-6851(99)00094-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hctc1, a member of the Tc1-family of transposable elements was isolated from the parasitic nematode Haemonchus contortus. Hctc1 is 1590 bp long, is flanked by 55 bp inverted repeats and carries a single open reading frame of a 340 amino acid transposase-like protein. Hctc1 is similar to Tc1 of Caenorhabditis elegans and elements Tcb1 and Tcb2 of Caenorhabditis briggsae in the inverted terminal repeats, the open reading frame, as well as the target insertion sequence. Furthermore, the copy number of Hctc1 is comparable with the Tc1 copy number in low copy strains of C. elegans. The sequence of Hctc1 is highly variable in H. contortus due to deletions, insertions and point mutations, with at least five distinct length variants of Hctc1. Most of the Hctc1 variation was within rather than between H. contortus populations. The high level of sequence variation is probably due to variation generally found for members of the Tc1-family, as well as a high background level of genetic variation of H. contortus.
Collapse
Affiliation(s)
- R Hoekstra
- Department of Molecular Recognition, Institute for Animal Science and Health (ID-DLO), Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Migheli Q, Laugé R, Davière JM, Gerlinger C, Kaper F, Langin T, Daboussi MJ. Transposition of the autonomous Fot1 element in the filamentous fungus Fusarium oxysporum. Genetics 1999; 151:1005-13. [PMID: 10049918 PMCID: PMC1460518 DOI: 10.1093/genetics/151.3.1005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Autonomous mobility of different copies of the Fot1 element was determined for several strains of the fungal plant pathogen Fusarium oxysporum to develop a transposon tagging system. Two Fot1 copies inserted into the third intron of the nitrate reductase structural gene (niaD) were separately introduced into two genetic backgrounds devoid of endogenous Fot1 elements. Mobility of these copies was observed through a phenotypic assay for excision based on the restoration of nitrate reductase activity. Inactivation of the Fot1 transposase open reading frame (frameshift, deletion, or disruption) prevented excision in strains free of Fot1 elements. Molecular analysis of the Nia+ revertant strains showed that the Fot1 element reintegrated frequently into new genomic sites after excision and that it can transpose from the introduced niaD gene into a different chromosome. Sequence analysis of several Fot1 excision sites revealed the so-called footprint left by this transposable element. Three reinserted Fot1 elements were cloned and the DNA sequences flanking the transposon were determined using inverse polymerase chain reaction. In all cases, the transposon was inserted into a TA dinucleotide and created the characteristic TA target site duplication. The availability of autonomous Fot1 copies will now permit the development of an efficient two-component transposon tagging system comprising a trans-activator element supplying transposase and a cis-responsive marked element.
Collapse
Affiliation(s)
- Q Migheli
- Institut de Génétique et Microbiologie, Université Paris-sud, Bâtiment 400, F-91405, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Deschamps F, Langin T, Maurer P, Gerlinger C, Felenbok B, Daboussi MJ. Specific expression of the Fusarium transposon Fot1 and effects on target gene transcription. Mol Microbiol 1999; 31:1373-83. [PMID: 10200958 DOI: 10.1046/j.1365-2958.1999.01278.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Fot1 transposon is active in some strains of the plant pathogenic fungus Fusarium oxysporum. In a high-copy-number strain that contains autonomous elements, we have detected a transcript of 1.7 kb hybridizing to Fot1 in very low amounts. Mapping the 3' and 5' termini of this transcript confirms that it corresponds to a Fot1-specific transcript. In this strain, five independent mutants of the transgene (niaD) encoding nitrate reductase have arisen by insertion of Fot1 into the third intron. The analysis of the effect of Fot1 insertion in these mutants shows that, depending on the orientation of Fot1 relative to niaD, different truncated chimeric niaD-Fot1 transcripts are produced. Mapping the 5' and 3' ends of these transcripts reveals (i) premature polyadenylation at sites present in the 5' and 3' untranslated regions of Fot1, and (ii) initiation of some transcripts in the 3' part of the niaD gene at sites located immediately downstream of the Fot1 insertion. Thus, a novel promoter, associated with the end of Fot1, directs transcriptional activity outwards from the element into the coding sequence of the niaD gene. These effects demonstrate that Fot1 insertion provides an additional general mechanism controlling fungal gene expression.
Collapse
Affiliation(s)
- F Deschamps
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
40
|
Ivics Z, Izsvák Z, Hackett PB. Genetic applications of transposons and other repetitive elements in zebrafish. Methods Cell Biol 1999; 60:99-131. [PMID: 9891333 DOI: 10.1016/s0091-679x(08)61896-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Z Ivics
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Magor BG, Ross DA, Pilström L, Warr GW. Transcriptional enhancers and the evolution of the IgH locus. IMMUNOLOGY TODAY 1999; 20:13-7. [PMID: 10081224 DOI: 10.1016/s0167-5699(98)01380-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B G Magor
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available.
Collapse
Affiliation(s)
- J Mahillon
- Laboratoire de Génétique Microbienne, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
43
|
Raz E, van Luenen HG, Schaerringer B, Plasterk RH, Driever W. Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr Biol 1998; 8:82-8. [PMID: 9427643 DOI: 10.1016/s0960-9822(98)70038-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Transposable elements of the Tc1/mariner family are found in many species of the animal kingdom. It has been suggested that the widespread distribution of this transposon family resulted from horizontal transmission among different species. RESULTS To test the ability of Tc1/mariner to cross species barriers, as well as to develop molecular genetic tools for studying zebrafish development, we determined the ability of the Tc3 transposon, a member of the Tc1/mariner family, to function in zebrafish. Tc3 transposons carrying sequences encoding the green fluorescent protein (GFP) were able to integrate in the fish genome by transposition. Integrated transposons expressed the GFP marker after germline transmission, and were capable of being mobilized upon introduction of transposase protein in trans. CONCLUSIONS Our findings support models of horizontal transmission of Tc1/mariner elements between species. The work also establishes the basis for a novel method of transposon-mediated genetic transformation and for transposon-mediated genetic screens in zebrafish and other organisms.
Collapse
Affiliation(s)
- E Raz
- Department of Developmental Biology, Institute for Biology 1, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
44
|
Collet J, Spike CA, Lundquist EA, Shaw JE, Herman RK. Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. Genetics 1998; 148:187-200. [PMID: 9475731 PMCID: PMC1459801 DOI: 10.1093/genetics/148.1.187] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutation in the Caenorhabditis elegans gene osm-6 was previously shown to result in defects in the ultrastructure of sensory cilia and defects in chemosensory and mechanosensory behaviors. We have cloned osm-6 by transposon tagging and transformation rescue and have identified molecular lesions associated with five osm-6 mutations. The osm-6 gene encodes a protein that is 40% identical in amino acid sequence to a predicted mammalian protein of unknown function. We fused osm-6 with the gene for green fluorescent protein (GFP); the fusion gene rescued the osm-6 mutant phenotype and showed accumulation of GFP in ciliated sensory neurons exclusively. The OSM-6::GFP protein was localized to cytoplasm, including processes and dendritic endings where sensory cilia are situated. Mutations in other genes known to cause ciliary defects led to changes in the appearance of OSM-6::GFP in dendritic endings or, in the case of daf-19, reduced OSM-6::GFP accumulation. We conclude from an analysis of genetic mosaics that osm-6 acts cell autonomously in affecting cilium structure.
Collapse
Affiliation(s)
- J Collet
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul, 55108, USA
| | | | | | | | | |
Collapse
|
45
|
Ketting RF, Fischer SE, Plasterk RH. Target choice determinants of the Tc1 transposon of Caenorhabditis elegans. Nucleic Acids Res 1997; 25:4041-7. [PMID: 9321655 PMCID: PMC147011 DOI: 10.1093/nar/25.20.4041] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Tc1 transposon of Caenorhabditis elegans always integrates into the sequence TA, but some TA sites are preferred to others. We investigated a TA target site from the gpa-2 gene of C.elegans that was previously found to be preferred (hot) for Tc1 integration in vivo . This site with its immediate flanks was cloned into a plasmid, and remained hot in vitro , showing that sequences immediately adjacent to the TA dinucleotide determine this target choice. Further deletion mapping and mutagenesis showed that a 4 bp sequence on one side of the TA is sufficient to make a site hot; this sequence nicely fits the previously identified Tc1 consensus sequence for integration. In addition, we found a second type of hot site: this site is only preferred for integration when the target DNA is supercoiled, not when it is relaxed. Excision frequencies were relatively independent of the flanking sequences. The distribution of Tc1 insertions into a plasmid was similar when we used nuclear extracts or purified Tc1 transposase in vitro , showing that the Tc1 transposase is the protein responsible for the target choice.
Collapse
Affiliation(s)
- R F Ketting
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
46
|
Rezsohazy R, van Luenen HG, Durbin RM, Plasterk RH. Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. Nucleic Acids Res 1997; 25:4048-54. [PMID: 9321656 PMCID: PMC147001 DOI: 10.1093/nar/25.20.4048] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have found a novel transposon in the genome of Caenorhabditis elegans. Tc7 is a 921 bp element, made up of two 345 bp inverted repeats separated by a unique, internal sequence. Tc7 does not contain an open reading frame. The outer 38 bp of the inverted repeat show 36 matches with the outer 38 bp of Tc1. This region of Tc1 contains the Tc1-transposase binding site. Furthermore, Tc7 is flanked by TA dinucleotides, just like Tc1, which presumably correspond to the target duplication generated upon integration. Since Tc7 does not encode its own transposase but contains the Tc1-transposase binding site at its extremities, we tested the ability of Tc7 to jump upon forced expression of Tc1 transposase in somatic cells. Under these conditions Tc7 jumps at a frequency similar to Tc1. The target site choice of Tc7 is identical to that of Tc1. These data suggest that Tc7 shares with Tc1 all the sequences minimally required to parasitize upon the Tc1 transposition machinery. The genomic distribution of Tc7 shows a striking clustering on the X chromosome where two thirds of the elements (20 out of 33) are located. Related transposons in C. elegans do not show this asymmetric distribution.
Collapse
Affiliation(s)
- R Rezsohazy
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
47
|
Izsvák Z, Ivics Z, Hackett PB. Repetitive elements and their genetic applications in zebrafish. Biochem Cell Biol 1997. [DOI: 10.1139/o97-045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repetitive elements provide important clues about chromosome dynamics, evolutionary forces, and mechanisms for exchange of genetic information between organisms. Repetitive sequences, especially the mobile elements, have many potential applications in genetic research. DNA transposons and retroposons are routinely used for insertional mutagenesis, gene mapping, gene tagging, and gene transfer in several model systems. Once they are developed for the zebrafish, they will greatly facilitate the identification, mapping, and isolation of genes involved in development as well as the investigation of the evolutionary processes that have been shaping eukaryotic genomes. In this review repetitive elements are characterized in terms of their lengths and other physical properties, copy numbers, modes of amplification, and mobilities within a single genome and between genomes. Examples of how they can be used to screen genomes for species and individual strain differences are presented. This review does not cover repetitive gene families that encode well-studied products such as rRNAs, tRNAs, and the like.
Collapse
|
48
|
Jansen G, Hazendonk E, Thijssen KL, Plasterk RH. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat Genet 1997; 17:119-21. [PMID: 9288111 DOI: 10.1038/ng0997-119] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Traditional reverse genetics on yeast, mice and other organisms uses homologous recombination with transgenic DNA to interrupt a target gene. Here we report that target-selected gene inactivation can be be achieved in Caenorhabditis elegans with the use of chemical mutagens. We use PCR to selectively visualize deletions in genes of interest; the method is sensitive enough to permit detection of a single mutant among more than 15,000 wild types. A permanent frozen mutant collection of more than a million mutagenized animals has been established, and deletion mutants of several G-protein genes were isolated from it. The approach is suitable to be scaled up for systematic inactivation of all 17,000 C. elegans genes. Because it requires no transgenesis or cell culturing, it may also be applicable to small organisms usually considered to be outside the realm of reverse genetics (for example, other nematodes and insects). Any sequenced gene in any organism that can be handled in very large numbers can possibly be targeted in this way.
Collapse
Affiliation(s)
- G Jansen
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
49
|
Devine SE, Chissoe SL, Eby Y, Wilson RK, Boeke JD. A transposon-based strategy for sequencing repetitive DNA in eukaryotic genomes. Genome Res 1997; 7:551-63. [PMID: 9149950 PMCID: PMC310657 DOI: 10.1101/gr.7.5.551] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Repetitive DNA is a significant component of eukaryotic genomes. We have developed a strategy to efficiently and accurately sequence repetitive DNA in the nematode Caenorhabditis elegans using integrated artificial transposons and automated fluorescent sequencing. Mapping and assembly tools represent important components of this strategy and facilitate sequence assembly in complex regions. We have applied the strategy to several cosmid assembly gaps resulting from repetitive DNA and have accurately recovered the sequences of these regions. Analysis of these regions revealed six novel transposon-like repetitive elements, IR-1, IR-2, IR-3, IR-4, IR-5, and TR-1. Each of these elements represents a middle-repetitive DNA family in C. elegans containing at least 3-140 copies per genome. Copies of IR-1, IR-2, IR-4, and IR-5 are located on all (or most) of the six nematode chromosomes, whereas IR-3 is predominantly located on chromosome X. These elements are almost exclusively interspersed between predicted genes or within the predicted introns of these genes, with the exception of a single IR-5 element, which is located within a predicted exon. IR-1, IR-2, and IR-3 are flanked by short sequence duplications resembling the target site duplications of transposons. We have established a website database (http:(/)/www.welch.jhu.edu/approximately devine/RepDNAdb.html) to track and cross-reference these transposon-like repetitive elements that contains detailed information on individual element copies and provides links to appropriate GenBank records. This set of tools may be used to sequence, track, and study repetitive DNA in model organisms and humans.
Collapse
Affiliation(s)
- S E Devine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Transposable elements are discrete mobile DNA segments that can insert into non-homologous target sites. Diverse patterns of target site selectivity are observed: Some elements display considerable target site selectivity and others display little obvious selectivity, although none appears to be truly "random." A variety of mechanisms for target site selection are used: Some elements use direct interactions between the recombinase and target DNA whereas other elements depend upon interactions with accessory proteins that communicate both with the target DNA and the recombinase. The study of target site selectivity is useful in probing recombination mechanisms, in studying genome structure and function, and also in providing tools for genome manipulation.
Collapse
Affiliation(s)
- N L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|