1
|
Smith SS. The bisulfite reaction with cytosine and genomic DNA structure. Anal Biochem 2024; 691:115532. [PMID: 38609028 DOI: 10.1016/j.ab.2024.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The bisulfite reaction with native DNA has been extensively employed in the detection of non-B DNA structures that can form spontaneously in DNA. These sequences are dynamic in that they can adopt both normal Watson-Crick paired B-DNA or unusual structures like the Triplex, G-Quadruplex, i-motif and Cruciform or Hairpin. Considerable evidence now suggests that these dynamic sequences play roles in both epigenetics and mutagenesis. The bisulfite reaction with native DNA offers a key approach to their detection. In this application whole cells, isolated nuclei or isolated DNA are treated with bisulfite under non-denaturing conditions in order to detect bisulfite accessible regions DNA that are associated with these structures. Here I review the stereochemistry of the bisulfite reaction, the electronic structure of its DNA cytosine substrates and its application in the detection of unusual structures in native DNA.
Collapse
Affiliation(s)
- Steven S Smith
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Wright EP, Lamparska K, Smith SS, Waller ZAE. Substitution of Cytosine with Guanylurea Decreases the Stability of i-Motif DNA. Biochemistry 2017; 56:4879-4883. [PMID: 28853563 DOI: 10.1021/acs.biochem.7b00628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both 5-aza-2'-deoxycytidine (decitabine) and its primary breakdown product, 2'-deoxyriboguanylurea (GuaUre-dR), have been shown to act as mutagens and epimutagens that cause replication stress and alter both DNA methylation and gene expression patterns. As cytosine analogues, both are expected to be preferentially incorporated into regions of GC skew where runs of cytosine residues are sequestered on one strand and guanine residues on the other. Given that such regions have been identified as sites with the potential for effects on gene expression and replication stress linked to formation of alternative DNA secondary structures, it is of interest to determine the influence that these base analogues might have on the stability of structures of this kind. Here we report that incorporation of GuaUre-dR into an i-motif-forming sequence decreases both the thermal and pH stability of an i-motif despite the apparent ability of GuaUre-dR to base pair with cytosine.
Collapse
Affiliation(s)
- Elisé P Wright
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Katarzyna Lamparska
- Beckman Research Institute and Division of Urology, City of Hope , 1500 East Duarte Road, Duarte, California 91010-3000, United States
| | - Steven S Smith
- Beckman Research Institute and Division of Urology, City of Hope , 1500 East Duarte Road, Duarte, California 91010-3000, United States
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K.,Centre for Molecular and Structural Biochemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
3
|
Schenkel LC, Rodenhiser D, Siu V, McCready E, Ainsworth P, Sadikovic B. Constitutional Epi/Genetic Conditions: Genetic, Epigenetic, and Environmental Factors. J Pediatr Genet 2017; 6:30-41. [PMID: 28180025 PMCID: PMC5288004 DOI: 10.1055/s-0036-1593849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
There are more than 4,000 phenotypes for which the molecular basis is at least partly known. Though defects in primary DNA structure constitute a major cause of these disorders, epigenetic disruption is emerging as an important alternative mechanism in the etiology of a broad range of congenital and developmental conditions. These include epigenetic defects caused by either localized (in cis) genetic alterations or more distant (in trans) genetic events but can also include environmental effects. Emerging evidence suggests interplay between genetic and environmental factors in the epigenetic etiology of several constitutional "epi/genetic" conditions. This review summarizes our broadening understanding of how epigenetics contributes to pediatric disease by exploring different classes of epigenomic disorders. It further challenges the simplistic dogma of "DNA encodes RNA encodes protein" to best understand the spectrum of factors that can influence genetic traits in a pediatric population.
Collapse
Affiliation(s)
- Laila C. Schenkel
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| | - David Rodenhiser
- Children's Health Research Institute, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
- Department of Pediatrics, Western University, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Victoria Siu
- Children's Health Research Institute, London, Ontario, Canada
- Department of Pediatrics, Western University, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Peter Ainsworth
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
- Department of Pediatrics, Western University, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
4
|
Marshall P, Bredy TW. Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory? NPJ SCIENCE OF LEARNING 2016; 1:16014. [PMID: 27512601 PMCID: PMC4977095 DOI: 10.1038/npjscilearn.2016.14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 05/02/2023]
Abstract
A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. To date, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram.
Collapse
Affiliation(s)
- Paul Marshall
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - Timothy W Bredy
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Schenkel LC, Rodenhiser DI, Ainsworth PJ, Paré G, Sadikovic B. DNA methylation analysis in constitutional disorders: Clinical implications of the epigenome. Crit Rev Clin Lab Sci 2016; 53:147-65. [PMID: 26758403 DOI: 10.3109/10408363.2015.1113496] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genomic, chromosomal, and gene-specific changes in the DNA sequence underpin both phenotypic variations in populations as well as disease associations, and the application of genomic technologies for the identification of constitutional (inherited) or somatic (acquired) alterations in DNA sequence forms a cornerstone of clinical and molecular genetics. In addition to the disruption of primary DNA sequence, the modulation of DNA function by epigenetic phenomena, in particular by DNA methylation, has long been known to play a role in the regulation of gene expression and consequent pathogenesis. However, these epigenetic factors have been identified only in a handful of pediatric conditions, including imprinting disorders. Technological advances in the past decade that have revolutionized clinical genomics are now rapidly being applied to the emerging discipline of clinical epigenomics. Here, we present an overview of epigenetic mechanisms with a focus on DNA modifications, including the molecular mechanisms of DNA methylation and subtypes of DNA modifications, and we describe the classic and emerging genomic technologies that are being applied to this study. This review focuses primarily on constitutional epigenomic conditions associated with a spectrum of developmental and intellectual disabilities. Epigenomic disorders are discussed in the context of global genomic disorders, imprinting disorders, and single gene disorders. We include a section focused on integration of genetic and epigenetic mechanisms together with their effect on clinical phenotypes. Finally, we summarize emerging epigenomic technologies and their impact on diagnostic aspects of constitutional genetic and epigenetic disorders.
Collapse
Affiliation(s)
| | - David I Rodenhiser
- b Departments of Biochemistry , Oncology and Paediatrics, Western University , London , ON , Canada .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| | - Peter J Ainsworth
- a Departments of Pathology and Laboratory Medicine .,b Departments of Biochemistry , Oncology and Paediatrics, Western University , London , ON , Canada .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,d Molecular Genetics Laboratory, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| | - Guillaume Paré
- f Department of Pathology and Molecular Medicine , and.,g Department of Clinical Epidemiology and Biostatistics , McMaster University , Hamilton , ON , Canada
| | - Bekim Sadikovic
- a Departments of Pathology and Laboratory Medicine .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,d Molecular Genetics Laboratory, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| |
Collapse
|
6
|
Abstract
BACKGROUND A remarkable correspondence exists between the cytogenetic locations of the known fragile sites and frequently reported sites of hypermethylation. The best-known features of fragile sites are sequence motifs that are prone to the spontaneous formation of a non-B DNA structure. These facts, coupled with the known enzymological specificities of DNA methyltransferase 1 (DNMT1), the ATP-dependent and actin-dependent helicases, and the ten-eleven translocation (TET) dioxygenases, suggest that these enzymes are involved in an epigenetic cycle that maintains the unmethylated state at these sites by resolving non-B structure, preventing both the sequestration of DNA methyltransferases (DNMTs) and hypermethylation in normal cells. PRESENTATION OF THE HYPOTHESIS The innate tendency of DNA sequences present at fragile sites to form non-B DNA structures results in de novo methylation of DNA at these sites that is held in check in normal cells by the action of ATP-dependent and actin-dependent helicases coupled with the action of TET dioxygenases. This constitutes a previously unrecognized epigenetic repair cycle in which spontaneously forming non-B DNA structures formed at fragile sites are methylated by DNMTs as they are removed by the action of ATP-dependent and actin-dependent helicases, with the resulting nascent methylation rendered non-transmissible by TET dioxygenases. TESTING THE HYPOTHESIS A strong prediction of the hypothesis is that knockdown of ATP-dependent and actin-dependent helicases will result in enhanced bisulfite sensitivity and hypermethylation at non-B structures in multiple fragile sites coupled with global hypomethylation. IMPLICATIONS OF THE HYPOTHESIS A key implication of the hypothesis is that helicases, like the lymphoid-specific helicase and alpha thalassemia/mental retardation syndrome X-linked helicase, passively promote accurate maintenance of DNA methylation by preventing the sequestration of DNMTs at sites of unrepaired non-B DNA structure. When helicase action is blocked due to mutation or downregulation of the respective genes, DNMTs stall at unrepaired non-B structures in fragile sites after methylating them and are unable to methylate other sites in the genome, resulting in hypermethylation at non-B DNA-forming sites, along with hypomethylation elsewhere.
Collapse
Affiliation(s)
- Steven S Smith
- City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
7
|
Abstract
Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.
Collapse
|
8
|
Evdokimov AA, Zinoviev VV, Kuznetsov VV, Netesova NA, Malygin EG. Design of oligonucleotide inhibitors for human DNA methyltransferase 1. Mol Biol 2009. [DOI: 10.1134/s0026893309030108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Tufarelli C. The silence RNA keeps: cis mechanisms of RNA mediated epigenetic silencing in mammals. Philos Trans R Soc Lond B Biol Sci 2006; 361:67-79. [PMID: 16553309 PMCID: PMC1626536 DOI: 10.1098/rstb.2005.1732] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One of the fundamental questions of modern biology is to unravel how genes are switched on and off at the right time and in the correct tissues. It is well recognized that gene regulation depends on a dynamic balance between activating and repressing forces, and multiple mechanisms are involved in both gene silencing and activation. Work over the last decade has revealed that in some cases transcriptional silencing of specific genes is mediated by RNAs that specifically recruit repressing complexes to homologous DNA sequences. Examples of both cis and trans RNA driven transcriptional silencing have been reported. This review focuses on those examples of transcriptional gene silencing in which the RNA component seems to act uniquely in cis. Speculative models of how such cis acting transcripts may trigger transcriptional silencing are proposed. Future experimental testing of these and other mechanisms is important to gain a fuller understanding of how genes are regulated and to identify instances in which such mechanisms are defective, leading to disease. Understanding the basic molecular basis of these phenomena will provide us with invaluable tools for the future development of targeted therapies and drugs for those diseases in which they are faulty.
Collapse
Affiliation(s)
- Cristina Tufarelli
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.
| |
Collapse
|
10
|
Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 2006; 50:81-99. [PMID: 16691418 PMCID: PMC2583075 DOI: 10.1007/s00294-006-0078-x] [Citation(s) in RCA: 350] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/15/2006] [Accepted: 04/19/2006] [Indexed: 12/11/2022]
Abstract
Double-stranded RNA has been shown to induce gene silencing in diverse eukaryotes and by a variety of pathways. We have examined the taxonomic distribution and the phylogenetic relationship of key components of the RNA interference (RNAi) machinery in members of five eukaryotic supergroups. On the basis of the parsimony principle, our analyses suggest that a relatively complex RNAi machinery was already present in the last common ancestor of eukaryotes and consisted, at a minimum, of one Argonaute-like polypeptide, one Piwi-like protein, one Dicer, and one RNA-dependent RNA polymerase. As proposed before, the ancestral (but non-essential) role of these components may have been in defense responses against genomic parasites such as transposable elements and viruses. From a mechanistic perspective, the RNAi machinery in the eukaryotic ancestor may have been capable of both small-RNA-guided transcript degradation as well as transcriptional repression, most likely through histone modifications. Both roles appear to be widespread among living eukaryotes and this diversification of function could account for the evolutionary conservation of duplicated Argonaute-Piwi proteins. In contrast, additional RNAi-mediated pathways such as RNA-directed DNA methylation, programmed genome rearrangements, meiotic silencing by unpaired DNA, and miRNA-mediated gene regulation may have evolved independently in specific lineages.
Collapse
Affiliation(s)
- Heriberto Cerutti
- School of Biological Sciences and Plant Science Initiative, University of Nebraska, Lincoln, 68588-0666, USA.
| | | |
Collapse
|
11
|
Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM. DNA motifs associated with aberrant CpG island methylation. Genomics 2006; 87:572-9. [PMID: 16487676 DOI: 10.1016/j.ygeno.2005.12.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 02/06/2023]
Abstract
Epigenetic silencing involving the aberrant methylation of promoter region CpG islands is widely recognized as a tumor suppressor silencing mechanism in cancer. However, the molecular pathways underlying aberrant DNA methylation remain elusive. Recently we showed that, on a genome-wide level, CpG island loci differ in their intrinsic susceptibility to aberrant methylation and that this susceptibility can be predicted based on underlying sequence context. These data suggest that there are sequence/structural features that contribute to the protection from or susceptibility to aberrant methylation. Here we use motif elicitation coupled with classification techniques to identify DNA sequence motifs that selectively define methylation-prone or methylation-resistant CpG islands. Motifs common to 28 methylation-prone or 47 methylation-resistant CpG island-containing genomic fragments were determined using the MEME and MAST algorithms (). The five most discriminatory motifs derived from methylation-prone sequences were found to be associated with CpG islands in general and were nonrandomly distributed throughout the genome. In contrast, the eight most discriminatory motifs derived from the methylation-resistant CpG islands were randomly distributed throughout the genome. Interestingly, this latter group tended to associate with Alu and other repetitive sequences. Used together, the frequency of occurrence of these motifs successfully discriminated methylation-prone and methylation-resistant CpG island groups with an accuracy of 87% after 10-fold cross-validation. The motifs identified here are candidate methylation-targeting or methylation-protection DNA sequences.
Collapse
Affiliation(s)
- F Alex Feltus
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road. NE, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
12
|
Smith SS, Schwarz RE. Gastric DNA damage through tobacco chewing: in vitro mechanistic studies of DNA nitrite attack. Cancer Lett 2005; 235:221-8. [PMID: 15946796 DOI: 10.1016/j.canlet.2005.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 04/08/2005] [Accepted: 04/13/2005] [Indexed: 11/20/2022]
Abstract
Smokeless chewing tobacco or snuff has been linked to carcinogenic effects in upper aerodigestive organs. The presence of nitrite within the tobacco product is suspected to foster carcinogenic DNA mechanisms at lower pH. We studied the impact of sodium nitrite on DNA damage at single-strand conformers or hairpin loops, known to be present at fragile sites that have been shown to cause methyltransferase stalling and that can lead to chromosomal breakage. At a pH of 4.2, two base-damage products could be demonstrated at significant levels (1-5% of total nucleotides), with greater sensitivity to hairpin loops compared to a control Watson-Crick duplex. Pyrimidine-rich strands (CCG, CTG) were more reactive than purine-rich strands (CAG, CGG). The data support a mechanism for allele-specific predisposition to DNA damage. This mechanism may be of significance in gastric cancer initiation due to chewing tobacco.
Collapse
Affiliation(s)
- Steven S Smith
- Department of Tumor Cell Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | |
Collapse
|
13
|
Abstract
RNA interference (RNAi) is an evolutionarily conserved mechanism that uses short antisense RNAs that are generated by 'dicing' dsRNA precursors to target corresponding mRNAs for cleavage. However, recent developments have revealed that there is also extensive involvement of RNAi-related processes in regulation at the genome level. dsRNA and proteins of the RNAi machinery can direct epigenetic alterations to homologous DNA sequences to induce transcriptional gene silencing or, in extreme cases, DNA elimination. Furthermore, in some organisms RNAi silences unpaired DNA regions during meiosis. These mechanisms facilitate the directed silencing of specific genomic regions.
Collapse
Affiliation(s)
- Marjori A Matzke
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, UZA2, Pharmazie Zentrum, Althanstrasse 14/2D-541, A-1090 Vienna, Austria.
| | | |
Collapse
|
14
|
Martins RP, Krawetz SA. Towards understanding the epigenetics of transcription by chromatin structure and the nuclear matrix. GENE THERAPY & MOLECULAR BIOLOGY 2005; 9:229-246. [PMID: 21243045 PMCID: PMC3021472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The eukaryotic nucleus houses a significant amount of information that is carefully ordered to ensure that genes can be transcribed as needed throughout development and differentiation. The genome is partitioned into regions containing functional transcription units, providing the means for the cell to selectively activate some, while keeping other regions of the genome silent. Over the last quarter of a century the structure of chromatin and how it is influenced by epigenetics has come into the forefront of modern biology. However, it has thus far failed to identify the mechanism by which individual genes or domains are selected for expression. Through covalent and structural modification of the DNA and chromatin proteins, epigenetics maintains both active and silent chromatin states. This is the "other" genetic code, often superseding that dictated by the nucleotide sequence. The nuclear matrix is rich in many of the factors that govern nuclear processes. It includes a host of unknown factors that may provide our first insight into the structural mechanism responsible for the genetic selectivity of a differentiating cell. This review will consider the nuclear matrix as an integral component of the epigenetic mechanism.
Collapse
Affiliation(s)
- Rui Pires Martins
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Stephen A. Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Institute for Scientific Computing, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
15
|
Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF, Matzke AJM. Genetic analysis of RNA-mediated transcriptional gene silencing. ACTA ACUST UNITED AC 2004; 1677:129-41. [PMID: 15020054 DOI: 10.1016/j.bbaexp.2003.10.015] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 10/21/2003] [Accepted: 10/21/2003] [Indexed: 12/22/2022]
Abstract
The 'nuclear side' of RNA interference (RNAi) is increasingly recognized as an integral part of RNA-mediated gene silencing networks. Current data are consistent with the idea that epigenetic changes, such as DNA (cytosine-5) methylation and histone modifications, can be targeted to identical DNA sequences by short RNAs derived via Dicer cleavage of double-stranded RNA (dsRNA). To determine the relationships among RNA signals, DNA methylation and chromatin structure, we are carrying out a genetic analysis of RNA-mediated transcriptional gene silencing (TGS) in Arabidopsis. Results obtained so far indicate that in response to RNA signals, different site-specific DNA methyltransferases (DMTases) cooperate with each other and eventually with histone-modifying enzymes to establish and maintain a transcriptionally inactive state at a homologous target promoter. Processing of dsRNA in Arabidopsis occurs in the nucleus and in the cytoplasm, where distinct Dicer-like (DCL) activities are thought to generate functionally distinct classes of short RNAs. RNA silencing pathways thus operate throughout the cell to defend against invasive nucleic acids and to regulate genome structure and function.
Collapse
Affiliation(s)
- Marjori Matzke
- Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020, Salzburg, Austria.
| | | | | | | | | | | | | |
Collapse
|
16
|
Aufsatz W, Mette MF, Matzke AJM, Matzke M. The role of MET1 in RNA-directed de novo and maintenance methylation of CG dinucleotides. PLANT MOLECULAR BIOLOGY 2004; 54:793-804. [PMID: 15604652 DOI: 10.1007/s11103-004-0179-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A genetic screen for mutants defective in RNA-directed DNA methylation and transcriptional silencing of the constitutive nopaline synthase (NOS) promoter in Arabidopsis identified two independent mutations in the gene encoding the DNA methyltransferase MET1. Both mutant alleles are disrupted structurally in the MET1 catalytic domain, suggesting that they are complete loss of function alleles. Experiments designed to test the effect of a met1 mutation on both RNA-directed de novo and maintenance methylation of the target NOS promoter revealed in each case approximately wild type levels of non-CG methylation together with significant reductions of CG methylation. These results confirm a requirement for MET1 to maintain CG methylation induced by RNA. In addition, the failure to establish full CG methylation in met1 mutants, despite normal RNA-directed de novo methylation of Cs in other sequence contexts, indicates that MET1 is required for full de novo methylation of CG dinucleotides. We discuss MET1 as a site-specific DNA methyltransferase that is able to maintain CG methylation during DNA replication and contribute to CG de novo methylation in response to RNA signals.
Collapse
Affiliation(s)
- Werner Aufsatz
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, UZAII, Althanstrasse 14/2D-541, Austria
| | | | | | | |
Collapse
|
17
|
Clark J, Shevchuk T, Kho MR, Smith SS. Methods for the design and analysis of oligodeoxynucleotide-based DNA (cytosine-5) methyltransferase inhibitors. Anal Biochem 2003; 321:50-64. [PMID: 12963055 DOI: 10.1016/s0003-2697(03)00402-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several second-generation inhibitors of DNA (cytosine-5) methyltransferases based on studies of modified synthetic oligodeoxynucleoides have been described. As an aid to studies of these inhibitors, we present an electronic structure-based algorithm that can be used as a method for predicting the nature of the expected inhibition by any noncytosine nucleotide target. Targeting by the major human enzyme (hDnmt1) is governed by the presence of a three-nucleotide motif. In hemimethylated DNA, this motif consists of a 5-methylcytosine targeting signal that causes the enzyme to probe the opposite strand for a normally paired guanosine or inosine residue and attempt to methylate the residue 5' to that site. As a demonstration of the method, we apply these rules to the design and characterization of a novel oligodeoxynucleotide inhibitor of hDnmt1. This inhibitor takes advantage of the three-nucleotide recognition motif characteristic of hDnmt1 and shows that the enzyme is inhibited in vitro by non-CG methylation which targets the enzyme to normally basepaired but unproductive nucleotides such as dG, dA, and dT. Kinetic analysis at constant S-adenosyl-L-methionine concentration shows that representative inhibitory oligodeoxynucleotides are best viewed as weakly productive components of systems containing two DNA substrates. This model suggests that the most effective inhibitors are those with very low apparent Vmax and very low Km values. Oligodeoxynucleotides containing mispaired and unproductive targets such as dG, dA, dT, and dU are also inhibitory as secondary substrates for the human enzyme. Biologically, fail-safe mechanisms identified by the ab initio approach appear to be active in preventing potentially mutagenic deamination of dihydrocytosine and enzymatic methylation of dU.
Collapse
Affiliation(s)
- Jarrod Clark
- Kaplan Clinical Research Laboratory, City of Hope Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA.
| | | | | | | |
Collapse
|
18
|
Müller A, Marins M, Kamisugi Y, Meyer P. Analysis of hypermethylation in the RPS element suggests a signal function for short inverted repeats in de novo methylation. PLANT MOLECULAR BIOLOGY 2002; 48:383-99. [PMID: 11905965 DOI: 10.1023/a:1014091131490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A repetitive DNA sequence (RPS) from Petunia hybrida had previously been shown to enhance expression variegation in petunia and tobacco and to carry a hot spot for de novo DNA methylation. Here we show that a strong de novo hypermethylation site is located within a palindromic segment of the RPS and present indirect evidence, based on sequence homologies to other repeat units within the RPS, for the formation of secondary structures at the methylation site in vivo. We demonstrate that the palindromic RPS element, which is moderately to highly repetitive in petunia, does not predominantly localise to constitutive heterochromatin. To test whether the RPS is subject to de novo methylation due to its repetitive nature or to intrinsic signals within the RPS, we integrated the RPS into the genome of Arabidopsis thaliana, a plant lacking homology to the RPS. Our data indicate that the palindromic element also acts as a de novo hypermethylation site in the non-repetitive genomic background of Arabidopsis, strongly suggesting a signal function of the palindromic RPS element.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Blotting, Southern
- DNA/genetics
- DNA/metabolism
- DNA Methylation
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Evolution, Molecular
- Gene Expression Regulation, Plant
- Genetic Variation
- Genome, Plant
- Heterochromatin/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Plants/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Solanaceae/genetics
- Species Specificity
- Nicotiana/genetics
Collapse
Affiliation(s)
- Andreas Müller
- Leeds Institute for Plant Biotechnology and Agriculture (LIBA), Centre for Plant Science, University of Leeds, UK
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
20
|
Hong K, Sherley J, Lauffenburger DA. Methylation of episomal plasmids as a barrier to transient gene expression via a synthetic delivery vector. BIOMOLECULAR ENGINEERING 2001; 18:185-92. [PMID: 11576873 DOI: 10.1016/s1389-0344(01)00100-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Efficient and sustained transgene expression are desirable features for many envisioned gene therapy applications, yet synthetic vectors tested to date are rarely successful in achieving these properties. Substantial research efforts have focused on protection of plasmid DNA from nuclease attack as well as increasing nuclear transport of plasmids, resulting in significant but still limited gains. We show here that a further barrier to efficient and sustained expression exists for synthetic vectors: plasmid DNA methylation. We have investigated this barrier for transient expression of a green fluorescent protein (GFP) transgene delivered via Lipofectamine, by testing the effects of culturing C3A human hepatoblastoma cells with 5-Azacytidine (AzaC), an irreversible inhibitor of DNA methyltransferase. To control for loss of plasmids by dilution during mitosis, transfected cells were growth-arrested for 1 week and their subsequent GFP expression quantified by FACS. In the presence of AzaC, a significantly greater fraction of transfected cells remained GFP-positive and possessed higher levels of GFP production relative to AzaC-untreated cells. Additionally, we have applied a Methyl-Assisted PCR (MAP) assay to quantify a subset of methylated CpG sites in the GFP gene. When MAP was performed on plasmids isolated from transfected cells, the extent of methylation was found to be inversely related to the level of GFP expression.
Collapse
Affiliation(s)
- K Hong
- Biotechnology Process Engineering Center and Division of Bioengineering and Environmental Health, 16-436 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
21
|
Vilkaitis G, Merkiene E, Serva S, Weinhold E, Klimasauskas S. The mechanism of DNA cytosine-5 methylation. Kinetic and mutational dissection of Hhai methyltransferase. J Biol Chem 2001; 276:20924-34. [PMID: 11283006 DOI: 10.1074/jbc.m101429200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetic and binding studies involving a model DNA cytosine-5-methyltransferase, M.HhaI, and a 37-mer DNA duplex containing a single hemimethylated target site were applied to characterize intermediates on the reaction pathway. Stopped-flow fluorescence studies reveal that cofactor S-adenosyl-l-methionine (AdoMet) and product S-adenosyl-l-homocysteine (AdoHcy) form similar rapidly reversible binary complexes with the enzyme in solution. The M.HhaI.AdoMet complex (k(off) = 22 s(-)1, K(D) = 6 microm) is partially converted into products during isotope-partitioning experiments, suggesting that it is catalytically competent. Chemical formation of the product M.HhaI.(Me)DNA.AdoHcy (k(chem) = 0.26 s(-)1) is followed by a slower decay step (k(off) = 0.045 s(-)1), which is the rate-limiting step in the catalytic cycle (k(cat) = 0.04 s(-)1). Analysis of reaction products shows that the hemimethylated substrate undergoes complete (>95%) conversion into fully methylated product during the initial burst phase, indicating that M.HhaI exerts high binding selectivity toward the target strand. The T250N, T250D, and T250H mutations, which introduce moderate perturbation in the catalytic site, lead to substantially increased K(D)(DNA(ternary)), k(off)(DNA(ternary)), K(M)(AdoMet(ternary)) values but small changes in K(D)(DNA(binary)), K(D)(AdoMet(binary)), k(chem), and k(cat). When the target cytosine is replaced with 5-fluorocytosine, the chemistry step leading to an irreversible covalent M.HhaI.DNA complex is inhibited 400-fold (k(chem)(5FC) = 0.7 x 10(-)3 s(-)1), and the Thr-250 mutations confer further dramatic decrease of the rate of the covalent methylation k(chem). We suggest that activation of the pyrimidine ring via covalent addition at C-6 is a major contributor to the rate of the chemistry step (k(chem)) in the case of cytosine but not 5-fluorocytosine. In contrast to previous reports, our results imply a random substrate binding order mechanism for M.HhaI.
Collapse
Affiliation(s)
- G Vilkaitis
- Institute of Biotechnology, Laboratory of Biological DNA Modification, LT-2028 Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
22
|
Mariappan SV, Silks LA, Bradbury EM, Gupta G. Fragile X DNA triplet repeats, (GCC)n, form hairpins with single hydrogen-bonded cytosine.cytosine mispairs at the CpG sites: isotope-edited nuclear magnetic resonance spectroscopy on (GCC)n with selective 15N4-labeled cytosine bases. J Mol Biol 2001; 283:111-20. [PMID: 9761677 DOI: 10.1006/jmbi.1998.1990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Here, we provide a direct proof that the formation of hairpins by (GCC)n at the 5'-UTR of the FMR-1 gene offers a mechanism for CpG hypermethylation associated with the fragile X syndrome. For this, we have performed hetero-nuclear (15N-1H) magnetic resonance spectroscopy to probe the structure of the CpG sites in the (GCC)n hairpins that are 15N-labeled at the amino (N4) groups of specific cytosine bases. Analyses of chemical shift, pH-induced chemical exchange, and NOE pattern of the (15N-labeled) amino protons of cytosine bases reveal that the cytosine bases at the CpG sites are intrahelical and well-stacked with the neighboring G.C base-pairs in the stem of these hairpins and probably form single hydrogen-bonded C.C mispairs. Measurements of pH-dependent 1H line-width also demonstrate that the C.C mispairs are more susceptible to open-closure than the G.C base-pairs. Thus, the Cs at the CpG sites of the (GCC)n hairpin are "flipped out" more easily to the activated state than those in the corresponding Watson-Crick duplex, (GCC)n. (GGC)n and this makes the hairpin a better target for methylation by the human methyltransferase, the enzyme that methylates the Cs at the CpG sites.
Collapse
Affiliation(s)
- S V Mariappan
- Theoretical Biology and Biophysics, Los alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
23
|
Salamon D, Takacs M, Myöhänen S, Marcsek Z, Berencsi G, Minarovits J. De novo DNA methylation at nonrandom founder sites 5' from an unmethylated minimal origin of DNA replication in latent Epstein-Barr virus genomes. Biol Chem 2000; 381:95-105. [PMID: 10746740 DOI: 10.1515/bc.2000.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Latent episomal genomes of Epstein-Barr virus, a human gammaherpesvirus, represent a suitable model system for studying replication and methylation of chromosomal DNA in mammals. We analyzed the methylation patterns of CpG dinucleotides in the latent origin of DNA replication of Epstein-Barr virus using automated fluorescent genomic sequencing of bisulfite-modified DNA samples. We observed that the minimal origin of DNA replication was unmethylated in 8 well-characterized human cell lines or clones carrying latent Epstein-Barr virus genomes as well as in a prototype virus producer marmoset cell line. This observation suggests that unmethylated DNA domains can function as initiation sites or zones of DNA replication in human cells. Furthermore, 5' from this unmethylated region we observed focal points of de novo DNA methylation in nonrandom positions in the majority of Burkitt's lymphoma cell lines and clones studied while the corresponding CpG dinucleotides in viral genomes carried by lymphoblastoid cell lines and marmoset cells were completely unmethylated. Clustering of highly methylated CpG dinucleotides suggests that de novo methylation of unmethylated double-stranded episomal viral genomes starts at discrete founder sites in vivo. This is the first comparative high-resolution methylation analysis of a latent viral origin of DNA replication in human cells.
Collapse
Affiliation(s)
- D Salamon
- 2nd Department of Pathology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
24
|
Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 1999; 274:33002-10. [PMID: 10551868 DOI: 10.1074/jbc.274.46.33002] [Citation(s) in RCA: 434] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A method is described to express and purify human DNA (cytosine-5) methyltransferase (human DNMT1) using a protein splicing (intein) fusion partner in a baculovirus expression vector. The system produces approximately 1 mg of intact recombinant enzyme >95% pure per 1.5 x 10(9) insect cells. The protein lacks any affinity tag and is identical to the native enzyme except for the two C-terminal amino acids, proline and glycine, that were substituted for lysine and aspartic acid for optimal cleavage from the intein affinity tag. Human DNMT1 was used for steady-state kinetic analysis with poly(dI-dC).poly(dI-dC) and unmethylated and hemimethylated 36- and 75-mer oligonucleotides. The turnover number (k(cat)) was 131-237 h(-1) on poly(dI-dC).poly(dI-dC), 1.2-2.3 h(-1) on unmethylated DNA, and 8.3-49 h(-1) on hemimethylated DNA. The Michaelis constants for DNA (K(m)(CG)) and S-adenosyl-L-methionine (AdoMet) (K(m)(AdoMet)) ranged from 0.33-1.32 and 2.6-7.2 microM, respectively, whereas the ratio of k(cat)/K(m)(CG) ranged from 3.9 to 44 (237-336 for poly(dI-dC).poly(dI-dC)) x 10(6) M(-1) h(-1). The preference of the enzyme for hemimethylated, over unmethylated, DNA was 7-21-fold. The values of k(cat) on hemimethylated DNAs showed a 2-3-fold difference, depending upon which strand was pre-methylated. Furthermore, human DNMT1 formed covalent complexes with substrates containing 5-fluoro-CNG, indicating that substrate specificity extended beyond the canonical CG dinucleotide. These results show that, in addition to maintenance methylation, human DNMT1 may also carry out de novo and non-CG methyltransferase activities in vivo.
Collapse
Affiliation(s)
- S Pradhan
- New England Biolabs, Beverly, Massachusetts 01915, USA
| | | | | | | |
Collapse
|
25
|
|
26
|
|
27
|
Hurd PJ, Whitmarsh AJ, Baldwin GS, Kelly SM, Waltho JP, Price NC, Connolly BA, Hornby DP. Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone. J Mol Biol 1999; 286:389-401. [PMID: 9973559 DOI: 10.1006/jmbi.1998.2491] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA duplexes in which the target cytosine base is replaced by 2-H pyrimidinone have previously been shown to bind with a significantly greater affinity to C5-cytosine DNA methyltransferases than unmodified DNA. Here, it is shown that 2-H pyrimidinone, when incorporated into DNA duplexes containing the recognition sites for M.HgaI-2 and M.MspI, elicits the formation of inhibitory covalent nucleoprotein complexes. We have found that although covalent complexes are formed between 2-H pyrimidinone-modified DNA and both M.HgaI-2 and M.MspI, the kinetics of complex formation are quite distinct in each case. Moreover, the formation of a covalent complex is still observed between 2-H pyrimidinone DNA and M.MspI in which the active-site cysteine residue is replaced by serine or threonine. Covalent complex formation between M.MspI and 2-H pyrimidinone occurs as a direct result of nucleophilic attack by the residue at the catalytic position, which is enhanced by the absence of the 4-amino function in the base. The substitution of the catalytic cysteine residue by tyrosine or chemical modification of the wild-type enzyme with N-ethylmaleimide, abolishes covalent interaction. Nevertheless the 2-H pyrimidinone-substituted duplex still binds to M.MspI with a greater affinity than a standard cognate duplex, since the 2-H pyrimidinone base is mis-paired with guanine.
Collapse
Affiliation(s)
- P J Hurd
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Sheffield, Western Bank, S10 2TN, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Woodcock DM, Linsenmeyer ME, Doherty JP, Warren WD. DNA methylation in the promoter region of the p16 (CDKN2/MTS-1/INK4A) gene in human breast tumours. Br J Cancer 1999; 79:251-6. [PMID: 9888465 PMCID: PMC2362189 DOI: 10.1038/sj.bjc.6690041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The p16 (CDKN2/MTS-1/INK4A) gene is one of several tumour-suppressor genes that have been shown to be inactivated by DNA methylation in various human cancers including breast tumours. We have used bisulphite genomic sequencing to examine the detailed sequence specificity of DNA methylation in the CpG island promoter/exon 1 region in the p16 gene in DNA from a series of human breast cancer specimens and normal human breast tissue (from reductive mammaplasty). The p16 region examined was unmethylated in the four normal human breast specimens and in four out of nine breast tumours. In the other five independent breast tumour specimens, a uniform pattern of DNA methylation was observed. Of the nine major sites of DNA methylation in the amplified region from these tumour DNAs, four were in non-CG sequences. This unusual concentration of non-CG methylation sites was not a general phenomenon present throughout the genome of these tumour cells because the methylated CpG island regions of interspersed L1 repeats had a pattern of (almost exclusively) CG methylation similar to that found in normal breast tissue DNA and in DNA from tumours with unmethylated p16 genes. These data suggest that DNA methylation of the p16 gene in some breast tumours could be the result of an active process that generates a discrete methylation pattern and, hence, could ultimately be amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- D M Woodcock
- Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
29
|
Stam M, Viterbo A, Mol JN, Kooter JM. Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants. Mol Cell Biol 1998; 18:6165-77. [PMID: 9774634 PMCID: PMC109204 DOI: 10.1128/mcb.18.11.6165] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Posttranscriptional silencing of chalcone synthase (Chs) genes in petunia transformants occurs by introducing T-DNAs that contain a promoter-driven or promoterless Chs transgene. With the constructs we used, silencing occurs only by T-DNA loci which are composed of two or more T-DNA copies that are arranged as inverted repeats (IRs). Since we are interested in the mechanism by which these IR loci induce silencing, we have analyzed different IR loci and nonsilencing single-copy (S) T-DNA loci with respect to the expression and methylation of the transgenes residing in these loci. We show that in an IR locus, the transgenes located proximal to the IR center are much more highly methylated than are the distal genes. A strong silencing locus composed of three inverted T-DNAs bearing promoterless Chs transgenes was methylated across the entire locus. The host Chs genes in untransformed plants were moderately methylated, and no change in methylation was detected when the genes were silenced. Run-on transcription assays showed that promoter-driven transgenes located proximal to the center of a particular IR are transcriptionally more repressed than are the distal genes of the same IR locus. Transcription of the promoterless Chs transgenes could not be detected. In the primary transformant, some of the IR loci were detected together with an unlinked S locus. We observed that the methylation and expression characteristics of the transgenes of these S loci were comparable to those of the partner IR loci, suggesting that there has been cross talk between the two types of loci. Despite the similar features, S loci are unable to induce silencing, indicating that the palindromic arrangement of the Chs transgenes in the IR loci is critical for silencing. Since transcriptionally silenced transgenes in IRs can trigger posttranscriptional silencing of the host genes, our data are most consistent with a model of silencing in which the transgenes physically interact with the homologous host gene(s). The interaction may alter epigenetic features other than methylation, thereby impairing the regular production of mRNA.
Collapse
Affiliation(s)
- M Stam
- Department of Molecular Genetics, Institute for Molecular Biological Sciences, BioCentrum Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
30
|
Kho MR, Baker DJ, Laayoun A, Smith SS. Stalling of human DNA (cytosine-5) methyltransferase at single-strand conformers from a site of dynamic mutation. J Mol Biol 1998; 275:67-79. [PMID: 9451440 DOI: 10.1006/jmbi.1997.1430] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Single-strand conformers (SSCs) from the C-rich strand of the triplet repeat at the FMR-1 locus are rapidly and selectively methylated by the human DNA (cytosine-5) methyltransferase. The apparent affinity of the enzyme for the FMR-1 SSC is about tenfold higher than it is for a control Watson-Crick paired duplex. The de novo methylation rate for the SSC is over 150-fold higher than the de novo rate for the control duplex. Methylation of what is generally called a hemi-methylated duplex occurs with a rate enhancement of over 100-fold, while methylation of what can be viewed as a hemi-methylated FMR-1 SSC is actually slower than the de novo rate. The pronounced inhibition of the methyltransferase by the methylated SSC suggests that the enzyme has a higher affinity for the methylated product of its reaction with the SSC than it has for the unmethylated SSC substrate. Gel retardation studies show that the methyltransferase binds selectively to SSCs from the C-rich strand of the FMR-1 triplet repeat. This suggests a two-step stalling process in which the human methyltransferase first selectively methlyates and subsequently stalls at the C-rich strand SSC. Stalling may reflect the inability of the enzyme to release a DNA product that is fixed in a conformation resembling its transition state by the unusual structure of the substrate. In particular, the data suggest that DNA methyltransferase may physically participate in biological processes that lead to dynamic mutation at FMR-1. In general, the data raise the possibility that a two-step stalling process occurs at secondary structures associated with chromosome instability, chromosome remodelling, viral replication or viral integration and may account for the local hypermethylation and global hypomethylation associated with viral and non-viral tumorigenesis.
Collapse
Affiliation(s)
- M R Kho
- Department of Cell and Tumor Biology, City of Hope National Medical Center, Duarte, CA 91010-300, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Several studies have been made to elucidate the nature of secondary structures in the single strands of d(CGG).d(CCG) repeat tracts but with conflicting conclusions. Here, we review this work and attempt to come towards consensus. Some investigators find that the G-rich strand forms hairpins. Of these, some conclude that pairing is in the alignment d(GGC).d(GGC) with two Watson-Crick bonds and one G.G bond per duplex repeat, others conclude that the alignment is d(GCG).d(GCG) with two G.G bonds and one C.C bond per duplex repeat. Others find quadruplex formation and conclude that this is in the latter alignment with two G4-quartets per quadruplex repeat and C.C bonds. We investigate why these different results were obtained and conclude that quadruplexes are likely to form under physiological conditions. We argue that they are probably bonded in the alignment d(GGC).d(GGC) with one G4-quartet and two C.G.C.G. quartets per quadruplex repeat. The C-rich strand does not appear to form quadruplexes under physiological conditions but forms hairpins. Apparently, short hairpins adopt the alignment d(CCG).d(CCG) with mismatched cytosine residues stacked into the helix but with 15 or more repeat units, the dominant form is a distorted hairpin aligned as d(GCC).d(GCC) with unpaired cytosine residues possibly turned outwards and stacked in the minor groove.
Collapse
Affiliation(s)
- J M Darlow
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | |
Collapse
|
32
|
Stöger R, Kajimura TM, Brown WT, Laird CD. Epigenetic variation illustrated by DNA methylation patterns of the fragile-X gene FMR1. Hum Mol Genet 1997; 6:1791-801. [PMID: 9302255 DOI: 10.1093/hmg/6.11.1791] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genomic methylation patterns of mammals can vary among individuals and are subject to dynamic changes during development. In order to gain a better understanding of this variation, we have analyzed patterns of cytosine methylation within a 200 bp region at the CpG island of the human FMR1 gene from leukocyte DNA. FMR1 is normally methylated during inactivation of the X chromosome in females and it is also methylated and inactivated upon expansion of CGG repeats in fragile-X syndrome. Patterns of methylation (epigenotypes) were determined by the sequencing of bisulfite-treated alleles from normal males and females and alleles from a family of five brothers who are methylation mosaics and are affected to various degrees by the fragile-X syndrome. Our data indicate that: (i) methylation of individual CpG cytosines is strikingly variable in hypermethylated epigenotypes obtained from a single individual, suggesting that maintenance of cytosine methylation is a dynamic process; (ii) methylation of non-CpG cytosines in the region studied may occur but is rare; (iii) mosaicism of methylation in the analyzed fragile-X males is remarkably similar to that found for the active X and inactive X alleles in normal females, suggesting that the methylation mosaicism of some fragile-X males reflects similar on and off states of FMR1 expression that exist in normal females; (iv) hypermethylation is slightly more pronounced on fragile-X alleles than on normal inactive X alleles of females; (v) the general dichotomy of hypo- and hypermethylated alleles persisted over the 5 year period that separated samplings of the fragile-X males; (vi) methylation variability was most pronounced at a consensus binding sequence for the alpha-PAL transcription factor, a sequence that may play a role in regulating expression of FMR1.
Collapse
Affiliation(s)
- R Stöger
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. or
| | | | | | | |
Collapse
|
33
|
Abstract
Triplet repeat expansion diseases (TREDs) are characterized by the coincidence of disease manifestation with amplification of d(CAG. CTG), d(CGG.CCG) or d(GAA.TTC) repeats contained within specific genes. Amplification of triplet repeats continues in offspring of affected individuals, which generally results in progressive severity of the disease and/or an earlier age of onset, phenomena clinically referred to as 'anticipation'. Recent biophysical and biochemical studies reveal that five of the six [d(CGG)n, d(CCG)n, (CAG)n, d(CTG)n and d(GAA)n] complementary sequences that are associated with human disease form stable hairpin structures. Although the triplet repeat sequences d(GAC)n and d(GTC)n also form hairpins, repeats of the double-stranded forms of these sequences are conspicuously absent from DNA sequence databases and are not anticipated to be associated with human disease. With the exception of d(GAG)n and d(GTG)n, the remaining triplet repeat sequences are unlikely to form hairpin structures at physiological salt and temperature. The details of hairpin structures containing trinucleotide repeats are summarized and discussed with respect to potential mechanisms of triplet repeat expansion and d(CGG.CCG) n methylation/demethylation.
Collapse
Affiliation(s)
- M Mitas
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA.
| |
Collapse
|
34
|
Smith SS, Baker DJ. Stalling of human methyltransferase at single-strand conformers from the Huntington's locus. Biochem Biophys Res Commun 1997; 234:73-8. [PMID: 9168963 DOI: 10.1006/bbrc.1997.6581] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We describe evidence for a sequence of events in which the Human DNA(cytosine-5)methyl-transferase first methylates spontaneous single-stranded conformers (SSCs) and then stalls at the methylated site to produce a complex with the conformationally unusual DNA. This property of the enzyme is a result of its ability to respond to a general loss of symmetry at its CG recognition site. The data suggest that DNA methyltransferase, itself, may physically participate in biological processes that distinguish between DNA that is in the normal Watson-Crick paired conformation and DNA that is conformationally unusual (e.g. a hairpin loop or misassembled replication intermediate). The in vitro methylation of spontaneous SSCs from the Huntington's locus illustrates the phenomenon.
Collapse
Affiliation(s)
- S S Smith
- Department of Cell and Tumor Biology, City of Hope National Medical Center, Duarte, California 91010-3000, USA
| | | |
Collapse
|
35
|
Smith SS, Niu L, Baker DJ, Wendel JA, Kane SE, Joy DS. Nucleoprotein-based nanoscale assembly. Proc Natl Acad Sci U S A 1997; 94:2162-7. [PMID: 9122165 PMCID: PMC20058 DOI: 10.1073/pnas.94.6.2162] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A system for addressing in the construction of macromolecular assemblies can be based on the biospecificity of DNA (cytosine-5) methyltransferases and the capacity of these enzymes to form abortive covalent complexes at targeted 5-fluorocytosine residues in DNA. Using this system, macromolecular assemblies have been created using two representative methyltransferases: M-HhaI and M x MspI. When 5-fluorocytosine (F) is placed at the targeted cytosine in each recognition sequence in a synthetic oligodeoxynucleotide (GFGC for M x HhaI or FCGG for M x MspI), we show that the first recognition sequence becomes an address for M x HhaI, while the second sequence becomes an address for M x MspI. A chimeric enzyme containing a dodecapeptide antigen linked to the C terminus of M-HhaI retained its recognition specificity. That specificity served to address the linked peptide to the GFGC recognition site in DNA. With this assembly system components can be placed in a preselected order on the DNA helix. Axial spacing for adjacent addresses can be guided by the observed kinetic footprint of each methyltransferase. Axial rotation of the addressable protein can be guided by the screw axis of the DNA helix. The system has significant potential in the general construction of macromolecular assemblies. We anticipate that these assemblies will be useful in the construction of regular protein arrays for structural analysis, in the construction of protein-DNA systems as models of chromatin and the synaptonemal complex, and in the construction of macromolecular devices.
Collapse
Affiliation(s)
- S S Smith
- Department of Cell and Tumor Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The past few years have seen a wider acceptance of a role for DNA methylation in cancer. This can be attributed to three developments. First, the documentation of the over-representation of mutations at CpG dinucleotides has convincingly implicated DNA methylation in the generation of oncogenic point mutations. The second important advance has been the demonstration of epigenetic silencing of tumor suppressor genes by DNA methylation. The third development has been the utilization of experimental methods to manipulate DNA methylation levels. These studies demonstrate that DNA methylation changes in cancer cells are not mere by-products of malignant transformation, but can play an instrumental role in the cancer process. It seems clear that DNA methylation plays a variety of roles in different cancer types and probably at different stages of oncogenesis. DNA methylation is intricately involved in a wide diversity of cellular processes. Likewise, it appears to exert its influence on the cancer process through a diverse array of mechanisms. It is our task not only to identify these mechanisms, but to determine their relative importance for each stage and type of cancer. Our hope then will be to translate that knowledge into clinical applications.
Collapse
Affiliation(s)
- P W Laird
- Department of Surgery, University of Southern California, School of Medicine/Norris Comprehensive Cancer Center, Los Angeles 90033, USA.
| | | |
Collapse
|